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TITLE: Mining the sequential patterns of water quality preceding the 1 

biological status of waterbodies 2 

 3 

Abstract  4 

 5 

We have implemented a specific data mining process to explore the relationship 6 

between biological indices and physico-chemical pressures in rivers. Data were 7 

collected in the framework of the French National monitoring network set up to 8 

assess the ecological status of rivers under the European Water Framework Directive 9 

(WFD). Chemical parameters and biological indices were collected regularly from 10 

1.781 locations in metropolitan France from 2007 to 2013. The sequential pattern 11 

mining process generates closed partially ordered patterns representing a 12 

succession of physico-chemical events that precede a given biological index in a 13 

given status, validated using a subset of data.  This paper focuses on the patterns 14 

and their occurrence. We showed that biological statuses depend on these temporal 15 

successions of alterations and not only on the last alterations. The physico-chemical 16 

statuses of water bodies usually appeared to be higher than their biological statuses, 17 

suggesting synergism between toxicants and/or an additive impact of other stressors 18 

related to hydromorphology or hydrology. Patterns found in the highest biological 19 

status for the biological indices based on macroinvertebrates, diatoms, macrophytes 20 

or fish, were characterised by the constancy of a high physico-chemical status over 21 

time. By contrast, before indices based on macroinvertebrates and macrophytes, two 22 

types of patterns were observed for bad biological status: (1) a chronic multi-pressure 23 

pattern, in which pressure categories such as nitrates, pesticides and other organic 24 

hydrocarbons, in moderate, poor or bad status, repeated themselves several times 25 

over time, or (2) a single occurrence of a degraded pressure category, such as one 26 
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moderate nitrogen, excluding nitrate, or one poor oxidizable organic matter, among 27 

other pressure categories in good status. Extracting such patterns is a promising 28 

solution both to disentangle the effects of the different stressors on water quality, and 29 

to identify the key temporal sequences among them in a context of multi-stress 30 

conditions, which is a challenge currently facing the WFD.  31 

Keywords 32 

 33 

Rivers, water quality, biological status, data mining, temporal patterns, physico- 34 

chemical status. 35 

 36 

 37 

 38 

Introduction 39 

 40 

In rivers and streams, several human activities produce a combination of pressures. 41 

These pressures alter the abiotic components of the ecosystem, affect the biological 42 

communities and hence their ecological status. The European Water Framework 43 

Directive (WFD) (European Council, 2000)requires the achievement of a good 44 

ecological status for the conservation or restoration of aquatic ecosystems, in the 45 

short (2021) and medium term (2027). Currently there is the urge to have access to 46 

biological tools that not only able to assess this status but also to disentangle and 47 

identify the different pressures in order to propose the appropriate restoration actions 48 

to achieve good ecological status (Feld et al., 2016a; Reyjol et al., 2014).  49 

The assessment of aquatic ecosystems relies on monitoring, which generates large 50 

volumes of heterogeneous data from multiple sources (Hering et al., 2010) at 51 

different temporal scales. Data mining methods are able to analyze large datasets 52 
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and may be a good alternative to traditional statistical methods (Giraudel and Lek, 53 

2001). These methods can produce readable results, thereby facilitating interactions 54 

between data miners and experts (Džeroski et al., 1997). Two categories of data 55 

mining methods exist:  supervised and unsupervised methods. Supervised methods 56 

require a learning dataset to build a specific model adapted to a given issue, 57 

including variables and expected results. When the model is built, it has to be tested 58 

on a second dataset. After this validation stage, it can be applied to a third dataset to 59 

predict results expected in similar conditions. Unsupervised methods do not require a 60 

learning dataset and make it possible to explore and identify unexpected rules in a 61 

dataset. 62 

Several authors (Larras et al., 2017; Mondy and Usseglio-Polatera, 2013; Villeneuve 63 

et al., 2015) have already used water quality data to test the potential ability of 64 

supervised data mining methods to identify key anthropic pressures using different 65 

biological organisms. A large set of supervised learning techniques includies some 66 

artificial neural networks (D’heygere et al., 2006; Dakou et al., 2006; Everaert et al., 67 

2016; Tsai et al., 2016) and decision trees (Džeroski, 2001; Feld et al., 2016b; Larras 68 

et al., 2017; Mondy and Usseglio-Polatera, 2013; Villeneuve et al., 2015). Methods 69 

such as Markov random fields or Bayesian networks could be used to take into 70 

account spatial and temporal dependencies (Adriaenssens et al., 2004; Forio et al., 71 

2016; Fytilis and Rizzo, 2013; Landuyt et al., 2016; Van Looy et al., 2015). However, 72 

these off-the-shelf tools still need to be adapted to the nature of the available data as 73 

well as to the specific problem at hand. To check biological responses with respect to 74 

physico-chemical variables is necessary in order to discover relevant knowledge 75 

(Marzin et al., 2012; Oberdorff and Hughes, 1992) but remains still difficult to 76 

interpret. Temporal aspects are insufficiently taking into account. Most studies used 77 
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multiple physico-chemical variables measured on the same date  or just before the 78 

biological measurement while responses of biological compartment to alterations are 79 

dynamic. An acute toxic pollution can alter durably biodiversity as observed in the 80 

Rhine after the Sandoz accident (Van Urk et al., 1993). Then the restoration of the 81 

former aquatic populations can require several months (Schulz and Liess, 1999). 82 

Biodiversity could also be altered progressively and durably by non-toxic alteration, 83 

such as nutrients (Pringle, 1990). The aim of this study is to take into account the 84 

successive values of physico-chemical parameters of water and to analyze their 85 

impact on biological populations, and the ecological status of waterbodies at a given 86 

date.  87 

 88 

(Agrawal and Srikant, 1995)(Agrawal and Srikant, 1994)(Ren et al., 2009)(Sallaberry 89 

et al., 2011)(George and Binu, 2012)(Fabrègue et al., 2013) 90 

 91 

In the present study, we used a tool generating temporal patterns with the aim of 92 

exploring the relationship between biological indices in different statuses and the 93 

succession of physico-chemical events which precede them. Indices based on four 94 

biological groups: diatoms, macrophytes, macroinvertebrates and fish were taken int 95 

account. Our questions were: 1) do patterns allow us to disentangle and identify the 96 

pressure categories implicated in a degraded status? 2) are pressure categories 97 

found in patterns specific to a biological group? 3) is there a correspondence 98 

between physico-chemical and biological statutes?  99 

1. Materials and methods 100 

1.1 The dataset used 101 

 102 
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Available data were collected in 1,781 sampling sites (Fig. 1) in the framework of the 103 

French network created to assess the ecological status of waterbodies, management 104 

unit, according to the WFD.  105 

 106 

Fig. 1: Location of the 1,781 French sampling sites for the national ecological 107 

assessment of rivers 108 

 109 

Fieldwork was undertaken by regional environmental agencies on the French 110 

national river network between 2007 and 2013. Table 1 lists the volume of the data we 111 

used. The 23,071,909 physico-chemical results concerned 1,201 parameters. Among 112 

them, 2% were major parameters (parameters with concentrations in milligram per 113 

liter, e.g. pH, nitrogen) and 98% were minor parameters, including micro-pollutants 114 

(parameters with concentrations in microgram per liter, e.g. copper, atrazine). 115 

analyzes of the major elements were conducted 12 times a year and analyzes of 116 

minor elements four or six times a year. The completeness of the physico-chemical 117 

data varied consideraly over the study period, ranging from 100% to 1%. Above, we 118 
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used the physico-chemical results which were the most complete: they represented 119 

1,146,544 results and concerned 189 parameters (completeness ranged between 120 

98% and 33% for polychloro-biphenyls, PCB). The 24,593 biological results 121 

concerned four biological groups and five French standardised biological indices 122 

(identified below by their French acronym): macroinvertebrates (33% of results) with 123 

IBGN (AFNOR, 2004) and I2M2 (AFNOR, 2016a, 2010), diatoms (35%) with IBD 124 

(AFNOR, 2016b), fishes (23%) with IPR (AFNOR, 2011), macrophytes (10%) with 125 

IBMR, (AFNOR, 2003). Calculation of I2M2  is detailed in Mondy et al. (2012). IBGN, 126 

the former French macroinvertebrate index is expected be replaced by I2M2, but at 127 

present, the both are still calculated. The frequency of biological sampling was once 128 

a year for macroinvertebrates and diatoms, once every two years for fishes and 129 

macrophytes. The overall biological results were 69% complete. 130 

 131 

Table 1: Volume of data used 132 

Type of data Number 
Sampling site 1,781 
Water sampling for physical chemical 
analyzes 

122,765 

Biological sampling 26,072 
Physical chemical parameters  1,201 
Physical chemical results  23,071,909 

Biological groups  5 
Biological index results 24,593 

 133 

We created a database specifically for these data. 134 

 135 

1.2 Data preprocessing  136 

 137 
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We discretized chemical and biological data using the five levels represented by 138 

colors, which symbolize the different statuses of the WFD; i.e. blue: high, green: 139 

good, yellow: moderate, orange: poor, and red: bad.  140 

For the physico-chemical data, we used two sets of thresholds: the first was created 141 

in France before the application of the WFD, hereafter referred to as SEQ (MEDD 142 

and AE, 2003) and a second one upon application of the WFD, hereafter called  the 143 

WFD guide (MEEM, 2012).  We performed physico-chemical discretization following 144 

a three-step process for a given date: (1) by grouping parameters in the pressure 145 

categories listed in Table 2 for SEQ and in Table 3 for the WFD guide; (2) by 146 

discretizing of each parameter in a pressure category according to the corresponding 147 

thresholds; (3) by attributing the final level of each category keeping the worst level of 148 

parameters considered, based on the one out, all out principle.  With SEQ, we used 149 

192 physico-chemical parameters and with the WFD guide, 58 parameters. The 150 

thresholds of the two sets are listed in appendix 1 (for SEQ) and appendix 2 (for the 151 

WFD guide).   152 
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Table 2: List of physico-chemical pressure categories, their acronyms based on SEQ 153 

(MEDD and AE, 2003) and the number of associated parameters  154 

N° Acronym Pressure categories N° of 
parameters 

1 MOOX Oxidizable organic matter (e.g. O2, DBO) 7 
2 AZOT Nitrogen excluding nitrate  3 
3 NITR Nitrate 1 
4 PHOS Phosphorous  2 
5 EPRV Effect of eutrophication 2 
6 PAES Suspended matter 2 

7 TEMP Temperature 1 
8 ACID Acidification parameters 2 
9 MINE Mineralisation 8 
10 MPMI Heavy metals 10 
11 PEST Pesticides 74 
12 HAP Polycyclic aromatic hydrocarbons 15 

13 PCB Polychloro-biphenyls 8 
14 MPOR Other organic hydrocarbons  57 

 155 

Table 3 : List of physico-chemical pressure categories, their acronyms based on the 156 

WFD guide (MEEM, 2012) and the number of associated  parameters 157 

N° Acronym Pressure categories N° of 
parameters 

1 TEMP Temperature 1 
2 ACID Acidification parameters 1 
3 BILO2 Oxygen balance 4 

4 NUTRI Nutrients 5 
5 POSPE Specific pollutants 9 
6 SDP Priority substances and priority hazardous 

substances 
38 

 158 

For each biological index, the thresholds from MEEM (2012) were applied. In most 159 

cases, about two-thirds of the results correspond to the status required by the WFD 160 

guide in class 1, high status, or in class 2, good status and one third of degraded 161 

quality (Class 3, moderate status; class 4: poor status; class 5: bad status) except for 162 

IPR (52% in classes 1 and 2 and 48% in classes 3, 4 and 5). 163 

 164 

 165 
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1.3  A pattern extracting tool named “PRESTOR” 166 

 167 

To explore data resulting from monitoring the quality status of rivers, sequential 168 

pattern mining, an unsupervised data mining tool able to treat large volumes of 169 

data and to account for the temporal aspect of events has been used. This 170 

method first introduced by Agrawal and Srikant (1995) is a temporal extension of 171 

association rules (Agrawal and Srikant, 1994). It was then developed for and used 172 

in engineering software (Ren et al., 2009), medicine (Sallaberry et al., 2011), or 173 

marketing (George and Binu, 2012). Sequential pattern mining allows to reveal 174 

frequent temporal regularities (called sequential patterns) in a sequence 175 

database, each pattern being associated to the set of sequences that contain it. 176 

Unfortunately, the number of extracted patterns can be high and they provide 177 

redundant information, making their interpretation difficult. In order to reduce this 178 

formation redundancy  and to limit the number of patterns and hence the volume 179 

of the result, Fabrègue et al. (2013) proposed to use closed partially ordered 180 

patterns (CPO-patterns). Actually, a CPO-pattern is a summary of a set of 181 

sequential patterns shared by a set of sequences (Casas-Garriga, 2005). CPO-182 

patterns can be used in all kinds of sequential databases and have three main 183 

advantages: (1) they provide more detailed information on order among elements; 184 

(2) they are depicted by a directed acyclic graph, which is easy to understand; (3) 185 

they summarize sequential pattern sets. 186 

 187 

 188 

 PRESTOR (temporal PRESsure categories patterns extracTOR) is a tool 189 

designed for the analysis of a big temporal database. It was implemented in C++ 190 
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allowing the best computing performances (along with intel TBB for parallel 191 

programming and BOOST and QT to handle different kinds of interfaces). PRESTOR 192 

is a command line software, most of the configuration is done in a "config.ini" file. It 193 

can fetch data directly from the database or from well-formatted files. Several 194 

configuration options are provided (described below) to select specific data subsets. 195 

The result consists in pictures and a few files providing different kinds of statistical 196 

values to help understanding the results. 197 

 198 

Frequent Closed Partially Ordered Patterns The main algorithm at the core of 199 

PRESTOR generates frequent closed partially ordered patterns (CPO-patterns) as 200 

proposed by Fabrègue et al. (2013). 201 

A sequential pattern is a succession of physico-chemical events that can be checked 202 

by the samples preceding a biological status assessment at a sampling site on one or 203 

more occasions. Formally, it is a sequence of itemsets. An item is a value to be 204 

recognised and an itemset is a set of values assessed at the same point in time 205 

(values from the same sample).  206 

For example, having at the same time a high value for the alteration PHOS (noted 207 

High PHOS) and a bad value for the alteration MPOR (noted Bad MPOR) is an 208 

itemset we denote (High PHOS, Bad MPOR). <(High TEMP),(High PHOS, Bad 209 

MPOR)> is then a sequential pattern checked at all stations where the  itemset (High 210 

TEMP) is found before the  itemset (High PHOS, Bad MPOR).  211 



11 

 

Table 4: Toy database presenting the history of 3 sampling sites 212 

Station Date Value 

1  2/6/2015 Bad PHOS 

1 31/5/2015 High IBGN 

1 29/5/2015 High PHOS 

1 29/5/2015 Bad MPOR 

1 28/05/2015 Moderate AZOT 

1 27/5/2015 Poor MINE 

1 27/5/2015 High TEMP 

2 28/6/2015 High IBGN 

2 27/6/2015 High TEMP 

2 27/6/2015 High PHOS 

2 27/6/2015 Bad MPOR 

2 26/6/2015 Moderate AZOT 

3 30/4/2015 High IBGN 

3 28/4/2015 Bad MPOR 

3 27/4/2015 High PHOS 

3 27/4/2015 High TEMP 

3 26/4/2015 Moderate AZOT 

3 18/3/2014 Good TEMP 

 213 

Let us consider thetoy database shown in Table 4, presenting the history of 3 stations. 214 

In this paper, we focus on the biological indices (e.g. IBGN) we want to characterize 215 

using the preceding samples. To this end, we build sequences of itemsets from this 216 

database following two simple rules: the sequence must end on a biological sample, 217 

called the generating context, and the duration in months between the first and the 218 

last samples is bounded by a value (here 6 months) defined by the operator. Three 219 

sequences were extracted: 220 

-S1: <(High TEMP, Poor MINE),(Moderate AZOT),(Bad MPOR, High PHOS),(High 221 

IBGN)> 222 

-S2: <(Moderate AZOT),(Bad MPOR, High PHOS, High TEMP),(High IBGN)> 223 

-S3: <(Moderate AZOT),(High TEMP, High PHOS),(Bad MPOR),(High IBGN)> 224 

The sample collected at station 1 on 2/6/2015 was not included in a sequence as it 225 

did not precede a biological sample. The sample collected at station 3 on 18/3/2014 226 

was not included in a sequence even though it did precede a biological sample 227 
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because it was too old with respect to the time-length threshold chosen in this toy 228 

example.. 229 

In the sequence database, only sequence S1 confirmed the sequential pattern 230 

<(High TEMP),(High PHOS, Bad MPOR)> (it was said that {S1} supported the 231 

pattern), even though other itemsets exist between (High TEMP) and (High PHOS, 232 

Bad MPOR). 233 

Here we consider the order of events, this is why sequences S2 and S3 did not 234 

confirm the sequential pattern. On S2 High TEMP occurred at the same time as High 235 

PHOS and Bad MPOR whereas to confirm the pattern, it would need to occur before. 236 

On S3, the problem was that High PHOS and Bad MPOR did not occur at the same 237 

time. 238 

For a set of sequences, several sequential patterns may be valid e.g. <(Moderate 239 

AZOT)(High PHOS),(High IBGN)>; <(Moderate AZOT)(Bad MPOR),(High IBGN)>; 240 

<(High TEMP),(High IBGN)>; <(High PHOS),(High IBGN)>; <(Moderate AZOT),(High 241 

IBGN)>; <(Bad MPOR),(High IBGN)>; <(High IBGN)>; <(Moderate AZOT)(High 242 

PHOS)>; <(Moderate AZOT)(Bad MPOR)>; <(High TEMP)>; <(High PHOS)>; 243 

<(Moderate AZOT)>; <(Bad MPOR)>; <> were all valid sequential patterns confirmed 244 

by sequences S1, S2 and S3. 245 

However, some patterns may be redundant as the information they convey is already 246 

contained in other patterns. For example, the information in <(High PHOS),(High 247 

IBGN)> is already conveyed by the pattern <(Moderate AZOT)(High PHOS),(High 248 

IBGN)>. Hence, there is always a smallest set of sequential patterns conveying all 249 

the information regarding a set of sequences. A sequential pattern from this set is 250 

called a closed sequential pattern. A sequential pattern is closed with respect to a set 251 

of sequences if  no other pattern conveys the same information, e.g. {<(High 252 
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TEMP),(High IBGN)>,<(Moderate AZOT)(High PHOS),(High IBGN)>,<(Moderate 253 

AZOT)(Bad MPOR),(High IBGN)>} is the set of closed sequential patterns for 254 

sequences S1, S2 and S3; which means that it contains the same information as the 255 

set of all sequential patterns presented earlier. 256 

Closed sequential pattern sets are relevant because they represent the smallest and 257 

most complete description possible of a set of sequences with sequential patterns.  258 

In order to facilitate the reading of closed sequential pattern sets, Fabrègue et al. 259 

(2013) summarized them in a single structure named closed partially ordered 260 

patterns (CPO-patterns). A CPO-pattern is a directed acyclic graph in which each 261 

path is a sequential pattern. It is built in such a way that the number of nodes is 262 

minimized. 263 

 264 

 265 

Fig. 2: CPO-pattern for sequences S1, S2 and S3 266 

 267 

The algorithm extracts the CPO-patterns (Fig. 2) only for a specific biological index in 268 

a specific status, here High IBGN, which is the generating context. Hence we did not 269 

display the generating context of the pattern but this is important information for the 270 

evaluation. The CPO-pattern obtained is interpreted as follows: for each sequence 271 

which confirms it, High IBGN is preceded by High TEMP and by Moderate AZOT 272 
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followed by High PHOS and Bad MPOR in any order. All the paths in the graph are 273 

checked by referring to all the supporting sequences. 274 

Implementing the method proposed by Fabrègue et al. (2013), PRESTOR extracts all 275 

the frequent CPO-patterns for a given sequence database. The frequency of a 276 

pattern is the ratio of the size of its support to the size of the sequence database. In 277 

some extracts, CPO-patterns extracted in several contexts may be identical. Each 278 

has a generating context, e.g. High IBGN, High IBMR. For this set of identical CPO-279 

patterns, the context of the CPO-pattern with the highest frequency is called the 280 

dominant context. The frequency of a pattern in its dominant context is denoted by 281 

fmax. 282 

Hereafter, we refer to CPO-patterns simply as patterns.  283 

 284 

Choice of parameters (region, time, reference thresholds, etc.) 285 

The operator can modify several parameters to obtain different kinds of results. A 286 

filter can be applied to limit the analysis to a subset of the database restricted to a 287 

given region or a period of time. It is also possible to choose between the two quality 288 

reference norms for discretizing the physico-chemical values (SEQ or the WFD 289 

guide). The operator has to define a frequency threshold below which the patterns 290 

are not extracted. The algorithm itself can also be parameterized to consider different 291 

time lengths (in months) for the input sequences. One can also limit the values 292 

considered to remove irrelevant values. One example of an irrelevant value is High 293 

TEMP because it appears in more than 90% of the sequences in the database. This 294 

generates a significant number of parasite nodes which provide no information. Note 295 

that only the High TEMP is filtered but Bad TEMP is kept as such because this lowest 296 
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general value may provide some information. The choices of these parameters for an 297 

extraction specify its configuration. 298 

 299 

4. Metrics for the evaluation of patterns  300 

 301 

In addition to the frequency (f), we propose three metrics of interest on patterns to 302 

describe the results: 1) their complexity (C) (Equation 1), 2) their scarcity (S) (Equation 303 

2), 3) their emergence (E) (Equation 3).  304 

 305 

The complexity (C) of a pattern P indicates its relative size compared to the biggest 306 

pattern found in a given extraction. Its value range is 0-1: it is zero when the pattern 307 

P is empty and 1 when pattern P is the biggest one. 308 

 309 

Equation 1  C = n /N 310 

where n is the number of items in pattern P; N is number of items found in the biggest 311 

pattern in the chosen extraction. 312 

  313 

 314 

Scarcity (S) conveys the level of specificity of pattern P in its generating context. Its 315 

value range is [0-1]: it is zero when pattern P is found in all 25 contexts (5 biological 316 

indices in five statuses) and 1 when pattern P is found only in one context. 317 

 318 

Equation 2  S= (1- n’)/24 319 

where n’ is number of repetitions of the pattern in other extraction contexts. 320 

 321 
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The emergence (E) of pattern P, in a given extraction, is calculated only if the generating 322 

context is dominant: then its frequency isf=fmax  as defined before; we denote by f(max-1)  323 

the next highest frequency of the pattern in the others contexts. The bigger E is, the 324 

more specific P is for its targeted biological value. Its value range is [1-∞[. 325 

 326 

Equation 3   E= fmax/f(max-1) 327 

 328 

2. Results 329 

 330 

 In our conditions (Computer INTEL COR I7-4790 3.6 Go and 16 Go RAM), extractions 331 

take from few seconds to few minutes, depending on the size of the sequence dataset 332 

and the configuration parameters. The number of patterns increases with an increase in 333 

time-length and with a decrease in the minimum frequency or in the number of 334 

sampling sites, but without constant correlations. The number of patterns obtained 335 

using the WFD thresholds guide is always higher than with SEQ thresholds in the same 336 

configuration. 337 

  338 
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2.1  Batch of patterns in a specific configuration  339 

  340 

The results were obtained with the following configuration: [area: France, period: 2007-341 

2013, table of thresholds: SEQ, time-length: 24 months, minimum frequency: 0.6]. We 342 

first eliminated 4 pressure categories for which a single status dominates over 80%: 343 

TEMP, ACID and EPRV in high status and HAP in moderate status, to avoid patterns with 344 

repetitive and no discriminating items. 345 

A first batch of patterns was generated for a minimal frequency of 0.96. As 90% of the 346 

patterns obtained contained only five pressure categories in a single status, high or good 347 

(good PAES, high MINE, good MOOX, good AZOT and good PHOS), hence masking the 348 

impact of other parameters, we also eliminated these pressure categories in these 349 

statuses from the dataset. A second batch of patterns was generated without these 350 

pressure categories, for a minimum frequency of 0.6. 351 

 352 

The distribution of the alteration categories in the different statuses foundin the 353 

patterns differed from that in the dataset. The distribution of pressure categories for 354 

major parameters, was comparable: (8-9%: from 90,681 results for NITR to 102,006 355 

results for TEMP compared to the total number of physico-chemical results: 1,146,544), 356 

while nitrogen was dominant in the patterns (30% = 953/3,124). The micro-pollutants 357 

were less abundant in the dataset (from 3% -count: 36,158- for PCB to 6% -count: 358 

66,523- for PEST). Conversely PEST was abundant in the patterns (29%). The 359 

distribution of sequences per index varied from 2,416 (8%) for IBMR to 8,404 (26%) for 360 

IBD, while 67 (8% of) patterns had I2M2 as context and 433 (i.e. 53%) had IBMR as 361 

context.  362 
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 363 

 364 

Fig. 3: Overall distribution of the pressure categories in the 809 patterns obtained for 365 

the configuration [area: France, period: 2007-2013, table of thresholds: SEQ, time-366 

length: 24 months, minimum frequency: 0.6] for each biological index and ranked 367 

according to the top down percentage of appearance in patterns (Pressure categories: 368 

NITR nitrates-; PEST – pesticides -; MPOR – other organic hydrocarbons-; PHOS – 369 

phosphorous - ; MOOX –  oxidizable organic matter -; ACID – acidification parameters –; 370 

PAES – suspended matter; MINE–  mineralistion; MPMI – heavy metals; AZOT – nitrogen 371 

excluding nitrate).  372 

 373 

Five main pressure categories were found in the 809 patterns (Fig. 3–All indices), in 374 

decreasing order: nitrate (NITR) in good and moderate statuses ((present in 30% of 375 

total patterns); pesticides (PEST) only in poor and bad statuses (present in 29% of 376 

patterns), phosphorous (PHOS) and oxidizable organic matter (MOOX), with 9.0 % in all 377 
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patterns) mainly in the moderate status (present in 9% of patterns). It should be 378 

recalled that MOOX with good status was removed before the extraction because of its 379 

dominance. We observed the same distribution of four pressure categories for IBMR, but 380 

phosphorous (PHOS) disappearing and suspended matter (PAES) coming. Two main 381 

pressure categories were associated with the IBD index: phosphorous (PHOS) and 382 

acidification parameters (ACID) (,. By studying patterns on the IBD index in detail, we 383 

observed that PHOS was mainly in high status and ACID only in good status – PHOS in 384 

good status and ACID in high status were removed before the extraction because of their 385 

dominance. The other organic hydrocarbons (MPOR was found in moderate status 386 

mainly in the IBGN index and in poor status in the IBMR and IPR indices. Heavy metals 387 

(MPMI)was found only in the IBGN index in poor status while PEST was the main 388 

pressure which impacts I2M2, the second index based on macroinvertebrates as IBGN. 389 

Nitrogen excluding nitrate (AZOT) () was found only in the I2M2 index in moderate 390 

status. The first pressure categories NITR, PEST, MPOR and MOOX representing at least 391 

45% of the total distribution were the same in the IBMR, IPR and IBGN index but not in 392 

the same order of importance. PHOS, NITR and ACID were the main pressures in IBD, 393 

PEST, NITR and PHOS in I2M2.  394 

 395 

2.2 Characteristic patterns of IBGN and IBMR indices 396 

 397 

A total of 85 characteristic patterns were obtained for IBGN (Fig. 4), (respectively 10, 6, 398 

10, 18 and 46 in biological statuses high, good, moderate, poor and bad) and 433 399 

patterns for IBMR (respectively 16, 12, 14, 88 and 303 in biological statuses high, good, 400 

moderate, poor and bad). 401 

 402 
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 403 

Fig. 4 : Repartition by status classes of the patterns extracted  for the two French 404 

biological indices IBGN and IBMR obtained with the configuration: [area: France, period: 405 

2007-2013, table of thresholds: SEQ, time-length: 24 months, minimum frequency: 0.6] 406 

 407 

The largest number of patterns was obtained in the bad status context, which had the 408 

fewest sequences: 54% of patterns in the context “bad IBGN” versus less than 1% of 409 

sequences, and 70% of patterns in the context “bad IBMR” versus 1% of sequences. This 410 

was not the case for all the indices. For instance, we obtained 27% of patterns in the 411 

context “high IBD” versus 63% of sequences. That is why we chose to study the two 412 

indices IBGN and IBMR in more detail. 413 

In patterns, the nitrate pressure (NITR) appeared in only two statuses: good and 414 

moderate, even when the two biological indices were in poor or bad statuses. The 415 

pesticide pressure (PEST) appeared only in two statuses: poor and bad, even when the 416 

two biological indices were in high, good or moderate statuses. The other organic 417 

hydrocarbon pressure (MPOR) appeared only in two statuses: moderate and poor 418 

respectively when IBGN was in poor or bad biological status and when IBMR was in bad 419 

biological status. The phosphorous pressure (PHOS) appeared most frequently in high 420 

status which corresponds to high and good statuses in the two biological indices, the 421 
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oxidizable organic matter pressure (MOOX) in moderate status when the two biological 422 

indices were in moderate, poor and more particularly in bad statuses.  423 

Patterns were selected and analyzed per context according to the following criteria: 1) 424 

highest frequency (f), 2) highest emergence (E), 3) highest complexity (C), 4) highest 425 

scarcity and 5) item diversity. Table 5 lists the first five patterns for each context except 426 

for bad IBMR, for which we included six patterns in order to have the pressure category 427 

AZOT at least once. 428 

 429 

Table 5: Selection of five first patterns generated for all the contexts of the French 430 

biological indices IBGN and IBMR according to their frequency (f), emergence (E), 431 

complexity (C) and scarcity (S) and the result (f x C x S +E); The dominant context is the 432 

context in which the pattern is the most frequent; the last row indicates the items in 433 

each pattern; configuration: [area: France, period: 2007-2013, table of thresholds: SEQ, 434 

time-length: 24 months, minimum frequency: 0.6]; in bold: first pattern with no micro-435 

pollutants. 436 

Pattern 
Generating 

Context 
Dominant 
Context f E C S f X C X S + E Items 

229 high IBGN high IBD 0.609   0.150 0.800 0.073 3 high PHOS 

228 high IBGN high IBMR 0.604   0.150 0.640 0.058 3 poor PEST 

221 high IBGN high IPR 0.660   0.050 0.600 0.020 1 high MOOX 

223 high IBGN bad IBMR 0.619   0.050 0.160 0.005 1 bad PEST 

220 high IBGN bad IBMR 0.651   0.050 0.080 0.003 1 good NITR 

307 good IBGN bad IBMR 0.637   0.100 0.360 0.023 2 good NITR 

303 good IBGN high IBD 0.636   0.050 0.560 0.018 1 high PHOS 

308 good IBGN bad IBMR 0.624   0.100 0.240 0.015 2 bad PEST 

305 good IBGN bad IBMR 0.719   0.050 0.080 0.003 1 good NITR 

304 good IBGN bad IPR 0.738   0.050 0.000 0.000 1 good ACID 
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240 

moderate 

IBGN 
bad IBMR 

0.629   0.200 0.640 0.080 4 poor PEST 

239 

moderate 

IBGN 
bad IBMR 

0.671   0.150 0.480 0.048 3 bad PEST 

236 

moderate 

IBGN 
poor IBMR 

0.633   0.100 0.560 0.035 2 moderate NITR 

237 

moderate 

IBGN 
bad IBMR 

0.605   0.100 0.360 0.023 2 good NITR 

232 

moderate 

IBGN 
bad IBGN 

0.675   0.050 0.440 0.015 1 moderate MOOX 

254 poor IBGN high IBMR 0.617   0.150 0.640 0.059 3 poor PEST 

251 poor IBGN poor IBMR 0.613   0.100 0.960 0.059 2 moderate MPOR 

253 poor IBGN bad I2M2 0.613   0.100 0.560 0.034 2 moderate NITR 

242 poor IBGN bad IBMR 0.613   0.050 0.920 0.028 1 moderate AZOT 

244 

poor IBGN 
 

high IBMR 

 

0.637   0.050 0.760 0.024 1 moderate PHOS 

300 

bad IBGN bad IBGN 

0.600 2.100 0.400 0.960 2.330 

5 moderate MPOR, 1 

moderate NITR, 1 

moderate MOOX 

266 
bad IBGN bad IBGN 

0.600 1.719 0.250 0.960 1.863 

4 poor MPMI & 1 

moderate NITR 

270 
bad IBGN bad IBGN 

0.600 1.260 0.200 0.960 1.375 

3 poor PEST & 1 

moderate MOOX 

289 
bad IBGN bad IBGN 

0.600 1.273 0.100 0.960 1.331 

1 poor MOOX & 1 

moderate NITR 

259 bad IBGN bad IBGN 0.667 1.215 0.150 0.960 1.311 3 bad PEST 

324 high IBMR high IBMR 0.637 1.058 0.200 0.880 1.170 4 poor PEST 

325 high IBMR high IBD 0.612   0.200 0.880 0.108 4 high PHOS 

323 high IBMR bad IBMR 0.602   0.150 0.760 0.069 3 good NITR 

316 high IBMR high IPR 0.619   0.100 0.880 0.054 2 high MOOX 

320 high IBMR bad IBMR 0.604   0.100 0.240 0.015 4 bad PEST 

745 good IBMR high IBMR 0.625   0.150 0.640 0.060 3 poor PEST 

746 good IBMR bad IBMR 0.621   0.150 0.480 0.045 3 bad PEST 
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738 good IBMR high IPR 0.667   0.050 0.600 0.020 1high MOOX 

739 good IBMR high IBD 0.643   0.050 0.560 0.018 1 high PHOS 

735 good IBMR bad IBMR 0.613   0.050 0.440 0.014 1 moderate MOOX 

340 

moderate 

IBMR 
bad IBMR 

0.6478   0.200 0.640 0.083 4 bad PEST 

338 

moderate 

IBMR 
poor IBMR 

0.608   0.150 0.800 0.073 3 moderate NITR 

334 

moderate 

IBMR 
bad IBMR 

0.637   0.100 0.480 0.031 3 poor PEST 

335 

moderate 

IBMR 
high IBMR 

0.659   0.100 0.360 0.024 2 good NITR 

328 

moderate 

IBMR 
bad IBMR 

0.704   0.050 0.440 0.016 1 moderate MOOX 

410 
poor IBMR poor IBMR 

0.604 1.228 0.300 0.960 1.402 

4 bad PEST, 2 

moderate NITR 

363 
poor IBMR poor IBMR 

0.6923 1.119 0.150 0.960 1.219 

2 moderate NITR, 1 

moderate MOOX 

360 poor IBMR poor IBMR 0.625   0.150 0.760 0.071 3 good NITR 

421 
poor IBMR poor IBMR 

0.604   0.100 0.960 0.058 

1 moderate NITR, 1 

moderate PAES 

419 
poor IBMR poor IBMR 

0.604   0.100 0.920 0.056 

1 moderate NITR, 1 

good ACID 

623 

bad IBMR bad IBMR 

0.619 4.647 0.500 0.960 4.944 

2 bad PEST, 4 good 

NITR, 2 moderate 

MOOX, 2 moderate 

PAES 

689 

bad IBMR bad IBMR 

0.619 3.714 0.950 0.960 4.279 

9 bad PEST, 4 good 

NITR, 3 moderate 

MOOX, 3 poor MPOR 

564 

bad IBMR bad IBMR 

0.619 3.714 0.350 0.960 3.922 

3 good NITR, 1 

moderate MOOX, 3 

moderate PAES 

674 

bad IBMR bad IBMR 

0.619 3.200 0.600 0.960 3.557 

 3 bad PEST, 4 good 

NITR, 2 moderate 

NITR, 3 poor MPOR 

494 

bad IBMR bad IBMR 

0.619 2.758 0.500 0.960 3.055 

5 good NITR, 4 

moderate MOOX, 1 

good MINE 
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442 

bad 

IBMR 

bad 

IBMR 0.61905 2.207 0.250 0.960 2.356 

1 moderate AZOT, 1 

good MINE, 3 good 

NITR 

 437 

Among the 50 selected patterns, 14 were emerging patterns (they have a E value, the 438 

highest values were for bad IBMR) and they belong to only four contexts: IBMR in high, 439 

poor and bad statuses and IBGN in bad status. There were eight situations where the 440 

generating context is the dominant context, the four previously cited and four more 441 

contexts based on other indices than IBGN and IBMR (high IBD, high IPR, bad I2M2 and 442 

bad IPR, not shown in the table). The other generating contexts, based on IBGN and 443 

IBMR indices, were never dominant for any given pattern. Only the patterns of four 444 

generating contexts had a complexity higher than 0.25 (in this configuration, the biggest 445 

pattern had 20 items and C=0.25 corresponded to a pattern with five items): the 446 

patterns for IBMR in high, poor and bad statuses and IBGN in bad status. Patterns for 447 

only four contexts had a scarcity less than 0.76 (in this configuration, S=0.76 was 448 

obtained for a pattern found in more than six contexts):  the patterns for IBMR and for 449 

IBGN in good and moderate statuses.  450 

 In each context, we performed detailed analysis of the first pattern according to the 451 

selected classification, and the first one with macro-pollutants.  452 

The first pattern for high IBGN (pattern 229, Fig. 5) and the second for high IBMR 453 

(pattern 325, Fig. 6) showed that the pressure PHOS remained stable in high status, 454 

during respectively three and four successive measurements. Pattern 738 (Fig. 6), 455 

obtained for the generating context high IBMR, was the only one with another pressure 456 

category in high status, i.e. one item with high MOOX. The stability of pressure PEST in 457 

poor or bad statuses, measured successively three times (for example patterns 228 for 458 

high IBGN and 254 for poor IBGN in Table 5 and Fig. 5) or four times (for example pattern 459 
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340 for moderate IBMR in Fig. 6), was not discriminating with respect to a specific 460 

context. It appeared in high to bas biological context.  The pressure category “good 461 

NITR” did not appear to be discriminating; as whatever the context, it appeared: once in 462 

high and good IBGN (patterns 220 and 305, Table 5), twice in good, moderate IBGN 463 

(patterns 307, Fig. 5 and pattern 237, Table 5) and moderate IBMR (pattern 334, Table 5), 464 

three times in moderate IBGN and poor IBMR (patterns 323 and 360,Table 5). Moderate 465 

NITR appeared more specifically in poor and bad contexts of both indices (patterns 236, 466 

253, Table 5, and 338, Table 5 and Fig. 6).  Pattern 289 (Fig. 5) was specific to bad IBGN 467 

(E= 1.273 and S=0.960): meant that only one poor MOOX was measured before or after 468 

one moderate NITR. Pattern 300 (Fig. 5) was also specific to bad IBGN (E= 2.100 and 469 

S=0.960): meant that pollution with moderate MPOR measured five times remained 470 

stable, and two moderate NITR and one moderate MOOX were measured after or before 471 

one these measurements. In pattern 442 (Fig. 6), only one measurement of moderate 472 

AZOT between one good MINE and three good NITR were observed before a bad IBMR. 473 

Pressure MPMI (heavy metals) appeared only in bad IBGN contexts, e.g. in pattern 266 474 

(Fig. 5) composed of four poor MPMI and one moderate NITR. In the bad IBMR context, 475 

patterns 623 and 564 (Fig. 6) represented multi-stress conditions: moderate MOOX, and 476 

moderate PAES for the first, with added bad PEST for the second. 477 

 478 
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 479 

Fig. 5: Nine major patterns extracted from the five contexts of IBGN in the configuration: 480 

[area: France, period: 2007-2013, table of thresholds: SEQ, time-length: 24 months, 481 

minimum frequency: 0.6] 482 

(Pressure categories: PHOS – phosphorous - ; NITR nitrates-; PEST – pesticides -; MPOR 483 

– other organic hydrocarbons-; MOOX –  oxidizable organic matter -; MPMI – heavy 484 

metals).  485 

 486 

  487 
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 488 

Fig. 6: Eleven major patterns extracted from the five contexts of IBMR in the 489 

configuration: [area: France, period: 2007-2013, table of thresholds: SEQ, time-length: 490 

24 months, minimum frequency: 0.6] (Pressure categories: PHOS – phosphorous - ; PEST 491 

– pesticides -; MOOX –  oxidizable organic matter -; MPOR – other organic hydrocarbons-492 
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; NITR nitrates-; PAES – suspended matter; ACID – acidification parameters –;MINE–  493 

mineralistion; AZOT – nitrogen excluding nitrate).  494 

 495 

  496 
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3. Discussion 497 

 498 

A promising tool to reveal temporal sequences preceding a biological status 499 

Fabrègue et al. (2014) were the first to show the promising potential of patterns to 500 

describe sequential data concerning quality in river ecosystems. We continued this work 501 

using a bigger dataset (here 1,146,544 physico-chemical data and 24,593 biological 502 

data) and by multiplying the possible configurations. The PRESTOR tool we created was 503 

specifically applied to extract patterns based on different criteria (time-length, minimum 504 

frequency, etc.) directly from hydro-ecosystem databases. Whereas extraction is stable 505 

and rapid, many tests have to be conducted to tune the parameters, and, like in 506 

multivariate analysis, the dominant pressure categories had to be removed in order to 507 

analyze all the data in detail using a top-down approach. As shown by Serrano Balderas 508 

et al. (2017), selecting features for data reduction is an essential data preprocessing 509 

technique to ensure the final results are valid. 510 

 511 

To proceed from a potentially useful to an operational method using PRESTOR, we 512 

proposed a double process before and after extraction to control the number of patterns 513 

extracted and to identify the most relevant ones. Analysing of the 809 patterns we 514 

extracted is irrelevant for an expert. Some are nested in others, for example, a pattern of 515 

three successive “poor PESTs” included in another one of four successive “poor PESTs” 516 

(Fig. 6). After extraction, the three metrics (complexity (C), scarcity (S) and emergence 517 

(E)) help selecting the most relevant patterns among hundreds or even thousand ones. 518 

 519 

The process generated more patterns for the smaller sub-datasets. This bias is shared by 520 

other methods as well as by data mining and  statistical methods, which is why the pre 521 
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and post-processing are recommended particularly for environmental data mining 522 

(Gibert et al., 2008). Here, there can be many patterns in a given context for different 523 

reasons: 1) few sequences were available: in our case, IBMR represented 8% of 524 

sequences and extracted 53% of patterns, because the threshold of minimum frequency 525 

is easily reached; 2) data covered all the range of values: dataset for IBMR were more 526 

heterogeneous than those for IBD, which represented the maximum number of 527 

sequences (27%) and extracted only 18% of patterns; 3) data were numerous but 528 

homogeneous, as were data for high IBD in the dataset. This problem was amplified by 529 

unbalanced data distribution. The advantage of this dataset is that it is the complete set 530 

of French data from a survey network covering six years, but we nevertheless had to 531 

deal with the real distribution of these data: more major parameters than minor 532 

pollutants, a different number of sequences available for each index and fewer 533 

sequences for bad ecological status. 534 

Selecting the same number of the most relevant patterns for all biological indices and 535 

statuses with a given status, thanks to the three metrics, limited this bias. Before 536 

focusing on the most relevant patterns, to be sure the method is efficient, we studied the 537 

complete batch of patterns extracted for a time-length of two years. 538 

 539 

Feedback on the pressure categories analyzed and the quality of data 540 

Six types of pressure categories have been identified: the first one resulted from the 541 

analysis of the original data and the five others from the analysis of the extracted 542 

patterns. 543 

The first type concerned several pressure categories considered to remain stable in a 544 

single status throughout the French territory, i.e. temperature (TEMP), acidification 545 

parameters (ACID) and effect of eutrophication (EPRV) in high status and polycyclic 546 
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aromatic hydrocarbons (HAP) in moderate status. For temperature, in the SEQ (op. cit) 547 

or in the WFD guide (op.cit.), the quality class is defined by higher temperatures and the 548 

temperature difference between high and good class thresholds is 1.5 °C. This difference 549 

may correspond to the 1.4 °C to 1.7 °C increase observed by Durance and Ormerod 550 

(2007) in streams in Wales between 1981 and 2005 or to the forecasts of 1- 9 °C 551 

announced by Webb (1996) for 2050. But the mechanisms which control freshwater 552 

temperature behavior in the context of global climate change are complex, in particular 553 

because temperature increases have been observed in winter while summer  554 

temperatures have remained relatively stable (Webb et al., 2008). This could explain 555 

why, in the French dataset, temperatures remained stable in high status, and underlines 556 

the need to change the way we define this pressure category. In Europe and North 557 

America, acidification of freshwater decreased throughout the 1980s and 1990s thanks 558 

to the reduction of atmospheric emissions of sulphur dioxide (Stoddard et al., 1999). 559 

Therefore, pressure due to acidification is now localized rather than widespread, which 560 

is probably why it is difficult to observe this pressure in a study conducted at national 561 

scale. The quality class for the effect of eutrophication (EPRV), in the SEQ (op. cit), is 562 

generally defined for water combining basic pH and oversaturated in oxygen. In our 563 

dataset, this pressure category was mainly in high quality based on this definition, which 564 

is why it was not included in the analysis of patterns. Again, HAP are ubiquitous 565 

contaminants to a moderate degree in our study area, as also shown by Motelay-Massei 566 

et al. (2004) in the soils of the Seine River Basin.  567 

The five following type of pressure categories are selected according to the patterns 568 

extracted from the complete dataset with a time length of two years. 569 

The second type pressure categories was measured in different statuses but considered 570 

as dominant in only one status. There were macro-pollutants in high or good quality 571 
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statuses: mineralisation (MINE) in high status, suspended matter (MES), oxidisable 572 

organic matter (MOOX), nitrogen excluding nitrate (AZOT) and phosphorus matter 573 

(PHOS) in good status. They were removed from the pattern extractions, but they can be 574 

considered as regularly measured in each site.  575 

The third type includes pressure categories that were absent or rare in the patterns. 576 

Polychloro-biphenyls (PCB) did not appear in any patterns. This pressure category was 577 

the one with the lowest number of measurements in the dataset (completeness rate: 578 

33% versus at least or more than 50% for the other micro-pollutants). Teil et al. (2004) 579 

estimated that the pressure exerted by PCB in the Seine River Basin to be beyond the 580 

global national estimation of industrial inputs, but we did not observe it at the national 581 

scale.  Pressure categories ACID and MINE in other classes than the high one accounted 582 

for less than 4% of all appearances of pressures. 583 

The fourth type represents pressure categories that were dominant in patternsbut 584 

poorly discriminant, regardless of the biological status:  pesticides (PEST) was only 585 

found in poor or bad statuses in the patterns we extracted. This pressure category was 586 

the one in which the number of measurements of micro-pollutants was the highest in 587 

the dataset (completeness rate: 61%). According to the Millenium Ecosystem 588 

Assessment Programme (2005), pesticides are one of the major stressors in freshwater 589 

ecosystems. The patterns extracted revealed the spatial and temporal dominance of this 590 

pressure category in the French dataset. After nitrates, it was the second most dominant 591 

category in all the patterns extracted, but was found in all biological statuses from high 592 

to bad. There was no graduation either in status or in the number of appearances in the 593 

patterns extracted for the IBGN index. Conversely, there was a small gradation in status 594 

and in the number of appearance in patterns extracted for the IBMR index: poor PEST 595 

appeared only in patterns extracted for high to moderate IBMR, whereas patterns 596 
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extracted for poor and bad IBMR contained only bad PEST. The proportion of herbicides 597 

(45%) versus insecticides (31%) in the parameters included in PEST in SEQ (op.cit.) 598 

could partly explain the small graduation observed in patterns extracted for IBMR. Even 599 

if macroinvertebrates are known to be the most sensitive groups to pesticides in 600 

freshwater communities (Schäfer et al., 2012), we observed different responses of the 601 

two indices we tested; IBGN sensitivity was higher than that of I2M2 (Mondy et al., 602 

2012).  603 

The fifth type grouped distinguishing pressure categories for a given biological status in 604 

all biological indices: nitrates (NITR) in good and moderate status, phosphorus (PHOS) 605 

in high and moderate status, oxidizable organic matter (MOOX) in high, moderate and 606 

poor status, and other organic hydrocarbons (MPOR) in moderate and poor status. Like 607 

in recent studies dealing with the effects of multiple stressors  on freshwater 608 

biodiversity, we found nutrients among the parameters that have the most impact 609 

(Lemm and Feld, 2017; Stendera et al., 2012) along with organic matter (Comte et al., 610 

2010; Villeneuve et al., 2015). We are the first to underline the importance of other 611 

organic hydrocarbons (MPOR) in patterns especially for IBGN, IPR and IBMR contexts. 612 

The sixth type is heavy metals (MPMI) in poor status. This pressure category is specific 613 

to patterns extracted for IBGN index in bad status. It was missing in patterns associated 614 

to  I2M2 the other French index based on macroinvertebrates whereas Mondy et al. 615 

(2012) found a better correlation between this stressor and I2M2 than IBGN. 616 

 617 

A specific biological response to a specific pressure category? 618 

Except for heavy metals (MPMI), none of the pressure categories was specific to one 619 

biological index in the patterns extracted from the French dataset we used. Many 620 

authors who used large national indices and several biological indices reported that all 621 
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biological groups responded firstly  to macro-pollutants in general (Dahm et al., 2013; 622 

Marzin et al., 2012), particularly to organic matter and nutrients (Villeneuve et al., 623 

2015). Haury et al. (2006) showed that the IBMR was sensitive to trophic disruption but 624 

also to heavy organic pollution. Nutrients did not appear to be specific to patterns 625 

extracted for IBMR or IBD indices. However high and good IBMRs (generating contexts) 626 

were associated with High PHOS and MOOX or good NITR. PHOS was also the dominant 627 

pressure category for patterns extracted for IBD index (dominant context). 628 

Nevertheless,  excess nutrients are known to have indirect effects on aquatic organisms, 629 

especially on macroinvertebrates (Dolédec et al., 2006; Lemm and Feld, 2017). The 630 

pressure acidification (ACID) was well represented (18%) in the patterns extracted for 631 

the IBD index, whereas Larras et al. (2017) found a weak correlation between this 632 

pressure and diatoms, but their approach using life history traits differs substantially 633 

from our approach. Fishes are known to have lower responses to physico-chemical 634 

pressures (Dahm et al., 2013; Marzin et al., 2012; Villeneuve et al., 2015). Indeed, the 635 

patterns extracted for IPR contained the lowest number of pressures (6/10). Few 636 

authors who used large datasets tested biological responses to all micro-pollutant 637 

categories, except Larras et al. (2017) and Mondy and Usseglio-Polatera (2013) 638 

respectively for diatoms and macroinvertebrates using the same French dataset. These 639 

authors found good biological responses for pesticides but poor responses for polycyclic 640 

aromatic hydrocarbons (PAH), heavy metals (MPMI) and other organic hydrocarbons 641 

(MPOR), whereas the last pressure category was widely represented in the patterns we 642 

extracted in our study.  643 

 644 

Gap between physico-chemical statuses and biological statuses 645 
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In the differentiating pressure categories, physico-chemical statuses were often better 646 

distinguished than the biological statuses in the patterns. Oberdorff and Hughes (1992) 647 

already observed a gap between the precursor of the IPR index and SEQ results in the 648 

Seine catchment. Except for suspended matter (PAES) and pesticides (PEST) found in 649 

bad status in some patterns, the worst status found for other pressure categories was 650 

poor status. Defining class boundaries is a critical step in the design of methods of 651 

assessment (Birk et al., 2012). Using new French thresholds (MEEM, 2012) to discretize 652 

physico-chemical data, we obtained less significant results. This can be partly explained 653 

by the fact that these pressure categories include more parameters, but also by the 654 

change in the boundary between the good and moderate threshold for nitrates in the 655 

nutrient pressure category, which increased from 10 mg/L in SEQ (MEDD and AE, 2003) 656 

to 50 mg/L in the WFD guide (MEEM, 2012). This is at least the second time that this 657 

threshold has been revised upwards: 50 years ago, Nisbet and Verneaux (1970) set the 658 

boundary for excess nitrates in French freshwater at 3 mg/L. Although good-bad 659 

thresholds for micro-pollutants were discussed at the European level for the WFD guide, 660 

there was no harmonization of the thresholds for macro-pollutants, and the literature 661 

comparing them in Europe is really poor. Current French thresholds are among the 662 

highest in Europe probably because the majority of countries take the mean or the 663 

median as the annual value while France takes the 90th percentile. The French good-664 

moderate thresholds compared to the European ranges are 1) for NH4-: 0.5 mg/L in the 665 

range [0.05-1.6 mg/L] (Claussen et al., 2012), 2) for O2: 6 mg/l in the range [6-10 mg/L] - 666 

but the higher values are used by countries specifying different thresholds for different 667 

stream typologies (based on size, climate, geology, geographical location), which is not 668 

the case in France - (Claussen et al., 2012), 3) for orthophosphates: 0.5 mg/L in the 669 

range [0.05-1 mg/L] (Arle et al., 2016), 4) for nitrogen adding the French good-moderate 670 
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thresholds for Kjeldahl nitrogen, nitrites and nitrates, the boundary is 4.5 mg/L for SEQ 671 

(MEDD and AE, 2003) and 14 mg/L for WFD guide (MEEM, 2012) versus the European 672 

range [0.7-10 mg/L] (Claussen et al., 2012). 673 

 674 

The stronger reactions of living organisms evidenced by worse states than their physico-675 

chemical status, can also be explained by possible synergism between stressors and/or 676 

an additive impact of other stressors related to hydromorphology or hydrology. 677 

According to Lemm and Feld (2017), combined nutrient and hydromorphological stress 678 

can strengthen an individual’s reactions to each single stressor for different biological 679 

traits.  680 

Extreme ecological status classes are the easiest to define (Birk et al., 2012). This is 681 

surely why in the configuration we chose, or in other configurations, intermediate 682 

biological statuses i.e. good and moderate, never displayed specific patterns. Conversely, 683 

extreme statuses, high and bad, often displayed specific patterns. For the poor status, 684 

there were some specific patterns for IBMR, but not for IBGN.  685 

 686 

Characteristic physico-chemical successions for high and bad biological statuses 687 

 688 

Patterns of high biological status were characterized by consistently high physico-689 

chemical status especially for phosphorus (PHOS) measured three or four times and 690 

probably in the consistency of the pressure categories we had to remove before the 691 

extraction:  mineralisation (MINE) in high status, suspended matter (MES), oxidizable 692 

organic matter (MOOX), nitrogen excluding nitrate (AZOT).  693 

We found two types of patterns in bad biological status: (1) a chronic multi-pressure 694 

one, in which pressure categories such as nitrates, pesticides and other organic 695 
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hydrocarbons, in moderate, poor or bad status, repeated themselves several times over 696 

time, or (2) a single occurrence of a degraded pressure category, such as one moderate 697 

nitrogen excluding nitrate, or one poor oxidizable organic matter, among other pressure 698 

categories in good status (respectively pattern 289, Fig. 5 and pattern 442, Fig. 6).  699 

 700 

Studies of the change effect in pressure categories over time are scarce or limited to 701 

general trends in the case of degradation such as the hydraulic management of large 702 

rivers (e.g. Fruget et al., 2001; Trémolières, 1994) or more recently in the case of 703 

restoration (e.g. Meyer et al., 2013; Staentzel et al., 2017). However databases storing 704 

temporal monitoring data on rivers do exist. Most studies used data on each site on each 705 

sampling occasion as not accounting for time information to increase the gradient of 706 

measurements before timeless treatments, because the methods used were not able to 707 

incorporate the temporal dimension (D’heygere et al., 2006; Dahm et al., 2013; Larras et 708 

al., 2017; Marzin et al., 2012; Mondy and Usseglio-Polatera, 2013; Villeneuve et al., 709 

2018).  This is why the temporal patterns extracted by PRESTOR are innovative and 710 

offer new opportunities to explore data on rivers. Here the life span of the different 711 

biological compartment studied were not taken into account. To go further, we will 712 

search the specific time length of sequences to consider with respect to biological 713 

indices to obtain the most relevant patterns. Moreover hydrological and 714 

hydromorphological pressures will be added in the dataset to produce richer patterns 715 

that will deepen the analysis. 716 

   717 

 718 
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Conclusion 719 

Our questions were: 1) do patterns allow us to disentangle and identify the pressure 720 

categories implicated in a degraded status? 2) are pressure categories found in patterns 721 

specific to a biological group? 3) is there a correspondence between physico-chemical 722 

and biological statutes? 723 

Applying a new data mining method for river ecological assessment required iterative 724 

collaboration between computer scientists and experts in the domain to (1) adapt the 725 

method to a particular question and to the specific format of the data, (2) analyze the 726 

complete results and not only those that “matched well” to ensure the methods are 727 

efficient, (3) to propose selection criteria for the evaluation of patterns, (4) to select the 728 

most important results particularly for data mining methods which have led to 729 

exponential increase in results.  PRESTOR (temporal PRESsure categories patterns 730 

extracTOR) was implemented specifically to extract patterns from a hydro-ecosystem 731 

database. The operator chooses several criteria such as the time-length of patterns or 732 

their minimum frequency. To check the efficiency of the method, the 809 patterns 733 

extracted from data collected all over France with a time-length of 24 months, were 734 

analyzed. Three metrics, complexity, scarcity and emergence, were used to select 735 

significant patterns according to their ecological status. 736 

Water managers need simple and transparent methods. Selected patterns extracted by 737 

PRESTOR are easily readable and match managers’ needs. They could be used at large 738 

scale and as such, considered as a holistic approach, the kind of approach that is 739 

urgently needed (Demars et al., 2012; Stendera et al., 2012). In a multi-pressure 740 

environment (Reyjol et al., 2014), hydromorphological and physico-chemical pressures 741 

should be analyzed together: patterns including various time scales have to build 742 
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therefore. In this study, patterns were extracted over a large territory, here France, but 743 

the method can   be applied in the same way to a small territory, climatically and 744 

geologically homogeneous, in order to extract more specific patterns. Finally, patterns, 745 

highlighting a sequence of alteration events before an observed biological response, are 746 

a possible solution to disentangle the effects of different pressures. 747 
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Appendix 1: Set of thresholds used by SEQ (MEDD and AE, 2003) for 1226 

the physico-chemical parameters classified according to pressure 1227 

categories (here the threshold is always excluded from the better class, e.g.: 1228 

for nitrates, the threshold between the high and good classes is 2 mg/L, 1229 

therefore if [NO3
-]=2 mg/L, pressure category NITR is good) 1230 
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Appendix 2: Set of thresholds used by the WFD guide (MEEM, 2012) for 1238 

physico-chemical parameters classified according to pressure 1239 

categories (here for TEMP,  ACID,  BILO2, NUTRI: the threshold is always 1240 

excluded from the better class, e.g.: for nitrates, the threshold between the 1241 

high and good classes is 10 mg/L, therefore if [NO3
-]=10 mg/L, pressure 1242 

category is good; in contrast, for POSPE and SDP the threshold is always 1243 

included in the better class, e.g.: for arsenic, the threshold between the high 1244 

and bad classes is 4.2µg/L, therefore if [As]=4.2µg/L, pressure category is 1245 

high) 1246 
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