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Abstract
We study a realistic domain adaptation setting where one has access

to an already existing “black-box” machine learning model. Indeed, in
real-life scenarios, an efficient pre-trained source domain predictive model
is often available and required to be preserved. The solution we propose
to this problem has the asset of providing an interpretable target to source
transformation by seeking a sparse and ordered coordinate-wise adaptation
of the feature space in addition to elementary mapping functions. To
automatically select the subset of features to be adapted, we first introduce
a weakly-supervised process relying on scarce labeled target data. Then, we
address a more challenging unsupervised version of this domain adaptation
scenario. To this end, we propose a new pseudo-label estimator over
unlabeled target examples, which is based on rank-stability in regards to
the source model prediction. Such estimated “labels” are further used
in a feature selection process to assess whether each feature needs to be
transformed to achieve adaptation. We provide theoretical foundations of
our method as well as an efficient implementation. Numerical experiments
on real datasets show particularly encouraging results since approaching
the supervised case, where one has access to labeled target samples.

1 Introduction
Domain adaptation (DA) methods deal with a scenario where training data, the
so-called source domain data, and test data, the so-called target domain data,
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are drawn from different distributions [47, 63]. This is a ubiquitous challenge
in industrial machine learning applications. For example, to expand companies’
businesses, a payment fraud detection system trained in one geographical local-
ization, say one country (source domain), may be used to detect fraudsters in
another country (target domain) where people have different payment habits.
Directly training such a predictive model in a new country is not desirable since
one has scarce labeled target domain data. However, abundant unlabeled data
are usually easy to get. Classical DA methods address this problem often by
seeking a latent space where input distributions of target and source domains
coincide [46, 1] or by transforming source domain data to match distributions
of the target domain [60, 61]. Current approaches based on deep neural net-
works rely on adversarial learning to generate domain invariant features [18, 65].
However, such methods require retraining a predictive model after or during
the adaptation, which is undesirable in a real-life industrial setting. Indeed, in
many real-life scenarios, a well-performing pre-trained source domain predictive
model is often given. The pre-trained predictive model can be from various
model types: neural networks, decision trees, and expert rules, to name a few.
Retraining such an aggregation of models requires tedious hyper-parameter
fine-tuning and can be even unfeasible due to no longer accessible expertise. As
a result, it is natural to consider this pre-trained model as a “black-box” and
reuse it directly. Furthermore, the automatically generated features by deep
neural networks are generally not interpretable; hence provide no insights to
understand drifts between source and target domains. Alternatively, we propose
to stand in a target to source DA scenario: one transforms target data into the
source ones and predicts target domain labels using the pre-trained source model
directly without supplementary retraining. Moreover, we focus on the adaptation
problem of tabular data where the input space contains categorical attributes as
well as numerical ones, thus complexifying the analysis. All these constraints
require the adaptation method to be predictive model-agnostic, retraining-free,
and feature-type independent.

To address such a challenging target to source DA scenario, we propose to
use coordinate-wise optimal transports for adaptation (note that we initiated
this line of research in an early conference paper [78]). As we show further
in experiments, transformation functions of coordinate-wise optimal transports
are easily interpretable and can seamlessly adapt numerical features as well as
categorical ones. Moreover, leveraging a weakly-supervised feature selection
process, we enhanced our method’s interpretability and prediction performance
by providing a sparse and ordered transformation function. More precisely, we
ranked features of input space by their contributions to DA tasks and focused
on the adaptation of features with the most contributions. From a business
point of view, the selected small subset of features can reveal the source of
gaps between source and target domains and provides business experts, with
or without machine learning backgrounds, with interpretability to gain more
insights for a better understanding of different domains. Although our previous
proposed method empirically achieved state-of-the-art performances over several
real-life DA tasks, a small subset of labeled target data is required during the
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Table 1: Comparison of different DA methods. (i) classical adaptation method:
SA [15], (ii) deep adaptation methods: DANN [18], (iii) classical adaptation
method with feature selection: OT Feature Selection [19].

Advantages SA DANN OT Feature Selection Ours
Model-Agnostic ✓ ✗ ✓ ✓

Retraining-Free ✗ ✗ ✗ ✓

Feature-type Free ✗ ✓ ✗ ✓

Huge Dataset ✗ ✓ ✗ ✓

Interpretable ✓ ✗ ✓ ✓

feature selection process; thus, we were in a weakly-supervised DA scenario.
However, in practice, target domain labels are often missing, limiting the previous
method’s spectrum of use.

We extend this DA method, typically the idea of feature selection over pre-
trained source models, to an unsupervised DA setting through a general DA
pipeline. Our main contributions are: (i) We propose a new unsupervised DA
function leveraging the stability of ranks of predictions to select and adapt
the features that contribute the most to DA tasks. (ii) We provide theoretical
foundations of the proposed unsupervised feature selection method and give an
efficient implementation. (iii) We represent our method over challenging DA
tasks via interpretable illustrations empirically.

We organize the paper as follows. Section 2 reviews some classical setting DA
methods and some pseudo-labeling techniques. Section 3 gives the formalization
of the target to source DA problem and introduces our pipeline of DA. We
propose our unsupervised feature selection method in Section 4 in addition to
its theoretical foundations. Section 5 provides an efficient implementation of our
method. In Section 6, we empirically evaluate our proposition on the Amazon
review benchmark and two challenging real-life fraud detection tasks. Finally,
we conclude and give some future perspectives in Section 7.

2 Related Work
2.1 Domain Adaptation (DA)
According to classes of transformation functions, DA methods can be roughly
categorized as deep adaptation methods that rely on deep neural networks and
classical adaptation methods that do not use neural networks to adapt data.

Deep adaptation methods are shown to be capable of extracting transferable
features between different tasks [73]. Recent deep adaptation methods enhance
this transferability by plugging into neural networks an adaptation layer [40,
20, 43] to minimize Maximum Mean Discrepancy (MMD) or other statistical
moments of different orders [76, 7] between source and target distributions.
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Another popular paradigm relies on adversarial learning [21] to generate domain
invariant features [18, 65, 41, 55, 67]. Besides, [33] proposes to use early exiting
and residual blocks skipping to accelerate the inference process. Since a perfect
alignment directly between source and target domain is difficult to achieve,
[13] proposes the concept of “bridge” to gradually align source and target
representations in an intermediate domain and simplify the optimization of the
domain discriminator. [12] considers domain-specific characteristics as heuristic
representations and leverages heuristic search perspectives to minimize domain
discrepancies gradually. Wei et al. have pointed out that the objective of domain
alignment may not coordinate with the classification tasks. They propose to
leverage meta-optimization strategies [69] and feature decompositions [70] to
mitigate such an inconsistency problem. The proposed method has achieved
state-of-the-art adaptation performance on various image benchmarks. Note
that all these methods project source and target data into a common latent
space and require retraining the predictive model. These approaches are not
desirable when a “black-box” pre-trained model is given and cannot be retrained
due to the manual defined expert rules, which is the case in our problem.

Source-free DA [28, 34, 35, 29, 72] and “black-box” DA [36, 77] share the
same idea of leveraging pre-trained source domain predictive models like ours.
The former supposes the source domain data are not available, while one has full
access to pre-trained source domain predictive models. The latter considers the
pre-trained source domain model as a “black-box”, and only the input-output
responses of pre-trained models are available. Standing in a source-free DA
setting, [23] adopts a contrastive learning schema and relies on historical source
domain classifiers to build a consistent target representation. [32] tackles a more
challenging task where either source domain data or the target domain data are
unknown and proposes a novel adversarial-attack-based method to address the
DA problem. Faced with a “black-box” DA setting, [64] proposes reprogramming
model outputs using a few labeled target domain data. [38] focuses on the label
shift problem where source and target domain output distributions differ. [36]
distills knowledge from the source domain with interpolation consistency training
and mutual information maximization. It requires a smoothing regularization
when training the “black-box” model. However, all these methods do not
address our problem, as our proposition focuses on adapting tabular data in
an unsupervised setting and has no restriction over the structure or family of
predictive models. In our “black-box” setting, source domain models can be
of any type (e.g., decision trees, expert rules, etc.). Besides, we have access
to source domain data so that our adaptation method can apply to generic
“black-box” predictive models. Although many methods leverage the flexibility
of deep neural networks and advance in stochastic optimization methods to
address complex DA settings such as partial DA [5, 6], open set DA[48, 56],
and universal DA [74, 31]. This paper mainly focuses on a non-neural network
limited, model-agnostic closed set DA problem. Indeed, deep neural networks
are powerful for extracting representations, while for machine learning tasks
with hand-crafted tabular data, tree-based models are still state of the art [4].
Moreover, deep neural networks, especially adversarial networks, are challenging
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to train and need lots of manual tuning to find the optimal hyper-parameter and
trade-off between classification and adversarial losses or regularization terms.
Such hyper-parameter searching is not straightforward in an unsupervised DA
scenario [75]. Our proposition exceeds deep adaptation methods by generalizing
to all families of predictive models.

Classical adaptation methods focus mainly on the transformation of hand-
crafted features. Some well-known methods address the DA problem by mini-
mizing measures like Kullback-Leibler Divergence [58, 60] or MMD [46, 1, 42]
between source and target domain distributions. Others align target and source
domain correlation matrices [61] or principal axes [15]. Recent research works
that leverage optimal transport theory [44, 26] and advances in computational
optimal transport [14] consider the DA problem as finding the optimal trans-
port plan between source and target domains [50, 11, 10]. However, most of
these methods are not scalable to transform massive datasets or fail to adapt
categorical features.

2.2 Feature selection and DA
To take into account both interpretability and a huge dataset of mixed feature
types, our proposition leverages a coordinate-wise transformation [78] and feature
selection DA methods [57, 66, 19]. Classical feature selection DA methods predict
target labels relying solely on selected domain invariant features. However,
label-relevant features could be discarded and decrease prediction performance.
Alternatively, we keep all features such that one can directly use pre-trained
source models to predict target labels. In addition, features that contribute to
DA are adapted to mitigate gaps between source and target domains. Besides,
the selected features by the unsupervised method offer an immediate overview
of the source of drifts between domains.

2.3 Pseudo-labeling and DA
The pseudo-labeling method is first used to guess and annotate unlabeled data
in semi-supervised learning [81]. Namely, one iteratively trains a model with real
and pseudo-labels and updates pseudo-labels using the most confident predictions.
In an unsupervised DA scenario, one annotates unlabeled target data using the
most confident predictions of source models [30]. Leveraging this technique, Long
et al. [41] propose to align target and source domain conditional distributions for
DAs. Some other works [8, 54] combine co-training or tri-training techniques to
get estimations of pseudo-labels of target domains. In [17] and [59], the authors
use a teacher network to predict target labels and refine decision boundaries.
Different from the aforementioned methods that use discrete class labels with the
most confident predictions as pseudo-labels, Wang and Breckon [68] and Motiian
et al. [45] adopt soft pseudo-labels for adaptation tasks. Inspired by the success
of soft pseudo-labeling methods, we propose a new pseudo-label estimator relying
on rank stability of predictions that helps select features that contribute the most
to DA tasks. Our approach gives probability scores that unlabeled examples
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belong to one class, representing more precisely inter-example relationships than
just class labels, especially when classes are highly unbalanced (more details in
Section 4). Table 1 highlights the added values of our proposition compared to
some typical adaptation methods.

3 Target to Source Domain Adaptation
We first introduce the formalization of the target to source DA scenario and some
basic notations. Of note, the current section essentially recaps the framework we
previously introduced for the weakly-supervised setting [78], on which we build
the contribution of the forthcoming Section 4 for unsupervised feature selection.

The objective of the target to source DA consists of finding a predictive model
independent transformation G : X → X that aligns input marginal distributions
and output conditional distributions between source and target domains, that is,{

P (Xs) = P (G(Xt)) ,

P (Y s|Xs) = P (Y t|G(Xt)) ,
(1)

where X is the input space that contains numerical and categorical dimensions.
Xs ∈ X (resp. Xt ∈ X ) refers to the input variable of the source domain (resp.
target domain), and Y s ∈ Y (resp. Y t ∈ Y) refers to the output variable of
the source domain (resp. target domain), where Y is the output space. We
also denote by Xt = {xi ∈ X |i = 1, . . . , nt}, a set of target inputs drawn
from P (Xt) with nt examples, and by Xs = {xj ∈ X |j = 1, . . . , ns}, a set of
source inputs drawn from P (Xs). We study the binary classification problem
where Y = {0, 1}, and we assume that we are given a pre-trained source model
hs : X → [0, 1] corresponding to the source domain optimal Bayes predictor,
that is hs(x) = P (Y s=1|Xs=x).

We also assume the existence of an unknown target domain optimal predictor,
denoted by ht(x) = P (Y t=1|Xt=x). Accordingly, the second condition of
Equation (1) can be reformulated as ht(x) = hs ◦ G(x) . Notice that P (Y s) =
P (Y t) is a necessary condition that Equation (1) has a solution, and we can
further infer that the following equality holds in this case:

P (hs(Xs)) = P (ht(Xt)) . (2)

Following the definition of predictive models, hs and ht can be seen respectively as
functions of variables Xs and Xt. Equation (2) argues that output distributions
of predictive models in two domains should be the same.

Our final proposed DA approach is illustrated in Figure 1. It consists of
three steps: output calibration, coordinate-wise adaptation, and feature selection
(weakly supervised and unsupervised). The unsupervised feature selection is our
primary novelty compared to Zhang et al. [78].
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Output  
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(Section 3.1)

Coordinate-wise 
Adaptation  
(Section 3.2)

Weakly Supervised
Feature Selection

(Section 3.3)

Unsupervised
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(Section 4)

Are Some Target Labels
Available?

Yes

No

1st Step 2nd Step 3rd Step

[9] Zhang et al. (2021)

[9] Zhang et al. (2021)

Primary novelty of this work

Secondary novelty of this work

Figure 1: The proposed pipeline of our adaptation method: Stability-based
feature selection for Coordinate-wise Domain Adaptation (SCDA). Details of
each module can be found in the corresponding section.

3.1 Output Calibration
Although it is a common assumption in DA to consider P (hs(Xs)) = P (ht(Xt)),
this condition may be violated in practice. A particular case of violation is the
so-called label shift [24], where P (Y s) ̸= P (Y t). Various methods [52, 62, 39]
have been proposed to tackle this setting. Note that this paper mainly focuses
on the adaptation problem of input spaces, while for completeness, we present
in this section how to integrate a simple calibration method [53, 37] to alleviate
label shift in our proposed target to source DA pipeline.

In this paper, we stand in the unsupervised case where neither the target
predictor ht nor the target labels Y t are given, while the target domain output
marginal distribution P (Y t) is accessible. For example, in a fraud detection
system, despite the lack of labels in target domains, one may have the proportion
of fraud estimated by experts. Furthermore, we suppose that, for a binary
classification problem, if

P (Y s) = P (Y t) , (3)

then we have

P (hs(Xs)) = P (ht(Xt)) . (4)

As input-output pairs (Xs, Y s) of source domains are given, and target do-
main output marginal distribution P (Y t) is also known, one can get Equation (3)
by re-weighting source examples by classes. Although re-weighted source data
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have no label shift compared to target ones, the pre-trained “black-box” model
hs will no longer be optimal in the re-weighted source domain. Thus, in light of
the works [53] and [37], we propose calibrating hs to estimate optimal predictions
for examples in the re-weighted source domain. For the simplicity of analysis, we
respectively note Xp and Y p, the input and output variables of the re-weighted
source domain. By definition, we have

P (Y p) = P (Y t) and P (Xp|Y p) = P (Xs|Y s) .

Proposition 1 (Source model calibration). Let hs be the pre-trained optimal
binary classifier in the source domain. The optimal predictor hp(x) = P (Y p =
1|Xp = x) in the re-weighted source domain is obtained by:

hp(x) = hs(x)w(1)
hs(x)w(1) + (1 − hs(x))w(0) , (5)

where

w(y) = P (Y t = y)
P (Y s = y) .

The details of the proof are given in Appendix. The proposition suggests that
the difference between binary output marginal distributions of source and target
domains can be mitigated by calibrating outputs of the pre-trained “black-box”
model. For the sake of simplicity, hereafter, we consider the source domain is
already calibrated, and we use Xs and Y s instead of Xp and Y p to express the
source domain where data are re-weighted to match the target domain output
distribution. Analogously, hs refers to the calibrated optimal predictive model
in the re-weighted domain.

3.2 Optimal Transport for Coordinate-wise Domain Adap-
tation

The optimal transport problem was first introduced by Monge in the 18th cen-
tury [44] and further developed by Kantorovich in the mid-20th [26]. Intuitively,
the original Monge-Kantorovich problem looks for minimal effort to move masses
of dirt to fill a given collection of pits. It is naturally suited for DA problems [11]
of tabular data, as it offers a principled method to transform seamlessly numerical
and categorical target distributions to source ones. Central to optimal transport
methods is the notion of a cost function between a source point and a target
point, denoted by

c : X × X → R . (6)
Moreover, C ∈ Rnt×ns denotes the cost matrix between source and target
training points such that Ci,j = c(xi, xj) corresponds to the cost of moving
weight from xi ∈ Xt to xj ∈ Xs. As discussed at the end of this section, the cost
may be defined for categorical and numerical features.

Based on these concepts, we present below the Kantorovich [26] formulation
of the multidimensional optimal transport problem in the discrete case.

8



Definition 1 (Kantorovich’s discrete optimal transport problem). The rela-
tionship between source and target examples is encoded as a joint probability
coupling matrix γ ∈ Rnt×ns

+ , where γi,j corresponds to the weight to be moved
from xi ∈ Xt to xj ∈ Xs. The set of admissible coupling matrices is given by

Γ =
{

γ ∈ Rnt×ns
+

∣∣∣ wt
i =

ns∑
j′=1

γi,j′ and ws
j =

nt∑
i′=1

γi′,j

}
,

where wt
i (resp. ws

j ) is the weight of xi ∈ Xt (resp. xj ∈ Xs). Typically, we
consider that the mass is uniformly distributed among each point, i.e., wt

i = 1/nt

and ws
j = 1/ns, but the framework allows reweighing the samples, such that

nt∑
i=1

wt
i =

ns∑
j=1

ws
j = 1 ; wt

i , ws
j ≥ 0 .

Then, the optimal coupling matrix γ∗ is obtained by solving

γ∗ = argmin
γ∈Γ

⟨C, γ⟩ = argmin
γ∈Γ

nt∑
i=1

ns∑
j=1

Ci,jγi,j . (7)

In turn, the transformation function G is given by

G(xi) = argmin
x′∈X

ns∑
j=1

γ∗
i,jc(x′, xj) . (8)

The solution x′ ∈ X of Equation (8) minimization problem is commonly referred
to as the barycenter mapping in the optimal transport literature. For unseen
target examples x drawn from P (Xt) while x /∈ Xt, we project x to its nearest
xi according to c(xi, x) and then get its source DA using Equation (8).

However, Equation (7) is a linear optimization problem. When ns = nt = n,
the computational complexity is O(n3) which is not scalable to huge datasets.

Therefore, we restrict the class of transformations G by considering all features
as independent in transfer tasks. Then we propose to use one-dimensional
optimal transport individually on each attribute to transform target data to
the source domain, which is the so-called coordinate-wise adaptation [78]. The
transformation G is decomposed by feature-wise transformations Gk, such that
G = [G1, ..., Gk, ..., Gd] , where d is the number of features of the input space.
Each transformation Gk solves the adaptation problem of the k-th feature by
aligning input marginal distributions of this feature between target and source
domains, that is, P (Xs

k) = P (Gk(Xt
k)) .

Numerical Attribute In the case where the k-th feature is a numerical one,
Xk = R, and the cost function of this dimension is defined as

∀xk
i , xk

i′ ∈ Xk , cp
num(xk

i , xk
i′) = |xk

i − xk
i′ |p ,
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where xk
i and xk

i′ stand for the k-th dimension of inputs xi and xi′ . Instead
of solving Gk relying on Equation (7) and Equation (8), there is a closed-form
solution of the Kantorovich optimization problem [51]:

Gk(xk) = (F s
k

−1 ◦ F t
k)(xk) , (9)

where F s
k and F t

k are respectively cumulative distribution functions of P (Xs
k)

and P (Xt
k). This solution is also known as increasing arrangement.

Categorical Attribute In contrast, if the k-th feature is categorical, we have
Xk = Dk, where Dk = {ek

1 , . . . , ek
nk

} is the (non-ordered) set of values taken by
the k-th categorical feature, and nk is the number of unique values in Dk.

We use a generic strategy that can be applied to any categorical feature by
defining the cost in terms of the occurrence frequency [25]:

∀ek
l , ek

r ∈ Dk , ccate(ek
l , ek

r ) = Ck
l,r

=


0 if ek

l = ek
r ,

1 − 1
1 + log( 1

vk
l

) log( 1
vk

r
)

otherwise, (10)

where vk
l ∈ (0, 1] (resp. vk

r ∈ (0, 1]) is the frequency of occurrences of the value
ek

l (resp. er
l ) for the k-th feature. In Equation (10), we write Ck

l,r for the entry
of the cost matrix Ck ∈ Rnk×nk . Then, we state our optimal transport problem
on a categorical feature in terms of the following coupling matrix γk ∈ Rnk×nk

+
in place of Equation (7):

γk = argmin
γ∈Γk

〈
Ck, γ

〉
= argmin

γ∈Γk

nk∑
l=1

nk∑
r=1

Ck
l,rγl,r , (11)

with

Γk =
{

γ ∈ Rnk×nk
+

∣∣∣ ∣∣{i | xk
i =ek

l }
∣∣

nt
=

nk∑
j=1

γl,j and
∣∣{j | xk

j =ek
r }

∣∣
ns

=
nk∑
i=1

γi,r

}
,

where xk
i (resp. xk

j ) is the k-th dimension of xi ∈ Xt (resp. xj ∈ Xs). Therefore,
we perform the optimal transport on the nk categorical values ek instead of the
nt target (and ns source) examples. Typically, nk ≪ nt, and the computation is
thus less expensive than the original problem. However, unlike numerical features
where we can compute a barycenter thanks to Equation (8), the barycenter of
categorical features is difficult to define. Consequently, we propose a stochastic
mapping strategy to tackle this problem. The probability of transforming one
value ek

l to ek
r is

P (Gk(ek
l ) = ek

r ) =
γk

l,r∑nk

j=1 γk
l,j

. (12)
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Figure 2: Evolution of log-loss improvements according to the number of adapted
features. Left: the Kaggle fraud detection dataset with a neural network
pre-trained model. Right: the real fraud detection dataset with a tree-based
pre-trained model.

The final prediction score is averaged over each possible transformation weighted
by Equation (12).

Therefore, the global computational complexity of the proposed coordinate-
wise DA is

dnum ×
(
ns log(ns) + nt log(nt)

)
+

dcate∑
k

(nk)3 ,

where dnum and dcate respectively refer to the number of numerical and cate-
gorical attributes. Although this coordinate-wise approach does not take into
account correlations between features, it is appealing for the simplicity and the
transformations of huge tabular datasets.

3.3 Supervised Feature Selection
In various experiments on different tasks, we have noticed that features contribute
differently to DAs. Figure 2 illustrates decreasing percentages of log-loss (log-loss
improvement) in a feature selection process. At initialization, no feature is
adapted. Then, we transform one more feature to the source domain with the
minimal value of log-loss over the target data at each step of the process. We
stop when all features are adapted. Note that we use target labels to select
the feature to transform at each step only for illustration, whereas they are
not accessible in practice. Interestingly, instead of adapting all features, the
adaptation of a well-selected subset of features has better performance (larger
value of log-loss improvement). Therefore, in the target to source DA scenario
where a “black-box” source model hs is available, we aim to seek a subset of
features α ∈ A to adapt, where A contains all possible subsets of features of the
input space X .

The selected features are adapted one-by-one using coordinate-wise optimal
transport mapping functions, while other features remain identical without being
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excluded from the dataset. Consequently, we can use the source model directly
on adapted target data to predict labels. The resulting predictive model of the
target domain is expressed by hα

t = hs ◦ Gα, where Gα is the transformation
function that adapts the feature subset α ∈ A. We show further in experiments
that α generally contains just a few features. Thus, the transformation Gα is
very sparse. Let G∗ be the transformation that verifies Equation (1). Then the
optimal target predictor is expressed by ht = hs ◦ G∗.

In a supervised setting, one tackles this feature selection problem by leveraging
labeled data in target domains to find the optimal subset of features that
minimizes the expected risk, that is,

α∗ = argmin
α∈A

E
(x,y)∼P (Xt,Y t)

[
|hα

t (x) − y|
]

, (13)

where P (Xt, Y t) is the joint distribution of (Xt, Y t), and the solution α∗ is the
optimal subset of features to adapt. One may note that Gα∗ could be different
from G∗, as Gα∗ is restricted to the class of coordinate-wise transformations,
whereas G∗ refers to the optimal transformation among all possible adaptation
functions. Nonetheless, Gα∗ is appealing for its interpretability, as the selected
subset of features α∗ reveals the gap between source and target domains.

However, in typical DA problems, P (Xt, Y t) is unknown; thus, directly
minimizing Equation (13) is not feasible. When few labeled target data are
available, i.e., in a weakly supervised setting, we proposed [78] to seek the subset
of features that minimizes the following term:

α̂∗ = argmin
α∈A

1
nq

∑
(x,y)∈Q

∣∣∣hα
t (x) − y

∣∣∣ , (14)

where Q = {(xi, yi)|i = 1, . . . , nq} contains nq labeled target examples, and nq

is very small. Despite the promising performance obtained by weakly-supervised
methods, one still needs labeled data in the target domain.

4 Unsupervised Feature Selection Based on Sta-
ble Pseudo-Labeling

In this paper, we address a more challenging unsupervised DA setting where
target labels, even few labeled examples, are not available (nq = 0). However,
the set of target inputs Xt is given. Intuitively, if one gets an estimator ĥ to
annotate some specific target examples x ∈ Xt approximately, one can solve the
feature selection problem by injecting ĥ into Equation (14) to replace y. Since ĥ
does not generalize to new target examples, one cannot directly use it as the
target domain predictor. Nevertheless, it can serve as an adequate “anchor” for
the unsupervised feature selection process. Such approximate annotations are
the so-called pseudo-labels.

One of the most well-known strategies is to estimate target pseudo-labels using
predictions of source models directly, assuming that high-confidence predictions
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are correct [81, 8, 54]. However, we illustrate further on a toy example (Figure 3)
that this approach could be unstable and gives incorrect pseudo-labels in some
cases. In contrast, instead of pseudo-labeling target examples with confident
predictions, we estimate pseudo-labels of examples with rank-stable predictions
under different transformation functions.

4.1 Rank Stability
In this section, we define a notion of stable inputs suited for our DA task.
Namely, we propose a pseudo-label estimator, and we prove that our method
gives pseudo-labels equal predictions of the optimal coordinate-wise adaptation
function, making it legitimate to be applied to the unsupervised feature selection.

Definition 2 (Stable inputs). A target input example xi∈Xt is called stable
over A if its rank of prediction remains unchanged after being adapted by
coordinate-wise transformations over all different feature subsets from A, that is,

∀xi′ ∈ Xt , xi′ ̸= xi , ∀α, β ∈ A ,

hα
t (xi) > hα

t (xi′) ⇐⇒ hβ
t (xi) > hβ

t (xi′) . (15)

Accordingly, we denote by XA a set of all such target examples.

Furthermore, since α∗ is the optimal subset of features to adapt, we suppose
that predictions of hα∗

t and ht on target domain data have the same distribution,
that is,

P (hα∗

t (Xt)) = P (ht(Xt)) . (16)

Under this mild assumption, the following proposition is verified.

Proposition 2 (Property of Stable Inputs). Given that A contains the optimal
subset of features α∗, we have

∀x∈XA , ∀β∈A , H−1
s ◦ Hβ(hβ

t (x)) = hα∗

t (x) , (17)

where Hs and Hβ are respectively cumulative distribution functions of hs(Xs)
and hβ

t (Xt).

Proof. As ranks of predictions can be naturally expressed by cumulative distri-
bution functions, given Equation (15), and α∗, β ∈ A, we have

∀x ∈ XA , Hα∗(hα∗

t (x)) = Hβ(hβ
t (x)) , (18)

where Hα∗ refers to the cumulative distribution function of hα∗

t (Xt). According
to Equations (2) and (16), we have Hα∗ = Ht = Hs . Analogously, Ht is the cu-
mulative distribution function of ht(Xt). Replacing Hα∗ to Hs in Equation (18),
we get

Hs(hα∗

t (x)) = Hβ(hβ
t (x)) .
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Figure 3: Left: labeled source domain data. Middle left: unlabeled target domain
data. Middle right: pseudo-labels given by confidence-based methods. Right:
pseudo-labels provided by our proposition over stable target examples. The
ground truth of target data is shown in light colors, and pseudo-labels of the
target domain are shown in deep colors. The green line in the sub-figures is the
pre-trained source domain predictor.

Figure 4: Steps of coordinate-wise transformations using stability-based pseudo-
labels.

As Hs is invertible, we have

hα∗

t (x) = H−1
s ◦ Hβ(hβ

t (x)) ,

which proves Equation (17).

Note that hα∗

t is the optimal coordinate-wise adaptation function that we
expect to get. Therefore, we define the pseudo-label estimator ĥβ(x) by the
following formula:

Definition 3 (Rank-stable based pseudo-label estimator).

∀x ∈ XA , ∀β ∈ A ,

ĥβ(x) = H−1
s ◦ Hβ(hβ

t (x)) = hα∗

t (x) . (19)

An example is illustrated in Figure 3, where we compare two different
pseudo-labeling techniques on a toy dataset. In this example, we first identify
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stable target examples over A, where A contains all feature subsets of the two-
dimensional space. Then we estimate pseudo-labels using ĥβ . Stable examples
x with ĥβ(x) > 0.5 are colored as blue and the others as orange. Note that
according to Equation (19), the choice of β does not affect the pseudo-labels for
all x ∈ XA. The pseudo-labeled examples are further used to adapt target data
in order to fit the pre-trained source model (Figure 4). We provide details of
this process in Section 5. In contrast, confidence-based pseudo-labeling methods
(Figure 3 middle right) consider predictions of target examples far from the
decision boundary as correct; thus, all examples are pseudo-labeled as blue and
provide no information to help DAs. One may note that pseudo-labels given by
our method can be close to the decision boundary of the two classes. Indeed, our
method is agnostic to the prediction value but relies only on the rank-stability
over transformations Gα , ∀α ∈ A.

Interestingly, we note that our proposition shares some high-level aspects as
the multiple knowledge representation (MKR) framework [71], as both meth-
ods rely on multiple representations of data to get a robust model. However,
MKR aims to leverage representations of different natures, such as hand-crafted
representations, deep representations, etc., whereas we adopt the same family
of transformations to search for rank consistency of predictions. Moreover, as
we propose a fundamentally different DA method compared to deep adapta-
tion methods, one future perspective can study the way of applying the MKR
framework to combine these two DA methods.

4.2 Relaxation of Rank Stability
The method described in the last subsection is ineffective when the number of
examples in XA is scarce, as it needs enough stable elements to reach a diversity
that faithfully expresses the global distribution of Xt. Therefore, we introduce
relaxation of Definition 2 to compensate for this scarcity. The relaxation tunes
the size of XA to reach the right trade-off between the similarity to Xt and the
constraint of Equation (15).

Definition 4 (δ-stable inputs). A target input example x∈Xt is called δ-stable
over A if

B(x) = max
µ,ν∈A

(
|ĥµ(x) − ĥν(x)|

)
≤ δ . (20)

Accordingly, we denote by XA
δ an input set that contains all such target examples.

By setting δ = 0, one can retrieve Definition 2.

Although one can still use ĥβ to estimate pseudo-labels for x ∈ XA
δ , it is

uncertain that Proposition 2 is verified. Intuitively, a larger δ results in a richer
XA

δ but with a higher risk of violating Proposition 2. In the remainder of this
section, we formally analyze the effects of this relaxation over the feature selection
process and propose the corresponding unsupervised objective function.

In their seminal DA analysis, [2] proposed to upper bound the expected
target domain risk by a sum of three terms: (i) the source domain risk, (ii) the
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H-divergence defined as

d(P (Xt), P (Xs)) = 2 sup
h∈H

∣∣∣ E
x∼P (Xt)

[h(x) ̸= 1] − E
x∼P (Xs)

[h(x) ̸= 1]
∣∣∣

to measure the discrepancy between source (P (Xs)) and target (P (Xt)) input
marginal distributions, and (iii) an intrinsic error between true labeling functions
of two domains. We denote by

E(α) = E
x∼P (Xt)

[
|hα

t (x) − hα∗

t (x)|
]

(21)

the target domain risk between a label predictor hα
t and the optimal one hα∗

t .
We notice that the drift between XA

δ and Xt is known as sample selection bias
[22]; thus, we can upper bound E(α) by considering δ-stable examples x∈XA

δ as
the “source” domain.
Theorem 1. Given a subset of features α ∈ A, for all β ∈ A, δ ∈ [0, 1], the
following inequality holds:

E(α) ≤ L(α, β, δ) + D(δ) , (22)

where

L(α, β, δ) = E
x∼P (XA

δ
)

[
|hα

t (x) − ĥβ(x)|
]

, (23)

D(δ) = E
x∼P (XA

δ
)

[
B(x)

]
+ 1

2d(P (Xt), P (XA
δ )) , (24)

with P (XA
δ ) referring to the distribution of δ-stable target inputs.

Proof. According to the Theorem 1 of [2], we have

E(α) ≤ E
x∼P (XA

δ
)

[
|hα

t (x) − hα∗

t (x)|
]

+ 1
2 d(P (Xt), P (XA

δ )) + C.

As examples in Xt and in XA
δ have the same true labeling function, the constant

term C = 0. Applying the triangle inequality to the expectation term of the
upper bound and we get

E(α) ≤ L(α, β, δ) + E
x∼P (XA

δ
)

[
|ĥβ(x) − hα∗

t (x)|
]

+ 1
2d(P (Xt), P (XA

δ )) .

Since Hα∗ = Hs according to Equation (2) and Equation (16), and relying on
Equation (17), we get

hα∗

t (x) = H−1
s ◦ Hα∗(hα∗

t (x)) = ĥα∗
(x) .

As β , α∗ are subsets of A, by replacing hα∗

t (x) with ĥα∗(x) and relying on
Equation (20), we have

|ĥβ(x) − hα∗

t (x)| = |ĥβ(x) − ĥα∗
(x)| ≤ B(x)

=⇒ E
x∼P (XA

δ
)

[
|ĥβ(x) − hα∗

t (x)|
]

≤ E
x∼P (XA

δ
)

[
B(x)

]
.

Theorem 1 is proved.
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In this bound, L(α, β, δ) refers to the feature selection risk over δ-stable target
examples. D(δ) encompasses the risk related to the stable inputs relaxation
and the discrepancy between P (Xt) and P (XA

δ ). All elements in this upper
bound can be computed without target domain labels. Therefore, we define the
unsupervised objective function as

α̃∗ = argmin
α∈A

min
β∈A

min
δ∈[0,1]

(
L(α, β, δ) + D(δ)

)
. (25)

Remark. Note that the proposed method is built upon the theoretical bound
of the binary DA problem [2]; it is not straightforward to apply to multi-class
classifications. Concretely, in a multi-class DA setting, the prediction rank
stability requires the orders of predictions in every class remains unchanged,
which is too strict. To extend our method to a wider range of applications,
we aim to leverage multi-class DA theories [80, 79] and adjust the relaxation
function (Equation (20)) to fit their defined multi-class domain discrepancy
measures (Definition 3.2 in [80] and Definition 3 in [79]) in our future research.

5 Greedy Algorithm for Feature Selection
Inspired by greedy solvers of classical feature selection methods, we propose
the following process to solve Equation (25), and we name our proposed adap-
tation method: Stability-based feature selection for Coordinate-wise Domain
Adaptation (SCDA).

5.1 Optimization Process
Set the value of δ Experimental results show that the optimal δ that minimizes
the sum of L(α, δ, β) + D(δ) is close to the minimizer of D(δ). Therefore, we
can rely first on D(δ) to estimate the optimal value of δ and then find the
couple (α, β) that minimizes L(α, β, δ). This approach reduces the complexity
by simplifying the combination problem of triplets to the combination problem of
couples. In practice, we use a grid search algorithm to discretize the value space
of δ and estimate empirically H-divergence by training a classifier to distinguish
examples between Xt and XA

δ .

Find the optimal subset of features Another issue that we face is the high
cardinality of A. As A contains all possible combinations of subsets of features,
and the number of subsets of features grows exponentially with the dimensionality
of input data, directly using all possible combinations is sometimes not feasible.
A similar problem also exists in the supervised feature selection scenario. We
use a greedy search algorithm to tackle this issue. As shown in the forthcoming
experiments, our method gives encouraging results in practice. Namely, we let
Ai refer to a subset of A, where i is an index of the greedy search step. As
shown in Algorithm 1, no feature is adapted at initialization (steps 1-5). A0
contains an empty feature subset and all singleton feature sets. We start by
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minimizing D(δ) to find and set the optimal value of δ (step 5). The variable
Count at the step 8 is a dictionary with the structure {key : value}. We use a
bootstrap technique (steps 9-12) at each iteration of the greedy search to get
the temporally optimal α̃i+1 (step 13). Then we update Ai+1 and continue
the process until α̃i+1 remains unchanged or more than one-half of bootstrap
datasets are not in accordance with the optimal feature subset.

Algorithm 1 Greedy Search Algorithm
1: Initialize i = 0.
2: Initialize α̃0 = ∅.
3: Initialize A0 = {∅} ∪ {{j}|∀j ∈ A}.
4: Initialize v0 = 1.
5: Initialize δ = argminδ D(δ).
6: repeat
7: Get XAi

δ using Definition 4 on Ai and fixed δ.
8: Initialize Count[α] = 0 for all α ∈ Ai.
9: for XB in bootstraps of XAi

δ do
10: (α, β) = minimizer of L(α, β, δ) on PXB and fixed δ.
11: Count[α] = Count[α]+1.
12: end for
13: α̃i+1 = argmaxα Count[α].
14: Ai+1 = {α̃i+1} ∪ {α̃i+1 ∪ {j}|∀j ∈ A/α̃i+1}.
15: vi+1 = Count[α̃i+1]/

∑
α

Count[α].
16: until α̃i+1 unchanged or vi+1 < 0.5; i = i + 1.
17: return: α̃i

Complexity of the greedy algorithm The computational complexity of the
greedy feature selection for a target dataset with ns examples and d dimensions
is O(nsd2). Although the feature selection process seems not scalable over high-
dimensional data, we show further in experiments that only very few features are
selected for DA. Therefore, the number of operations is far less than O(nsd2) in
practice. Moreover, the minimization problem (step 10 in Algorithm 1) consists
of finding the optimal couple (α, β) from Ai × Ai. One can accelerate this
optimization problem by partitioning Ai × Ai into several smaller search spaces
and parallelizing the searching process.

6 Experiments
In this section, we evaluate the performances of our adaptation method SCDA
on 3 different datasets and 2 types of models: Gradient Boosting Decision Tree
(GBDT) and neural networks (NN). We use respectively LightGBM [27] and
PyTorch [49] packages in Python to implement these models. The source code
of experiments is available on Github: www.github.com/marrvolo/SCDA.
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6.1 Setup Overview
Kaggle Fraud Detection Dataset1 The dataset contains payment transac-
tions issued from mobile devices and desktop devices, and one aims to predict
if an online transaction is fraudulent or not. The raw data dimension is over
400, while most features contain missing values and some are not discriminative.
We discard features with more than 1% of missing values and all transactions
containing missing values. To discard label-irrelevant features, we first train a
predictive model in a supervised setting and predict on test data where one fea-
ture’s values are randomly shuffled. The feature is considered label-irrelevant if
the prediction performance remains nearly the same compared to the not-shuffled
one. After preprocessing, the dataset used in experiments has around 400,000
examples with 43 numerical features and 8 categorical ones. We consider the
mobile device as the source domain and the desktop device as the target domain
in our DA scenario. The proportions of fraud in each domain are respectively
10% and 7%. We correct the label shift relying on Proposition 1. We perform a
4-fold validation by dividing mobile and desktop transactions into 4 parts and
denoting each part respectively by M-1 to M-4 (mobile device) and D-1 to D-4
(desktop device). Following this setting, the target to source DA transforms data
from D-i to M-i.

Real Fraud Detection Dataset2 This dataset consists of real anonymous
clients’ transactions from July 2018 to September 2018 of two geographical
domains: Belgium and Germany. Both datasets have 23 numerical attributes
and 7 categorical ones. All features are generated by experts in payment and are
thus discriminative. The number of examples in the Belgian dataset is over 30
million and around 15 million in the German dataset. The proportions of fraud
are respectively 0.3% and 0.5% in the two countries. We correct the label shift
relying on Proposition 1. Note that classes of labels are highly unbalanced in
Kaggle and real fraud detection datasets, thus completing DA tasks. Moreover,
in the real fraud detection task, the data distribution naturally “drifts” as time
goes by. For example, the Belgian data distribution in July is not the same as
the one in August. Consequently, we build 3 source (target) domains where
each month of Belgian (German) data is considered one domain. We denote by
Bel-1 to Bel-3 the source domains and by Ger-1 to Ger-3 the target domains.
Following this setting, the target to source DA transforms data from Ger-i to
Bel-i. Due to confidential reasons, this dataset is not shared.

Although we evaluate our methods on two fraud detection datasets, the drifts
between source and target domains of these two datasets are different. In the
Kaggle fraud detection task, the drift comes from device change. In contrast,
source and target distributions differ as geographical localization (users’ payment
habits) and time change in the real fraud detection task. Hence, they are entirely
two different DA tasks.

1www.kaggle.com/c/ieee-fraud-detection
2This private transaction dataset is provided by an IT company.
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Amazon Reviews Dataset The dataset contains reviews of buyers on the
Amazon website across different categories of products [3]. Each review is a small
paragraph of texts, transformed into bags-of-words representation and labeled
as positive or negative. Note that the sentiment classification model trained
using supervised learning to predict buyers’ points of view for one category
does not directly generalize to another. Following the setting of Chen et al. [9],
we consider 4 domains: Books (B), DVDs (D), Electronics (E), and Kitchen
appliances (K). Each domain has 2,000 training examples and around 4,000
test examples with perfectly balanced labels. We keep the most frequent 400
words dimensions and generate features from bags-of-words representations using
mSDA unsupervised auto-encoder [9] with 5 layers. Instead of stacking all
hidden dimensions as Chen et al. [9] and Ganin et al. [18], we take only the
representation of the last layer. Different from the aforementioned two fraud
detection datasets, the features of the Amazon reviews dataset may not have
explicit meaning that can be easily interpreted.

Other General Setup Details We pre-train source domain predictive models
using supervised learning with 10 different random states and keep the one
that achieves the best performance on source domain test datasets. One NN
model and one GBDT model are built for each source domain of different
tasks following this process. An embedding layer is applied for NN models to
transform categorical features into numerical representations, followed by three
fully connected hidden layers. For GBDT models, we use raw categorical data
without transformation. We compare our proposed method (SCDA) with deep
adaptation methods: DAN [40], DANN [18], MCD [55], and the state-of-the-
art DA method on image datasets HDA+ToAlign [12, 70], as well as classical
adaptation methods: CORAL [61], OTLin with a linear kernel [50], and CDA [78]
that uses coordinate-wise transformations to adapt all features without a feature
selection process.
Remark. We have also evaluated the method proposed by [67]. However, its
performances are significantly worse than all other deep adaptation methods
reported in the experiments. Therefore, we did not include this method in the
experiments. Our intuition is that the method optimizes several modules of
neural networks individually, which is hard to converge on our highly imbalanced
datasets.

As described in Section 3.2, SCDA selects features based on coordinate-wise
transformations. Therefore, we use the POT [16] package to compute such
optimal transport mappings. We chose to compare with CORAL and OTLin
methods as they perform DAs without modifying the input space of data. As a
result, we can extend such methods to address target to source DAs and leverage
pre-trained GBDT models and NN models to predict target labels. However,
they do not adapt categorical features. In contrast, deep adaptation methods can
transform categorical attributes, whereas they do not satisfy the target to source
DA setting. Deep adaptation methods transform source and target domain data
into a latent space and require training a predictive model using source labels
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during adaptation processes.
Our SCDA approach is feature-type free and hyper-parameter free, such

that no tuning process is required. Deep adaptation methods require finding
the optimal weight of the adversarial (regularization) term and the learning
rate. To select the optimal hyper-parameter for deep adaptation methods, we
use a grid search process during the training and take the hyper-parameter
that minimizes the classification error on test datasets of source domains. We
seek hyper-parameter in the set of values {0.01, 0.05, 0.1} for DANN and DAN
methods of the Amazon reviews datasets. For the Kaggle fraud detection dataset,
the set of values that we used to search the hyper-parameter is {0.005, 0.01, 0.1}
for DAN models and {0.05, 0.1, 0.5} for DANN models. As for MCD and
HDA+ToAlign models, the Amazon review tasks seek the learning rate among
{0.0001, 0.0005, 0.001, 0.005}, and the Kaggle fraud detection tasks seek the
learning rate among {0.0005, 0.0007, 0.001}.

6.2 Adaptation Performance
We consider the performance of using directly pre-trained source models on target
test datasets as baselines. Since we expect predictive models to be well-calibrated,
we use the decreasing percentage of log-loss compared to the baseline as our
evaluation metric. A positive value of metric means the adaptation method
improves the performance of predicting target domain labels, whereas a negative
value refers to the negative transfer. Besides, we also report performances in
terms of area under the precision-recall curve (PR_AUC) for fraud detection
tasks and in terms of accuracy for the Amazon review tasks. All experiments
are repeated 10 times with different random states, and standard deviations are
reported to illustrate the stability of the methods.

Kaggle Fraud Detection Dataset Table 2a and Table 2c present perfor-
mances of classical adaptation methods and our propositions using GBDT models.
SUPERVISED stands for the results of supervised greedy feature selection. We
estimate transformation functions of CORAL and CDA using all training input
examples of source and target domains. In contrast, SCDA is trained with only
20% of input examples to accelerate the process of greedy search. OTLin does
not address the problem of huge datasets; thus, we draw 2,000 input examples
from each domain to compute the target to source mapping, and we present
this result as OTLin(2K). Following the same setting as OTLin(2K), we refer
to the performance of SCDA on 2,000 examples as SCDA(2K). As our propo-
sition estimates the transformations one dimension by one dimension, it can
be trained using only a few input examples. Moreover, as CORAL and OTLin
do not adapt categorical features, only numerical features are transformed by
these two methods, while other methods adapt all features. On average and for
each adaptation task, our propositions SCDA and SCDA(2K) achieve the best
performance among all adaptation methods. Interestingly, SCDA(2K) achieves
better performances than adaptation methods trained using more input examples.
One may notice that CORAL and OTLin have a negative transfer using GBDT
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(a) The log-loss improvement (%) of GBDT models.

Method D-1 to M-1 D-2 to M-2 D-3 to M-3 D-4 to M-4 Avg

SUPERVISED 13.41±0.12 15.30±0.36 10.76±0.24 11.46±0.29 12.73
CORAL -13.76±0.47 -3.25±0.45 -14.06±0.31 -33.30±0.83 -16.09
OTLin(2K) -11.66±3.60 -0.81±1.82 -14.19±2.29 -17.41±2.93 -11.02
CDA 9.37±0.20 12.36±0.24 6.71±0.19 7.61±0.20 9.01
SCDA 12.69±0.16 14.35±0.08 10.00±0.24 10.19±0.26 11.81
SCDA(2K) 12.82±0.26 14.72±0.14 10.67±0.23 10.93±0.25 12.29

(b) The log-loss improvement (%) of NN models.

Method D-1 to M-1 D-2 to M-2 D-3 to M-3 D-4 to M-4 Avg

SUPERVISED 13.60±0.12 12.61±0.22 21.38±0.18 17.65±0.56 16.31
DANN 2.65±7.41 0.09±3.83 7.15±3.20 4.40±2.89 3.57
DAN 7.36±5.08 -1.27±5.36 6.99±4.90 4.18±5.39 4.31
MCD 9.21±2.73 4.71±3.64 9.29±2.84 9.84±1.80 8.26
HDA+ToAlign 4.35±7.25 -0.82±6.67 3.17±6.97 2.42±6.51 2.28
CORAL 3.69±0.18 -5.18±0.27 -0.99±0.19 3.00±0.20 0.13
OTLin(2K) 6.33±2.18 -1.67±2.25 1.65±3.11 8.53±1.37 3.71
CDA 8.37±0.29 5.14±0.20 13.55±0.22 12.36±0.32 9.86
SCDA 11.84±0.25 8.85±0.87 19.56±0.46 14.60±0.63 13.71
SCDA(2K) 11.40±1.33 6.88±0.85 18.95±0.41 15.18±0.53 13.10

(c) The PR_AUC improvement (%) of GBDT models.

Method D-1 to M-1 D-2 to M-2 D-3 to M-3 D-4 to M-4 Avg

SUPERVISED 2.53±0.25 4.95±0.60 3.34±0.35 2.92±0.22 3.44
CORAL -8.98±0.37 -9.91±0.38 -13.13±0.25 -17.96±0.37 -12.50
OTLin -14.62±1.81 -10.37±1.67 -17.23±2.71 -13.38±2.84 -13.90
CDA -0.43±0.24 2.37±0.26 -1.45±0.25 -0.91±0.28 -0.10
SCDA 2.15±0.08 4.25±0.13 3.02±0.15 2.55±0.17 2.99
SCDA(2K) 2.01±0.32 4.38±0.23 3.34±0.30 3.04±0.21 3.19

(d) The PR_AUC improvement (%) of NN models.

Method D-1 to M-1 D-2 to M-2 D-3 to M-3 D-4 to M-4 Avg

SUPERVISED 4.14±0.34 3.16±0.24 4.73±0.14 4.79±0.34 4.21
DANN -3.40±5.88 -4.67±3.53 -6.02±4.40 -4.08±3.68 -4.54
DAN -1.52±5.66 -5.22±4.49 -5.10±3.71 -4.33±5.77 -4.04
MCD 1.76±3.09 -0.99±2.26 -2.84±2.94 -1.03±2.10 -0.77
HDA+ToAlign 0.18±6.87 -2.34±6.31 -6.61±7.29 -4.47±7.19 -3.31
CORAL -5.72±0.17 -12.97±0.24 -17.14±0.33 -14.04±0.20 -12.47
OTLin -5.34±3.15 -12.85±3.15 -17.45±4.78 -8.22±3.21 -10.96
CDA 0.70±0.16 -1.14±0.20 -0.24±0.27 2.04±0.27 0.34
SCDA 2.08±0.35 0.38±0.62 3.67±0.30 2.50±0.35 2.16
SCDA(2K) 1.72±1.74 -0.15±0.58 3.23±0.55 3.27±0.85 2.02

Table 2: Adaptation performances of Kaggle fraud detection tasks.
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(a) The maximum log-loss improvement (%) of NN models.

Method D-1 to M-1 D-2 to M-2 D-3 to M-3 D-4 to M-4 Avg

DANN 7.97 7.21 12.69 8.81 9.17
DAN 14.25 6.86 11.83 9.59 10.64
MCD 12.74 10.51 13.41 12.76 12.35
HDA+ToAlign 12.97 7.47 13.68 10.78 11.22

SCDA 12.30 10.44 20.09 15.54 14.59

(b) The maximum PR_AUC improvement (%) of NN models.

Method D-1 to M-1 D-2 to M-2 D-3 to M-3 D-4 to M-4 Avg

DANN 3.18 0.04 0.17 0.44 0.96
DAN 5.23 1.26 -0.13 1.93 2.07
MCD 6.53 3.58 1.42 2.52 3.51
HDA+ToAlign 6.32 3.13 2.02 3.09 3.64

SCDA 2.82 1.67 4.06 3.04 2.90

Table 3: The maximum improvement of adaptation methods with different
random states on the Kaggle fraud detection tasks.

Method D-1 to M-1 D-2 to M-2 D-3 to M-3 D-4 to M-4 Avg

SCDA GBDT 14.9±4.8 15.3±3.0 18.9±5.4 16.9±2.9 16.5
SCDA(2K) GBDT 8.0±3.2 8.1±2.1 6.3±1.1 7.1±1.6 7.3
SCDA NN 12.2±3.1 9.9±3.1 12.6±2.6 11.3±4.1 11.5
SCDA(2K) NN 9.9±1.8 3.4±2.1 4.5±1.5 4.9±1.5 5.6

Table 4: Number of adapted features of GBDT and NN models.

models. We explain this observation by the fact that they adapt only numerical
features, which may be harmful to GBDT models.

Regarding NN models, similar conclusions can be drawn from Table 2b and
Table 2d. Deep adaptation methods use all input examples and map categorical
features to numerical spaces by an embedding layer so that categorical values
can be transformed like numerical ones. On average, DANN, DAN, MCD, and
HDA+ToAlign methods improve the performance compared to no-adaptation by
respectively 3%, 4%, 8% and 2% in terms of log-loss improvements. In contrast,
they perform negative transfers in terms of PR_AUC and have high standard
deviations for every adaptation task. Alternatively, our proposition outperforms
all adaptation methods and is robust in performance. Experimental results
support our intuition that deep adaptation methods are complicated to train in
an unsupervised setting. Moreover, note that classical adaptation methods like
CORAL and OTLin perform differently in GBDT and NN models in terms of
log-loss improvements, whereas our propositions are totally model-independent.
As we work with unbalanced datasets, performance improvements in terms of
PR_AUC are generally less significant than log-loss.

The adaptation performances in Table 2b and Table 2d appear to show
that deep adaptation methods do not improve the Kaggle fraud detection tasks
in most cases. However, if we focus only on the best occurrence of different
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random states (Table 3), all deep adaptation methods significantly increase the
prediction performances. Indeed, the studied deep adaptation methods require a
tedious hyper-parameter searching process. Even the value of the random state
has a non-negligible impact on their performances. Nevertheless, finding the
optimal hyper-parameters (random state) in an unsupervised DA setting is not
straightforward. Such instability to hyper-parameters hinders the generalization
of deep adaptation methods to our DA tasks.

Table 4 reports respectively the number of adapted features selected by our
methods with GBDT and NN pre-trained models. Note that in the setting of
2,000 input examples, we adapt fewer features in general. Both the sparsity of
selected features and the orders of their selections can help business experts
explain customers’ different payment habits in two domains. Note that methods
like CDA improve prediction performances as well; however, no insights on drifts
between domains are provided.

Real Fraud Detection Dataset In this task, we follow a similar setting as
Kaggle fraud detection experiments, where SCDA is trained this time using 1%
of input data to accelerate the feature selection process. Table 5a and Table 5c
reveal performances with GBDT pre-trained model in terms of log-loss and
PR_AUC improvements, and Table 5b and Table 5d reveal performances with
NN pre-trained models.

On average, the SCDA method outperforms other adaptation methods in
both metrics when using GBDT models to predict target labels. Although trained
with very few input examples, SCDA(2K) is the second-best on average in terms
of log-loss improvements. Regarding NN models, SCDA outperforms other
methods in terms of PR_AUC. It achieves the best performance in terms of log-
loss improvements when adapting from Ger-1 to Bel-1 and has comparable results
to CDA (adapting all features) when transforming Ger-3 to Bel-3. However, for
the adaptation task Ger-2 to Bel-2, different conclusions can be drawn from two
metrics. In terms of PR_AUC, SCDA outperforms all other methods on this
task, whereas it decreases the performance compared to CDA in terms of log-loss.
Our proposition minimizes the absolute difference between estimated predictions
and the optimal prediction values by leveraging on the work of Ben-David et al.
[2], which is directly related to log-loss. However, the metric PR_AUC only takes
into account orders between predictions. Consequently, relative performances
in terms of log-loss and PR_AUC improvements may have different results. In
both GBDT models and NN models, OTLin does not improve performances
compared to no-adaptation, which is probably because only a few input examples
are used to estimate transformation functions.

Deep adaptation methods can achieve promising results in some tasks, such
as the adaptation task Ger-3 to Bel-3 of DANN and the adaptation task Ger-1
to Bel-1 of MCD. However, the optimal hyper-parameter is complicated to find
without label information. One may note that DANN suffers in the adaptation
task Ger-2 to Bel-2 and fails to converge. Alternatively, our adaptation method
is parameter-free and requires no retraining of predictive models; thus, we do
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(a) The log-loss improvement (%) of GBDT models.

Method Ger-1 to Bel-1 Ger-2 to Bel-2 Ger-3 to Bel-3 Avg

SUPERVISED 6.81±0.26 14.52±0.12 10.87±0.23 10.73
CORAL 0.73±0.01 4.13±0.01 -0.91±0.01 1.32
OTLin(2K) -15.09±3.24 -13.07±2.35 -8.76±2.21 -12.31
CDA 3.08±0.05 9.52±0.04 5.37±0.05 5.99
SCDA 4.13±0.22 12.71±0.36 5.42±0.99 7.42
SCDA(2K) 3.63±0.82 11.81±2.42 4.21±1.07 6.55

(b) The log-loss improvement (%) of NN models.

Method Ger-1 to Bel-1 Ger-2 to Bel-2 Ger-3 to Bel-3 Avg

SUPERVISED 17.41±0.21 12.10±0.24 8.18±0.86 12.56
DANN 13.90±1.67 -405.76±154.74 9.14±1.72 -127.58
DAN 13.52±1.64 -1.53±3.81 -4.45±5.38 2.52
MCD 16.65±2.49 5.80±3.98 -3.82±6.74 6.21
HDA+ToAlign 11.70±1.69 0.30±1.75 3.71±3.51 5.24
CORAL -17.77±0.02 -1.91±0.01 3.15±0.01 -5.51
OTLin(2K) -14.96±1.38 -9.12±1.43 -9.23±1.47 -11.10
CDA 14.57±0.06 9.58±0.09 5.83±0.07 9.99
SCDA 17.13±0.16 4.63±2.30 5.61±0.34 9.12
SCDA(2K) 14.06±7.28 4.28±3.48 2.64±0.94 6.99

(c) The PR_AUC improvement (%) of GBDT models.

Method Ger-1 to Bel-1 Ger-2 to Bel-2 Ger-3 to Bel-3 Avg

SUPERVISED 6.31±0.63 20.93±2.01 6.08±0.85 11.10
CORAL -8.75±0.04 -6.97±0.03 -19.37±0.05 -11.70
OTLin(2K) -50.57±10.44 -40.04±5.41 -44.33±5.39 -44.98
CDA 5.30±0.25 14.95±0.36 -2.11±0.18 6.05
SCDA 5.47±0.87 13.24±1.91 0.76±0.77 6.49
SCDA(2K) 3.77±0.77 12.44±6.37 0.65±2.74 5.62

(d) The PR_AUC improvement (%) of NN models.

Method Ger-1 to Bel-1 Ger-2 to Bel-2 Ger-3 to Bel-3 Avg

SUPERVISED 26.49±0.75 2.26±1.26 7.13±0.69 11.96
DANN -3.33±6.30 -62.05±37.60 8.92±3.32 -18.82
DAN 6.07±8.38 -3.40±6.84 1.32±4.58 1.33
MCD 19.73±8.15 -2.05±5.89 8.01±4.61 8.57
HDA+ToAlign 8.94±5.52 -5.40±7.81 3.72±5.71 2.42
CORAL -7.44±0.02 -8.50±0.04 -5.57±0.04 -7.17
OTLin(2K) -41.69±5.15 -31.15±3.36 -36.20±2.99 -36.35
CDA 19.19±0.19 1.58±0.27 1.16±0.19 7.31
SCDA 24.38±0.53 4.09±0.70 1.96±1.63 10.15
SCDA(2K) 19.44±10.39 1.00±3.19 -0.95±3.35 6.50

Table 5: Adaptation performances of real fraud detection tasks.
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Method Ger-1 to Bel-1 Ger-2 to Bel-2 Ger-3 to Bel-3 Avg

SCDA GBDT 8.7±3.1 7.7±0.7 7.7±1.0 8.0
SCDA(2K) GBDT 3.7±2.7 5.1±3.1 6.4±2.3 5.0
SCDA NN 5.7±1.8 4.5±1.4 8.0±1.3 6.0
SCDA(2K) NN 4.5±2.9 3.3±1.8 4.5±2.9 4.1

Table 6: Number of adapted features of GBDT and NN models.

not need a time-consuming manual tuning procedure. Classical adaptation
methods like CORAL and OTLin do not appear to have an adequate adaptation
performance since they transform only numerical features and do not address
the adaptation problem of extremely unbalanced classes.

Table 6 reports the number of adapted features of each task. For the pre-
trained GBDT models, SCDA selects 8 features on average, and SCDA(2K)
selects 5 features. Regarding NN models, SCDA selects 6 features, and SCDA(2K)
selects 4 features. By adapting very few features, we can achieve comparable or
better performances than methods that adapt all features.

Amazon Reviews Dataset As introduced in the setup of experiments, dif-
ferent from fraud detection datasets, features of Amazon reviews datasets are
generated using a particular neural network: auto-encoder. As a result, individ-
ual features may not have interpretable meanings. Table 7a to Table 7d provide
results of Amazon reviews datasets using GBDT and NN models in log-loss
and accuracy. Adaptation results appear to show that SCDA does not improve
performances compared to the all adaptation method (CDA). However, as shown
in Table 7e, SCDA adapts only 5.4 features on average among 400 to achieve
these results for GBDT models. Regarding NN models, SCDA transforms 10.2
features on averages.

The forward feature selection process appears to stop at a very early step
and seems to be stuck at local minima. We explain this phenomenon by the fact
that features generated by neural networks are highly correlated (see Figure 5).
The greedy algorithm that considers at each step only one feature may not
be able to identify all features that contribute to DAs in this case. However,
in a classical tabular dataset, since all features are generated manually, and
redundant features are removed, it is less common to have highly correlated
features like the ones generated by neural networks.

Nevertheless, by adapting on average 5.4 features for GBDT models and 10.2
features for NN models, our unsupervised adaptation method SCDA achieves
the second-best among all methods in Table 7c, Table 7a, and Table 7b.

Compared to the transport theory method OTLin, which adopts a multi-
dimensional Euclidean distance to transform all features at once, our proposition
shows better results with an ability to handle a high number of dimensions
through a one-by-one feature adaptation.
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(a) The log-loss improvement (%) of GBDT models.

Method D-1 to M-1 D-2 to M-2 D-3 to M-3 D-4 to M-4 Avg

Confidence-based 8.85+-0.16 9.13+-0.27 6.87+-0.04 6.62+-0.08 7.87
SCDA 12.69±0.16 14.35±0.08 10.00±0.24 10.19±0.26 11.81
SCDA(2K) 12.82±0.26 14.72±0.14 10.67±0.23 10.93±0.25 12.29

(b) The log-loss improvement (%) of NN models.

Method D-1 to M-1 D-2 to M-2 D-3 to M-3 D-4 to M-4 Avg

Confidence-based 7.52+-0.10 5.85+-0.21 10.01+-0.25 8.25+-0.05 7.91
SCDA 11.84±0.25 8.85±0.87 19.56±0.46 14.60±0.63 13.71
SCDA(2K) 11.40±1.33 6.88±0.85 18.95±0.41 15.18±0.53 13.10

(c) The PR_AUC improvement (%) of GBDT models.

Method D-1 to M-1 D-2 to M-2 D-3 to M-3 D-4 to M-4 Avg

Confidence-based 0.07+-0.04 0.08+-0.16 0.04+-0.04 0.03+-0.04 0.05
SCDA 2.15±0.08 4.25±0.13 3.02±0.15 2.55±0.17 2.99
SCDA(2K) 2.01±0.32 4.38±0.23 3.34±0.30 3.04±0.21 3.19

(d) The PR_AUC improvement (%) of NN models.

Method D-1 to M-1 D-2 to M-2 D-3 to M-3 D-4 to M-4 Avg

Confidence-based -0.07+-0.07 -0.12+-0.15 -0.02+-0.11 -0.06+-0.05 -0.06
SCDA 2.08±0.35 0.38±0.62 3.67±0.30 2.50±0.35 2.16
SCDA(2K) 1.72±1.74 -0.15±0.58 3.23±0.55 3.27±0.85 2.02

Table 8: Performance comparison of the Kaggle fraud detection tasks between
the confidence-based pseudo-labeling methods and the stability-based pseudo-
labeling methods SCDA.
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(a) The log-loss improvement (%) of GBDT models.

Method Ger-1 to Bel-1 Ger-2 to Bel-2 Ger-3 to Bel-3 Avg

Confidence-based 3.90+-0.30 8.15+-0.95 5.63+-1.34 5.90
SCDA 4.13±0.22 12.71±0.36 5.42±0.99 7.42
SCDA(2K) 3.63±0.82 11.81±2.42 4.21±1.07 6.55

(b) The log-loss improvement (%) of NN models.

Method Ger-1 to Bel-1 Ger-2 to Bel-2 Ger-3 to Bel-3 Avg

Confidence-based -12.17+-0.74 1.43+-0.10 3.94+-0.99 -2.26
SCDA 17.13±0.16 4.63±2.30 5.61±0.34 9.12
SCDA(2K) 14.06±7.28 4.28±3.48 2.64±0.94 6.99

(c) The PR_AUC improvement (%) of GBDT models.

Method Ger-1 to Bel-1 Ger-2 to Bel-2 Ger-3 to Bel-3 Avg

Confidence-based 8.66+-1.62 4.83+-6.66 -0.06+-0.43 4.48
SCDA 5.47±0.87 13.24±1.91 0.76±0.77 6.49
SCDA(2K) 3.77±0.77 12.44±6.37 0.65±2.74 5.62

(d) The PR_AUC improvement (%) of NN models.

Method Ger-1 to Bel-1 Ger-2 to Bel-2 Ger-3 to Bel-3 Avg

Confidence-based -1.29+-0.65 0.09+-0.06 0.09+-0.47 -0.37
SCDA 24.38±0.53 4.09±0.70 1.96±1.63 10.15
SCDA(2K) 19.44±10.39 1.00±3.19 -0.95±3.35 6.50

Table 9: Performance comparison of the real fraud detection tasks between
the confidence-based pseudo-labeling methods and the stability-based pseudo-
labeling methods SCDA.
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Figure 5: Absolute values of the correlation matrix of mSDA representations of
Amazon reviews dataset (Electronics).

6.3 Ablation Study
This section aims first to disentangle how each step of the proposed SCDA
method helps the adaptation (Recall that the three main steps of our method
are illustrated by Figure 1) and then compare our proposed stability-based
pseudo-labeling method to a confidence-based one.

We investigate the first question using GBDT models and the Kaggle fraud
detection task, and we fix the number of source and target domain points to be
2,000. From the previously obtained empirical results, we know that this amount
of data is sufficient to achieve good performances on Kaggle datasets. That
is, we see in Table 2 that differences between SCDA and SCDA(2k) accuracies
are marginal. Figure 6 illustrates the log-loss improvements of our proposition
under three different settings: with full three steps, without the first step, and
without the third step. Of note, one cannot solely eliminate the second step of
our proposition, as the third step selects the adapted dimensions of the second
step. We clearly see that all three steps of our proposition contribute to the
DA. Eliminating one of them results in a decrease in adaptation performances.
However, the impact of each step is different. Removing the label shift correction
step has less impact than removing the feature selection step on the studied
task.

Table 8 and Table 9 illustrate the performances of SCDA and a DA method
using confidence-based pseudo-labels. The confidence-based DA method relies
on the same coordinate-wise DA functions as SCDA, while the feature selection
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(c) D-3 to M-3

5 6 7 8 9 10 11
Percentage of Performance Improvements

No Feature Selection

No Label Shift Correction

Full Method: SCDA(2K)

(d) D-4 to M-4

Figure 6: Ablation Study. The log-loss improvements of Kaggle fraud detection
tasks with GBDT models. “Full Method: SCDA(2K)” represents our adaptation
model with full 3 steps (see Figure 1). Whereas “No Label Shift Correction”
skips the first step, and “No Feature Selection” skips the third step.

criterion is different. It considers predicted probabilities close to 0 (resp. 1)
as negative examples (resp. positive examples), and a greedy algorithm is
adopted to adapt dimensions that minimize prediction risks on such pseudo-labels.
Compared to SCDA with stability-based pseudo-labels, the confidence-based
method is shown to be less efficient in all cases of the Kaggle fraud detection tasks.
In the real fraud detection tasks, SCDA also outperforms the confidence-based
method on average with all families of models.

These two studies show that our proposed unsupervised feature selection
method, which is one of the core contributions of this work, is well-suited for
DA tasks.

6.4 Interpretability of Coordinate-wise Domain Adapta-
tion with Greedy Feature Selection

Interpretability is one of our coordinate-wise optimal transport method assets
compared to classical DA methods [18, 15]. For example, by investigating the
obtained joint probability matrix γk of categorical features (Equation (11)),
one can get mapping details between each modality. We show one example in
Figure 7 where the mapping matrix of a categorical feature in the Kaggle dataset
is illustrated. For this categorical feature, the source domain has more encoded
value 0 than the one of the target domain; thus, by solving Equation (11), the
encoded values 2 and 3 in the target domain have respectively 30.7% and 57.7%
probability being mapped to the encoded value 0 in the source domain. Values
of the Kaggle fraud detection dataset are masked for privacy protection. This
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Figure 7: Left: The mapping matrix of a categorical feature where different values
are encoded by integer numbers. Middle: The target domain distribution of this
categorical feature. Right: The source domain distribution of this categorical
feature.

example is obtained by using the general occurrence frequency distance [25],
while a business-specific distance between categorical values can also be applied
to fit different real-life industrial cases.

Moreover, the greedy feature selection process enhances this interpretability
through the selected subset of features α̃i and their selected orders. Specifically,
the feature subset α̃i reveals the source of drifts between source and target
domains, and the order provides the importance of each feature in DA tasks
intuitively. This information can provide business experts with insights to better
interpret different domains. An example is illustrated in Figure 8, where the
evolution of log-loss at each step of greedy feature selection is shown over the
Kaggle payment dataset. The contribution of each feature can be measured by
the differences in test risk. In this example, the contribution of the first adapted
feature is significantly larger than the others. Consequently, one can investigate
this feature to modelize customers’ payment habits from different domains.

7 Conclusion
This paper proposed an unsupervised DA pipeline leveraging a feature selection
process with a stability-based pseudo-label estimator to address the target
to source DA problem for tabular data. The proposed method outperforms
all compared deep adaptation methods and classical adaptation methods on
average and is more stable facing various random states. Moreover, different
from previous works that rely on tedious parameter fine-tuning or address only
numerical features, our proposition (SCDA) is model-agnostic, retraining-free,
and feature-type independent. In addition, the sparsity and orders of selected
features by the unsupervised process can reveal the meaningful source of gaps
between source and target domains. Although the proposed coordinate-wise
adaptation function can be directly applied to multi-class classification problems,
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Figure 8: The evolution of log-loss risk at different steps of the greedy algorithm
on Kaggle datasets in a supervised scenario. We repeat the feature selection
process 10 times and report variations at each step by a box plot.

as discussed at the end of Section 4.2, the generalization of stability-based
pseudo-labeling to multi-class classifications is not straightforward. To this end,
we aim to leverage multi-class DA theories to further improve our proposition.
Furthermore, we also aim to study the way of applying our proposition to a more
challenging and generic universal DA problem. Note that our proposed pseudo-
labeling technique can be easily generalized to other families of transformations;
we aim to investigate its flexibility more formally over other adaptation functions
besides optimal transports.
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A Proof of Proposition 1
Proof. By the Bayes’ theorem, we have

P (Y p = y|Xp = x)

= P (Xp = x|Y p = y)P (Y p = y)
P (Xp = x)

= P (Xs = x|Y s = y)P (Y t = y)
P (Xp = x)

= P (Y s = y|Xs = x)P (Y t = y)P (Xs = x)
P (Y s = y)P (Xp = x)

= P (Y s = y|Xs = x)q(x)w(y) , (26)

where

q(x) = P (Xs = x)
P (Xp = x) .

As we have ∑
y

P (Y p = y|Xp = x) = 1

=⇒
∑

y

P (Y s = y|Xs = x)q(x)w(y) = 1 ,

solving the equation in q(x) we get

q(x) =
[∑

y

P (Y s = y|Xs = x)w(y)
]−1

.

We inject this solution into Equation (26) and we get

P (Y p = y|Xp = x) = P (Y s = y|Xs = x)w(y)∑
y′ P (Y s = y′|Xs = x)w(y′) .

In a binary classification problem, y takes values in {0, 1}. Replacing P (Y p =
y|Xp = x) and P (Y s = y|Xs = x) respectively by hp and hs proves Equation (5).
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