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Direct numerical simulation is used to investigate effects of turbulent flow in the confined
geometry of a face-centered cubic porous unit cell on the transport, clustering, and
deposition of fine particles at different Stokes numbers (St = 0.01, 0.1, 0.5, 1, 2) and at a
pore Reynolds number of 500. Particles are advanced using one-way coupling and collision
of particles with pore walls is modeled as perfectly elastic with specular reflection. Tools
for studying inertial particle dynamics and clustering developed for homogeneous flows
are adapted to take into account the embedded, curved geometry of the pore walls. The
pattern and dynamics of clustering are investigated using the volume change of Voronoi
tesselation in time to analyze the divergence and convergence of the particles. Similar
to the case of homogeneous, isotropic turbulence, the cluster formation is present at
large volumes, while cluster destruction is prominent at small volumes and these effects
are amplified with Stokes number. However, unlike homogeneous, isotropic turbulence,
formation of large number of very small volumes was observed at all Stokes numbers
and is attributed to the collision of particles with the pore wall. Multiscale wavelet
analysis of the particle number density showed peak of clustering shifts towards larger
scales with increase in Stokes number. Scale-dependent skewness and flatness quantify
the intermittent void and cluster distribution, with cluster formation observed at small
scales for all Stokes numbers, and void regions at large scales for large Stokes numbers.

1. Introduction

Several applications including catalysis in the chemical synthesis and process in-
dustries (Dixon & Nijemeisland 2001; Aris 1999), high temperature nuclear reactor
cooling (Shams et al. 2013), hyporheic exchange of pollutants at the sediment-water in-
terface (Hester et al. 2017), sand-migration in oil/gas wells, involve unsteady transitional
and turbulent flows through confined spaces and porous structures. In these examples,
the contribution of the inertial terms in the fluid flow equations can dramatically change
the topology of the flow field leading to formation of jets, vortices, dead zones, etc.
within the pores. Such flow features can substantially alter the dispersion characteristics
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of pollutants and play critical roles in the transport of reactants and products to and
from active reaction sites.

Dynamics of small inertial particles, such as sand particles, through porous media
is of importance in oil and gas production (Carlson et al. 1992). Sand production is
considered one of the most important issues facing hydrocarbon wells as it can erode
hardware, plug tubulars, cease flow, create downhole cavities, and needs separation and
disposal at surface. Variations in the reservoir pressure and completion permeability
leads to high velocity in the perforation tunnels, significant inertial and turbulence
effects and kinetic energy losses in the completion region (Cook et al. 2004), and onset
of sanding triggered by rock failure (Yi et al. 2005). Minimizing pressure drop means
that the gravel bed porosity should be as large as possible. However, to act as an
effective filter for sand grains, the gravel also has to be small enough to restrain formation
sand (Saucier 1974; Mahmud et al. 2019). Particle rentention, bridge formation, jamming,
and deposition has been studied experimentally in simplified configurations such as
microchannels (Valdes & Santamarina 2006; Dai & Grace 2010; Agbangla et al. 2012)
and packed beds (Ramachandran & Fogler 1999; Pandya et al. 1998) to show that rate of
plugging by bridging has a nonlinear dependence on particle concentration. This bridging
effect depends on flow velocity, particle diameter-to-pore size ratio, and flow geometry.

The goal of the present work is to investigate and understand the clustering dynamics
of inertial particles in a turbulent flow through confined geometries representative of
porous medium. Specifically, how does the interaction of particles with the solid walls
affect the clustering and deposition and how this changes with particle Stokes number is of
critical importance. In addition, with high Reynolds number flows through porous media,
the pore-scale flow structure can change significantly owing to the inertial and unsteady
flow features. Previous work (He et al. 2019) explored, using direct numerical simulation
(DNS), how this change of flow structure impacts the turbulence (i.e. the turbulent
kinetic energy distribution and transport mechanisms) in a face-centered cubic (FCC)
lattice with very low porosity. The flow geometry gives rise to rapid acceleration and
deceleration of the mean flow in different regions with presence of three-dimensional (3D)
helical motions, weak wake-like structures behind the bead spheres, stagnation and jet-
impingement-like flows together with merging and spreading jets in the main pore space.
The jet-impingement and weak wake-like flow structures give rise to regions with negative
production of total turbulent kinetic energy, a feature observed in jet-impingement like
configurations. Unlike flows in complex shaped ducts, the turbulence intensity levels
in the cross-stream directions were found to be larger than those in the streamwise
direction. Furthermore, due to the compact nature and confined geometry of the FCC
packing, the turbulent integral length scales were estimated to be less than 10% of the
bead diameter even for the lowest, transitional Reynolds number, indicating the absence
of macroscale turbulence structures for this configuration. This finding suggests that even
for the highly anisotropic flow within the pore, the upscaled flow statistics are captured
well by the representative volumes defined by the unit cell. In the present work, the
previous analysis of turbulence in porous geometry is extended to investigate dynamics
and transport of inertial particles and quantify the effect of geometric confinement on
particle clustering.

Clustering of inertial particles in turbulent flows has been well studied in homogeneous
isotropic turbulence and wall-bounded channel flows (Maxey 1987; Eaton & Fessler 1994;
Toschi & Bodenschatz 2009; Monchaux et al. 2012). The divergence of particle velocity,
which differs from the divergence-free fluid velocity in an incompressible flow, plays a
crucial role in clustering of inertial particles. The divergence of particle velocity has been
shown to be proportional to the second invariant of flow velocity gradient tensor for
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sufficiently small Stokes numbers, which is defined as the ratio of the particle relaxation
time, τp, to the Kolmogorov time, τη. Particles tend to concentrate in low vorticity and
high strain regions in turbulence resulting in the preferential concentration. Divergence
of particle velocity has been used to quantify clustering mechanisms (Esmaily-Moghadam
& Mani 2016; Bec et al. 2007). An inherent difficulty for determining the divergence of
the particle velocity is its discrete nature, i.e. it is only defined at particle positions.
Recently, Oujia et al. (2020) computed the particle velocity divergence from the position
and velocity of a large number of particles, using a Voronoi tessellation technique.
They proposed a model for quantifying the divergence using tessellation of the particle
positions. The corresponding time change of the volume is shown to yield a measure of
the particle velocity divergence.

Pair correlation function (PCF) has also been widely used to analyze clustering as it
is directly related to the particle collision rates (Sundaram & Collins 1997; Wang et al.
2000). The PCF typically shows a power-law behavior at sub-Kolmogorov scales and the
slope is dependent on the Stokes number. Scale similarity of particle distribution has
been explained by the sweep-stick mechanism proposed by Goto & Vassilicos (2006) in
which particles are swept by large-scale flow motion while sticking to stagnation points
of Lagrangian fluid acceleration (Coleman & Vassilicos 2009). Probability distribution
function (PDF) of particle mass density and coarse graining techniques have been used
to investigate scale dependence of particle distribution (Bec et al. 2007). Bassenne et al.
(2017) proposed a wavelet-based method to extract coherent clusters of inertial particles
in fully developed turbulence. Wavelets decompose turbulent flow, scalar and vector
valued fields, in scale, position, and possibly direction, complementary to Fourier tech-
niques which yield insight into wave number contributions of turbulent flow fields. The
wavelet representation can be used to analyze spatial intermittency and quantify spatial
fluctuations at different scales. This is not easily possible with Fourier transform, owing
to the global character of the basis functions. For a review on wavelets and turbulence
refer to Farge (1992); Schneider & Vasilyev (2010) and more particularly on wavelet-
based statistics to Farge & Schneider (2015). Recently, Matsuda et al. (2021) obtained
scale-dependent statistics of the particle distribution and insights into the multiscale
structure of clusters and voids in particle-laden, homogeneous isotropic turbulent flow
using orthogonal wavelet decomposition of the Eulerian particle density field at high
Reynolds numbers.

Although particle clustering has been observed and studied in several particle-laden
turbulent flows, dynamics and clustering of small, inertial particles in complex and
confined configurations of densely packed porous beads has not been explored. Whether
the commonly observed heavy particle clustering mechanisms at unit particle Stokes
numbers also appear in a confined geometry, and how collisional interactions of these
particles with the bead surfaces affect such clustering has not been studied. To address
these issues, DNS is used to investigate effect of turbulent flow in the confined geometry
of a face-centered cubic porous unit cell on the transport of fine, inertial particles at
different Stokes numbers (St = 0.01, 0.1, 0.5, 1, 2) and at a pore Reynolds number of 500.
Particles are advanced using one-way coupling and collision of particles with pore walls is
modeled as perfectly elastic specular reflection. Detailed analysis of clustering and void
formation statistics is then conducted based on (i) Voronoi tessellation, and (ii) wavelet
analysis of particle number density field in the porous geometry. The clustering statistics
are compared and contrasted against those in a homogeneous, isotropic turbulence
flow (Oujia et al. 2020; Matsuda et al. 2021). Specifically, the impact of geometric
confinement on particle clustering and void formation at different Stokes numbers is
evaluated.
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(a)

Mean flow

(b)

Figure 1: (a) Schematic of a face-centered porous unit cubic cell showing the bead
arrangement and surface geometry, (b) the isosurface of swirling strength at λ = 0.25λmax
for ReH = 500.

The rest of the paper is arranged in the following way. Section 2 provides the details
of the porous geometry, simulation parameters, the numerical approach, as well as
Lagrangian tracking and motion of inertial particles. Mean velocity field, TKE distri-
butions, integral scales are described in Section 3. Analysis of particle clusters and
voids is then conducted using Voronoi tessellation and wavelet-based multiscale, scale
dependent statistics of particle number density. Finally, summary and conclusions are
given in Section 4.

2. Simulation setup

Several different definitions of Reynolds numbers have been used in porous media
literature (He et al. 2019; Wood et al. 2020) based on different length scales such as the
particle diameter (DB), the hydraulic diameter (DH), or the permeability. In this work,
Reynolds number (ReH) based on DH is used. The hydraulic diameter is related to the
particle diameter as,

DH =
2

3

φ

1− φ
DB . (2.1)

Then, ReH is defined as (dropping the factor 2/3),

ReH =
〈ux〉fDB

νf
(2.2)

where νf is the kinematic viscosity of fluid, φ is the porosity of the medium defined as
the ratio of the void volume (which corresponds to the fluid volume) to the total volume,

〈ux〉f is the time-averaged interstitial (intrinsic average) velocity of flow in porous media,
and ux is the instantaneous velocity component in x-(streamwise) direction. The spatial
averaging operation is denoted by 〈 · 〉, the superscript or subscript f indicates the fluid
phase, and · is the time averaging operator. For clarity, note that the intrinsic average
velocity is defined by,

〈ux〉f
∣∣
t

=
1

Vf

∫
x∈Ωf

ux(x, t) dV (x), (2.3)
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where Vf is the volume of the fluid phase within the unit cell and Ωf denotes the fluid
domain. The overbar represents traditional time averaging of a quantity q defined as,

q(t) =
1

T

t∗=t+T/2∫
t∗=t−T/2

q(t∗)dt∗. (2.4)

2.1. Porous geometry

A porous face-centered cubic (FCC) unit cell (Fig. 1) is used based on our prior work
on turbulence in porous media (He et al. 2018, 2019). It has a half sphere entering
at each face of the cube, and a half quarter sphere at each corner. The face-centered
cubic arrangement creates the lowest possible porosity (φ) to be 0.26 for the structured
packings. Due to this extreme compactness, the flow through the unit cell experiences
rapid expansion and contraction. A pressure gradient is imposed to drive the flow through
the bed and a triply periodic boundary condition is applied for the unit cell. Majority
of the flow enters the cubic cell through the upstream open corners, converges into the
center pore resulting in strong accelerations and decelerations, and then leaving the unit
cell along downstream corners. In this work, the flow at one pore Reynolds numbers,
ReH = 500 is simulated using direct numerical simulation, resulting in a turbulent flow
within the pore. Emphasis is placed on dynamics of inertial particles at different Stokes
numbers (0.01, 0.1, 0.5, 1, 2), the definition is given below.

2.2. Numerical Approach and Grid Convergence

The numerical approach is based on a fictitious domain method to handle arbitrarily
shaped immersed objects without requiring the need for body-fitted grids (Ref. Apte et al.
(2009)). Uniform Cartesian grids are used in the entire simulation domain, including
both fluid and solid phases. An additional body force is imposed on the solid part to
enforce the rigidity constraint and satisfy the no-slip boundary condition. The absence
of highly skewed unstructured mesh at the bead surface has been shown to accelerate
the convergence and lower the uncertainty (Ref. Finn & Apte (2013)). The following
governing equations are solved over the entire domain, including the region within the
solid bed, and a rigidity constraint force, f , is applied that is non-zero only in the solid
region.

The governing equations read as:

∇ · u = 0, (2.5)

ρf

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ µf∇2u + f , (2.6)

where u is the velocity vector (with components given by u = (ux, uy, uz), ρf the fluid
density, µf the fluid dynamic viscosity, and p the pressure. A fully parallel, structured,
collocated grid solver has been developed and thoroughly verified and validated for a
range of test cases including flow over a cylinder and sphere for different Reynolds
numbers, flow over touching spheres at different orientations, flow developed by an
oscillating cylinder, among others. The details of the algorithm as well as very detailed
verification and validation studies have been published elsewhere (Ref. Apte et al. (2009)).
In addition, the solver was also used to perform direct one-to-one comparison with a body-
fitted solver with known second-order accuracy for steady inertial, unsteady inertial and
turbulent flow through porous media (Ref. Finn & Apte (2013); He et al. (2018, 2019)).

For the present studies, the flow is driven by a pressure drop as a body force in a triply
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periodic domain. According to Hill & Koch (2002), a constant pressure gradient ∇P in
the main direction of the flow (x direction), proportional to the body force F , is used to
drive the flow,

∂xP =
18 µf c Uint

D2
B

F , (2.7)

where, µf is the dynamic viscosity of the fluid and c the solid volume fraction, defined
as 2

3π(DB/L)3 (L is the length of the unit cube). The body force F changes with the
pore Reynolds number according to the linear fit obtained by Hill & Koch (2002) and is
given as,

F = 462 + 9.85

(
1− φ

2
ReH

)
(ReH > 216) . (2.8)

A posteriori calculation of body force needed to balance the shear stress on the
sphere surfaces for different Reynolds numbers exhibits a good agreement with the above
correlation and has been published elsewhere (He et al. 2019). A uniform, cubic grid
is used with resolution chosen such that the first grid point is at y+ < 1 (i.e., in the
viscous sub-layer) to accurately capture the wall-layers, where y+ = yuτ/ν indicates the

normalized distance from the sphere surface, uτ =
√
τω/ρ ≈ 0.5||〈ux〉f || is the friction

velocity, and τω is the estimated wall shear stress. To obtain a more direct estimate on grid
resolution requirements in the present DNS simulations, 3D DNS studies were performed
at ReH = 500 in a unit cell of face-centered cubic (FCC) spheres with systematic grid
refinement study using 48, 64, 96, 112, 128 and 144 grid points per bead diameter DB . A
grid converged solution was obtained for first-order (mean flow) as well as second-order
statistics (turbulent kinetic energy, TKE) for ReH = 500 at a resolution of DB/96. For
ReH = 500, the mean flow converged at DB/96, whereas, TKE showed small changes
compared to coarser mesh indicating that a grid converged solution can be expected
with a resolution of around DB/100. However, in order to obtain a high resolution DNS
study and provide sufficient resolution in the bead contact region, a refined grid based on
DB/δ = 250 (δ is the grid resolution in one direction) was used to resolve the pore-scale
flow structures (He et al. 2019).

2.3. Particle tracking algorithm

A point-particle approach is used to model the motion of small, heavy inertial particles
in a Lagrangian frame. In this approach, the particle size is assumed to be much smaller
than the Kolmogorov scale, and the forces acting on them are modeled using simple
closure models. In the present work, the particle motion is assumed to be governed by a
simple, linear drag force. For different Stokes numbers (St), the particle motion is given
by,

dxp
dt

= up;
dup
dt

=
uf,p − up
St · τη

, (2.9)

where xp and up are particle position and velocity, τη is Kolmogorov time scale, uf,p is
the instantaneous fluid velocity interpolated to the particle location, i.e., uf,p = u(xp),
and τp = St τη is the particle relaxation time. The particles are advanced using
the instantaneous fluid velocity interpolated to the particle location. The effect of
inhomogeneity in the fluid velocity and the confinement of the bead walls on inertial
particle motion can thus be quantified by qualitatively comparing results to inertial
particles in homogeneous isotropic turbulence (Matsuda et al. 2021; Oujia et al. 2020).

Particles with five different Stokes numbers, St = 0.01, 0.1, 0.5, 1, and 2 are simulated.
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One-way coupling, wherein the inertial particles do not affect the fluid flow, is used by
assuming that the particle size and concentration is small. After a stationary turbulent
flow is achieved within the porous cell, inertial particles are injected into the fluid domain.
One particle is added at the center of each control volume in the fluid region, giving about
Np ≈ 10.4× 106 particles for each Stokes number. The fluid velocity interpolated to the
particle location is obtained from tri-linear interpolation, and a fourth-order Runge-Kutta
(RK4) scheme is implemented to advance the particle locations in time. Interactions of
particles with the bead walls in the unit cell are modeled using Snell’s law of specular
reflection assuming perfectly elastic collisions. The direction of particle reflection, ŝr, is
determined from the incident direction, ŝi, and the inward face normal at the spherical
bead surface, n̂ as,

ŝr = ŝi + 2|ŝi · n̂|n̂ . (2.10)

The particle velocity after reflection is also modified according to the above equation.
The inward normal to the sphere surface can be easily obtained by knowing the location
on the spherical bead surface that the particle crossed and the center of the bead.

3. Results and discussion

In this section, the mean and turbulent flow structure is described briefly using the
the mean and rms (root mean square) velocity fields inside the pore, and the integral
length and time scales are estimated based on the Eulerian and Lagrangian two-point
auto-correlations, respectively. Next, the probability distribution functions of Voronoi
tesselation volumes and the divergence of particle velocity field are evaluated and dis-
cussed. In addition, the characteristics of inertial particle clustering in the porous media
at various Stokes numbers are discussed using the multiscale, wavelet analyses of the
particle number density, wavelet spectra, higher-order statistics of flatness and skewness.
The Voronoi tesselation and wavelet analysis results for inertial particle statistics in the
FCC unit cell are contrasted with those from isotropic turbulence to identify effects of
geometric confinement.

3.1. Turbulent flow statistics

As described earlier in the simulation setup, the flow through the triply periodic domain
is driven by a body force in the flow direction based on the correlations given by Eq. (2.8).
After an initial transient, a stationary state is reached and the computation is continued
for several flow through times, Tf = L/Uint where L is the length of the unit cube.
For each case, the flow was first computed for several flow through times to ensure
that a stationary state has been reached. This is confirmed by monitoring the total
kinetic energy in the domain, which starts out to be a large value and then decreases
and remains more or less constant after an initial transient period. This initial transient
period was about 100Tf for ReH = 500. After a stationary state has been established, the
computations were performed for additional 80Tf for each Reynolds number to collect
flow statistics which was found to be large enough to obtain converged statistics.

In order to get a good understanding of the simulated flow topology, distributions of
the mean velocity magnitude Um and the turbulent kinetic energy are presented first (see

figure 2). The mean velocity Um is calculated as
√
ux

2 + uy
2 + uz

2 and normalized by the

mean interstitial velocity 〈ux〉f . Two center slices are chosen as representative sections
for visualizations. One is the center xy−plane, where the mean flow is going from left to
right; the other the center yz−plane, where the mean flow in going into the slice.
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(i1)

(i2)

(ii) (iii)

(iv1)

(iv2)

(a) (b)

(c) (d)

Figure 2: Visualization of the mean velocity magnitude (top) and turbulent kinetic energy
(bottom) at ReH = 500: (a–c) xy−plane, and (b–d) yz−plane.

The mean flow enters the center pore from the left-hand side corners (regions labeled by
(i1) and (i2) in figure 2a) and accelerates to region (ii) due to the geometric constrictions;
then the mean flow at the center starts to decelerate as it encounters the particle at region
(iii), similar to an impinging jet. The flow then accelerates in the spanwise directions and
leaves the pore through the right-hand side corners (regions (iv1) and (iv2)). The pattern
of mean velocity distribution indicates how the mean flow in the pore is affected by
the geometry. High Reynolds number flow features such as wake and large scale vortex
shedding in an external flow behind a spherical particle, are not observed in this low
porosity bed. A weak wake-like structure (small negative mean velocity just behind the
left-hand side sphere near region (ii) in figure 2a) is present, but is confined to a small
region. The closely packed solid beads in the low porosity FCC configuration tend to
break down large scale flow structures and prevent the generation of a significant wake
region. Figure 2b shows the distributions of the mean velocity magnitude on the center
yz−plane. On this slice, the mean flow is moving perpendicularly into the page and there
is a distinguished region with high velocity magnitude near each corner of the center pore.

The turbulent kinetic energy k, defined as 1
2

(
u′x

2 + u′y
2 + u′z

2
)

, is normalized by the
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(a) (b) (c)

Figure 3: Contours of turbulence intensity components normalized by the square of
interstitial velocity on the center xy−plane: (a) x-component, (b) y-component, and
(c) z-component. Mean flow is from left to right.

square of the mean interstitial velocity (〈ux〉f )2. Here the temporal fluctuation velocity
u′x is defined as ux − ux. Figure 2c and 2d illustrate the distribution of normalized TKE
on the center xy− and yz− planes, respectively. The overall magnitude of the TKE in the
center pore region remains substantially high. It also suggests that the flow through the
pore, although bounded by curved particle walls, is different from simple channel/duct
flows even with complex boundaries (Orlandi et al. 2018) wherein the TKE reaches a
peak value near the boundaries and then decreases in the center region. The normalized
TKE distributions on the center yz−plane presented in figure 2d shows some similarities
with flow through a duct. Away from the wall, the TKE increases and reaches a peak
value; and then decreases as the core region of the pore is approached. The homogeneous
particle packing involving four particles aligned together seem to form a locally duct-like
flow pattern in this section. However, it disappears in other sections away from the center
yz−plane, owing to the three-dimensional nature of the spherical particles.

The turbulence intensity components in streamwise and spanwise directions are esti-
mated to illustrate the anisotropy caused by the confined geometry, they are shown in
the xy−plane in figure 3. The x-component rms velocity, u′x−rms is computed by

u′x−rms =

√
u2x − ux2, (3.1)

likewise for u′y−rms and u′z−rms. The x-component turbulence intensity is only heavily
pronounced in the region close to the right-hand-side particle (region (i) in figure 3a),
which is mostly attributed to the impingement-like flow in this region. In this center
xy−plane, the x-component of turbulence intensity, corresponding to the main flow
direction, is weaker compared to the other two components. The maximum value of x-
component turbulence intensity is about 80% and 50% of that for y- and z-components,
respectively. by Patil & Liburdy (2013). On the center xy−plane, these two components
are distributed in various patterns. The y-component mostly concentrates near the left-
hand-side particle in figure 3b. However for the z-component, the distribution is sub-
stantially different. There are two distinct regions with high magnitude of z-component
turbulence intensity in figure 3c near the left-hand-side of the pore. More importantly,
the shape of such regions is almost identical to the high TKE regions illustrated in
figures 2c, indicating that the z-component turbulence intensity has the most important
contribution to total TKE at this particular plane. Although not shown here, it is
noteworthy that, the distributions of y- and z-components of turbulence intensity on
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the center xy−plane are interchanged on the center xz−plane, due to the homogeneous
and symmetric geometry of the FCC packing; and the x-component distribution remains
the same.

To investigate the overall characteristics of both the streamwise and spanwise compo-
nents of turbulence intensity and for purposes of comparison, intrinsic spatial average
of these rms velocities (normalized by the square of intrinsic averaged velocity) was
computed. Because of the periodicity and symmetry in the computational domain, the
volume-averaged rms velocity in z-direction is similar to that in y-direction and hence
not included here. The turbulence intensity in both streamwise (x-) and spanwise (y-
)directions are increasing with Reynolds number, as expected. However, the rms velocity
in the spanwise direction (y- or z-) has a larger magnitude (0.288) than that in the x-
direction (0.222). This behavior is quite different from the well-studied turbulent channel
or duct flows even with complex boundary shapes (Orlandi et al. 2018), wherein the rms
velocities in the wall normal directions are much smaller than the streamwise component.
This again is caused by the three-dimensional effect of the complex configuration of the
packed spheres, and the tortuous mean flow patterns within the pore. Qualitatively, a
similar behavior that larger values of turbulence intensities in non-streamwise direction
has also been observed experimentally in randomly-packed porous media (Patil & Liburdy
2013).

Finally, the Eulerian and Lagrangian auto-correlations are used to compute the integral
length and time scales, respectively. To compute the Lagrangian auto-correlations, fluid
tracer particles are tracked to obtain the Lagrangian trajectories. The Lagrangian auto-
correlations are then computed according to Eq. (3.2) (Ref. Monin & Yaglom (1965)),

ρLij(τ) =
〈v′i(X0, t) v

′
j(X0, t+ τ)〉[

〈vi′2(X0, t)〉 〈vj ′2(X0, t+ τ)〉
]1/2 (3.2)

where ρLij is the Lagrangian auto-correlation, v′i the i-th component of the particle
fluctuation velocity and 〈·〉 represents ensemble averaging. The Lagrangian integral time
scale, TL11 is simply given by the integral of the auto-correlation function.

The Eulerian integral length scale (LE11) normalized by the bead diameter (DB) is
found to be 0.0884, whereas the Lagrangian integral time scale normalized by the flow
time scale (TL11) based on the interstitial velocity (Uint) and the bead diameter (DB) is
about 0.356 for the present flow conditions. The integral length scale is only about 10% of
the sphere diameter, indicating that the coherent structures are confined within the pore.
Such observation supports the pore scale prevalence hypothesis (PSPH) and the results
reported in Jin et al. (2015). This implies that, the turbulence in the pore-scale is strongly
affected by the porosity, and restrained by the pore size. The integral time scale is also
smaller than the flow time scale, suggesting that the Lagrangian coherent structures are
restricted by the pore size. As a result, the single periodic unit cell considered in the
present work is sufficient. The overall dissipation rate 〈ε〉 was estimated from the TKE
budget first. Then the Kolmogorov time scale is computed as τη =

√
ν/〈ε〉. For the case

ReH = 500, Reλ can be estimated to be around 32, which is computed as the drape of the
fitted parabola to the Eulerian auto-correlation. Assuming isotropic turbulence, which is
not the case for the flow in porous media, and using the same definition as in Matsuda
et al. (2021), an even smaller value of Reλ ∼ 21 is obtained for the Taylor microscale
Reynolds number.
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Figure 4: Instantaneous distribution of particles in the xy−plane: (a) St = 1, (b) St = 0.1,
(c) St = 0.01, and (d) uniform random distribution.

3.2. Inertial particle dynamics and clustering

Figure 4 shows the instantaneous distribution of particles for three different Stokes
numbers in the xy−plane after a stationary state is reached. Uniform random distribution
of particles in the porous geometry, representative of fluid particles in the limit of St→ 0,
is also shown for comparison. Significant particle clustering is observed for St = 1 as
expected, whereas for St = 0.01 particles are more uniformly distributed with only few
pockets of voids and clusters near the bead boundaries. The clustering of inertial particles
and effect of the bead walls is evaluated by conducting a multiscale analysis of the particle
number density.
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Figure 5: Particle distribution for St = 1 in a slice of thickness 1/100 with spheres and
mirror particles (left). A magnified view with Voronoi tessellation (right).

3.2.1. Voronoi tessellation for particle clustering

Voronoi tessellation, see e.g. Aurenhammer (1991), is a technique to construct a
decomposition of the fluid domain, into a finite number of Voronoi cells. If there are
finite number of points (particles) dispersed in space, a Voronoi cell, is defined as a
region of all points that are closer to a particle than any other particles. The volume of
the Voronoi cell is referred to as the Voronoi volume, Vp. The magnitude of this volume
can be used to quantify particle clustering and void regions in a three-dimensional space,
smaller volume indicating pronounced clustering. Three-dimensional Voronoi tessellation
is applied to the particle data obtained from the present DNS data using the Quickhull
algorithm provided by the Qhull library in python (Barber et al. 1996), which has a
computational complexity of O(NplogNp).

To construct the Voronoi tessellation of particles in the presence of the embedded bead
boundaries, a special treatment is needed for particles near the bead walls. Figure 5
shows how the geometry of the spherical beads is taken into account. All particles
located at a given small distance from each sphere boundary is assigned a mirror particle.
Introducing these ghost particles then accounts for the bead boundary, and the Voronoi
tessellation can then be constructed making use of the mirror particles. To verify that this
approach works, a random distribution of particles in the fluid domain is first considered.
For randomly distributed particles, the PDF of the Voronoi volume becomes a gamma
distribution (Ferenc & Néda 2007). For the 3D case, the PDF of Voronoi volume is given
by Γ (5, 1/5), where Γ (k, θ) corresponds to the gamma distribution,

fVp
(x) = Γ (k)−1θ−kxk−1exp(−x/θ), (3.3)

where k and θ are shape parameters of the PDF, respectively. Figure 6 shows the PDF
of the Voronoi volume Vp, normalized by the mean volume Vp, for different Stokes
numbers as well as for randomly distributed particles. The PDF for random distribution
follows closely with the gamma distribution, as expected. It should be noted that in the
present fictitious domain method, the bead boundaries are smeared over a grid control
volume owing to the interpolation function between the bead material points and the
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Figure 6: PDF of volumes of Voronoi cells in log-log representation normalized by the
mean volume for different Stokes numbers as well as for particles distributed randomly
following a Poisson distribution. The PDF of randomly distributed particles is also
compared with the gamma distribution and shows perfect agreement.

computational grid typical of penalization based techniques. Accordingly, to perfectly
match the random particle PDF to the gamma distribution, the sphere radius had to
be increased by about 1.1% (0.35749 instead of 0.353553) which is comparable to the
grid resolution used. This small modification in sphere geometry is applied to all particle
distributions obtained from different Stokes numbers.

Figure 6 shows that the PDFs of Voronoi volumes for different Stokes numbers intersect
with the gamma distribution, i.e. the one for the random particles. The observed behavior
is similar to that found for homogeneous isotropic turbulence (HIT), see (Oujia et al.
2020), but with some key differences. The number of large Voronoi cells increases with
increasing Stokes numbers and then stabilizes. This behavior is resembling the HIT case.
It is also seen that as the Stokes number increases and gets closer to 1, the number of small
normalized volumes (10−2–5 ·10−1) also increases similar to the HIT case. However, large
number of very small volumes (10−4–10−2) are observed for nearly all Stokes numbers,
even for very small Stokes numbers. Such a behavior was not observed in HIT, wherein the
number of very small Voronoi volumes would decrease monotonically. This is attributed to
the interaction of particles with the bead surfaces in the present case. Particles with finite,
non-zero Stokes numbers interact with the bead surface and undergo specular reflection.
In addition, as the particles approach the bead surfaces, their velocities are slowed down
significantly as the fluid velocity itself is smaller owing to the no-slip condition. Thus,
existence of large number of very small volumes is mainly attributed to the collision of
the particles with the bead surfaces. Note that, fluid particles (or tracers) would not
collide with the bead surfaces, except at the stagnation points and at large times. Thus,
the distribution of fluid tracer particles will follow the one of random particles, i.e. the
gamma distribution.
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3.2.2. Voronoi-based divergence of particle velocity

To understand the clustering dynamics of inertial particles, the particle number density
n, as a continuous function, is commonly used (Oujia et al. 2020). It satisfies the
conservation equation,

D

Dt
(n) =

∂n

∂t
+ up · ∇n = −n∇ · up . (3.4)

The divergence of the particle velocity up appears as a source term in the number density
equation. However, finding the divergence of the particle velocity is not straightforward as
the discrete particle distribution is not continuous, and the particle velocity is only known
at the discrete particle locations, up,j = u(xp,j), but not everywhere else. Moreover it
can be multi-valued. Oujia et al. (2020) proposed a method to compute the divergence
of the particle velocity D = ∇ · up in a discrete manner using a Lagrangian approach.
From the conservation equation for the particle number density (eq. 3.4), one obtains,
D = − 1

n
Dn
Dt .

To calculate the Lagrangian derivative of n, Oujia et al. (2020) defined the local number
density np as the number density averaged over a Voronoi cell, which is given by the
inverse of the Voronoi volume Vp; i.e. np = 1/Vp. Then it was shown that the divergence
is obtained to the first-order approximation as,

Dp =
2

∆t

V k+1
p − V kp
V k+1
p + V kp

+O(∆t) , (3.5)

where V kp denotes the Voronoi volume at time instant tk. This shows that the divergence
of the particle velocity can be estimated from subsequent Voronoi volumes, provided the
time step is sufficiently small and the number of particles is sufficiently large. To obtain
the subsequent Voronoi volumes, the particle positions were linearly advanced by up; i.e,
xk+1
p = xkp +up∆t. The time-step was set to be same as the flow solver time step, which

is sufficiently small for the present DNS study. The influence of the step size has been
checked and found to give same result as in Oujia et al. (2020). For the different time
steps, the same probability distribution of the divergence was obtained, except that the
extreme values of the divergence are changing with ∆t.

Determining the divergence with the above Lagrangian approach requires two time
instants of the Voronoi volumes. Above it was shown that the bead geometry, i.e. the
presence of curved walls, necessitates some special treatment for computing the Voronoi
tesselation. Mirror particles are introduced to account for the geometry. For computing
the discrete divergence the particles are then linearly advanced in time to obtain the
volume at a subsequent time instant. This procedure implies that some particles could
enter the beads and the flow geometry is not respected anymore. Consequently the
volume of adjacent cells are impacted and the computed divergence value is erroneous. To
remove this artifact, particles having a distance less than 0.35749 from each of the beads
centers were not taken into account. This value has been determined by considering the
statistics of the divergence as a function of the wall distance. While for the mean value,
which is close to zero, no significant influence was found, for the higher order statistics
(variance, skewness and flatness), a significant change with the distance, even by orders
of magnitude, was observed. For wall distances larger than 0.35749, the values were found
to be stable and remained almost constant.

The PDFs of the Voronoi-based divergence for different Stokes numbers are shown in
figure 7. They are centered around 0 and confined between −40 and 40. It can be observe
that extrema correspond to ±2/∆t which is an upper/lower bound, even a rigorous bound
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Figure 7: PDF of divergence of particle velocity for different Stokes numbers.

St 0.01 0.1 0.5 1 2
Variance 0.0083 0.0093 0.0952 0.2796 0.5423
Flatness 5514.9 734.50 832.00 291.92 105.70

Table 1: Variance and flatness of divergence Dp as a function of the Stokes number.

when neglecting O(∆t) terms, similar to what is found for HIT (Oujia et al. 2020). The
divergence should become closer to zero as the Stokes number decreases to zero because
the fluid particles in an incompressible flow are divrgence free. However, in figure 7, the
divergence for St = 0.01 is comparable to that of St = 0.1. It can be deduced that
the divergence for these Stoks numbers is mainly caused by a geometrical effect due to
Voronoi tessellation, which is also discussed in Oujia et al. (2020). However for larger
Stokes numbers, physical effects do predominate. Table 1 assembles the variance and
flatness of the divergence Dp as a function of the Stokes number. The flatness decreases
as the Stokes number increases (with the exception of St = 0.1), this implies that the tails
of the PDFs decay faster as the Stokes number increases. In contrast the variance has
the opposite behavior and thus the PDFs are becoming wider and wider for increasing
Stokes number, confirmed in figure 7. Thereafter the Voronoi analysis will be discussed
only for Stokes numbers larger or equal to 0.5, to avoid the influence of the geometrical
effect.

The mean of the divergence as a function of the volume is defined as

〈Dp〉V p =
1

P (Vp/Vp)

∫ +∞

−∞
Dp P (Dp, Vp/Vp) dDp, (3.6)

The values are shown in figure 8 for 3 Stokes numbers, St = 0.5, 1 and 2. The insert
is a zoom to focus on the negative values. Recall that negative values correspond to
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Figure 8: Mean divergence 〈Dp〉V p as a function of the Voronoi volume for different Stokes
numbers.

convergence of the particles and positive values to divergence. It can be seen that the
mean of the divergence is positive for small volumes, negative for large volumes and
similarly to Oujia et al. (2020) the amplitude increases with the Stokes number. This
implies presence of cluster formation for large volumes, cluster destruction for small
volumes and that these two behaviors are amplified when the Stokes number increases.
The zero-crossing point is Vp/Vp ≈ 0.06− 0.2, a value close to what is observed in Oujia
et al. (2020).

In summary, the above findings for the Voronoi analysis confirm the results found in
Oujia et al. (2020) for homogeneous isotropic turbulence, in particular the St dependence
of cluster formation and destruction. Differences are found for small Voronoi volumes
below 0.01, they behave differently due to the influence of the bead geometry. The zero
crossing point of the mean value of the divergence is likewise shifted towards smaller
values.

3.3. Eulerian field: Particle number density

The number density of the discrete particle positions is obtained using a histogram
method by binning particles onto an equidistant cubic grid of N3

g grid points (Matsuda
et al. 2021). Irrespective of the grid resolution used in the direct numerical simulation,
Ng = 28 was used to calculate the number density as,

n(x, t) =

Ng−1∑
i1,i2,i3=0


∫
Ω

Kh(xi1,i2,i3 − x′)
1

n0

Np∑
m=1

δ(x′ − xp,m(t))dx′

h3Kh(x− xi1,i2,i3),

(3.7)
where xi1,i2,i3 = h(i1 + 1/2, i2 + 1/2, i3 + 1/2) is the box position, and Kh(x) = 1/h3

for −h/2 6 xi 6 h/2 (i = 1, 2, 3), while Kh(x) = 0 otherwise, is a piecewise constant
function, h = L/Ng, and n0 = Np/L

3 is the mean dimensional number density, where
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Np is the total number of particles and L is the side length of the cubic domain. With
non-dimensionalization by the mean number density, the above equation satisfies 〈n〉 = 1.

It should be noted that the entire computational domain volume is used to compute the
number density, even though some part of the volume is a solid bead region to simplify
the number density computation. The porosity of the unit cell can be used to relate this
to the number density calculated based on the fluid volume only. The consequence of
presence of solid beads within the computational domain is that, a uniform distribution
of inertial particles in the fluid domain results in non-uniform number density variations
across the bead surface. These gradients in number density, even for a uniform inertial
particle distribution, can result in non-zero wavelet decomposition. To analyze the true
clustering of inertial particles, this effect of pseudo variations in number density due to
the bead geometry, need to be removed before performing the wavelet decomposition.
Therefore the number density gap from n(x) is subtracted as

n′(x) = n(x)− φ−1〈n〉 (1− χ(x)) (3.8)

with χ(x) the mask function :

χ(x) =

{
1 if x ∈ Ωs
0 if x ∈ Ωf

(3.9)

where Ωs is the solid domain, Ωf the fluid domain and Ω = Ωf ∪Ωs the computational
domain. For sake of clarity, n′(x) is denoted by n(x).

3.3.1. Scale dependent wavelet analysis of number density

Inertial particle clustering and related multiscale statistics are quantified using the
orthogonal wavelet decomposition (Mallat 2009; Daubechies 1993) of the particle number
density. Consider the particle number density, n(x, t), at a given instant t, within the
computational domain of a triply periodic, L3 cubic box. This scalar field is decomposed
into a 3D orthogonal wavelet series to unfold into scale, positions and seven directions
(µ = 1, 2, ...., 7). The 3D mother wavelet, ψµ(x), is hereby based on a tensor product
construction and a family of wavelets, ψµ,λ(x) can be generated by dilation and trans-
lation. an orthogonal basis of L2(R3). The multi-index λ = (j, i1, i2, i3) denotes the
scale 2−j and position L × 2−ji = L × 2−j(i1, i2, i3) of the wavelets for each direction,
where i` = 0, ..., 2j−1 (` = 1, 2, 3). The wavelets are well-localized in space around
position, L × 2−j(i1, i2, i3), and scale, 2−j , oscillating, and smooth. A periodization
technique (Mallat 2009) is applied to the wavelets. The spatial average of ψµ,λ(x), defined
by, 〈ψµ,λ〉 = L−3

∫
T3 ψµ,λ(x)dx vanishes for each index, which is a necessary condition

for being a wavelet.

Similar to Matsuda et al. (2021) the number density field n(x, t) sampled on N3
g = 23J

equidistant grid points, can be developed into an orthogonal wavelet series:

n(x) = n000(x) +

J−1∑
j=0

nj(x), (3.10)

where nj(x) is the contribution of n(x) at scale 2−j defined as,

nj(x) =

7∑
µ=1

2j−1∑
i1=0

2j−1∑
i2=0

2j−1∑
i3=0

ñµj,i1,i2,i3ψ
µ
j,i1,i2,i3

(x), (3.11)
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Figure 9: Instantaneous distribution of normalized particle number density (a,b) and
scale contributions (nj/σ[nj ]) at j = 2 (c,d), j = 4 (e,f), and j = 6 (e,f) in the xy−plane
for St = 1 (left) and St = 0.01 (right).

with,

ñµji1i2i3 =
〈
n(x), ψµj,i1,i2,i3(x)

〉
, (3.12)

where 〈, 〉 denotes an inner product. At scale 2−j , there are 7 × 23j wavelet coefficients
for n(x). Thus, in total there are N3

g coefficients for each component of the vector field
corresponding to the N3

g − 1 wavelet coefficients and the non-vanishing mean value.
These coefficients are efficiently computed for N3

g − 1 grid points for n(x) using fast
wavelet transform, which has linear computational complexity. The scale from the wavelet
transform and wave number, kj , from the Fourier transform are related as,

kj =
2π

L
kψ2−j , (3.13)

where kψ = 0.77 is the centroid wave number of the chosen Coiflet 12 wavelet.

Figure 9a,b shows instantaneous, normalized mean number density contours in the
xy−plane for two Stokes numbers, St = 1 and 0.01. Large number density, indicative of
highly clustered regions, are clearly observed for St = 1, but are absent for St = 0.01.
The instantaneous number density field is decomposed using wavelet transform and the
scale-dependent fields (nj) normalized by its variance (σ[nj ] =

√
M2[nj ]) are shown for

different scales in figure 9c–f. It can be seen that clusters are prominent as scales become
smaller (larger j), whereas large void regions (negative nj) of size comparable to the pore
size are seen at larger scales (smaller j). Prominent cluster regions are also seen near the
bead surfaces, even for low Stokes number (St = 0.01). For intermediate scales, both
clusters and voids are distributed more intermittently in space. The multiscale nature of
clusters and voids is qualitatively clear from these figures. Scale dependent statistics are
computed to quantify these differences at various scales.
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3.3.2. Wavelet spectra, scale dependent skewness and flatness

Wavelet-based statistics of the particle number density can be computed as described
below. The qth moment of nj(x) is defined as,

Mq[nj ] = 〈(nj)q〉 , (3.14)

where the mean values 〈nj〉 = 0, by giving a central moment and are related to the qth

order structure functions (Schneider et al. 2004).

The wavelet energy spectrum of nj(x) can be defined used the second-order moment,
M2[nj ], as

E[nj ] =
1

∆kj
M2[nj ], (3.15)

where ∆kj = (kj+1−kj)ln2 as given by Meneveau (1991). The energy spectrum obtained
from the above equation has the particle number dependence due to the Poisson noise.
Matsuda et al. (2021) analytically obtained the effect of the Poisson noise on M2[nj ] and
succeeded in removing the Poisson noise from the wavelet energy spectrum. The second-
order moment for randomly distributed particles in the cubic domain Ω = Ωf ∪ Ωs is
M2,random,Ω [nj ] = (7 · 23j/Np,Ω)〈n〉2Ω . For the present case, particles exist only in the
fluid domain Ωf , and Np = φNp,Ω and 〈n〉 = φ〈n〉Ω . The energy of the Poisson noise is
also reduced by a factor of φ, i.e., M2,random[nj ] = φM2,random,Ω [nj ], yielding

M2,random[nj ] =
7 · 23j

Np
. (3.16)

Hence, the following definition for the wavelet energy spectrum is used:

E[nj ] =
1

∆kj

{
M2[nj ]−

7 · 23j

Np

}
, (3.17)

where the influence of the Poisson noise has been removed. Note that the analytical
estimate of Eq. (3.16) does not contain contribution of the beads geometry. It was found
that the energy due to Poisson noise is orders of magnitude smaller for all scales and
does not significantly affect the energy spectra of inertial particles. If M2[nj ] is computed
from a realization of random particle distribution in the fluid domain Ωf , the combined
effect of the Poisson noise and geometrical confinement in Ωf can be observed.

The asymmetry of the PDF of nj(x) is quantified by the skewness defined as,

S[nj ] =
M3[nj ]

(M2[nj ])3/2
. (3.18)

The scale-dependent flatness, which measures the intermittency at scale 2−j , is given as,

F [nj ] =
M4[nj ]

(M2[nj ])2
, (3.19)

and is equal to three at all scales for a Gaussian distribution. It should be noted that the
influence of the Poisson noise onM3[nj ] and M4[nj ] cannot be removed by subtracting the
moments for randomly distributed particles. Matsuda et al. (2021) introduced the signal-
to-noise ratio (SNR) defined as the ratio of the energy spectrum for inertial particles
to that for randomly distributed particles, i.e., SNR = E[nj ]∆kj/M2,random[nj ]. They
confirmed that the effect of the Poisson noise on the statistics is negligibly small when
SNR is larger than 10.

Scale dependent wavelet spectra, flatness, and skewness of number density fluctuation
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(a) E [nj ] (b) E [nj ]− (E [nj ])Random, FCC

Figure 10: Wavelet energy spectra of particle number density fluctuation E[nj ] for
different Stokes numbers. Also shown are energy spectra for Poisson noise (k2 line) in a
cubic box (Random, No Beads) and uniform random data in the porous region of the
FCC geometry (Random, FCC).

are obtained by collecting data over a time span of 15TL11 ≈ 30 τη, where TL11 is the
Lagrangian time scale and τη is the Kolmogorov time scale. The scale dependent statistics
are averaged using about 15 equally spaced snapshots of number density over this time
frame. Figure 10a presents the wavelet spectra of the number density fluctuations, E[nj ],
for different Stokes numbers as a function of the wavenumber, kj , normalized by the
Kolmogorov scale, η = (ν3/ 〈ε〉)1/4. Also shown is the spectrum for random particle
positions with uniform probability, where the PDF satisfies the Poisson distribution,
resulting in E[nj ] ∝ k2j . Moreover random particles in the porous region of the FCC
geometry are considered for comparison, and the spectrum shows a behavior similar to
the St = 0.01 case. This is expected as random particles correspond to the case St = 0,
representative of fluid tracer particles. Comparing this with random particles in the cubic
cell without the beads, i.e. the k2 scaling, quantifies the influence of the geometrical
confinement. At small scales increasing energy is observed and a similar magnitude as
for St 6 0.1. For St = 0.5, 1, and 2, it is seen that the spectrum first increases with
a increasing kjη (large scales) and then gradually decreases for large kjη (small scales).
The peak in the spectrum is found to gradually shift towards larger scales (smaller kjη).
This observation is consistent with the clustering of inertial particles in homogeneous,
isotropic turbulence (Matsuda et al. 2021). In addition, for higher Stokes numbers, the
energy E[nj ] is generally higher for all kjη. For St < 0.5, the peak observed in spectrum at
higher St, is not seen and E[nj ] increases monotonically with kjη. Subtracting the noise
in the porous region, shown in Figure 10b, allows to recover the peaks for small St. The
peak values become higher for similar kjη, which indicates that the void scale is almost
constant. This is consistent with results for homogeneous, isotropic turbulence (Matsuda
et al. 2014). For isotropic turbulence, with low Stokes numbers, the spectra show a steeper
slope close to k−1 at small scales (kjη & 0.4). This difference in slopes at low St in the
presence of beads is attributed to the effect of inertial particle collisions with the bead
surfaces as well as the geometric confinement effect of the flow.
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(b) Flatness

Figure 11: Scale-dependent skewness S[nj ] (left) and flatness F [nj ] (right) for different
Stokes numbers and random particles in a cubic box (Random, No Beads) and uniform
random data in the porous region of the FCC geometry (Random, FCC). Solid lines
connect the symbols at scales for which SNR > 10, and dotted lines are used otherwise.

Flatness and skewness statistics of number density fluctuations are computed for
various Stokes numbers, as well as randomly distributed particles for the cubic box and
the porous region, and are shown in figure 11a,b. The statistics of randomly distributed
particles correspond to those of fluid tracer particles (St = 0). The number density of
the fluid particles is uniform due to the volume preserving nature of the incompressible
flow and particle clustering is absent resulting in zero skewness and flatness close to 3 as
expected. For random data in in the porous region of the FCC geometry similar results
were obtained with only minor differences. For all inertial particles with different Stokes
numbers, the flatness values increase with decreasing scales, showing that intermittency
of particle clustering is high at smaller scales. This is also seen qualitatively in the contour
plots (figure 9e–h) of number density fluctuations at smaller scales. For St > 0.5, the
flatness values for each scale (kjη) decreases with decreasing Stokes number. However,
for small Stokes numbers, there is an increase in intermittency at intermediate and
smaller scales (kjη > 0.2) compared to larger Stokes numbers. Note that for lower Stokes
numbers, particle clustering is typically not significant (figure 9b). Thus, this increase in
flatness at smaller scales may be a result of collision of particles with bead surfaces.

For inertial particles at all Stokes numbers, skewness values also increase with de-
creasing scales. As shown by Matsuda et al. (2021), positive skewness of number density
fluctuations indicate high probablity of large positive values of nj(x), that is prominent
clusters, whereas negative skewness corresponds to large excursions of negative values of
nj(x), that is void-pronounced structures. Increase in positive skewness at smaller scales
for all Stokes numbers implies more prominence of clusters. At St = 0.01 and 0.1, the
skewness remains close to zero at intermediate and large scales, similar to the random
particle statistics. However, at smaller scales, there is an increase in positive skewness
for these Stokes numbers. This again is conjectured to be clustering of these particles
owing to collisions with the bead surfaces. Finally, small negative values of skewness
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observed for St > 0.5 at large scales are indicative of large regions of voids. This is also
qualitatively confirmed in the visualizations shown in figure 9.

4. Summary and conclusion

Fully resolved direct numerical simulation of a turbulent flow through the confined
geometry of a triply periodic, face-centered cubic (FCC) porous unit cell was performed
using a Cartesian grid-based fictitious domain method. The low porosity of the flow
geometry gives rise to rapid acceleration and deceleration of the mean flow with presence
of three-dimensional helical motions, weak wake-like structures behind the bead spheres,
stagnation and jet-impingement-like flows together with merging and spreading jets in
the main pore. Details of turbulence characteristics in this confined geometry of the
porous cell for a range of Reynolds numbers spanning unsteady inertial, transitional,
and turbulent flow were characterized in detail in prior work (He et al. 2019). In this
work, emphasis is placed on clustering dynamics of inertial particles in a turbulent flow
through the porous cell. Specifically, how particle-wall interactions affect clustering and
deposition mechanisms at different particle Stokes number were studied. To this end,
point particles were advanced for four different Stokes numbers St using one-way coupling
and assuming perfectly elastic wall collisions for a single pore Reynolds number of ReH =
500, corresponding to inertial, turbulent flow. About ten million particles for each Stokes
number were introduced into the flow and tracked over several flow through times to
provide meaningful statistics on inertial particle dynamics of clustering, void formation,
and transport inside the confined geometry of the porous medium.

Tools for studying inertial particle dynamics and clustering, previously developed for
homogeneous flows, have been adapted being taken into account the curved flow geometry
of the bead walls in the porous cell. Mirror particles were used in the Voronoi analysis
and adjusted for tesselation in presence of bead walls. The probability distribution of
the Voronoi volumes for the different Stokes numbers quantified the departure from
the gamma distribution and allowed to assess the influence of both the geometry and
the flow, in comparison to isotropic turbulence. It was found that the geometry only
impacts the small volumes below 10−2 to the mean Voronoi volume. Cluster formation
and destruction was quantified by analyzing the time change of the Voronoi volumes for
the different Stokes numbers. This Lagrangian approach yields a time discrete measure
of the spatial divergence of the particle velocity. It was found that the PDFs of the
divergence, which are symmetric, are becoming wider for increasing Stokes number, as
the variance increases. In contrast the tails of the PDFs are becoming shallower with
Stokes number.The conditional average of the divergence as a function of volume is
found to be positive for small volumes and negative for large volumes. This explains that
cluster formation is present for large volumes, while cluster destruction is more prominent
for small volumes. Moreover, these effects are amplified with the Stokes number. These
findings are similar to what has been found for isotropic turbulence (Oujia et al. 2020).
Wavelet-based multiscale statistical analyses were applied to particle number density
fields in the flow through the porous geometry. By decomposing the number density
fields into orthogonal wavelets, scale-dependent statistics of number density distribution
were computed. The wavelet energy spectra showed that the peak of clustering gradually
shifts towards larger scale as the Stokes number increases. To reduce the influence of
bead geometry, the difference of each energy spectrum for inertial particles from that for
randomly distributed particles only in fluid domain was also computed. This allowed to
identify the peaks in the spectra for St 6 0.1. Scale-dependent skewness and flatness of
the particle density quantified the intermittent void and cluster distribution statistically.
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The positive skewness values at smaller scales found for all Stokes numbers confirm the
observed small scale prominent clusters. Negative skewness values for St > 0.5 quantify
the presence of prominent void regions. The flatness values which are increasing with
decreasing scale and that the values become even larger for larger Stokes number confirm
the strongly intermittent cluster distribution.

In conclusion both static and dynamic analyses of particle clustering in a porous cell
have been performed. With scale-dependent analyses of snapshots of particle density
distributions (static analyses), voids and clusters were quantified statistically. Focusing
on intermittency, a signature of void and clusters was observed in higher order statistics.
With the Lagrangian analysis of Voronoi tesselations (dynamic analysis), the convergence
and divergence of particle velocity were computed providing thus an explanation for
cluster formation and destruction. A comparison with results for homogeneous isotropic
turbulence, showed many similarities and also pointed out differences due to the flow
geometry, in particular for small volumes. Combining the multiscale statistical analyses
with the Lagrangian formulation of the Voronoi tesselation constitutes an interesting
perspective of this work for quantifying scale-dependent divergence and convergence of
the particle velocity and the related inter-scale transfer. The analysis presented can
be extended in the future to vorticity fields to obtain three-dimensional directional
information at different scales.
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