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ABSTRACT
In this paper, we demonstrate the application of features from land-
scape analysis, initially proposed for multi-objective combinatorial
optimisation, to a benchmark set of 1 200 randomly-generatedmulti-
objective interpolated continuous optimisation problems (MO-ICOPs).
We also explore the benefits of evaluating the considered landscape
features on the basis of a fixed-size sampling of the search space.
This allows fine control over cost when aiming for an efficient
application of feature-based automated performance prediction
and algorithm selection. While previous work shows that the pa-
rameters used to generate MO-ICOPs are able to discriminate the
convergence behaviour of four state-of-the-art multi-objective evo-
lutionary algorithms, our experiments reveal that the proposed
(black-box) landscape features used as predictors deliver a similar
accuracy when combined with a classification model. In addition,
we analyse the relative importance of each feature for performance
prediction and algorithm selection.

CCS CONCEPTS
• Computing methodologies → Continuous space search; •
Theory of computation → Evolutionary algorithms; • Ap-
plied computing→Multi-criterion optimization anddecision-
making.
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1 INTRODUCTION
Although the idea of feature-based performance prediction and
algorithm selection is not new [27], research interest and effort
has intensified over the past few years [2, 14, 30]. With the need
to provide a better understanding of problem structure and com-
plexity, various works have provided the community with some
interesting sets of quantifiable features evaluating different aspects
of the landscape, such as ruggedness or multimodality [16, 23, 24].
These landscape features not only provide a means for analysing the
behaviour of search algorithms, but also provide an opportunity to
select a priori the most appropriate algorithm for unseen problems.
Such a methodology relies on two complementary components: (i) a
set of landscape features that characterises the space sufficiently
so as to discriminate the performance of given algorithms, and
(ii) a comprehensive set of benchmark problems to supply a solid
knowledge base for training and testing predictive models.

In this paper, we combine two recent works aimed at providing
those two components in the context of continuous multi-objective
optimisation problems (MOOPs). The first work [21] provides a
comprehensive set of landscape features for multi-objective combi-
natorial optimisation. These features characterise different facets of
difficulty, based on local measures computed over an affordable sam-
ple of solutions. In fact, while there exists a substantial literature on
the landscape of single-objective continuous optimisation problems,
features for continuousMOOPs are lacking [14, 22].We notice, how-
ever, that features from single-objective optimisation have been
used to characterise MOOPs [15], although single-objective features
certainly do not capture intrinsic properties of multi-objective land-
scapes, such as interaction among objectives. Here, we propose to
transfer the multi-objective landscape features developed in [21]
from problems with a combinatorial search space to problems with
a continuous search space. In particular, the random and adaptive
walks used for sampling are replaced by a fixed-cost latin hyper-
cube sampling. This allows cost efficient application (in terms of
evaluations) to automated algorithm selection and performance
prediction. The second work this paper builds upon outlines a
method for generating a diversified benchmark set of continuous
MOOPs [34]. The generator uses interpolated continuous optimisa-
tion problems to produce MOOPs with various characteristics and

https://doi.org/10.1145/3449639.3459353
https://doi.org/10.1145/3449639.3459353


GECCO ’21, July 10–14, 2021, Lille, France Arnaud Liefooghe, Sébastien Verel, Benjamin Lacroix, Alexandru-Ciprian Zăvoianu, and John McCall

structures. In total, 1 200 bi-objective problems were investigated
on four well-established multi-objective evolutionary algorithms
and discriminated the performance between those algorithms. In-
terestingly, the parameters used to generate the problems have
some predictive power on algorithm performance. We evaluate our
proposed multi-objective landscape features on these continuous
problems, and provide a comprehensive analysis of the relationship
between landscape features and algorithm performance. In particu-
lar, we analyse the correlation between the absolute performance
of each algorithm in terms of hypervolume and the considered
features. We then use the features as predictors for performance
prediction and algorithm selection on random forest regression and
classification models, respectively. We also analyse the predictive
power of the proposed landscape features against the parameters
used by the random multi-objective interpolated continuous opti-
misation problem generator from [34].

The paper is organised as follows. Section 2 recalls the con-
struction of multi-objective interpolated continuous optimisation
problems. Section 3 gives the experimental setup of our analysis.
Section 4 introduces a number of features for characterising con-
tinuous multi-objective landscapes, and correlates them with the
performance of multi-objective evolutionary algorithms. Section 5
analyses an automated algorithm selection approach using the pro-
posed landscape features as predictors. The last section concludes
the paper and discusses further research.

2 MULTI-OBJECTIVE INTERPOLATED
CONTINUOUS OPTIMISATION PROBLEMS

2.1 Multi-objective Optimisation
Let us consider an objective function vector F : X 7→ Z to be min-
imised, such that X ⊆ IRd is the variable space and Z ⊆ IRm is the
objective space. Each solution x ∈ X maps to an objective vector
z ∈ Z such that z = F (x). Given two objective vectors z, z′ ∈ Z , z is
dominated by z′ iff for all i ∈ {1, . . . ,m} z′i ⩽ zi , and there exists
a j ∈ {1, . . . ,m} such that z′j < zj . Similarly, given two solutions
x ,x ′ ∈ X , x is dominated by x ′ iff F (x) is dominated by F (x ′). An
objective vector z⋆ ∈ Z is non-dominated if there does not exist
any z ∈ Z such that z⋆ is dominated by z. A solution x⋆ ∈ X is
Pareto optimal, or non-dominated, if F (x) is non-dominated. The
set of all Pareto optimal solutions is the Pareto set (PS); its mapping
in the objective space is the Pareto front (PF). One of the main
challenges in multi-objective optimisation is to identify the PS, or
a good approximation of it for large-size and complex problems. A
number of multi-objective evolutionary algorithms (MOEAs) have
been designed to this end since the late eighties [6, 7].

2.2 Problem Definition
Multi-objective interpolated continuous optimisation problems
(MO-ICOPs) have been recently introduced in [34] as a new class
of benchmark problems with tunable landscapes. MO-ICOPs are
defined by an objective function vector that combines m single-
objective ICOPs generated using a common set of seeds. AMO-ICOP
can be formulated as follows:

minimise F(S,U1, ...,Um )(x) = (fS,U1 (x), . . . , fS,Um (x))T , (1)
where each fS,Ui (x) represents a single-objective ICOP defined by:

• A set of seeds S ⊂ X : a (typically finite) set of distinct can-
didate solutions with an assigned objective value. Elements
of S and their assigned objective values Ui will define the
entire optimisation problem via interpolation.

• An interpolation function (fS,Ui : X 7→ IR): in this paper,
we apply the inverse distance weighting method, originally
defined by Shepard for spatial analysis [28]. Assuming the
seed set S contains N seeds, labelled S = {s1, ..., sN }, with
the assigned objective valuesUi = {ui,1, ...,ui,N }, we define
for any candidate solution x ∈ X :

fS,Ui (x) =


∑N
j=1

ui, j

e(x,sj )
k∑N

j=1
1

e(x,sj )
k

if e
(
x , sj

)
, 0 for all j

ui, j if e
(
x , sj

)
= 0 for some j

(2)

where e(x ,y) : X × X 7→ IR is the Euclidean distance, and k
is a positive real number called the power parameter. Higher
values of k increase the relative influence of nearby seeds
on the interpolated value.

3 EXPERIMENTAL SETUP
3.1 Benchmark Dataset
We consider the set of bi-objective problems proposed in [34]. For
each MO-ICOP, the set of seeds S is randomly generated in the
variable space X = [−5, 5]d . The objective vector of each seed is
first assigned to a subset of non-dominated seeds Snd , ensuring that
no seed in Snd dominates another seed from Snd . Objective values
are then assigned to the remaining dominated seeds Sd , ensuring
that each seed in Sd does not dominate any seed in Snd .

Using this method, 50 problems were generated in 4 problem di-
mensions d ∈ {5, 10, 20, 30} and 6 values for k ∈ {1, 2, 3, 4, 5, 6}, cre-
ating a total of 1 200 problems covering a wide range of MO-ICOPs.
We emphasise that, although the problem dimension is typically
given, the seeds and the power of interpolation are unknown for
unseen (black-box) problems.

3.2 Considered Algorithms
By analysing the outputs of the experiments reported in [34]1, the
present work focusses on the comparative performance of four
different MOEAs parameterised using recommended settings from
the literature. In [34], the authors state that these MOEAs were cho-
sen because they exemplify different well-proven multi-objective
optimisation strategies. Thus, NSGA-II [8] pioneered alongside
SPEA2 [38] is an effective evolutionary approach grounded in
Pareto-based elitism (as a primary criterion) and objective space
distancing (as a tie-breaker). GDE3 [19] also uses this strategy, but
replaces the simulated binary crossover (SBX) and polynomial mu-
tation (PM) variation operators [7] popularised by NSGA-II with a
differential evolution (DE) strategy: DE/rand/1/bin. MOEA/D-DE-
DRA [36] is a state-of-the-art solver that also integrates a DE strat-
egy, but its main characteristic is that it applies a weighting-based
aggregation of the objectives to decompose the original MOOP
into multiple single-objective sub-problems that are solved concur-
rently during a single optimisation run. Finally, DECMO2++ [35]

1Accessible at: https://github.com/czavoianu/PPSN_2020
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was designed to achieve a fast convergence across a wide range
of benchmark MOOPs by actively pivoting between three search
strategies implemented via two actively co-evolved sub-populations
(based on SPEA2 and GDE3) and a largely passive decomposition-
based archive. In the case of NSGA-II, GDE3 and DECMO2++, a
population / archive size of 200 was used. For MOEA/D-DE-DRA,
the population size was set to 300, the standard setting for MOOPs
with two objectives.

3.3 Budgets and Search Performance
A total computational budget of 50 000 evaluations was allowed
for each optimisation run. As 100 independent runs were carried
out for each solver on each MO-ICOP, the numerical experiments
entailed a total of 480 000 independent optimisation runs across
the 1 200 MO-ICOPs from the benchmark set. Search performance
is assessed after 10 000, 20 000 and 50 000 calls to the evaluation
function, using a normalised version of the hypervolume indica-
tor [37] that quantifies the area of the objective space the MOEA
population / archive dominates when compared against the true PF
for the problem under consideration. A normalised hypervolume
of 1 actually means that the MOEA hit the PF.

When considering end-of-the-run optimisation results across
the 1 200 benchmark problems, MOEA/D-DE-DRA achieved the
best (i.e., highest) average hypervolume on 545 problems (≈ 45.4%),
NSGA-II won on 509 problems (≈ 42.4%), while GDE3 andDECMO2++
scored 125 and 21wins , respectively.

4 FEATURE-BASED LANDSCAPE ANALYSIS
In this section, we define a number of landscape features for char-
acterising MO-ICOPs. In particular, we draw inspiration from the
features introduced in [21] for combinatorial multi-objective land-
scapes. We start by describing them, and how we adapt them to
continuous multi-objective landscapes. Then, we show how they in-
dividually correlate with the performance of the consideredMOEAs.
Finally, we measure their relative importance when predicting the
performance of each MOEA for solving MO-ICOPs.

4.1 Features for Continuous Multi-objective
Landscapes

The considered landscape features are based on different measures
computed over a sample of solutions extracted from the problem
under consideration. In order to gather information from a given
continuous multi-objective landscape, we first sample a reason-
able number of n solutions from the search space. The sample P
is constructed according to a random latin hypercube design [5].
Sampled points are then evaluated by means of the objective func-
tion vector F , and the n evaluated solutions constitute the total
budget devoted to the computation of landscape features. For each
solution x ∈ P , we additionally define its d closest solutions from
the sample other than x as its neighbours, d being the problem di-
mension. The closeness is measured as the Euclidean distance in
the variable space. Based on the sample of size n and the definition
of neighbourhood, we introduce four classes of landscape features
below. In addition, we consider five problem-dependent features
coming from the construction and mathematical formulation of
MO-ICOPs, as discussed in Sect. 3.1. These features will be used as

reference in the coming analysis on the predictive performance of
landscape features in a black-box context. The 49 landscape features
and 5 problem-dependent features are summarised in Tab. 1.

4.1.1 Global Landscape Features. The first class of landscape fea-
tures is not based on the neighbourhood, and renders global prop-
erties from the continuous multi-objective landscape. This class
ranges from the (Spearman) correlation among the objective values
measured on the sample, to the average and maximum distance
among sampled solutions in the variable space and in the objective
space. We also measure the proportion of non-dominated solutions
among the sample, the proportion of supported points [10] therein,
the hypervolume covered by these non-dominated solutions, the
average and maximum distance among non-dominated solutions in
the variable space, as well as the (Spearman) correlation between
the distance among them in the variable space vs. in the objective
space — denoted as fitness-distance-correlation in [18]. Finally, we
divide the sample into different ranks following the principles of
non-dominated sorting used, e.g., in NSGA-II [8], and we measure
the average and maximum rank [1, 11] as well as the entropy of
the distribution of the number of solutions per rank.

4.1.2 Features Characterising the LandscapeMultimodality. In terms
of multimodality, we define a single-objective local optimum (slo)
in the sample as a solution with no improving neighbour for a
given objective. Similarly, we define a Pareto local optimum (plo)
as a sampled solution for which there does not exist any dominat-
ing neighbour [26]. We measure the proportions of slo and plo
in the sample, and the average and maximum distances among
them in the variable space. We also measure how many (globally)
non-dominated points in the sample there are, on average, per plo.

In single-objective landscape analysis, an adaptive walk is often
performed to estimate the multimodality: assuming isotropy in the
landscape, the longer the length of an adaptive walk, the larger
the basins size, hence the lower the number of local optima [13].
We here perform a simple multi-objective adaptive walk, where
the neighbourhood is explored from the closest to the furthest
neighbour w.r.t. the current solution, andwhere the first dominating
neighbour is accepted at each step [32]. The length (length_aws)
corresponds to the number of steps performed until no further
improvement is possible, and the walk falls into a plo. We also
record the number of solutions explored along the walk (eval_aws).
Multiple adaptive walks are typically performed from different
starting points to improve feature estimation. We report below
average values from 30 independent adaptive walks. It is important
to note that each adaptive walk is performed over the pre-computed
sample, and does not require any additional evaluation.

4.1.3 Features Characterising the Landscape Evolvability. Let us
now quantify the expected improvement that can be achieved from
a solution’s neighbourhood as measures of evolvability [29] for
multi-objective optimisation. For each solution from the sample, we
measure the proportions of dominating (sup), dominated (inf), and
incomparable (inc) neighbours. We also measure the proportion of
locally non-dominated neighbours (lnd), as well as the proportion
of locally supported solutions therein (lsupp). In addition, we com-
pute the average distance from each solution to its neighbours in
the variable space and in the objective space (dist_x and dist_f,
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Table 1: Considered problem-dependent and landscape features for continuous multi-objective optimisation.

name description

pr
ob

le
m
-

de
pe

nd
en

t d number of variables
k power of interpolation

seed_n proportional number of seeds |S |
nd_seed_n proportion of non-dominated seeds |Snd |

dom_seed_n proportion of dominated seeds |Sd |

gl
ob

al

f_cor correlation among objective values
dist_x_avg average distance among solutions in the variable space
dist_x_max maximum distance among solutions in the variable space
dist_f_avg average distance among solutions in the objective space
dist_f_max maximum distance among solutions in the objective space

nd_n proportion of non-dominated solutions
supp_n proportion of supported non-dominated solutions

hv hypervolume of non-dominated solutions
dist_x_nd_avg average distance among non-dominated solutions in the variable space
dist_x_nd_max maximum distance among non-dominated solutions in the variable space

fdc fitness-distance correlation among non-dominated solutions
rank_avg average rank w.r.t. non-dominated sorting
rank_max maximum rank w.r.t. non-dominated sorting
rank_ent entropy of the number of solutions per rank w.r.t. non-dominated sorting

m
ul
ti
m
od

al
it
y

slo_n proportion of single-objective local optima per objective
slo_dist_avg average distance among single-objective local optima in the variable space
slo_dist_max maximum distance among single-objective local optima in the variable space

plo_n proportion of Pareto local optima
plo_dist_avg average distance among Pareto local optima in the variable space
plo_dist_max maximum distance among Pareto local optima in the variable space
nd_per_plo proportion of non-dominated solutions per Pareto local optimum (i.e. nd_n / plo_n)
length_aws average length of adaptive walks
eval_aws average number of calls to the evaluation function performed by adaptive walks

ev
ol
va

bi
li
ty

sup_avg_neig average proportion of dominating neighbours
inf_avg_neig average proportion of dominated neighbours
inc_avg_neig average proportion of incomparable neighbours
lnd_avg_neig average proportion of locally non-dominated neighbours

lsupp_avg_neig average proportion of supported locally non-dominated neighbours
dist_x_avg_neig average distance from neighbours in the variable space
dist_f_avg_neig average distance from neighbours in the objective space

dist_f_dist_x_avg_neig ratio of the average distance from neighbours in the objective and variable spaces (dist_f_avg_neig / dist_x_avg_neig)
diff_f_avg_neig average difference per objective with neighbours

diff_f_dist_x_avg_neig ratio of the average diff. per objective with neighbours and the dist. in the variable space (diff_f_avg_neig / dist_x_avg_neig)
hv_avg_neig average (single) solution’s hypervolume

hvd_avg_neig average (single) solution’s hypervolume difference with neighbours
nhv_avg_neig average hypervolume from the whole neighbourhood

ru
gg

ed
ne

ss

sup_cor_neig neighbour’s correlation of the proportion of dominating neighbours
inf_cor_neig neighbour’s correlation of the proportion of dominated neighbours
inc_cor_neig neighbour’s correlation of the proportion of incomparable neighbours
lnd_cor_neig neighbour’s correlation of the proportion of locally non-dominated neighbours

lsupp_cor_neig neighbour’s correlation of the supported locally non-dominated neighbours
dist_x_cor_neig neighbour’s correlation of the average distance from neighbours in the variable space
dist_f_cor_neig neighbour’s correlation of the average distance from neighbours in the objective space

dist_f_dist_x_cor_neig neighbour’s correlation of ratio of the average distance from neighbours in the objective and variable spaces
diff_f_cor_neig neighbour’s correlation of the average difference per objective from neighbours

diff_f_dist_x_cor_neig neighbour’s correlation of the ratio of the avg. diff. per obj. from neighbours and the dist. in the variable space
hv_cor_neig neighbour’s correlation of the average (single) solution’s hypervolume

hvd_cor_neig neighbour’s correlation of the average (single) solution’s hypervolume difference with neighbours
nhv_cor_neig neighbour’s correlation of the average hypervolume from the whole neighbourhood

respectively), the ratio of both (dist_f_dist_x), as well as the
average differences from each solution to its neighbours per ob-
jective (diff_f), together with the ratio over their distance in the
variable space (diff_f_dist_x). At last, we compute the hyper-
volume covered by each solution (hv), the average difference from
the hypervolumes of its neighbours (hvd), and the hypervolume
covered by all its neighbours (nhv). For each measure described
above, we simply compute the average value over the whole sample
to construct the corresponding feature quantifying the landscape
evolvability.

4.1.4 Features Characterising the Landscape Ruggedness. The cor-
relation among the information and quality from neighbouring
solutions characterises the ruggedness of the landscape [25, 33]: the
larger the correlation, the smoother the landscape. Before being
averaged to compute the features for evolvability, every measure
presented in the previous paragraph is assigned to each solution
from the sample. Based on this information, and for each of the thir-
teen measures, we compute the (Spearman) correlation coefficient
over each pair of neighbours in the sample. We end up with thirteen
additional features characterising the ruggedness of continuous
multi-objective landscapes.
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Let us recall that all 49 landscape features considered in our
analysis are summarised in Tab. 1, below the 5 problem-dependent
features. For more details on landscape features, and to better un-
derstand their motivations, the reader is refereed to [21]. They are
all computed over the same fixed-size sampling of size n. We thus
stress that the overall cost of landscape features in terms of calls to
the evaluation function is exactly n. We analyse the correlation of
these features with the performance of MOEAs below.

4.2 Features vs. Search Performance
In the following sections, we start by considering a sampling of
size n = 200 · d solutions, where d is the number of variables for
the problem under consideration. Fig. 1 reports the Spearman cor-
relation coefficient of each feature with the expected performance
of the four considered MOEAs. Due to space restriction, we focus
on a large search budget, where each MOEA stops after 50 000 calls
to the evaluation function. We recall that search performance is
measured in terms of normalised hypervolume, so that a higher
value means a better performance. As such, a positive correlation
means a favourable effect of the feature on search performance,
whereas a negative correlation means the opposite.

We first remark that the correlations are similar for the four
algorithms, although MOEA/D-DE-DRA seems to slightly stand
out. The features most correlated with favourable algorithm perfor-
mance are dist_f_avg and dist_f_max. Theymeasure the average
and maximum distance in the objective space among the sampled
solutions. In a separate analysis, we noticed that those features
are highly correlated with the k parameter of the interpolation
function. Indeed, low k values tend to produce landscapes concen-
trated around the average objective values of the seeds with sharp
pits and peaks around the seeds [34]. This creates a large cluster
around the expected values in the objective space. This increases
the difficulty for MOEAs to reach the PF [34] and, as reflected in
Fig. 1, MOEA/D-DE-DRA seems less affected by this effect.

Surprisingly, our coarse-grained analysis reveals that features
describing the landscape multimodality (e.g., slo_n and plo_n)
are positively correlated with search performance; that is, the hy-
pervolume tends to be better when there are more local optima.
This seems to corroborate recent results from continuous multi-
objective optimisation [12]. We believe that a more fine-grained
analysis on this specific class of features would be beneficial to
better understand the impact of multimodality on MOEAs.

4.3 Importance of Features for Search
Performance

We now investigate the combined effect of the considered features
on search performance. For this purpose, we train a random forest
regression model [3] that predicts the expected (relative) hyper-
volume based on input features, separately for each algorithm. We
perform 50 independent trainings on the benchmark dataset using
the randomForest R package [20] with default parameters, and we
report average values below. The coefficients of determination (R2)
of the models on training data are 0.88, 0.89, 0.86, and 0.88 respec-
tively, for NSGA-II, GDE3, MOEA/D-DE-DRA, and DECMO2++.
This means than more than 85% of the variance in the hypervolume
of each algorithm between MO-ICOPs is explained by the features.

nhv_cor_neig
hvd_cor_neig
hv_cor_neig

diff_f_dist_x_cor_neig
diff_f_cor_neig

dist_f_dist_x_cor_neig

dist_f_cor_neig

dist_x_cor_neig

lsupp_cor_neig
lnd_cor_neig
inc_cor_neig
inf_cor_neig

sup_cor_neig
nhv_avg_neig
hvd_avg_neig
hv_avg_neig

diff_f_dist_x_avg_neig

diff_f_avg_neig

dist_f_dist_x_avg_neig

dist_f_avg_neig

dist_x_avg_neig

lsupp_avg_neig
lnd_avg_neig
inc_avg_neig
inf_avg_neig

sup_avg_neigeval_aws
length_aws
nd_per_plo

plo_dist_max
plo_dist_avgplo_n
slo_dist_max
slo_dist_avgslo_nrank_ent

rank_maxrank_avg
fdc

dist_x_nd_max
dist_x_nd_avg

hvsupp_nnd_n
dist_f_max
dist_f_avg

dist_x_max
dist_x_avgf_cor

dom_seed_n
nd_seed_nseed_n

k
d

−1.0 −0.5 0.0 0.5 1.0
correlation with algorithm performance

NSGA−II GDE3 MOEA/D−DE−DRA DECMO2++

Figure 1: Correlation between the features and the perfor-
mance of algorithms under a search budget of 50 000.

In addition to prediction accuracy, random forest models yield
the relative importance of each feature for prediction. A mea-
sure of importance is the so-called mean decrease of prediction
accuracy after each split on a given predictor [3]: the larger the
decrease, the more important the predictor. The (average) rela-
tive importance of features is reported in Fig. 2. For readability,
only the 12 most important features are depicted for each algo-
rithm, sorted in decreasing order of importance, from top to bot-
tom. Although the subset of important features is similar for all
MOEAs, their relative ranking is slightly different. Two notable
features that consistently appear on top of the ranking for all al-
gorithms are the average solution’s hypervolume (hv_avg_neig)
and the average neighbourhood’s hypervolume (nhv_avg_neig),
both characterising the landscape evolvability. The fact that algo-
rithm performance is measured in terms of hypervolume partly
explains the importance of these features, and the hypervolume
measured over the entire sample (hv) also appears to be important,
although to a lesser extent. As already pointed out in the correla-
tion analysis reported above, the distance between sampled solu-
tions in the objective space (dist_f_avg and dist_f_max) is also
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NSGA−II (R2 = 0.88)
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MOEA/D−DE−DRA (R2 = 0.86)

0 10 20 30
nd_ninc_avg_neig

dist_f_dist_x_avg_neig
dist_f_avg_neig

hvdist_f_avgdist_f_max
nhv_avg_neignd_seed_ndom_seed_nhv_avg_neig

seed_n

mean increase of MSE (scaled)

DECMO2++ (R2 = 0.88)

0 10 20 30
nd_ninc_avg_neig

dist_f_dist_x_avg_neig
seed_n

dist_f_avg_neig

hvdom_seed_nnd_seed_ndist_f_avgdist_f_max
nhv_avg_neighv_avg_neig

mean increase of MSE (scaled)

Figure 2: Relative importance of features for predicting the
performance of algorithms under a search budget of 50 000.

found to be important, together with different distance-based fea-
tures characterising evolvability (notably dist_f_avg_neig and
dist_f_dist_x_avg_neig). Finally, the problem-dependent fea-
tures related to the seeds (seed_n, nd_seed_n, dom_seed_n) seem
to significantly impact the performance of all algorithms, and partic-
ularly MOEA/D-DE-DRA. Surprisingly, the problem dimension (d)
is found to be less important than the features mentioned above. It
is also worth noticing that there is no feature related to multimodal-
ity, nor to ruggedness, other than at the 11th and 12th position for
NSGA-II. We will see, however, that these features are important to
discriminate between different algorithms.

5 FEATURE-BASED ALGORITHM SELECTION
We conclude our study by analysing the selective power of the
proposed landscape features. In contrast with the previous sec-
tion, we train a random forest classification model to predict which
of NSGA-II, GDE3, MOEA/D-DE-DRA, or DECMO2++ performs
better, on average, for a given problem.

5.1 Importance of Features for MOEA Selection
We now focus on the importance of features for discriminating
between the four considered MOEAs. The classification errors ob-
served on the training data are 16.46%, 14.92%, and 22.78%, respec-
tively, for search budgets of 10 000, 20 000 and 50 000 evaluations.
This means that the classification model accurately selects the right
algorithm inmore than 75% of the cases. Features’ importance for al-
gorithm selection is depicted in Fig. 3. Whatever the search budget,
the maximum distance between sampled solutions in the objec-
tive space (dist_f_max) appears to be the most important feature
to discriminate between different algorithms. For smaller search
budgets (10 000 and 20 000), the average distance from a solution’s
neighbourhood (dist_f_avg_neig) and the problem-dependent
feature that tunes the power of the interpolation function (k) rank
next, followed by the average distance among sampled solutions in
the objective space (dist_f_avg) and several hypervolume-based
evolvability features. In contrast, for a larger budget (50 000), the
first problem-dependent feature (seed_n) is ranked 8, and a number
of distance- and hypervolume-based features characterising the
evolvability and the ruggedness appear on top of the ranking.

To complement our study, we also construct another classifier
based on a simple decision tree [4, 31], as illustrated in Fig. 4,
for a search budget of 50 000 evaluations. Even with such a sim-
ple decision tree of depth four, the proposed features are able
to distinguish between the different algorithms with an error of
22.58%. The root of the decision tree corresponds once again to
dist_f_max. While MOEA/D-DE-DRA is the best algorithm over-
all for this budget, the classifier recommends selecting NSGA-II
instead when sampled solutions are more scattered in the objective
space. Below the root of the tree appear landscape features related
to multimodality (slo_n), evolvability (dist_f_dist_x_avg_neig,
nhv_avg_neig, hvd_avg_neig) and ruggedness (hvd_cor_neig,
sup_cor_neig, inc_cor_neig, nhv_cor_neig).

5.2 Prediction Accuracy
We finally investigate the ability of a feature-based model to accu-
rately select a suitable algorithm for unseen problems. We measure
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Figure 3: Relative importance of features for algorithm selection under various search budgets.
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Figure 4: CART decision tree for algorithm selection under a search budget of 50 000. The nodes report the number of instances
where NSGA-II, GDE3, MOEA/D-DE-DRA, and DECMO2++ performs better, on average, from left to right, respectively.

the accuracy of random forest classification models based on dif-
ferent subsets of features and different budgets allocated to their
computation (i.e. the sampling size). In addition to the sample of
200 · d solutions considered above, we investigate tighter values
of 500 and 1 000. For each setting, results are from 50 independent
executions of repeated random sub-sampling cross-validation [9]
with a 80/20% split. Three error values are reported in Fig. 5: the
error rate in predicting the algorithm with the best performance on
average (top), the error rate in predicting an algorithm that is not sta-
tistically outperformed by any other, according to a Mann-Whitney
test at a significance level of 0.05 with Bonferroni correction (mid-
dle), and the relative hypervolume deviation from the virtual best,
an oracle that selects the best algorithm for any instance and budget
(bottom).

Whatever the budget, a feature-based classifier is able to predict
the best algorithm on average in more than 75% of the cases, and
for one of the statistical best algorithms, in more than 85% of the
cases. In terms of hypervolume, it is within 0.5% of the virtual best.
This is significantly more accurate than a dummy (feature-less)
classifier that always predicts the most-frequent best algorithm
(NSGA-II for a budget of 10 000, and MOEA/D-DE-DRA for a bud-
get of 20 000 and of 50 000), or than a classifier solely based on the
problem dimension d , the only known problem-dependent feature
in a black-box scenario. Interestingly, we do not observe any sig-
nificant difference between a model based on landscape features
only and a model based on (unknown) problem-dependent fea-
tures. This means that the information extracted from a limited
sampling of solutions allows a classification model to recommend
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Figure 5: Cross-validated prediction accuracy for different subsets of features and sample sizes under various search budgets.

which algorithm to run on a blind instance with the same level of
accuracy than it would do with deep problem knowledge, related
to the random seeds and the interpolation function in the case of
MO-ICOPs.

When analysing the three sample sizes considered for computing
the landscape features, we observe that using fewer solutions does
not significantly impact the prediction accuracy. This is of particular
interest when confronting the budget allocated to the calculation
of features with the budget allocated to the search process. Indeed,
using a very limited sampling of 500 solutions, that is 1 to 5% of the
search budget depending on the stopping condition, is enough to
accurately discriminate between the different MOEAs. In compari-
son to a classifier that does not use any feature, the feature-based
algorithm selection approach always reduces the prediction error
by a factor greater than 2, and reduces the hypervolume relative
deviation by a factor of 10.

6 CONCLUSIONS
In this paper, we proposed a set of landscape features for contin-
uous multi-objective optimisation. Those features were evaluated

on a benchmark set of 1 200 multi-objective interpolated continu-
ous optimisation problems. By means of correlation analysis and
algorithm performance prediction, our analysis highlights that the
features have a similar predictive power for the performance of all
four tested algorithms. In addition, when combining them with a
classification model for algorithm selection, the landscape features
exhibit strong predictive power with an accuracy of over 85%, which
is similar to the predictive power of problem-dependent features.
This demonstrates the salience of the proposed features to charac-
terising the landscape of multi-objective continuous optimisation
problems, and to making viable recommendations for selecting a
well-suited algorithm when faced with unseen problems.

In terms of benchmarks, we believe that MO-ICOPs provide a
useful platform for generating diverse multi-objective continuous
optimisation problems. It would be interesting to investigate prob-
lems with more than two objectives for assessing the scalability of
landscape features. The framework proposed here also offers scope
to compare our understanding of complexity for both combinatorial
and continuous MOOPs. Finally, additional features could be con-
sidered and combined as well, including single- and multi-objective
continuous landscape features [16, 17, 23, 24].
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