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Robust sensor placement for signal extraction
Fateme Ghayem, Student Member, IEEE, Bertrand Rivet, Rodrigo Cabral Farias,

and Christian Jutten, Fellow, IEEE

Abstract—This paper proposes an efficient algorithm for robust
sensor placement with the purpose of recovering a source signal
from noisy measurements. To model uncertainty on the spatially-
variant sensors gain and on the spatially correlated noise, we
assume that both are realizations of Gaussian processes. Since
the signal to noise ratio (SNR) is also uncertain in this context, to
achieve a robust signal extraction, we propose a new placement
criterion based on the maximization of the probability that the
SNR exceeds a given threshold. This criterion can be easily
evaluated using the Gaussian process assumption. Moreover, to
reduce the computational complexity of the joint maximization
of the criterion with respect to all sensor positions, we suggest
a sequential maximization approach, where the sensor positions
are chosen one at a time. Finally, we present numerical results
showing the superior robustness of the proposed approach
when compared to standard sensor placement criteria aimed at
interpolating the spatial gain and to a recently proposed criterion
aimed at maximizing the average SNR.

Index Terms—sensor placement, source extraction, signal to
noise ratio, Gaussian processes.

I. INTRODUCTION

MANY signal processing problems can be cast from
a generic setting where a source signal propagates

through a given structure to the sensors. Under this setting,
we can be interested either in (i) characterizing the source
signal, or (ii) the structure, or even (iii) the resulting field
of signals in some regions of the structure. In all these
cases, signals are recorded by multiple sensors located at
different positions within or on the structure. Due to price,
energy or ergonomic constraints (e.g. when the structure is
the human body), the number of sensors is often limited and
it becomes crucial to place a few sensors at positions which
contain the maximum information. This problem corresponds
to optimal sensor placement and it is faced in a great number
of applications ranging from infrastructure monitoring [1]–[4]
and robotics [5] to biomedical signal processing [6], [7].

The way to tackle the problem of optimal sensor placement
differs from one application to another, it mainly depends on
which of three aspects mentioned above we want to focus
on. In this paper, we study this problem aiming at the first
aspect, that is, to extract a source signal from a set of noisy
measurements collected from a limited number of sensors.
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In what follows we describe briefly the model we consider
for the recorded signals. All signals are supposed to be real
values. Scalars are denoted by lower case letters z, vectors
by lower case boldface letters z and matrices by upper case
boldface letters Z. To retrieve the source of interest s(t) at
time t, a noisy measurement y(x, t) is recorded by a sensor
positioned at x ∈ X ⊆ RD. The noisy measurement is related
to s(t) as follows:

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain between the source
s(t) and the sensor, and n(x, t) is the corresponding
spatially correlated/time uncorrelated additive noise
at time t. Now, if M sensors are used at locations
XM = {x1,x2, . . . ,xM}, then the set of noisy
measurements related to each sensor can be denoted by
the vector y(XM , t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]

T ,
where ·T is the transpose operator. We also denote
n(XM , t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]

T and
a(XM ) = [a(x1), a(x2), . . . , a(xM )]

T the corresponding
noise and spatial gain vectors, respectively. One can then
write the measurement model (1) in a more compact form

y(XM , t) = a(XM )s(t) + n(XM , t). (2)

The main goal is to find the optimal set of locations XM , such
that the best estimation of the source s(t) can be obtained from
the measurements y(XM , t). We further assume that a(x) is
not fully known, either because we have measured it only in
a few positions, or because the available prior information on
it is vague. To model this uncertainty, we take a Bayesian
perspective and we assume that a(x) is a realization of a
Gaussian process (GP). Such uncertainty modeling approach
has been extensively used in function interpolation, where it is
named kriging [8], [9], in the design of computer experiments
[10] and in global optimization [11]. It has also been used for
sensor placement in [12], where the increment of the mutual
information (MI) is proposed as a placement criterion. In that
work, the increment in MI is maximized using a near-optimal
greedy approach. New sensors are added one by one starting
with an empty set, in such a way that, at each iteration, the
selected location adds maximum information.

The approach in [12] focuses on interpolating a field of
signals e.g. room temperature. As any other kriging based
criterion for interpolation [13], [14], this approach could be
used in our setting if the goal was to estimate a(x). But as
previously stated, this is not our aim, and the two goals may
not be equivalent. Consider a simple example where a(x) has
similar uncertainty everywhere in X and that n(x, t) has a
short correlation length. In this case, interpolation-based crite-
ria will spread the sensors over X , while a criterion targeting
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the extraction of s(t) will spread them across positions which
the predicted value of |a(x)| is higher.

The goal we pursue in this paper is similar to what has
been recently studied in [15]. In that paper, by considering
a GP model for a(x) and n(x, t) and using a linear source
extraction approach, the output signal-to-noise-ratio (SNR) of
the estimated source signal is derived as a function of a(x) and
of the sensor locations XM . Since a(x) is stochastic, the SNR
is stochastic too. So, in [15] the average SNR is suggested as
the criterion to solve the problem of optimal sensor placement
for source extraction. The suggested criterion significantly
outperforms kriging-based methods in terms of the SNR.
Although the average SNR takes into account the uncertainty
in the gains, it may not lead to a robust sensor placement
criterion, since increased levels of uncertainty on the gains
affect not only the average SNR but also the dispersion of
its distribution. As a result, the criterion can suggest some
locations which have high values for the average SNR, but
also high dispersion, leading to an actual value of the SNR
that can be much lower than its average. In this case, not only
the selected sensor positions may not improve the SNR, but
they may decrease the SNR.

In this paper, we propose to extend the idea in [15] to
take into account the robustness issue presented above. A
more general criterion, based on the probability that the SNR
exceeds a fixed threshold is put forward. Since the evaluation
of this criterion requires the probability density function (pdf)
of the SNR, we indicate how this pdf can be evaluated using
the GP assumption on the spatial gain. Moreover, when we
choose the sensor positions in a sequential fashion, we show
that the criterion can then be evaluated analytically. Simulation
results obtained with the sequential approach show that the
threshold in the probability-based criterion can be adjusted to
a trade-off between having a maximum increase in the SNR
and being robust to a possible decrease in the SNR due to
uncertainty. Also, the results confirm the superior robustness
of our approach compared to other criteria from the literature.

The rest of the paper is organized as follows. In Section II
we derive the criterion based on the SNR and we show how to
evaluate the required pdf. Section III presents how the criterion
becomes simpler with the sequential approach and in Section
IV, we briefly describe two kriging-based existing criteria. In
Section V, the simulation results are presented. Finally, section
VI concludes the paper and discusses perspectives.

II. OPTIMAL SENSOR PLACEMENT FOR SOURCE
EXTRACTION

In this section, we are going to solve the problem of optimal
sensor placement for source extraction using the noisy sensor
measurements model given by (2). We first provide a brief
review of the source extraction problem. Then, we present the
proposed criterion.

A. Linear signal extraction and signal to noise ratio

Let us consider the observation model in (2). By using a
linear estimator described f ∈ RM , the extracted source signal

ŝ(t) is the following [15]:

ŝ(t) = fTy(XM , t) = fTa(XM )s(t) + fTn(XM , t). (3)

For simplicity, in the rest of this paper, the dependence on the
set of sensor locations XM will be denoted with a subscript
(·)M . For example, a function P(XM ) will be denoted PM .
From (3), the SNR of the estimation of s(t) can be derived as

SNR(f |XM ) =
Et[(f

TaMs(t))
2
]

Et[(fTnM (t))
2
]

=
σ2
s f

TaMaT
M f

fTCn
MM f

, (4)

where Et[·] stands for the expectation over time, and the
signal time samples are temporally zero-mean, independent
and identically distributed (iid) with σ2

s = E[s(t)2] and
Cn

MM = E[nM (t)nT
M (t)]. From (4), it can be seen that the

SNR is a function of both the extraction vector f and sensor
locations XM . By considering the SNR as a function of f and
maximizing the output SNR over f , assuming that the sensor
positions XM are fixed and known, the best linear estimator
f∗ classically is given by

f∗|XM = RMMaM , (5)

where RMM , (Cn
MM )

−1. By conditioning on XM we note
that the maximization over f is done under the assumption
that the sensor positions XM are known. For simplicity, in
the rest of this paper, we denote the best extractor just by f∗.
By replacing (5) in (4), the corresponding SNR is

SNR(f∗|XM ) = σ2
s aT

MRMMaM . (6)

Now, by observing the resulting output SNR in (6) as a
function of sensor locations XM and maximizing it over XM ,
we end up with the optimal solution for sensor placement in
terms of the best SNR. This solution implicitly assumes a
perfect knowledge of spatial gains a(xi), i ∈ {1, 2, . . . , M}.
However, such a perfect knowledge is not always available. To
overcome this issue a GP with mean ma(x) and covariance
function Ca(x,x′) is considered to model a(x) as â(x):

â(x) ∼ GP
(
ma(x), Ca(x,x′)

)
. (7)

Consequently, the randomness of a(x) leads to a stochastic
SNR as well, which is estimated as:

ŜNR(f̂ |XM ) = σ2
s â

T
MRMM âM , (8)

where f̂ = RMM âM .

Remark 1. If we have a prior information on aK =
[a(x1), a(x2), . . . , a(xK)]

T , for example if we have previously
placed the sensors at these positions and measured the gains,
then the prior (7) can be updated to include this information,
simply by conditioning the GP on the measurements of the
gains. The conditioned GP is still a GP but with conditioned
mean and covariance functions [16].

To target the SNR in (6), we need to use a quantitative
statistical measure of the SNR distribution which is robust
against the uncertainty in the spatial gain model (7). This will
be presented in the next part.
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B. Proposed criterion
Since the pdf of a random variable contains all the informa-

tion about it, here, by having the pdf of the SNR, we are able
to define different efficient statistical criteria. Therefore, first,
we attempt to derive the pdf of the SNR given in (8). Then,
based on the obtained pdf, we present our robust criterion for
sensor placement.

To simplify notation, we define the random variable WM ,
(1/σ2

s)SNR(f∗|XM ) = aT
MRn

MMaM . Now, in order to find
the distribution of WM , we have the following proposition:

Proposition 1. (Distribution of WM ) If the spatial gain a(x)

follows the GP model a(x) ∼ GP
(
ma(x), Ca(x,x′)

)
, for any

positive integer number M , then WM is the weighted sum of
M independent random variables as follows:

WM =

M∑
i=1

diy
2
i , (9)

where yi’s are independent normally distributed random vari-
ables yi ∼ N (myi , 1), with myi = uT

i (Ca
MM )−

1
2 ma

M , and,
di’s and ui’s are respectively the eigenvalues and eigenvectors
of the matrix A defined as follows:

A , (Ca
MM )

1
2RMM (Ca

MM )
1
2 , (10)

and ma
M = [ma(x1), ma(x2), . . . , ma(xM )].

Proof: Let vector w be a normally distributed random
vector with zero mean and an identity covariance matrix IM :
w ∼ N (0, IM ). Now, we define a random variable yi as
follows:

yi , uT
i (w + m′M ), (11)

where
m′M = (Ca

MM )−
1
2 ma

M . (12)

Note that this definition of the random variable yi provides an
independence between diy2

i and djy2
j for i 6= j which will be

studied in Remark 2.
Therefore, the squared form of yi becomes as follows:

y2
i =(w + m′M )Tuiu

T
i (w + m′M )

=wTuiu
T
i w + 2(m′M )Tuiu

T
i w + (m′M )Tuiu

T
i (m′M ).

According to the above equation, we have the following:
M∑
i=1

diy
2
i = wT

[ M∑
i=1

(diuiu
T
i )

]
w

+ 2(m′M )T
[ M∑

i=1

(diuiu
T
i )

]
w + (m′M )T

[ M∑
i=1

(diuiu
T
i )

]
m′M .

Since di’s and ui’s are the eigenvalues and eigenvectors of A,
it yields

∑M
i=1(diuiu

T
i ) = A. So, we have

M∑
i=1

diy
2
i = wTAw+2(m′M )TAw+(m′M )TA(m′M ). (13)

By replacing (12) and (10) in (13), we obtain the following:
M∑
i=1

diy
2
i = (ma

M + (Ca
MM )

1
2 w)TRMM (ma

M + (Ca
MM )

1
2 w).

(14)

Since w is a normally distributed random vector with zero
mean and an identity covariance matrix, and also ma

M and
Ca

MM are the mean vector and covariance matrix of the
model of the spatial gain respectively, we conclude that
ma

M +(Ca
MM )

1
2 w is equal to aM . So, we have the following:

M∑
i=1

diy
2
i = aT

MRMMaT
M = (1/σ2

s)SNR(f∗|XM ) = WM .

Remark 2. Considering (11), it is straightforward to show
that for any i 6= j ∈ {1, 2, . . . ,M}, yi and yj are uncor-
related. On the other hand, yi and yj are jointly normally
distributed. Therefore, yi and yj are independent. Moreover,
as long as the Jacobian of a non-linear transformation
h : RM −→ RM ′

is diagonal, the non-linear functions
will not affect the independence of the random variables.
Therefore, by defining h(yi) , diy

2
i , since the Jacobian matrix

of the function h over the independent random variables
yi, i ∈ {1, 2, . . . ,M} is diagonal, it can be concluded that
for any i 6= j ∈ {1, 2, . . . ,M}, γi , diy

2
i and γj , djy

2
j are

also independent.

Remark 3. Since yi is a normally distributed scalar with
non-zero mean myi and variance one, its squared form y2

i

follows a noncentral chi-squared distribution with the number
of degrees of freedom ki = 1, and non-centrality parameter
λi = m2

yi . So, the pdf of the random variable vi , y2
i becomes

gVi(vi; ki, λi) =
1

2
exp−

(vi+λi)

2

(
vi
λi

)(
ki
4 −

1
2 )

I ki
2 −1

(
√
λivi),

(15)
where I·(·) is the modified Bessel function of the first kind.
Now, by defining γi = divi to be the scaled form of the random
variable vi with the positive scale factor di, the distribution
of γi becomes as follows:

gΓi(γi) =
1

di
gVi(

γi
di

; ki, λi), (16)

denoting gVi(.) the pdf of the random variable vi = y2
i with

noncentral chi-squared distribution defined in (15).

From Remark 2 and Remark 3, it can be concluded that the
SNR is the sum of M independent random variables γi each
having a pdf defined in (16). Therefore, due to independence,
the pdf of the SNR is given by the convolution product,
denoted by ∗, between the pdf of M random variables γi:

gWM
(wM ) = gΓ1

(wM ) ∗ gΓ2
(wM ) ∗ · · · ∗ gΓM (wM )

=
1∏M

i=1 di
gV1

(
wM

d1
) ∗ gV2

(
wM

d2
) ∗ · · · ∗ gVM (

wM

dM
). (17)

Note that, for simplicity, in the above, the parameters ki and
λi are omitted, and we presented gVi(vi; ki, λi) by gVi(vi).

Now, by knowing the pdf of the SNR, it is possible to define
different criteria. To have an efficient criterion, it is necessary
to consider two important properties: first, the criterion has to
suggest positions providing maximum output SNR. Second,
the criterion should be robust against the uncertainty on the
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gains, that is, it should avoid positions that have a non-
negligible probability of generating a small SNR. So, to
achieve these two goals, we propose to search for a set of
positions that maximizes the probability of the SNR to be
greater than a threshold denoted θ. This leads to the following
problem:

X̂M = argmax
XM

JP (XM , θ), (18)

where the criterion JP (XM , θ) is based on the cumulative
distribution function (cdf) of the SNR:

JP (XM , θ) = Pr(WM > θ) = 1−GWM
(θ), (19)

where GWM
(·) represents the cdf of the SNR/σ2

s (i.e. WM )
conditioned to the sensors at positions XM . By knowing the
pdf of WM , from (17) the cdf becomes as follows:

GWM
(θ; k,Λ) =

1∏M
i=1 di

×

GV1

( θ
d1

; k1, λ1

)
∗gV2

( θ
d2

; k2, λ2

)
∗· · ·∗gVM

( θ

dM
; kM , λM

)
,

where k = {k1, k2, . . . , kM}, Λ = {λ1, λ2, . . . , λM}, and
GV1

(·) is the corresponding cdf of gV1
(·). Note that from

Remark 3 we also have:

GV1
(v1; k1, λ1) = 1−Q k1

2
(
√
λ1,
√
v1), (20)

where λi and ki are defined in (15), and Q is the Marcum-Q-
function [17].

Remark 4. (Links with maximum likelihood) It is worth
mentioning that if we consider a target value α of SNR/σ2

s ,
then the maximum likelihood can also be used as a sensor
placement criterion. In this case, we look for the set XM

maximizing

Jp(XM , α) = gWM
(α). (21)

However, this criterion does not have an intuitive interpreta-
tion regarding robustness and maximization of SNR as (19).

The advantage of criterion (19) is that the free parameter
θ can be used to control the risk we want to take when
placing new sensors. In other words, by increasing θ to
sufficiently high values, the upper tail of the output SNR will
be compared for different positions, forcing the criterion to
be high for positions leading to a high SNR but which are
conservative. In this case, the positions leading to very high
average SNR but with large dispersion will be discarded. On
the contrary, by reducing the parameter θ to a sufficiently
low value, most of the positions will have similar criterion
values, and, as a consequence, risky sensor positions leading
to a very high average SNR values will not be discarded. So,
unlike maximum likelihood, with this criterion, depending on
the application, we can make a trade-off between achieving
a sufficiently high SNR and reducing the risk that the true
output SNR will be much lower than expected.

III. SEQUENTIAL SENSOR PLACEMENT

In this section, we first discuss about the computational
complexity of the sensor placement problem for M sensors.
Two solutions that reduce the complexity complexity are then
presented. One solution is based on a greedy method for
breaking the underlying maximization problem into smaller
problems. The second solution follows the same greedy ap-
proach, but it exploits information on the spatial gain that may
be available when the smaller sensor placement problems are
solved sequentially.

A. Computational cost

In practice, to optimize the criterion (19), a grid search is
used. We are thus looking for the best subset XM from a
total spatial grid of T positions XT to place M sensors such
that our proposed criterion in (19) is maximized. The optimal
solution to this problem requires a combinatorial search over

T !
M !(T−M)! possibilities. This search has a high computational
cost, especially if the grid is very tight, i.e. when T is large.
Therefore, it is essential to provide a less costly solution. In
the following, we present a straightforward way to tackle this
problem.

B. Greedy method

One approach to reduce the computational complexity of
the combinatorial search is to use a greedy method. In this
approach, we start from an empty set and iteratively add
N < M sensors such that at each selection, the underlying
criterion becomes maximum for the totally selected positions
up to each iteration. Assume that K sensors have already been
located at XK and we want to add the next N new sensors at
XN where N is smaller than the total number of sensors M .
Among all the possibilities for the N new sensors, we search
for the subset XN such that XK+N = {XK∪XN} maximizes
(19). Since at each iteration N < M , the computational
complexity will be reduced compared with a direct search
for XM . However, such complexity reduction comes at the
expense of a possible suboptimality of the chosen sensor
positions.

C. Sequential approach

When breaking the larger search for the M optimal positions
into a sequential search for N positions, we may be interested
in using the extraction system with the new sensors, prior to
choosing and placing the next N sensors. In such a case, it is
possible to use the available measurements not only to extract
the signal but also to obtain new information on the spatial
gains. If such information can be retrieved, then it can be used
to reduce the uncertainty on â(x) and, as a consequence, to
reduce the uncertainty on the SNR for the next N sensors
to be placed. Note that this sequential approach is different
from the greedy method, whose only objective is to iteratively
maximize the criterion and not to retrieve any other useful
information that may reduce the uncertainty.

In practice, information on the spatial gains may be obtained
either if a ground truth signal is available [7], or with blind
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signal processing techniques such as independent component
analysis (ICA) [18] or sparse component analysis (SCA) [19].
In the following, we suppose that one of these approaches has
been used and that the new information available on the gain is
equivalent to noisy measurements of it, denoted zK , obtained
at the previously placed sensor positions XK :

zK = aK + vK , (22)

where vK(x) is a Gaussian process independent of a(x) and
n(x, t), and with the covariance function Cv(x,x′).

Once we placed the K sensors and measured zK , we can
update the criterion for placing the new N sensors by condi-
tioning the gain on zK . The gain vector can then be written
as âT

M =
[
âT
K âT

N

]
, where âK are the gains for which we

have measurements, âN is the random vector corresponding
to the spatial gains at candidate positions XN , and both are
conditioned on zK . As mentioned in Remark 1, since both
the gains and zK are Gaussian, the conditioned gains are also
Gaussian with mean and covariance given by [16]

mM |K = E [âM |zK ]

= mM + Ca
MK [Ca

KK + Cv
KK ]

−1
(zK −mK), (23)

and

Ca
M |K =E

[(
âM −mM |K

) (
âM −mM |K

)T ]
=Ca

MM −Ca
MK [Ca

KK + Cv
KK ]

−1
(Ca

MK)
T
, (24)

where Ca
MK , Ca

KK are blocks of the partitioned covariance

matrix Ca
MM =

[
Ca

MK Ca
MN

]
=

[
Ca

KK Ca
KN

Ca
KN

T Ca
NN

]
.

The estimated SNR is similar to (8) ŜNR(f̂ |XN , zK), but,
since XK is fixed, it is now conditioned on zK and a function
of XN only. As âM is Gaussian, the distribution of WM |K ,
(1/σ2

s)ŜNR(f̂ |XN , zK) can be obtained in a similar way as
presented in Subsection II-B. With the distribution of WM |K ,
we can modify the criterion (19) to have the following robust
sequential sensor placement criterion:

JP (XN , θ|zK) = Pr(WM |K > θ) = 1−GWM|K (θ). (25)

1) Perfect gain information: if the information on the gain
is assumed to be perfect, that is, zK = aK , then the vector
of gains can be written as âT

M =
[
aT
K âT

N

]
, where aK are

now deterministic and âN is a random vector conditioned on
the observed aK . To write the conditional SNR, we partition

RMM =

[
RKK RKN

RT
KN RNN

]
, and then we have:

1

σ2
s

ŜNR(f̂ |XM ,aK) =
[
aT
K âT

N

] [ RKK RKN

RT
KN RNN

] [
aK

âN

]
= aT

KRKKaK + 2aT
KRKN âN + âT

NRNN âN . (26)

The conditioned random vector âN is also Gaussian, its mean
mN |K and covariance Ca

N |K can be obtained respectively
from (23) and (24) by setting the noise covariance equal to
zero, i.e. Cv

KK = 0. They are given by

mN |K = E [âN ] = mN + (Ca
KN )T (Ca

KK)
−1

(aK −mK).
(27)

and

Ca
N |K =E

[(
âN −mN |K

) (
âN −mN |K

)T ]
=Ca

NN −Ca
NK(Ca

KK)−1 (Ca
NK)

T (28)

Assuming that RNN is invertible and by factorizing (26),
we have

ŜNR(f̂ |XN ,aK) = σ2
s×[(

âN + R−1
NNRNKaK

)T
RNN

(
âN + R−1

NNRNKaK

)
+aT

K

(
RKK −RKNR−1

NNRT
KN

)
aK

]
. (29)

Note that the first term is a quadratic form of a Gaussian
vector, while the second term is deterministic. Therefore, the
random vector

WN |K , (1/σ2
s)ŜNR(f̂ |XN ,ak)

− aT
K

(
RKK −RKNR−1

NNRT
KN

)
aK (30)

has a distribution that can be obtained again as described in
Subsection II-B. Similarly to (19), a criterion JP (XN , θ|aK)
can also be defined.

2) Adding one sensor at a time under the perfect gain
information setting: a special case for which JP (XN , θ|aK)
has a known analytical form is when we add new sensors one
by one, i.e. N = 1. In this case, âN is a scalar random variable
and both RNN and Ca

N |K are also scalars. Therefore, we can
rewrite (29) as follows

ŜNR(f̂ |XN ,aK) = σ2
s×[

RNN

(
aN +

RNKaK

RNN

)2

+ aT
K

(
RKK −

RKNRT
KN

RNN

)
aK

]
.

If we define qN ,
(
aN + RNKaK

RNN

)
/
√
Ca

N |K , then

ŜNR(f̂ |XN ,aK) = σ2
s×[

RNNC
a
N |Kq

2
N + aT

K

(
RKK −

RKNRT
KN

RNN

)
aK

]
. (31)

From the Gaussian assumption, we have qN ∼ N (mqN , σ
2
qN ),

where mqN =
(
mN |K + RNKaK

RNN

)
/
√
Ca

N |K and σ2
qN = 1.

Therefore, it can be concluded that q2
N has a non-central chi-

squared distribution as q2
N ∼ χ2(1, λ), with degree of freedom

k = 1 and non-centrality parameter

λ = mqN =

(
mN |K +

RNKaK

RNN

)
/
√
Ca

N |K . (32)

Using expression (31) and (20), we can give an expression for
the robust placement criterion

JP (XN , θ|aK) = Pr(WN |K > θ) = 1−Q 1
2
(
√
λ,
√
θ′), (33)

where

θ′ =

θ − aT
K

(
RKK − RKNR

T

KN

RNN

)
ak

RNNCa
N |K

. (34)
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IV. OTHER SENSOR PLACEMENT CRITERIA

This section contains a brief description of kriging based
alternative criteria for sensor placement presented in the lit-
erature. We begin the section with a description of classical
kriging based criteria for interpolation, more precisely, MI and
entropy based criteria. Then, we present a criterion specially
tailored for signal extraction, that is based on the expected
predicted output SNR. We finish the section with a discussion
on the advantages and disadvantages of each approach.

A. Classical kriging criteria

In the classical kriging approaches for sensor placement,
the objective is to find sensor locations such that the set
of measurements collected by the sensors provides the best
estimation of the spatial gain â(X) in the whole space X . In
this regard, several criteria have been proposed. Among them,
entropy and MI are two basic tools to define an effective cost
function. In what follows, we explain how these two measures
can be used as criteria for sensor placement.

1) Entropy: Assume that S is the set of possible positions
in the space for sensor placement. Based on the concept of
entropy, the most informative subset A ⊂ S with the size
|A|= M to place M sensors, is the one that maximizes the
entropy, which implies that the spatial gain at the selected
positions are mostly uncertain about each other. Therefore,
the following problem needs to be solved [20]:

A = argmax
A⊂S;|A|=M

JH(XA), (35)

where JH(XA) = H(aA) is the entropy of the spatial gain
at the set of positions A. The entropy is defined as follows:

H(aA) = −
∫ +∞

−∞
p(aA) log p(aA)daA, (36)

where aA = a(XA) is the vector of spatial gain at positions
xi ∈ A, i = {1, 2, . . . ,M} and p(·) is its pdf.

According to [21], solving (35) is NP-hard. Therefore, a
greedy approach can be used to find a near optimal solution
to this problem [22], [23]. In the greedy approach, we assume
that K sensors have already been placed at position AK =
{x1,x2, . . . ,xK}, and we add a single sensor (N = 1) leading
to a total number of sensors of M = K + 1. Taking into
account the Gaussian assumption on the model of the spatial
gain as in (7), the conditional entropy is presented as follows:

H(aN |aK) =
1

2
logCa

N |K +
1

2
(log(2π) + 1), (37)

where, Ca
N |K is defined in (28). This criterion measures the

uncertainty between the spatial gain at the new position aN
and the spatial gain at the previously selected positions aK ,
and it is preferred to choose the location that maximizes this
quantity. Therefore, by defining JH(xN |aK) , H(aN |aK),
the next sensor position given by this criterion is the following:

x̂N = argmax
xN∈S\AK

JH(xN |aK). (38)

The disadvantage of the above criterion is that the decision
for sensor placement does not depend on the measurements

collected by the sensors, and it only depends on the prior
knowledge on the covariance function of the model of the spa-
tial gain, i.e. Ca. Also, it is shown that the criterion attempts
to push the sensors far from each other and scatters them in
the boundaries of the space which causes the information to be
lost and not be able to have a better estimation of the physical
phenomenon [24]. This is due to the fact that the criterion just
takes into account the entropy of the selected positions and it
does not observe the entire space of the interest.

2) Mutual information (MI): Another way to tackle the
problem of optimal sensor placement which resolves the weak
point of the entropy is to use mutual information. In [12],
it is suggested to maximize MI(aA,aS\A) which is the
mutual information between the selected locations for sensor
placement A and the rest of the space S\A:

A = argmax
A⊂S;|A|=M

JMI(XA), (39)

where JMI(XA) = H(aS\A) −H(aS\A|aA). In [12], it is
shown that this criterion outperforms the entropy criterion in
(35). It is also proved that solving (39) is NP-hard, and there-
fore, a greedy algorithm is suggested to obtain an approximate
solution. In this regard, it is proposed to add the sensors one
by one, such that the increase of the mutual information is
maximized. So, assuming that K sensors have already been
located at XK , and the new single sensor is supposed to be
located at xN in such a way that MI(aK+N ) −MI(aK) is
maximized, then we have the following:

x̂N = argmax
xN∈S\AK

JMI(xN |aK), (40)

where, JMI(xN |aK) , H(aN |aK)−H(aN |aS\L), and L =
{XK ∪ xN}. Under the Gaussian assumption for the spatial
gain, the above criterion is simplified as follows:

xN = argmax
xN∈S\AK

Ca
NN − Ca

NK(Ca
KK)−1Ca

KN

Ca
NN − Ca

NL(Ca
LL)−1Ca

LN
. (41)

B. Expected SNR

An alternative solution to deal with the uncertainty on the
spatial gain is to consider the expected SNR as a sensor
placement criterion [15]:

JE(XM ) = E[WM ]. (42)

From Section II, we know that WM is a sum of M independent
random variables Γi distributed according to (16). Therefore,
the criterion above is given by the sum of the means of Γi. A
simpler way to derive the criterion is to directly evaluate the
average of the quadratic form (8) using the GP prior on â(x):

JE(XM ) = E[âT
MRMM âM ]

= mT
MRMMmM + Tr(RMMCa

MM )

= Tr[RMM (mMmT
M + Ca

MM )]. (43)

Note that here both the greedy and sequential approaches can
be used as well. By considering that K sensors have already
been located at positions XK , that gain information zK is
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available and that we want to add N new sensors at XN , the
criterion from [15] can be written as follows:

JE(XN |zK) = E[âT
MRMM âM | zK ]

= Tr[RMM (mM |KmT
M |K + Ca

M |K)], (44)

where mM |K and Ca
M |K are, respectively, the conditional

mean and covariance given by (23) and (24).

C. Discussion on different criteria
In [15] it is shown that maximizing JE , i.e. the expectation

of the SNR, outperforms the classical kriging approaches
based on the entropy JH and the mutual information JMI

criteria for source estimation. This is clearly due to the fact
that the JE criterion targets the SNR instead of the spatial
gain for sensor placement. If we inspect expressions (43) and
(44) for the expected SNR criterion, a remarkable difference
with respect to JH and JMI is the presence of the mean of the
gain. This difference may make the optimal sensor positions
generated with JE differ substantially from those generated
with JMI or JH . For example, when the uncertainty on the
gain is small (σa is small), Ca

M |K can be neglected. In this
case, to maximize (44), the sensors need to be placed far
enough, so that RMM is close to a diagonal matrix. At the
same time the elements of mK and mM |K should have large
absolute values, so that the optimal positions will be spread on
X but will be biased to the positions where the gain is large
in absolute value. In the same situation, criteria JH and JMI

will simply spread the positions in X in such a way that the
gains on the sensors will be maximally uncorrelated.

It is expected that JP (33) outperforms JH and JMI for
signal extraction, since it targets directly the SNR. As a
downside, JP is generally more complex to evaluate than other
criteria, including JE , since it requires numerical evaluation
of the cdf of a quadratic form of a Gaussian vector. The only
case for JP which is comparable in terms of complexity to the
other methods is either when M = 1 or N = 1. In these cases,
JP is given in closed-form. Another drawback of JP when
compared to JE is that it relies on the Gaussian assumption
on the gain. For JE , the GP model assumption on a(x) is not
necessary, it is only required that a(x) is a stochastic process
with mean ma(x) and covariance Ca(x,x′).

Although in terms of computational complexity, JE is sim-
pler than JP , in terms of robustness against uncertainty it may
be inferior. The uncertainty of the SNR is summarized into its
mean and by increasing the uncertainty of the spatial gain,
the robustness of this criterion is decreased. We can see this
behavior by inspecting (43) and (44). When the uncertainty
becomes remarkable, the term depending on Ca

M |K will bias
the chosen locations to have large variance on their gains, thus
generating positions which may lead to an uncertain SNR.

V. NUMERICAL RESULTS

Experiments concerning the robustness of the proposed
criterion JP and of the criteria from the literature JE , JH
and JMI are presented in this section1. We first discuss about

1All the simulations in this section are done in MATLAB-R2018b on
operating system macOS version 10.14.3, with processor 3.2 GB Intel Core
i5 and memory 8 GB 1600 MHz DDR3.

the concept of robustness and how to measure it. Then, the
effect of θ in JP is shown. Finally, we compare the different
criteria in terms of robustness and output SNR.

A. Simulation setup

In the numerical experiments, we consider a one dimension
grid XT = [x1,x2, . . . ,xT ] in the normalized range xi ∈
[0, 1] where i = 1, 2, . . . , T for possible sensor locations. Note
that to keep the consistency of the paper, in the experimental
part we represent the scalars with bold lowercase letters.
Depending on the smoothness of the signals, the size of
the grid T and the number of initial sensors K, as well as
their positions XK will be changed in different simulation
parts. In all cases, we assume that mK = aK + bK + ūK ,
where mK is the mean of the spatial gain which will be
used as the estimation of the spatial gain, aK is the true
value of the spatial gain, bK is a bias in the spatial gain,
and ūK is the uncertainty of the spatial gain. Note that, the
sum of the uncertainty and the bias represent the error vK

in equation (22) i.e. vK = bK + ūK . We use GP models
GP(m(x), C(x,x′)), with a square exponential covariance
function C(x,x′) = σ2 exp(−(x−x′)2/(2ρ2)) to produce the
spatial gain a(x), the noise n(x), and the uncertainty ū(x).
Here, ρ is a smoothness parameter where a small ρ means fast
spatial changes, while a large ρ means smooth changes. Also,
the bias b(x) is generated using a scaled GP such that the
ratio between the bias and the spatial gain at each position
remains intact for each Monte-Carlo realization. Note that
when the GP is scaled in this way, it is not a GP anymore. The
subscripts (.)a, (.)n, (.)b, and (.)u refer to the GP parameters
of the spatial gain, the noise, the bias and the uncertainty of
the spatial gain, respectively. The smoothness parameters ρa,
ρn, ρb, and ρu, and the variances σa, σn, σb, and σu will
be changed in different parts of the numerical experiments.
We set all the mean functions m(x) to be equal to 0. Note
that, in practice, we do not have the actual spatial gain a(x),
and in our simulations, as an oracle, we generate randomly
one realization from a GP with zero-mean and covariance
parameters σa and ρa.

To implement the proposed algorithm JP (XN , θ|âK), it is
required to choose a relevant value for the parameter θ. So,
we suggest the following model:

θ = ŜNR(f̂)(K) + δ

(
ŜNR(f̂)(K+N)− ŜNR(f̂)(K)

)
. (45)

In the above equation, by using (26), ŜNR(f̂)(K) and
ŜNR(f̂)(K+N) are the mean of the SNR before and after
adding the new N sensors, respectively. Setting θ according
to the above model helps us to use a meaningful value for this
parameter, which is relative to the initial value of the SNR
added by a coefficient of the increase in the SNR after adding
new sensors. In the rest of the simulation part, we parameterize
JP as a function of δ instead of θ.

B. FR and Failure[%] as measures for the uncertainty effect

Although JE and JP are criteria targeting SNR, uncertainty
on a(x) may lead to large values of these criteria at positions
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Fig. 1: Failure region is where the true value of the SNR with
estimated extraction vector f̂ is smaller than its initial value
before adding the new sensors. Here, the mean of the SNR is
used as the criterion depicted with a red color. The blue curve
represents the variation of the true SNR with estimated f̂ . The
tilde superscript represents the normalization of the criteria.

where in practice the value of the true output SNR(f̂ |XM )
may be decreased. The true SNR is given by (4), where f =
f̂ is the estimated extraction vector. This vector is given by
f̂ = RMMmM in the non sequential approach and by f̂ =
RMMmM |K in the sequential approach. As a consequence,
the true output SNR can be rewritten as

SNR(f̂ |XM ) =
σ2
s f̂

TaMaT
M f̂

f̂TCn
MM f̂

. (46)

Note that (46) differs from the estimated SNR, ŜNR (8),
since this true SNR (46) depends on the true spatial gain aM ,
contrary to ŜNR which depends on the estimation of the spatial
gain âM . In the rest, the set of positions that deteriorates the
true SNR is called failure region (FR).

Fig. 1 is an example to understand the notion of FR. In this
figure, the size of the grid is 300, and K = 3 sensors have
already been located at the positions XK = {0.25, 0.5, 0.75},
which are marked by circles. Here, we considered an un-
biased situation i.e. b(x) = 0, the variances are set to be
σa = 0.15, σu = 0.15, σn = 0.5, and the smoothness
parameters are ρa = 0.2, ρu = 0.2, ρn = 0.1. The standard
deviation of the source signal is σs = 2. We use JE (44)
as the placement criterion. Now, the aim is to find the best
location for the 4th sensor. In this figure, the tilde superscript
indicates that the function is normalized with its maximum
value to be equal to one, and the initial value equal to zero.
The normalized variation of SNR, denoted ∆S̃NR(f̂), is as
follows:

∆S̃NR(f̂) =
SNR(f̂)− SNRinit(f̂)

SNRmax(f̂)− SNRinit(f̂)
, (47)

where SNRinit(f̂) represents the initial value of the SNR be-
fore adding the new sensor, and SNRmax(f̂) is the maximum
value of the SNR after adding the new sensor. Note that in this
paper, the points of interest in the criteria are the locations of
the maxima (and not their amplitudes), which are not affected
by the normalization. In Fig. 1 it is seen that, due to the uncer-
tainty, the normalized variation of the true SNR i.e. ∆S̃NR(f̂)
can take negative values at some regions, which means that by
placing sensors at these positions, not only the SNR will not be
improved, but it will even take smaller values compared to the
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(b) The effect of bias

Fig. 2: Failure [%] is a measure to compute the ratio of the
sensor placement region which is in the failure region. (a) In
this figure, the effect of the uncertainty level on the Failure
[%] is depicted. Here, the bias is considered to be equal to 0.
(b) The effect of bias on Failure [%] is depicted in this figure.
The variance of the uncertainty is set equal to σu = 0.01.

initial SNR. Therefore, since SNR(f̂) < SNRinit(f̂) in FR,
the numerator of (47) becomes negative, and so, ∆S̃NR(f̂)
becomes negative. In this figure, FR is marked with dashed
arrows. As depicted, although the true SNR takes quite smaller
value in FR, the suggested criterion takes significant values at
these locations. In particular, the criterion takes its maximum
value in a point x inside FR, and so, a failure has happened
due to the uncertainty. So, this is an example of the lack of
robustness of this criterion.

To analyze the affect of the uncertainty and the bias in the
model of the spatial gain on the size of the FR, we need
to define a quantitative statistical measure. To do so, we can
simulate NMC Monte-Carlo realizations of the gain, bias,
uncertainty and noise GP, and then count the total number
of positions within the FR, here denoted NFR. For a total
size of spatial grid NT , we define the failure rate as follows:

Failure [%] ,
Size of the FR

Total size of the spatial grid
=
NFR

NT
. (48)

Fig. 2 is provided to illustrate the effect of uncertainty and
bias on Failure[%]. In this figure, three initial sensors are
placed at XK = {0.25, 0.5, 0.75}, and we place the 4th

sensor using JE . The parameters are set as ρa = ρu = 0.2,
ρn = 0.01, σa = 0.5 and σn = 0.01. We generate
Na

MC = 10 realizations for the spatial gain, and for each
realization, we consider 50 runs for the bias, uncertainty and
noise (N b

MC = Nu
MC = Nn

MC = 50), which leads to a
total number of NMC = 500 Monte-Carlo (MC) realizations.
Then, Failure[%] is evaluated according to (48). In this figure,
the effects of the bias and the uncertainty on Failure[%] are
studied separately. Firstly, in Fig. 2a, we consider an unbiased
situation setting b(x) = 0, and different uncertainty levels
in the interval σu ∈

[
10−3; 100

]
are used. The blue curve

is the average of Failure [%] over all NMC realizations, and
the gray shadow represents the standard deviation. As it was
expected, by increasing σu, the average and the variance of
Failure[%] increases. This experiment is repeated in Fig. 2b to
study the effect of the bias. In this figure we use the previous
configuration to set up the parameters, except that σu is kept
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Fig. 3: Effect of parameter δ. The solid curves are the proposed
criterion for different δ. The superscript tilde represents the
normalization of the function. By increasing δ, the algorithm is
more robust against FR. However, other candidates for sensor
placement which provide significant increase in the SNR can
be ignored. So, it is required to make a trade-off between
reducing the risk of being in FR, and increasing the SNR.

fixed to σu = 0.01, and the level of the bias is changed in
the range σb ∈

[
10−3; 100

]
. As it can be seen, in average, the

effect of the bias is negligible up to σb ' 0.1. If the level of
bias goes beyond this value, the effect of the bias on Failure[%]
becomes significant, which means that the suggested model
for the spatial gain is not appropriate, and it is required to
apply better methods to provide a good approximation for the
spatial gain. Since our proposed method is only focused on the
uncertainty of the spatial gain, henceforth we assume that a
suitable model is used for the spatial gain and we set b(x) = 0.

C. Effect of δ on the criterion JP
In this part, we study the effect of δ (which controls θ) on

the results obtained with JP . To do so, Fig. 3 is provided. In
this figure, the parameters are set as follows: ρa = 0.2, ρu =
0.2, ρn = 0.1, σa = 0.15, σu = 0.15, σn = 0.5, and σs = 2,
with the size of the spatial grid equal to 300. Starting with
three initial sensors at XK = {0.05, 0.5, 0.95}, we look for the
best position for the 4th sensor. The proposed criterion is used
as the target function with three different values of δ (0.25, 0.5,
and 0.95), which are depicted in Fig. 3 with a blue, red, and
green color, respectively. Moreover, ∆S̃NR(f̂) which is the
output SNR normalized according to (47) is depicted with a
dashed curve. The plots for JE(xN |XK) and JP (xN , δ|XK)
are normalized such that their maximum values be equal to
1, and the initial values equal to 0. The normalized forms
are denoted by a superscript tilde. Note that the locations of
maxima for the different criteria will not be changed by the
normalization.

As depicted in Fig. 3, the proposed criterion behaves differ-
ently according to δ. The larger this parameter is, the smaller
the values of the criterion within FR are. It is noticeable that
by increasing δ, besides avoiding FR, it is probable to avoid
some positions with significant increase in the SNR (e.g. for
x ≈ 0.95). Consequently, high values of δ should be used to
avoid locating the new sensor in FR, with the cost of achieving
a smaller amount of increase in the SNR. Otherwise, we can
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Fig. 4: Region classification: Positive (P ) vs. Negative (N),
and True (T ) vs. False (F ). P and N represent the regions
where ∆S̃NR(f̂) is positive and negative, respectively. T is a
situation when the criterion and ∆S̃NR(f̂) are both positive,
or the criterion is zero and ∆S̃NR(f̂) is negative. F is when
the criterion is positive while ∆S̃NR(f̂) is negative, or the
criterion is zero whenever ∆S̃NR(f̂) is positive.

decrease δ to keep most of the positions with a significant
increase in the SNR, but this leads to an increased risk of
having large values of the criterion for positions in FR. So, by
choosing an appropriate δ, we can make a trade-off between
avoiding positions in the FR and keeping the regions with a
high increase in the SNR.

D. Effect of the smoothness of the spatial gain and noise
correlation length-scale on robustness

In this part, we study the influence of the ρa and ρn on the
robustness of the criteria. To do so, we first classify different
regions of the space according to Fig. 4. The parameter
configuration in this figure are as follows: ρa = 0.2, ρu =
0.2, ρn = 0.1, σa = 0.15, σu = 0.15, σn = 0.5, σs = 2,
and δ = 0.5. The size of the spatial grid is 300, with three
initial sensors at XK = {0.05, 0.5, 0.95}. According to this
figure, we name the regions with positive ∆S̃NR(f̂) to be
positive (P), and the regions with negative ∆S̃NR(f̂) to be
negative regions (N). Here, ∆S̃NR(f̂) denotes the normalized
output SNR defined in (47). Accordingly, the true positive
(TP) is the size of the region where both ∆S̃NR(f̂) and the
criterion are positive. The number of positions that ∆S̃NR(f̂)
is negative but the criterion takes a positive value is the so-
called false positive (FP). The notation true negative (TN)
corresponds to the size of the region where ∆S̃NR(f̂) is
negative, and the criterion is zero. Finally, false negative (FN)
is related to the position with positive ∆S̃NR(f̂), and zero
value for the underlying criterion. Now, according to this
region classification, and under different combinations of the
values of ρa and ρn, we calculate the false positive rate (FPR)
of a criteria as follows:

FPR =
false positive

total number of negatives
=

FP

TN + FP
. (49)

In above, the denominator is actually the size of the FR. It
is noticeable that if the size of the FR is small, although the
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(a) The influence of a smoothness, with β = 0.1.
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(b) The influence of smoothness ratio, with ρa = 0.1.

Fig. 5: The effect of the smoothness of the spatial gain and
the noise on the robustness. (a) Here, different smoothness
values of the spatial gain is considered, and the smooth-
ness ratio between the noise and the spatial gain is set as
β = ρn/ρa = 0.1. As the spatial gain gets closer to a spatial
white noise, FPR[%] increases. (b) Here, the effect of the
noise smoothness is studied. The more similar smoothness
degree of the noise and the spatial gain, the larger FPR[%]
is. Compared to the spatial gain, as the noise gets closer to
a white noise (decreasing β), or smooth noise (increasing β),
FPR[%] decreases.

FPR gets large, the probability of selecting a position in FR is
small. Conversely, if the size of the FR is large, although FPR
gets small, the probability of selecting a sensor in FR can be
large. To avoid these two marginal cases, according to Fig. 2,
we set σu ∈ [0.1, 0.8] which provides a moderate Failure[%]
between 8% and 30%.

Fig. 5a is provided to show the robustness of the proposed
criterion JP (xN , δ|aK) in terms of the average FPR[%]
and compares it with the criterion JE(xN |aK) for different
smoothness conditions ρa. In this figure, three initial sensors
are used at XK = {0.05, 0.5, 0.95} in a spatial grid of size
300, and we look for the 4th sensor position. The variances
σs = σa = σu = σn are all set to be equal to 1. The
smoothness parameter ρa takes 15 different values in the
interval

[
10−2, 10

]
in the logarithmic scale, and for each case,

we set ρu = ρa. The smoothness ratio between the spatial
gain and the noise is fixed to be β = ρn/ρa = 0.1. The total
number of NMC = 500 realizations of the spatial gain, the
mean, the uncertainty and the noise is considered. Note that the
x-axis has a logarithmic scale in Fig. 5. FPR[%] represents
the average value of FPR[%] over the whole Monte-Carlo
realizations. As depicted in this figure, the proposed criterion
is more robust compared to JE(xN |âK). This figure shows
that the larger the parameter δ is, the more robust the algorithm

is against uncertainty for different ρa.
Now, the effect of the noise smoothness is shown in Fig. 5b.

In this figure, we set ρa = 0.1, and the values of the
smoothness ratio β = ρn/ρa are sampled in the interval[
10−2, 10

]
, thus leading to different values of ρn. As it is

seen, again the proposed method shows a better performance
as the smoothness of the noise is varied. Note that, for the
proposed method, FPR[%] takes its maximum value when
the smoothness of the noise gets close to the smoothness
of the spatial signal i.e. β = ρn/ρa = 1. It is due to the
fact that the smoothness similarity between the noise and the
propagated source signal makes it difficult to separate them.
It is also interesting to mention that for larger values of β,
where the noise tends to be close to a constant function, the
FPR[%] starts to decrease. This result shows that whenever
the noise is significantly different from the signal in terms of
the smoothness, the FPR[%] takes smaller values.

E. Controlling the trade-off between robustness and average
SNR maximization

We noted earlier that by increasing the δ parameter, the
proposed method becomes more robust against the uncertainty
of the spatial gain, and the FPR[%] decreases. However,
making the risk as small as possible, i.e. being too much strict
against FR, may cause some good local maxima to be ignored,
and consequently the algorithm becomes incapable to detect
positions that provide a good output SNR. Therefore, it is
important to make a trade-off between reducing the FPR[%]
and increasing the output SNR for choosing the parameter δ.

In this section, we study the effect of δ on the output SNR
and FPR. To this aim, in Fig. 6 we compare the behaviour of
the proposed method in terms of FPR and the improvement of
the SNR under different uncertainty conditions and different
selections of δ. In this figure, we used a grid of size 100
between 0 and 1 for the sensor positions. An initial sensor
is considered in the middle of the grid at x1 = 0.5, and we
added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as σa = 1, ρa = 0.1, σs = 1,
σn = 1 and β = 0.2. The variance of the uncertainty for the
spatial gain varies as follows: σu ∈ {0, 0.1, 0.2, . . . , 1}. We
used 10 MC realizations for a(x) and 10 MC realizations for
ma(x). The average FPR denoted FPR is depicted as the blue
curve with y-axis on the left, and the average improvement in
the output SNR, i.e. ∆SNR(f̂) = SNR(f̂)− SNR(f̂)(init)

is presented in orange with the y-axis on the right. Here,
SNR(f̂)(init) denote the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that
SNR(f̂) − SNR(f̂)(init) is the variation of the SNR, which
is equivalent to the nominator of (47). This experiment is
repeated for three different values of δ, namely 1, 10, and
20.

As Fig. 6 shows, by increasing the uncertainty σu, the
FPR increases and the output improvement of SNR decreases.
Furthermore, we can see that by choosing a small value for δ,
the output improvement of SNR takes larger value in average,
however, the FPR becomes larger, meaning that the probability
of being in the failure region increases. Comparing Fig. 6-
a with Fig. 6-b, we see that by increasing δ from 1 to 10,



11

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

0

3

6

9

12

15

(a) δ = 1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

0

3

6

9

12

15

(b) δ = 10

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

0

3

6

9

12

15

(c) δ = 20

Fig. 6: The trade-off between the robustness and the maximization of the averaged SNR improvement can be controlled by
changing the parameter δ. The blue curve with y-axis on the left represents the average FPR[%] according to different levels
of uncertainty, and the orange curve with y-axis on the right depicts the average improvement of the SNR. From left to right,
sub-figures (a), (b), and (c) show the results for different values of δ. It is seen that by increasing δ, although the average
increase in the SNR gets smaller, FPR[%] gets smaller too. Depending on the application, and the level of uncertainty σu,
we need to set δ, such that both FPR[%] and the average improvement in the SNR are acceptable.

the average FPR becomes smaller for different values of σu.
However, the average improvement in the SNR decreases.
Going through a more strict selection for δ, in Fig. 6-c we
see that the average FPR gets quite smaller, providing a safe
situation to avoid FR. Nevertheless, the improvement for the
output SNR significantly decreases.

To conclude, we can say that, when the uncertainty is low,
since the output SNR improvement can be large enough, it is
possible to dedicate some SNR to reduce FPR[%], and so, we
can choose a larger δ. In contrast, when σu is large, since the
output SNR is affected by this uncertainty, we cannot dedicate
a large part of the SNR to have a smaller value of FPR[%].
Therefore, it is better not to be too strict, and select a moderate
value for δ. Depending on the application, we can make a
trade-off between ∆SNR(f̂) and FPR[%] by changing the
parameter δ: in sensitive applications where decreasing the
SNR is not acceptable, we need to choose a large δ, even if
the improvement of the output SNR is not large. On the other
hand, in applications which are less sensitive to output SNR,
we can take a risk of being trapped in the failure region to
have a large improvement in the SNR, and, as a consequence,
we can choose a smaller δ.

F. Sequential approach

In this part, we compare the proposed method
JP (xN , δ|XK) with JH(xN |XK), JMI(xN |XK) and
JE(xN |XK) by using a sequential approach. This comparison
is made in two ways: the average output SNR i.e. SNR(f̂),
and the average FPR[%]. Here, the overline represents the
average value of each measure over the total Monte-Carlo
realizations. For setting up the experiments, we assume
that K = 1 initial sensor is located at x1 = 0.5. Then we
add sensors one by one up to M = 10. Note that, since
in this experiment we want to add up to 10 sensors to
show the improvement of the algorithms according to the
number of sensors, we chose the smoothness parameter
of the spatial gain i.e. ρa to be smaller than the previous

experiments. In this way, we provide more variation for
the spatial gain. Therefore, the source signal cannot be
recovered just by using a very few sensors e.g. two or three
sensors, and to recover the source signal with a desired
accuracy, we need to collect more information by using
sufficient number of sensors, which is up to 10 sensors in this
experiment. Accordingly, the parameters are set as follows:
ρa = ρu = 0.01, β = 0.5, σa = σn = 1. We considered two
different situations for σu. One is σu = 0.1 which represents
a small value for the level of uncertainty, and the other one
is σu = 0.8, which assumes a higher uncertainty. Depending
on the level of uncertainty, we set δ = 13, and δ = 10 under
the assumption of σu = 0.1 and σu = 0.8, respectively. Note
that by reducing δ under higher uncertainty, we attempt to
achieve a required minimum improvement in the average
SNR, while having the same level of robustness measured by
FPR[%]. In this part a number of Na

MC = 10 realizations
are used for the spatial gain a(x), and for each realization
we consider 10 runs for the bias, uncertainty and noise
(N b

MC = Nu
MC = Nn

MC = 10), leading to a total number of
NMC = 100 Monte-Carlo realizations. For each realization
of the spatial gain, we also have a new realization for the
additive noise n(x).

Fig. 7 presents the simulation results for different un-
certainty levels. The first column is related to σu = 0.1,
and the second column is for σu = 0.8. The first row,
shows ∆SNR(f̂) by adding new sensors, and the second
row corresponds to FPR[%]. In all the sub-figures, the blue,
red, orange, and green curves show the performances of the
proposed criterion JP (xN , δ|âK), and other criteria based on
the mean of the SNR JE(xN |âK), the mutual information
JMI(xN |âK), and the entropy JH(xN |âK), respectively.

We begin with a low level of uncertainty σu = 0.1 in the
first column. By looking at Fig. 7-a, it is seen that the proposed
criterion significantly outperforms the other methods and pro-
vides a larger value for ∆SNR(f̂). By sequentially adding 10
sensors, JP (xN , δ|âK) provides ∆SNR(f̂) = 30 dB, which
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Fig. 7: In this figure, the performance of the proposed method is compared with the prior works by using a sequential approach.
Two situations are studied in this figure: σu = 0.1 in the first column, and σu = 0.8 in the second column. In the top, the
average output SNR is reported, and in the bottom, the average FPR[%] is presented. It is seen that both in a low and high
uncertainty levels, the proposed method provides a larger SNR, as well as more robustness against the uncertainty.

still can be increased by adding more sensors. The next best
criterion is JE(xN |âK), which gives ∆SNR(f̂) = 15 dB.
It is seen that unlike the proposed criterion, the other criteria
cannot provide a better SNR by adding more sensors since
their related curves have become almost flat. This is due to
the uncertainty, which is not considered in these methods.
It is important to mention that by adding a few number
of sensors (up to 2-3 in this example), we do not see a
significant difference in the performance of the proposed
criterion and the one in JE(xN |âK). It may be due to the
fact that for a very few number of sensors, the information
is not enough to have a good recovery of the source signal.
However, immediately after adding the next sensors, due to
the uncertainty, the proposed criterion starts outperforming
JE(xN |âK). Therefore, in this case, to avoid increasing the
computational complexity, one can simply start adding primary
sensors using JE(xN |âK). Then, by increasing the number of
sensors, it is recommended to use the proposed criterion as a
robust method against uncertainty. It is interesting to mention
that as claimed in [15], JE(xN |âK) has notably a better
performance compared to the classical kriging approaches
JH(xN |âK) and JMI(xN |âK).

To complete the discussion, sub-figure (c) shows the results
of FPR[%]. Here, we can see that the proposed method is
quite robust against the uncertainty compared to the prior
works. In contrast, the criteria based on the MI and the mean of
the SNR do not have a robust behavior. Therefore, adding new
sensors by using these two criteria cannot be useful due to the
high FPR[%]. Note that the curves related to JMI(xN |XK)

and JE(xN |XK) are quite close to each other. In sub-figure
(c), JH(xN |XK) seems to perform better than JMI(xN |XK)
and JE(xN |XK), and it provides approximately FPR[%] =
70% up to adding 9 sensors, with stepwise increasing changes
by adding more sensors. From the blue curve, we can see
that the proposed method is significantly more robust against
the uncertainty. It is observed that FPR[%] starts from 10%,
and slightly increases by adding the number of sensors up to
about 8 sensors. Then, FPR[%] remains at its maximum value
around 60%. This behavior is very promising, which tells us
that by increasing the number of sensors, and consequently
providing better SNR(f̂) (concluded from sub-figure (a)),
we can be hopeful that FPR[%] will not go beyond 60%.
However, depending on the application, this value can still be
considered risky enough to avoid adding more new sensors.

To continue, we analyze the second column for σu = 0.8.
To compare the performance of the proposed method with the
previous criteria, in sub-figures (b) and (d), we seen that the
proposed criterion has a superior performance compared to
the other methods both in SNR(f̂) and FPR[%]. Sub-figure
(b) shows that by adding 10 sensors, the proposed criterion
provides SNR(f̂) = 16 dB, which is 9 dB higher than
the result achieved by JE(xN |âK). In this part, by choosing
δ = 10, we try to keep the results for FPR[%] close to sub-
figure (c). Comparing sub-figures (a) and (b), it is seen that by
increasing the uncertainty level from σu = 0.1 to σu = 0.8,
the average output SNR decreases. For instance, considering
that 10 sensors are added, for the proposed criterion, SNR(f̂)
drops from 30 dB in sub-figure (a) to 16 dB in sub-figure (b).
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From the same point of view, the changes of the output SNR
for JE(xN |âK) is from 15 dB to 8 dB, and for JMI(xN |âK)
it is from 4 dB to 2 dB. The results for JH(xN |âK) remain
almost unchanged under different level of uncertainties.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we studied the problem of optimal sensor
placement for signal extraction. We considered a linear signal
extraction and targeted the predicted output SNR for sensor
placement problem. Since the SNR is a continuous random
variable in our setting, we presented a robust criterion for
sensor placement based on the maximization of its cdf at a
target SNR value.

Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of
the SNR and the robustness of the criterion. We also showed
that the proposed criterion is derived from the distribution of
the SNR so that the previously proposed criterion [15] can
be seen as a special case of the present study. To reduce the
computational cost of evaluating the criterion, we proposed a
sequential approach where new sensor locations are chosen in
batches. We presented how to update this sequential version
when some information on the the gains of the already placed
batches of sensors is available. Numerical results showed a
consistent superiority of the proposed criterion compared with
classical kriging and the average SNR criteria in terms of
the output SNR and robustness against the uncertainty on the
model of spatial gain.

There are several future research topics regarding the pro-
posed approach. First, we did not take into account the uncer-
tainty on the hyperparameters of the models of the noise and
spatial gain. This will be an important problem to be tackled
in further studies. Second, in the sequential approach we have
stated that information on the gains of the already placed
sensors can be retrieved with ICA or SCA. In future work, such
an approach where sensor placement is coupled with blind
source separation techniques should be put into test. Next,
we mostly focused on one dimensional problems that can be
solved by a direct search for the optimal solution in a fine grid.
If we consider higher dimensional settings, then searching in
a grid will be prohibitively complex. Therefore, it will be
necessary to develop a fast global optimization algorithm for
maximizing our criterion. As an example, recently, a gradient-
based technique is proposed in [25] that can be extended for
the new criterion we proposed in this paper. Finally, we men-
tion that, although by adding new sensors we probably have
improvement in SNR(f̂), at the same time the computational
complexity of the algorithm will be increased. Therefore, it is
necessary to make a trade-off between increasing the SNR and
decreasing the computational complexity to set the number of
sensors. Using the Akaike information criterion (AIC) [26]
to provide such a balance, we can propose a criterion which
contains one term representing the improvement of the SNR
and another term to measure the complexity of the algorithm.
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