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Abstract—The aim of this paper is to present a sub-0.3 V 

neuromorphic technology developed for spiking neural network 

design and its potential application. The main properties of the 

developed ultra low power (ULP) artificial neuron are first 

recalled. A description of ULP synapses follows that includes the 

plasticity scheme. The neuromorphic toolbox is then used to 

design a basic circuit allowing oriented edges classification. The 

circuit is made of 40 neurons and 108 plastic synapses, its 

consumed silicon core area is 0.025 mm2 and the overall power 

consumption of 5 nW. Finally, the deployment of the technology 

within an industrial context to fabricate highly energy efficient 

Spike-based visual sensor is discussed.  

Keywords—ultra low power; artificial neuron and synapses; 

spiking neural networks; oriented edges; Spike-based visual 

sensor 

I.  INTRODUCTION 

For many applications, energy efficiency of information 

processing and communication becomes one of the main 

quality factors [1]. The current technology, based on binary 

coding, Von Neumann architecture and CMOS technology, 

has now reached its limits and the scaling down rules (R. 

Dennard, 1974) that guided the evolution of the micro- and 

nanoelectronics for almost 40 years cannot be anymore 

applied today. It becomes thus urgent to propose new 

paradigms of information processing capable of reducing the 

energy consumption in a drastic way while improving the 

performances as well. The connection of recent advances in 

neuroscience and nanodevice manufacturing suggests the 

possibility of designing and manufacturing radically new 

architectures with efficiency exceeding several orders of 

magnitude the current systems. This approach has 

extraordinary potential because all living beings are 

organized to minimize energy consumption and optimize 

performance. These bio-inspired or neuromorphic 

architectures incorporate the principles of operation currently 

known of the brain, that is large network of interconnected 

neurons and information coding by pulses. Artificial 

networks of silicon neurons and synapses are excellent 

candidates to build neuro- or bioinspired architectures 

compatible with current CMOS technology while bringing 

required efficiency and adaptability. They are also well suited 

for the implementation of synaptic mechanisms such as LTP 

(Long Term Potentiation) and LTD (Long Term Depression) 

as well as supervised/unsupervised learning algorithms 

known from neuroscience as «Spike -Timing -Dependent 

Plasticity» (STDP). 

In this context, we will briefly recall in this paper the 

properties of an ultra low power (ULP) artificial neuron (AN) 

[2] that we have developed, a preliminary step that was 

required for the development of our ULP neuromorphic 

technology. Then, the design of ULP plastic synapse [3] will 

be presented, including the plasticity scheme. In order to 

highlight the capability of this ULP neuromorphic 

technology, this “toolbox” (that is, constituted of artificial 

neuron and plastic/non-plastic synapse) is afterwards used to 

design a medium scaled spiking neural network (SNN), able 

to select edges orientations through a supervised learning. 

The last part describes the application of this technology, 

with special emphasis on spike-based smart visual sensor 

design. 

II. ULP NEURON 

The ULP AN that was developed is shown in Fig. 1. The 
circuit mimicks the equations of Morris-Lecar biological 
model [4], operates under a supply voltage VDD of 200-300 
mV for which all MOS transistors behave in deep 
subthreshold operation, ensuring an ultra low standby power. 

 

Fig. 1. ULP artificial neuron circuit 

All details related to the AN behavior may be found in [2]; 
we will recall in the following the driving rules used to achieve 
an outstanding energy efficiency. Indeed, the energy 
consumed by the AN during one spike generation is related to 
the capacitance value times the square voltage variation across 
the capacitance (note that there are two capacitances for the 
AN, CK and Cm, the latter being the membrane capacitance). 
As a result, in order to achieve a high energy efficiency (and 
ultra low power consumption), in addition to decrease the 
supply voltage VDD to 200-300 mV (which “de facto” limits 
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spike voltage swing), the capacitances value were scaled 
down. Following this guideline, the ULP AN performs well 
against state of the art [2], featuring an energy efficiency of 
few fJ/spike (two to three orders of magnitude lower that other 
CMOS silicon neurons), along a standby power of few tens 
pW and an area consumption of 35 µm2. Typical voltage 
waveforms are shown in Fig. 2 (for this plot, the voltage spike 
magnitude is 112 mV). 

 

Fig. 2. Typical output waveform under constant current excitation. 

Excitation current = 150 pA, Vpeak-peak = 112 mV, Spike frequency = 26 
kHz. 

III. ULP SYNAPSES 

Having recalled some of the ULP artificial neuron features 
in Section II, this section describes the development of ULP 
synapses. Note the scheme used to realize these synapes are 
known for a long time [5], but special emphasis was made to 
decrease the power consumption of the excitatory synapse. 

A. Basic synapses 

 Before presenting the basic synapses architecture, a first 
step has been to generate the appropriate control voltages, 
aimed to control synapses behavior. It was achieved by simply 
connecting two inverters cascaded in series, whose input is 
connected to the AN membrane voltage node. Such a circuit 

permits to generate steep voltage pulses ���� and ���� at the 
output of the inverters, respectively, as pictured in Fig. 3. 

 

Fig. 3. Circuit to generate  ���� and ����  

The basic synapses architectures are shown in Fig. 4. 

 

Fig. 4. Basic synapses 

The inhibitory synapse corresponds to Fig. 4a while the 
excitatory one to Fig. 4b. Looking to the inhibitory synapse, 
the n type transistor M1_i has its source connected to the 
ground. The “pulse-shaped” voltage Vout of the “pre-neuron”, 
that reflects the membrane voltage, is connected to the gate of 
M1_i (which behaves as a “switch”). When the “pre-neuron” 
is in its resting state, Vout = 0V and M1_i is in its “OFF” state; 
thus the inhibitory synapse is “transparent” (no influence on 
the “post-neuron”). When the “pre-neuron” generates a spike, 
Vout rises to Vdd during the duration of the spike, and M1_i 
switches in the “ON” state. As a result, an inhibitory current 
is flowing out the post-neuron down to the ground. This 
current contributes to an “hyperpolarization” of the post-
neuron, its membrane voltage decreasing. M2_i is connected 
in series with M1_i, and the voltage VWinhib reflects the 
“weight” of the inhibitory synapse.  

 If we consider now the excitatory synapse, M1_e behaves 
as well as a switch while M2_e reflects the “weight” of the 
synapse. The source of M2_e being connected to Vdd, when 

a spike is generated by the pre-neuron, ���� = 0 V, and an 
excitatory current is flowing down towards the membrane of 
the post-neuron which contributes to a depolarization of the 
post-neuron (that is, the membrane potential is rising). The 
voltage VWex reflects the “weight” of the excitatory synapse. 

 In order to verify the correct behavior of an excitatory 
synapse, the circuit shown in Fig. 5a was designed and 
experimentally investigated. It consists of an association of 
pre-neuron to a post-neuron with an excitatory synapse in 
between, as the one described in Fig. 4b. For this circiut, in 
Fig. 5a, the supply voltage node was connected to Vdd. As 
shown in Fig. 5b, when the synaptic weight is too weak, the 
post-neuron is firing after the occurrence of two pre-neuron 
spikes, because VWex was too weak. When VWex is reaching a 
sufficient level (Fig. 5c), a post-neuron spike is generated for 
each pre-neuron spike occurrence. 

 

a 

 

 

b 

Authorized licensed use limited to: UNIVERSITE DE LILLE. Downloaded on August 10,2022 at 13:41:06 UTC from IEEE Xplore.  Restrictions apply. 



 

c 

Fig. 5. Association « pre-neuron / excitatory synapse / post-neuron » 

  The spikes type in Fig. 5c correspond to “tonic 
spiking”, but biology features a variety of spike waveforms. 
For instance, in order to emulate a “bursting mode” with the 
synapses prior described, a basic neural circuit is to associate 
using a close loop a “fast” excitatory neuron connected to a 
“slow” inhibitory neuron; it turns out that when the “fast” 
excitatory neuron is excited by a current step, the “bursting” 
mode can be emulated [6].  

 The synapses that have been described lead to a post-
synaptic potential whose duration is equal to those of the pre-
neuron spike. Nevertheless, in biology, the duration of post-
synaptic potential may last up to 10 times those of a spike. 
Moreover, the excitatory synapse presents in standby state an 
excitatory leakage current which is not negligible. 

B. Ultra low power synapses 

  In order to implement excitatory synapses both 
featuring a more realistic dynamic and an ULP standby power, 
the architecture presented in Fig. 6 was developed.  

 

Fig. 6. Ultra low power synapses. 

 First, the role of the RC integrator (red in Fig. 6) is to 

extend the duration of Vout (or ����); as such, it can be 
viewed as an “expander” circuit.  As illustrated, this expander 
is made of an active load (that is, a load made with a transistor) 
connected itself to a capacitor. Second, in order to decrease 
the power consumption of the synapse when operating in its 
“standby” mode (that is, when a pre-neuron does not generate 
a spike), the p-type MOSFET has its source connected to Vout 
instead to be connected to Vdd. This p-type transistor behaves 
alos as a switch, as for a “regular” excitatory synapse such the 

one pictured in Fig. 4b, but this time with (its) input gate-to-

source voltage controled by Vout and ����. The synapse 
behaves as follows: (i) when the “pre” neuron does not 

generate spikes, Vout = 0V while ���� = Vdd; it turns out that 
the p-type MOSFET is strongly pinched-off (Vsg < 0V), 
which leads to an ULP “standby” power consumption as low 
as the femtoWatt (fW). It is to be stressed that source and drain 
for the n-type MOSFET are reversed and that the current Iex 
(Fig. 6) is negative, which means that Iex flows down the 
ground. The synapse rather acts as an “inhibitory” synapse, 
preventing the post-neuron to generate any spike, (ii) when the 

“pre” neuron generates spikes, Vout = Vdd while ���� = 0V, 
the p-type MOSFET is conductive, and the synapse acts as a 
regular excitatory synapse.  

 In order to verify the correct behavior of this architecture, 
the temporal summation of a spikes train (made of four spikes) 
generated by the pre-neuron was carried out in simulation, to 
observe the time-varying post-neuron membrane voltage 
(PNMV). For this purpose, the circuit shown in Fig. 6 was 
used, a ML post-neuron being connected to the output synapse 
node (where Iex is indicated Fig. 6). 

 

Fig. 7. Simulated membrane voltage for pre-neuron (bottom) and post-
neuron (top) to verify temporal summation.  

The temporal summation is clearly observed when 
carefully looking at PNMV: after the first pre-neuron spike, a 
post excitatory synaptic potential is observed. The latter has 
no sufficient time to completely relax before the second pre-
neuron spike occurs, and the post neuron membrane voltage 
kept on increasing. After the fourth spike, the post-neuron 
membrane voltage is reaching its firing threshold and a post-
neuron spike is generated. 

C. Synapse plasticity 

 Synapse plasticity is a key point, required to make a SNN 
learning through a supervized or unsupervized scheme. For 
this purpose, the plasticity scheme implemented in [7] was 
used. It is based on the so-called spike time dependent 
plasticity (STDP), encountered in biology, and widely used in 
SNN. STDP is a process for which the connection strengh 
between a pre-neuron and post-neuron is adjusted through the 
relative timing between pre-neuron and post-neuron spikes. 
The STDP scheme that was implemented has the following 
features:  

- First, a voltage “Vcontrol”, issued from a circuit 
comprising a spike expander and an integrator, will 
increase (starting from 0 V), whenever a post-neuron 
is firing after a pre-neuron (providing the delay 
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between spikes falls within a defined time-window); 
this voltage is applied to a SRAM 

- After a sufficient number of pre-post neurons pairing, 
Vcontrol is reaching a threshold value for which the 
SRAM state changes. The SRAM output which 
switches from 0 V to Vdd corresponds to a binary 
synaptic weight and is connected to VWex node voltage 
of the excitatory synapse (Fig. 6) 

- If VWex is equal to 0 V, the excitatory synapse is “non 
connected” while if it is equal to Vdd, long term 
potentiation has been achieved 

  

IV. MEDIUM SCALED SNN: ORIENTED EDGES 

RECOGNITION  

In order to proceed to a first circuit design of the ULP 
neuromorphic technology presented in sections II and III, that 
gathers neurons and synapses, a “medium” scaled SNN 
intended to recognize oriented edges was designed. The aim 
was to fabricate a circuit which integrates different building 
blocks, using both non-plastic (fixed weight) and plastic 
(weight obtained through STDP). The learning scheme 
implemented was a supervised one.  

A. SNN architecture 

 The SNN architecture is shown in Fig. 9. The circuit is 
made of 9 “emulated” input pixels: these input pixels simply 
correspond to neurons that are excited through external 
excitatory current. The SNN itself corresponds to a reservoir 
architecture which gathers 27 neurons. Each input pixel is 
randomly connected to 5 neurons of the reservoir through 
fixed weight (equal to Vdd) excitatory synapses. The 27 
neurons constituting the reservoir are interconnected in 
between them, as it is represented in Fig. 9, through synapses 
having fixed weight as well; 80% of the synapses are 
excitatory while the other 20% are inhibitory, randomly 
distributed within the reservoir. 

 

Fig. 9. Neural circuit realized to verify temporal summation. 

At the output side, each neuron of the reservoir is connected 
to the four output neurons through plastic excitatory 
synapses, using the plasticity scheme explained in section 
III.C. Fig. 10 shows the SNN layout. The core area 

surrounded in dashed red line is 250 x 100 µm2.

 

Fig. 10. Layout for the SNN designed for edges recognition. 

 The circuit was designed using TSMC CMOS 65 nm 
technology, and experimentally investigated. 28 pads are used 
to both set the supply voltages and command the SNN: 

- 9 pads to control the 9 input neurons representing the 
pattern, 

- 4 pads to control the 4 output neurons, to achieve the 
supervised learning, 

- 4 pads used to readout the 4 output neurons, 
- 2 pads (VDD and VSS) used to supply the network, 
- 3 pads used to control the weight of synapses, 
- 1 pad to initialize plastic synapses, 
- 5 pads to bias the output buffers 

 
B. Learning procedure 

The learning procedure is detailed in Fig. 11, for the left to 

right diagonal edge learning. The resting state of the circuit 

corresponds to Fig. 11a for which only the central pixel is 

excited; in such a situation, the membrane voltages 

corresponding to output neurons labelled #1, #3 and #4 are 0 

V (only 3 oriented edges were learned). Then, as pictured in 

Fig. 11b, the neurons mimicking “pixels” at SNN input, 

corresponding to a left to right diagonal edge, are 

simultaneously excited at the mean time of the output neuron 

labelled #1 at the output (supervised learning); output 

neurons labelled #3 and #4 are kept silent. As shown in Fig. 

11c, output neuron #1 promptly learns, generating spikes. If 

now the supervision is disrupted (Fig. 11d), output neuron #1 

is still spiking, indicating that the left to right diagonal edge 

pattern has been learned. 

The above procedure was repeated to learn two other 

patterns and the results are shown in Fig. 12. 

Starting from the resting state (Fig. 12a), the three learned 

patterns are successively presented at the input of the SNN 

circuit. Fig. 12b-d clearly indicate that output neurons 

labelled #1, #3 and #4 specialized themselves for these 

different oriented edges.  
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Fig. 11. “Left to right diagonal edge” learning 

 

 

 

 

 
 

Fig. 12. Illustration of SNN edges pattern recognition. 
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C. Power Consumption: discussion 

Power consumption was the main goal to investigate the 

ULP neuromorphic technology. After learning, the different 

experimental DC currents and overall power consumption 

were carefully measured  for the SNN. Results are provided 

in Table I, both in standby condition and when a pattern is 

presented, for Vdd = 300 mV. From Table I, it is obvious that 

the main power consumption comes from neurons and 

SRAM (used to memorize the weights after learning). The 

increase of power consumption when a pattern is presented is 

due to spikes generated within the SNN. The SNN gathers 40 

neurons and 108 SRAM. 
TABLE I. 

 Total DC 

current for all 

neurons and all 

SRAM 

Total 

current for 

all 

synapses 

SNN 

Power 

Consumption 

After 

learning, 

Standby 

Power 

 

9.9 nA 

 

5 nA 

 

 

4.48 nW 

After 

learning, 

Pattern 

presented 

 

11.8 nA 

 

5 nA 

 

5.07 nW 

 

From this table, assuming that the SRAM power 

consumption is half those of a neuron, the stand alone neuron 

power consumption is around 40 pW. This number is in line 

with the power consumption reported in [2]. From these 

numbers, it can be concluded that the ULP neuromorphic 

technology correctly scales regarding the power 

consumption. 

 

V. POTENTIAL APPLICATION: ULP SPIKE-BASED 

VISUAL SENSOR 

Regarding the performance of our ULP neuromorphic 

technology, one can expect to develop highly energy efficient 

spike-based visual sensor. Such a development is on-going, 

through a collaboration with an industrial partner. Currently, 

the more powerful technology is the so-called Address Event 

Representation (AER) visual sensor technology [8]. Though 

this AER based technology performs very well, the power 

consumption per pixel (PCPP) is around 100 nW, which is 

more than three times higher than the PCPP featured by a 

human being retina (which features a PCPP of 30 pW, see 

Table 3.1 in [9]). The (main) reason lies in the supply voltage 

used to develop AER visual sensor, which stands higher than 

1V for this technology. 

In this context, our neuromorphic technology is used to 

develop Spike-based visual ULP sensor. Indeed, in addition 

to neurons and plastic/non-plastic synapses, an ULP optical 

sensor was developed [10] that operates luminance 

transduction into spikes generation. Work is in progress to 

fabricate a 64 * 64 pixels demonstrator, able to extract 

luminance (contrast) or edges (using ON cells) from a fixed 

or video visual scene. 

 

Some challenges obviously remain, to cite a few: (i) 

contain the technology variability, (ii) design the interface 

with the digital world. When fixed, the time varying spikes 

generated by the visual sensor will be processed by low 

power FPGAs/Processors to perform various supervised / 

non-supervised learning. Full analog implementation will 

also be considered in the framework of dedicated 

applications. 

VI. CONCLUSION  

In this paper, the scaling progress of an ULP neuromorphic 

technology recently developed has been proposed. The main 

features of the ULP artificial neuron was first recalled, 

followed by those of ULP artificial synapses with special 

emphasis on their dynamic and plasticity. Hence, the ULP 

neuromorphic toolbox was used to design a medium scaled 

SNN, aimed to oriented edges classification, the power 

consumption of # 5nW, in line with the stand alone power 

consumption reported for a stand alone artificial neuron [2]. 

Finally, a discussion on the opportunity to use this ULP 

neuromorphic technology to develop highly energy efficient 

spike-based visual sensor was made.  
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