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moderate nitrogen, excluding nitrate, or one poor oxidizable organic matter, among other pressure categories in good status. Extracting such patterns is a promising solution both to disentangle the effects of the different stressors on water quality, and to identify the key temporal sequences among them in a context of multi-stress conditions, which is a challenge currently facing the WFD.

1 TITLE: Mining the sequential patterns of water quality preceding the biological status of waterbodies

Abstract

We have implemented a specific data mining process to explore the relationship between biological indices and physico-chemical pressures in rivers. Data were collected in the framework of the French National monitoring network set up to assess the ecological status of rivers under the European Water Framework Directive (WFD). Chemical parameters and biological indices were collected regularly from 1.781 locations in metropolitan France from 2007 to 2013. The sequential pattern mining process generates closed partially ordered patterns representing a succession of physico-chemical events that precede a given biological index in a given status, validated using a subset of data. This paper focuses on the patterns and their occurrence. We showed that biological statuses depend on these temporal successions of alterations and not only on the last alterations. The physico-chemical statuses of water bodies usually appeared to be higher than their biological statuses, suggesting synergism between toxicants and/or an additive impact of other stressors related to hydromorphology or hydrology. Patterns found in the highest biological status for the biological indices based on macroinvertebrates, diatoms, macrophytes or fish, were characterised by the constancy of a high physico-chemical status over time. By contrast, before indices based on macroinvertebrates and macrophytes, two types of patterns were observed for bad biological status: (1) a chronic multi-pressure pattern, in which pressure categories such as nitrates, pesticides and other organic hydrocarbons, in moderate, poor or bad status, repeated themselves several times over time, or (2) a single occurrence of a degraded pressure category, such as one

Introduction

In rivers and streams, several human activities produce a combination of pressures.

These pressures alter the abiotic components of the ecosystem, affect the biological communities and hence their ecological status. The European Water Framework Directive (WFD) (European Council, 2000)requires the achievement of a good ecological status for the conservation or restoration of aquatic ecosystems, in the short (2021) and medium term (2027). Currently there is the urge to have access to biological tools that not only able to assess this status but also to disentangle and identify the different pressures in order to propose the appropriate restoration actions to achieve good ecological status (Feld et al., 2016a;Reyjol et al., 2014).

The assessment of aquatic ecosystems relies on monitoring, which generates large volumes of heterogeneous data from multiple sources (Hering et al., 2010) at different temporal scales. Data mining methods are able to analyze large datasets and may be a good alternative to traditional statistical methods (Giraudel and Lek, 2001). These methods can produce readable results, thereby facilitating interactions between data miners and experts (Džeroski et al., 1997). Two categories of data mining methods exist: supervised and unsupervised methods. Supervised methods require a learning dataset to build a specific model adapted to a given issue, including variables and expected results. When the model is built, it has to be tested on a second dataset. After this validation stage, it can be applied to a third dataset to predict results expected in similar conditions. Unsupervised methods do not require a learning dataset and make it possible to explore and identify unexpected rules in a dataset.

Several authors [START_REF] Larras | Assessing anthropogenic pressures on streams: A random forest approach based on benthic diatom communities[END_REF]Mondy and Usseglio-Polatera, 2013;Villeneuve et al., 2015) have already used water quality data to test the potential ability of supervised data mining methods to identify key anthropic pressures using different biological organisms. A large set of supervised learning techniques includies some artificial neural networks (D'heygere et al., 2006;Dakou et al., 2006;Everaert et al., 2016;Tsai et al., 2016) and decision trees (Džeroski, 2001;Feld et al., 2016b;[START_REF] Larras | Assessing anthropogenic pressures on streams: A random forest approach based on benthic diatom communities[END_REF]Mondy and Usseglio-Polatera, 2013;Villeneuve et al., 2015). Methods such as Markov random fields or Bayesian networks could be used to take into account spatial and temporal dependencies [START_REF] Adriaenssens | Application of Bayesian Belief Networks for the prediction of macroinvertebrate taxa in rivers[END_REF]Forio et al., 2016;Fytilis and Rizzo, 2013;[START_REF] Landuyt | The importance of uncertainties in scenario analyzes -A study on future ecosystem service delivery in Flanders[END_REF]Van Looy et al., 2015). However, these off-the-shelf tools still need to be adapted to the nature of the available data as well as to the specific problem at hand. To check biological responses with respect to physico-chemical variables is necessary in order to discover relevant knowledge (Marzin et al., 2012;Oberdorff and Hughes, 1992) but remains still difficult to interpret. Temporal aspects are insufficiently taking into account. Most studies used multiple physico-chemical variables measured on the same date or just before the biological measurement while responses of biological compartment to alterations are dynamic. An acute toxic pollution can alter durably biodiversity as observed in the Rhine after the Sandoz accident (Van Urk et al., 1993). Then the restoration of the former aquatic populations can require several months (Schulz and Liess, 1999).

Biodiversity could also be altered progressively and durably by non-toxic alteration, such as nutrients (Pringle, 1990). The aim of this study is to take into account the successive values of physico-chemical parameters of water and to analyze their impact on biological populations, and the ecological status of waterbodies at a given date. (Agrawal and Srikant, 1995) (Agrawal and Srikant, 1994) (Ren et al., 2009) (Sallaberry et al., 2011) (George and Binu, 2012) (Fabrègue et al., 2013) In the present study, we used a tool generating temporal patterns with the aim of exploring the relationship between biological indices in different statuses and the succession of physico-chemical events which precede them. Indices based on four biological groups: diatoms, macrophytes, macroinvertebrates and fish were taken int account. Our questions were: 1) do patterns allow us to disentangle and identify the pressure categories implicated in a degraded status? 2) are pressure categories found in patterns specific to a biological group? 3) is there a correspondence between physico-chemical and biological statutes?

Materials and methods

1.1

The dataset used Available data were collected in 1,781 sampling sites (Fig. 1) in the framework of the French network created to assess the ecological status of waterbodies, management unit, according to the WFD. , 2003). Calculation of I2M2 is detailed in Mondy et al. (2012). IBGN, the former French macroinvertebrate index is expected be replaced by I2M2, but at present, the both are still calculated. The frequency of biological sampling was once a year for macroinvertebrates and diatoms, once every two years for fishes and macrophytes. The overall biological results were 69% complete. We created a database specifically for these data.

Data preprocessing

We discretized chemical and biological data using the five levels represented by colors, which symbolize the different statuses of the WFD; i.e. blue: high, green: good, yellow: moderate, orange: poor, and red: bad.

For the physico-chemical data, we used two sets of thresholds: the first was created in France before the application of the WFD, hereafter referred to as SEQ (MEDD and AE, 2003) and a second one upon application of the WFD, hereafter called the WFD guide (MEEM, 2012). We performed physico-chemical discretization following a three-step process for a given date: (1) by grouping parameters in the pressure categories listed in Table 2 for SEQ and in 

A pattern extracting tool named "PRESTOR"

To explore data resulting from monitoring the quality status of rivers, sequential pattern mining, an unsupervised data mining tool able to treat large volumes of data and to account for the temporal aspect of events has been used. This method first introduced by Agrawal and Srikant (1995) is a temporal extension of association rules (Agrawal and Srikant, 1994). It was then developed for and used in engineering software (Ren et al., 2009), medicine (Sallaberry et al., 2011), or marketing (George and Binu, 2012). Sequential pattern mining allows to reveal frequent temporal regularities (called sequential patterns) in a sequence database, each pattern being associated to the set of sequences that contain it.

Unfortunately, the number of extracted patterns can be high and they provide redundant information, making their interpretation difficult. In order to reduce this formation redundancy and to limit the number of patterns and hence the volume of the result, Fabrègue et al. (2013) proposed to use closed partially ordered patterns (CPO-patterns). Actually, a CPO-pattern is a summary of a set of sequential patterns shared by a set of sequences (Casas-Garriga, 2005). CPOpatterns can be used in all kinds of sequential databases and have three main advantages: (1) they provide more detailed information on order among elements;

(2) they are depicted by a directed acyclic graph, which is easy to understand; (3) they summarize sequential pattern sets.

PRESTOR (temporal PRESsure categories patterns extracTOR) is a tool designed for the analysis of a big temporal database. It was implemented in C++ allowing the best computing performances (along with intel TBB for parallel programming and BOOST and QT to handle different kinds of interfaces). PRESTOR is a command line software, most of the configuration is done in a "config.ini" file. It can fetch data directly from the database or from well-formatted files. Several configuration options are provided (described below) to select specific data subsets.

The result consists in pictures and a few files providing different kinds of statistical values to help understanding the results.

Frequent Closed Partially Ordered Patterns

The main algorithm at the core of PRESTOR generates frequent closed partially ordered patterns (CPO-patterns) as proposed by Fabrègue et al. (2013).

A sequential pattern is a succession of physico-chemical events that can be checked by the samples preceding a biological status assessment at a sampling site on one or more occasions. Formally, it is a sequence of itemsets. An item is a value to be recognised and an itemset is a set of values assessed at the same point in time (values from the same sample).

For example, having at the same time a high value for the alteration PHOS (noted High PHOS) and a bad value for the alteration MPOR (noted Bad MPOR) is an itemset we denote (High PHOS, Bad MPOR). <(High TEMP),(High PHOS, Bad MPOR)> is then a sequential pattern checked at all stations where the itemset (High TEMP) is found before the itemset (High PHOS, Bad MPOR). In this paper, we focus on the biological indices (e.g. IBGN) we want to characterize using the preceding samples. To this end, we build sequences of itemsets from this database following two simple rules: the sequence must end on a biological sample, called the generating context, and the duration in months between the first and the last samples is bounded by a value (here 6 months) defined by the operator. Three sequences were extracted: The sample collected at station 1 on 2/6/2015 was not included in a sequence as it did not precede a biological sample. The sample collected at station 3 on 18/3/2014

was not included in a sequence even though it did precede a biological sample because it was too old with respect to the time-length threshold chosen in this toy example..

In the sequence database, only sequence S1 confirmed the sequential pattern <(High TEMP),(High PHOS, Bad MPOR)> (it was said that {S1} supported the pattern), even though other itemsets exist between (High TEMP) and (High PHOS,

Bad MPOR).

Here we consider the order of events, this is why sequences S2 and S3 did not confirm the sequential pattern. On S2 High TEMP occurred at the same time as High PHOS and Bad MPOR whereas to confirm the pattern, it would need to occur before.

On S3, the problem was that High PHOS and Bad MPOR did not occur at the same time.

For a set of sequences, several sequential patterns may be valid e. The algorithm extracts the CPO-patterns (Fig. 2) only for a specific biological index in a specific status, here High IBGN, which is the generating context. Hence we did not display the generating context of the pattern but this is important information for the evaluation. The CPO-pattern obtained is interpreted as follows: for each sequence which confirms it, High IBGN is preceded by High TEMP and by Moderate AZOT followed by High PHOS and Bad MPOR in any order. All the paths in the graph are checked by referring to all the supporting sequences.

Implementing the method proposed by Fabrègue et al. (2013), PRESTOR extracts all the frequent CPO-patterns for a given sequence database. The frequency of a pattern is the ratio of the size of its support to the size of the sequence database. In some extracts, CPO-patterns extracted in several contexts may be identical. Each has a generating context, e.g. High IBGN, High IBMR. For this set of identical CPOpatterns, the context of the CPO-pattern with the highest frequency is called the dominant context. The frequency of a pattern in its dominant context is denoted by fmax.

Hereafter, we refer to CPO-patterns simply as patterns.

Choice of parameters (region, time, reference thresholds, etc.)

The operator can modify several parameters to obtain different kinds of results. A filter can be applied to limit the analysis to a subset of the database restricted to a given region or a period of time. It is also possible to choose between the two quality reference norms for discretizing the physico-chemical values (SEQ or the WFD guide). The operator has to define a frequency threshold below which the patterns are not extracted. The algorithm itself can also be parameterized to consider different time lengths (in months) for the input sequences. One can also limit the values considered to remove irrelevant values. One example of an irrelevant value is High TEMP because it appears in more than 90% of the sequences in the database. This generates a significant number of parasite nodes which provide no information. Note that only the High TEMP is filtered but Bad TEMP is kept as such because this lowest general value may provide some information. The choices of these parameters for an extraction specify its configuration.

Metrics for the evaluation of patterns

In addition to the frequency (f), we propose three metrics of interest on patterns to describe the results: 1) their complexity (C) (Equation 1), 2) their scarcity (S) (Equation 2), 3) their emergence (E) (Equation 3).

The complexity (C) of a pattern P indicates its relative size compared to the biggest pattern found in a given extraction. Its value range is 0-1: it is zero when the pattern P is empty and 1 when pattern P is the biggest one.

Equation 1 C = n /N
where n is the number of items in pattern P; N is number of items found in the biggest pattern in the chosen extraction.

Scarcity (S) conveys the level of specificity of pattern P in its generating context. Its value range is [0-1]: it is zero when pattern P is found in all 25 contexts (5 biological indices in five statuses) and 1 when pattern P is found only in one context.

Equation 2 S= (1-n')/24
where n' is number of repetitions of the pattern in other extraction contexts.

The emergence (E) of pattern P, in a given extraction, is calculated only if the generating context is dominant: then its frequency isf=fmax as defined before; we denote by f(max-1) the next highest frequency of the pattern in the others contexts. The bigger E is, the more specific P is for its targeted biological value. Its value range is [1-∞[.

Equation 3 E= fmax/f(max-1)

Results

In our conditions (Computer INTEL COR I7-4790 3.6 Go and 16 Go RAM), extractions take from few seconds to few minutes, depending on the size of the sequence dataset and the configuration parameters. The number of patterns increases with an increase in time-length and with a decrease in the minimum frequency or in the number of sampling sites, but without constant correlations. The number of patterns obtained using the WFD thresholds guide is always higher than with SEQ thresholds in the same configuration.

Batch of patterns in a specific configuration

The results were obtained with the following configuration: [area: Nitrogen excluding nitrate (AZOT) () was found only in the I2M2 index in moderate status. The first pressure categories NITR, PEST, MPOR and MOOX representing at least 45% of the total distribution were the same in the IBMR, IPR and IBGN index but not in the same order of importance. PHOS, NITR and ACID were the main pressures in IBD, PEST, NITR and PHOS in I2M2.

2.2

Characteristic patterns of IBGN and IBMR indices

A total of 85 characteristic patterns were obtained for IBGN (Fig. 4), (respectively 10, 6, 10, 18 and 46 in biological statuses high, good, moderate, poor and bad) and 433 patterns for IBMR (respectively 16, 12, 14, 88 and 303 in biological statuses high, good, moderate, poor and bad). The largest number of patterns was obtained in the bad status context, which had the fewest sequences: 54% of patterns in the context "bad IBGN" versus less than 1% of sequences, and 70% of patterns in the context "bad IBMR" versus 1% of sequences. This was not the case for all the indices. For instance, we obtained 27% of patterns in the context "high IBD" versus 63% of sequences. That is why we chose to study the two indices IBGN and IBMR in more detail.

In patterns, the nitrate pressure (NITR) appeared in only two statuses: good and moderate, even when the two biological indices were in poor or bad statuses. The pesticide pressure (PEST) appeared only in two statuses: poor and bad, even when the two biological indices were in high, good or moderate statuses. The other organic hydrocarbon pressure (MPOR) appeared only in two statuses: moderate and poor respectively when IBGN was in poor or bad biological status and when IBMR was in bad biological status. The phosphorous pressure (PHOS) appeared most frequently in high status which corresponds to high and good statuses in the two biological indices, the oxidizable organic matter pressure (MOOX) in moderate status when the two biological indices were in moderate, poor and more particularly in bad statuses.

Patterns were selected and analyzed per context according to the following criteria: 1) highest frequency (f), 2) highest emergence (E), 3) highest complexity (C), 4) highest scarcity and 5) item diversity. In each context, we performed detailed analysis of the first pattern according to the selected classification, and the first one with macro-pollutants.

The first pattern for high IBGN (pattern 229, Fig. 5) and the second for high IBMR (pattern 325, Fig. 6) showed that the pressure PHOS remained stable in high status, during respectively three and four successive measurements. Pattern 738 (Fig. 6), obtained for the generating context high IBMR, was the only one with another pressure category in high status, i.e. one item with high MOOX. The stability of pressure PEST in poor or bad statuses, measured successively three times (for example patterns 228 for high IBGN and 254 for poor IBGN in Table 5 and Fig. 5) or four times (for example pattern 340 for moderate IBMR in Fig. 6), was not discriminating with respect to a specific context. It appeared in high to bas biological context. The pressure category "good NITR" did not appear to be discriminating; as whatever the context, it appeared: once in high and good IBGN (patterns 220 and 305, Table 5), twice in good, moderate IBGN (patterns 307, Fig. 5 and pattern 237, Table 5) and moderate IBMR (pattern 334, Table 5), three times in moderate IBGN and poor IBMR (patterns 323 and 360,Table 5). Moderate NITR appeared more specifically in poor and bad contexts of both indices (patterns 236, 253, Table 5, and 338, Table 5 and Fig. 6). Pattern 289 (Fig. 5) was specific to bad IBGN (E= 1.273 and S=0.960): meant that only one poor MOOX was measured before or after one moderate NITR. Pattern 300 (Fig. 5) was also specific to bad IBGN (E= 2.100 and S=0.960): meant that pollution with moderate MPOR measured five times remained stable, and two moderate NITR and one moderate MOOX were measured after or before one these measurements. In pattern 442 (Fig. 6), only one measurement of moderate AZOT between one good MINE and three good NITR were observed before a bad IBMR.

Pressure MPMI (heavy metals) appeared only in bad IBGN contexts, e.g. in pattern 266 (Fig. 5) composed of four poor MPMI and one moderate NITR. In the bad IBMR context, patterns 623 and 564 (Fig. 6) represented multi-stress conditions: moderate MOOX, and moderate PAES for the first, with added bad PEST for the second. 

Discussion

A promising tool to reveal temporal sequences preceding a biological status Fabrègue et al. (2014) were the first to show the promising potential of patterns to describe sequential data concerning quality in river ecosystems. We continued this work using a bigger dataset (here 1,146,544 physico-chemical data and 24,593 biological data) and by multiplying the possible configurations. The PRESTOR tool we created was specifically applied to extract patterns based on different criteria (time-length, minimum frequency, etc.) directly from hydro-ecosystem databases. Whereas extraction is stable and rapid, many tests have to be conducted to tune the parameters, and, like in multivariate analysis, the dominant pressure categories had to be removed in order to analyze all the data in detail using a top-down approach. As shown by Serrano Balderas et al. ( 2017), selecting features for data reduction is an essential data preprocessing technique to ensure the final results are valid.

To proceed from a potentially useful to an operational method using PRESTOR, we proposed a double process before and after extraction to control the number of patterns extracted and to identify the most relevant ones. Analysing of the 809 patterns we extracted is irrelevant for an expert. Some are nested in others, for example, a pattern of three successive "poor PESTs" included in another one of four successive "poor PESTs" (Fig. 6). After extraction, the three metrics (complexity (C), scarcity (S) and emergence (E)) help selecting the most relevant patterns among hundreds or even thousand ones.

The process generated more patterns for the smaller sub-datasets. This bias is shared by other methods as well as by data mining and statistical methods, which is why the pre and post-processing are recommended particularly for environmental data mining (Gibert et al., 2008). Here, there can be many patterns in a given context for different reasons: 1) few sequences were available: in our case, IBMR represented 8% of sequences and extracted 53% of patterns, because the threshold of minimum frequency is easily reached; 2) data covered all the range of values: dataset for IBMR were more heterogeneous than those for IBD, which represented the maximum number of sequences (27%) and extracted only 18% of patterns; 3) data were numerous but homogeneous, as were data for high IBD in the dataset. This problem was amplified by unbalanced data distribution. The advantage of this dataset is that it is the complete set of French data from a survey network covering six years, but we nevertheless had to deal with the real distribution of these data: more major parameters than minor pollutants, a different number of sequences available for each index and fewer sequences for bad ecological status.

Selecting the same number of the most relevant patterns for all biological indices and statuses with a given status, thanks to the three metrics, limited this bias. Before focusing on the most relevant patterns, to be sure the method is efficient, we studied the complete batch of patterns extracted for a time-length of two years.

Feedback on the pressure categories analyzed and the quality of data

Six types of pressure categories have been identified: the first one resulted from the analysis of the original data and the five others from the analysis of the extracted patterns.

The first type concerned several pressure categories considered to remain stable in a single status throughout the French territory, i.e. temperature (TEMP), acidification parameters (ACID) and effect of eutrophication (EPRV) in high status and polycyclic aromatic hydrocarbons (HAP) in moderate status. For temperature, in the SEQ (op. cit)

or in the WFD guide (op.cit.), the quality class is defined by higher temperatures and the temperature difference between high and good class thresholds is 1.5 °C. This difference may correspond to the 1.4 °C to 1.7 °C increase observed by Durance and Ormerod (2007) in streams in Wales between 1981 and 2005 or to the forecasts of 1-9 °C announced by Webb (1996) for 2050. But the mechanisms which control freshwater temperature behavior in the context of global climate change are complex, in particular because temperature increases have been observed in winter while summer temperatures have remained relatively stable (Webb et al., 2008). This could explain why, in the French dataset, temperatures remained stable in high status, and underlines the need to change the way we define this pressure category. In Europe and North America, acidification of freshwater decreased throughout the 1980s and 1990s thanks to the reduction of atmospheric emissions of sulphur dioxide (Stoddard et al., 1999).

Therefore, pressure due to acidification is now localized rather than widespread, which is probably why it is difficult to observe this pressure in a study conducted at national scale. The quality class for the effect of eutrophication (EPRV), in the SEQ (op. cit), is generally defined for water combining basic pH and oversaturated in oxygen. In our dataset, this pressure category was mainly in high quality based on this definition, which is why it was not included in the analysis of patterns. Again, HAP are ubiquitous contaminants to a moderate degree in our study area, as also shown by Motelay-Massei et al. (2004) in the soils of the Seine River Basin.

The five following type of pressure categories are selected according to the patterns extracted from the complete dataset with a time length of two years.

The second type pressure categories was measured in different statuses but considered as dominant in only one status. There were macro-pollutants in high or good quality statuses: mineralisation (MINE) in high status, suspended matter (MES), oxidisable organic matter (MOOX), nitrogen excluding nitrate (AZOT) and phosphorus matter (PHOS) in good status. They were removed from the pattern extractions, but they can be considered as regularly measured in each site.

The third type includes pressure categories that were absent or rare in the patterns.

Polychloro-biphenyls (PCB) did not appear in any patterns. This pressure category was the one with the lowest number of measurements in the dataset (completeness rate:

33% versus at least or more than 50% for the other micro-pollutants). Teil et al. (2004) estimated that the pressure exerted by PCB in the Seine River Basin to be beyond the global national estimation of industrial inputs, but we did not observe it at the national scale. Pressure categories ACID and MINE in other classes than the high one accounted for less than 4% of all appearances of pressures.

The fourth type represents pressure categories that were dominant in patternsbut poorly discriminant, regardless of the biological status: pesticides (PEST) was only found in poor or bad statuses in the patterns we extracted. This pressure category was the one in which the number of measurements of micro-pollutants was the highest in the dataset (completeness rate: 61%). According to the Millenium Ecosystem Assessment Programme ( 2005), pesticides are one of the major stressors in freshwater ecosystems. The patterns extracted revealed the spatial and temporal dominance of this pressure category in the French dataset. After nitrates, it was the second most dominant category in all the patterns extracted, but was found in all biological statuses from high to bad. There was no graduation either in status or in the number of appearances in the patterns extracted for the IBGN index. Conversely, there was a small gradation in status and in the number of appearance in patterns extracted for the IBMR index: poor PEST appeared only in patterns extracted for high to moderate IBMR, whereas patterns extracted for poor and bad IBMR contained only bad PEST. The proportion of herbicides (45%) versus insecticides (31%) in the parameters included in PEST in SEQ (op.cit.) could partly explain the small graduation observed in patterns extracted for IBMR. Even if macroinvertebrates are known to be the most sensitive groups to pesticides in freshwater communities (Schäfer et al., 2012), we observed different responses of the two indices we tested; IBGN sensitivity was higher than that of I2M2 (Mondy et al., 2012).

The fifth type grouped distinguishing pressure categories for a given biological status in all biological indices: nitrates (NITR) in good and moderate status, phosphorus (PHOS) in high and moderate status, oxidizable organic matter (MOOX) in high, moderate and poor status, and other organic hydrocarbons (MPOR) in moderate and poor status. Like in recent studies dealing with the effects of multiple stressors on freshwater biodiversity, we found nutrients among the parameters that have the most impact (Lemm and Feld, 2017;Stendera et al., 2012) along with organic matter (Comte et al., 2010;Villeneuve et al., 2015). We are the first to underline the importance of other organic hydrocarbons (MPOR) in patterns especially for IBGN, IPR and IBMR contexts.

The sixth type is heavy metals (MPMI) in poor status. This pressure category is specific to patterns extracted for IBGN index in bad status. It was missing in patterns associated to I2M2 the other French index based on macroinvertebrates whereas Mondy et al.

(2012) found a better correlation between this stressor and I2M2 than IBGN.

A specific biological response to a specific pressure category?

Except for heavy metals (MPMI), none of the pressure categories was specific to one biological index in the patterns extracted from the French dataset we used. Many authors who used large national indices and several biological indices reported that all

In the differentiating pressure categories, physico-chemical statuses were often better distinguished than the biological statuses in the patterns. Oberdorff and Hughes (1992) already observed a gap between the precursor of the IPR index and SEQ results in the Seine catchment. Except for suspended matter (PAES) and pesticides (PEST) found in bad status in some patterns, the worst status found for other pressure categories was poor status. Defining class boundaries is a critical step in the design of methods of assessment (Birk et al., 2012). Using new French thresholds (MEEM, 2012) to discretize physico-chemical data, we obtained less significant results. This can be partly explained by the fact that these pressure categories include more parameters, but also by the change in the boundary between the good and moderate threshold for nitrates in the nutrient pressure category, which increased from 10 mg/L in SEQ (MEDD and AE, 2003) to 50 mg/L in the WFD guide (MEEM, 2012). This is at least the second time that this threshold has been revised upwards: 50 years ago, Nisbet and Verneaux (1970) et al., 2012).

The stronger reactions of living organisms evidenced by worse states than their physicochemical status, can also be explained by possible synergism between stressors and/or an additive impact of other stressors related to hydromorphology or hydrology.

According to Lemm and Feld (2017), combined nutrient and hydromorphological stress can strengthen an individual's reactions to each single stressor for different biological traits.

Extreme ecological status classes are the easiest to define (Birk et al., 2012). This is surely why in the configuration we chose, or in other configurations, intermediate biological statuses i.e. good and moderate, never displayed specific patterns. Conversely, extreme statuses, high and bad, often displayed specific patterns. For the poor status, there were some specific patterns for IBMR, but not for IBGN.

Characteristic physico-chemical successions for high and bad biological statuses

Patterns of high biological status were characterized by consistently high physicochemical status especially for phosphorus (PHOS) measured three or four times and probably in the consistency of the pressure categories we had to remove before the extraction: mineralisation (MINE) in high status, suspended matter (MES), oxidizable organic matter (MOOX), nitrogen excluding nitrate (AZOT).

We found two types of patterns in bad biological status: (1) a chronic multi-pressure one, in which pressure categories such as nitrates, pesticides and other organic hydrocarbons, in moderate, poor or bad status, repeated themselves several times over time, or (2) a single occurrence of a degraded pressure category, such as one moderate nitrogen excluding nitrate, or one poor oxidizable organic matter, among other pressure categories in good status (respectively pattern 289, Fig. 5 and pattern 442, Fig. 6).

Studies of the change effect in pressure categories over time are scarce or limited to general trends in the case of degradation such as the hydraulic management of large rivers (e.g. Fruget et al., 2001;Trémolières, 1994) or more recently in the case of restoration (e.g. Meyer et al., 2013;Staentzel et al., 2017). However databases storing temporal monitoring data on rivers do exist. Most studies used data on each site on each sampling occasion as not accounting for time information to increase the gradient of measurements before timeless treatments, because the methods used were not able to incorporate the temporal dimension (D'heygere et al., 2006;Dahm et al., 2013;[START_REF] Larras | Assessing anthropogenic pressures on streams: A random forest approach based on benthic diatom communities[END_REF]Marzin et al., 2012;Mondy and Usseglio-Polatera, 2013;Villeneuve et al., 2018). This is why the temporal patterns extracted by PRESTOR are innovative and offer new opportunities to explore data on rivers. Here the life span of the different biological compartment studied were not taken into account. To go further, we will search the specific time length of sequences to consider with respect to biological indices to obtain the most relevant patterns. Moreover hydrological and hydromorphological pressures will be added in the dataset to produce richer patterns that will deepen the analysis.

Conclusion

Our questions were: 1) do patterns allow us to disentangle and identify the pressure categories implicated in a degraded status? 2) are pressure categories found in patterns specific to a biological group? 3) is there a correspondence between physico-chemical and biological statutes?

Applying a new data mining method for river ecological assessment required iterative collaboration between computer scientists and experts in the domain to (1) adapt the method to a particular question and to the specific format of the data, ( 2) analyze the complete results and not only those that "matched well" to ensure the methods are efficient, (3) to propose selection criteria for the evaluation of patterns, (4) to select the most important results particularly for data mining methods which have led to exponential increase in results. PRESTOR (temporal PRESsure categories patterns extracTOR) was implemented specifically to extract patterns from a hydro-ecosystem database. The operator chooses several criteria such as the time-length of patterns or their minimum frequency. To check the efficiency of the method, the 809 patterns extracted from data collected all over France with a time-length of 24 months, were analyzed. Three metrics, complexity, scarcity and emergence, were used to select significant patterns according to their ecological status.

Water managers need simple and transparent methods. Selected patterns extracted by PRESTOR are easily readable and match managers' needs. They could be used at large scale and as such, considered as a holistic approach, the kind of approach that is urgently needed (Demars et al., 2012;Stendera et al., 2012). In a multi-pressure environment (Reyjol et al., 2014), hydromorphological and physico-chemical pressures should be analyzed together: patterns including various time scales have to build therefore. In this study, patterns were extracted over a large territory, here France, but the method can be applied in the same way to a small territory, climatically and geologically homogeneous, in order to extract more specific patterns. Finally, patterns, highlighting a sequence of alteration events before an observed biological response, are a possible solution to disentangle the effects of different pressures.
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 1 Fig. 1: Location of the 1,781 French sampling sites for the national ecological assessment of rivers
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  S1: <(High TEMP, Poor MINE),(Moderate AZOT),(Bad MPOR, High PHOS),(High IBGN)> -S2: <(Moderate AZOT),(Bad MPOR, High PHOS, High TEMP),(High IBGN)> -S3: <(Moderate AZOT),(High TEMP, High PHOS),(Bad MPOR),(High IBGN)>
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 2 Fig. 2: CPO-pattern for sequences S1, S2 and S3
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 3 Fig. 3: Overall distribution of the pressure categories in the 809 patterns obtained for the configuration [area: France, period: 2007-2013, table of thresholds: SEQ, time-
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 4 Fig. 4 : Repartition by status classes of the patterns extracted for the two French biological indices IBGN and IBMR obtained with the configuration: [area: France, period:
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 5 Fig. 5: Nine major patterns extracted from the five contexts of IBGN in the configuration: [area: France, period: 2007-2013, table of thresholds: SEQ, time-length: 24 months,
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 6 Fig. 6: Eleven major patterns extracted from the five contexts of IBMR in the configuration: [area: France, period: 2007-2013, table of thresholds: SEQ, time-length:

  

  

  

  

  Table 1 lists the volume of the data we

	they represented
	1,146,544 results and concerned 189 parameters (completeness ranged between
	98% and 33% for polychloro-biphenyls, PCB). The 24,593 biological results
	concerned four biological groups and five French standardised biological indices
	(identified below by their French acronym): macroinvertebrates (33% of results) with
	IBGN (AFNOR, 2004) and I2M2 (AFNOR, 2016a, 2010), diatoms (35%) with IBD
	(AFNOR, 2016b), fishes (23%) with IPR (AFNOR, 2011), macrophytes (10%) with
	IBMR, (AFNOR
	used. The 23,071,909 physico-chemical results concerned 1,201 parameters. Among
	them, 2% were major parameters (parameters with concentrations in milligram per
	liter, e.g. pH, nitrogen) and 98% were minor parameters, including micro-pollutants
	(parameters with concentrations in microgram per liter, e.g. copper, atrazine).

analyzes of the major elements were conducted 12 times a year and analyzes of minor elements four or six times a year. The completeness of the physico-chemical data varied consideraly over the study period, ranging from 100% to 1%. Above, we used the physico-chemical results which were the most complete:

Table 1 :

 1 Volume of data used

	Type of data	Number
	Sampling site	1,781
	Water sampling for physical chemical	122,765
	analyzes	
	Biological sampling	26,072
	Physical chemical parameters	1,201
	Physical chemical results	23,071,909
	Biological groups	5
	Biological index results	24,593

Table 3

 3 

	for the WFD guide; (2) by

Table 2 :

 2 List of physico-chemical pressure categories, their acronyms based on SEQ

	153		
	154	(MEDD and AE, 2003) and the number of associated parameters
	N° Acronym Pressure categories	N°	of
				parameters
	MOOX	Oxidizable organic matter (e.g. O2, DBO)	7
	AZOT	Nitrogen excluding nitrate	3
	NITR		Nitrate	1
	PHOS	Phosphorous	2
	EPRV	Effect of eutrophication	2
	PAES	Suspended matter	2
	TEMP	Temperature	1
	ACID		Acidification parameters	2
	MINE		Mineralisation	8
	MPMI		Heavy metals	10
	PEST	Pesticides	74
	HAP		Polycyclic aromatic hydrocarbons	15
	PCB		Polychloro-biphenyls	8
	MPOR	Other organic hydrocarbons	57
	155		

Table 3 :

 3 List of physico-chemical pressure categories, their acronyms based on the

	156			
	157		WFD guide (MEEM, 2012) and the number of associated parameters
		N° Acronym Pressure categories	N°	of
					parameters
		1	TEMP	Temperature	1
		2	ACID	Acidification parameters	1
		3	BILO2	Oxygen balance	4
		4	NUTRI	Nutrients	5
		5	POSPE	Specific pollutants	9
		6	SDP	Priority substances and priority hazardous	38
				substances
	158			
	159	For each biological index, the thresholds from MEEM (2012) were applied. In most
	160	cases, about two-thirds of the results correspond to the status required by the WFD
	161	guide in class 1, high status, or in class 2, good status and one third of degraded
	162	quality (Class 3, moderate status; class 4: poor status; class 5: bad status) except for
		IPR (52% in classes 1 and 2 and 48% in classes 3, 4 and 5).

Table 4 :

 4 Toy database presenting the history of 3 sampling sites

	Station	Date	Value
	1	2/6/2015	Bad PHOS
	1	31/5/2015	High IBGN
	1	29/5/2015	High PHOS
	1	29/5/2015	Bad MPOR
	1	28/05/2015	Moderate AZOT
	1	27/5/2015	Poor MINE
	1	27/5/2015	High TEMP
	2	28/6/2015	High IBGN
	2	27/6/2015	High TEMP
	2	27/6/2015	High PHOS
	2	27/6/2015	Bad MPOR
	2	26/6/2015	Moderate AZOT
	3	30/4/2015	High IBGN
	3	28/4/2015	Bad MPOR
	3	27/4/2015	High PHOS
	3	27/4/2015	High TEMP
	3	26/4/2015	Moderate AZOT
	3	18/3/2014	Good TEMP

Let us consider thetoy database shown in

Table 4, presenting the history of 3 stations.

Table 5 :

 5 Table 5 lists the first five patterns for each context except for bad IBMR, for which we included six patterns in order to have the pressure category AZOT at least once. Selection of five first patterns generated for all the contexts of the French

		Generating	Dominant						
	Pattern	Context	Context	f	E	C	S	f X C X S + E	Items
	229 high IBGN high IBD	0.609		0.150	0.800	0.073	3 high PHOS
	228	high IBGN high IBMR	0.604		0.150	0.640	0.058	3 poor PEST
	221	high IBGN	high IPR	0.660		0.050	0.600	0.020	1 high MOOX
	223	high IBGN bad IBMR	0.619		0.050	0.160	0.005	1 bad PEST
	220	high IBGN bad IBMR	0.651		0.050	0.080	0.003	1 good NITR
	307 good IBGN bad IBMR	0.637		0.100	0.360	0.023	2 good NITR
	303 good IBGN high IBD	0.636		0.050	0.560	0.018	1 high PHOS
	308 good IBGN bad IBMR	0.624		0.100	0.240	0.015	2 bad PEST
	305 good IBGN bad IBMR	0.719		0.050	0.080	0.003	1 good NITR
	304 good IBGN bad IPR	0.738		0.050	0.000	0.000	1 good ACID

biological indices IBGN and IBMR according to their frequency (f), emergence (E), complexity (C) and scarcity (S) and the result (f x C x S +E); The dominant context is the context in which the pattern is the most frequent; the last row indicates the items in each pattern; configuration: [area: France, period: 2007-2013, table of thresholds: SEQ, time-length: 24 months, minimum frequency: 0.6]; in bold: first pattern with no micropollutants.

bad IPR, not shown in the table). The other generating contexts, based on IBGN and IBMR indices, were never dominant for any given pattern. Only the patterns of four generating contexts had a complexity higher than 0.25 (in this configuration, the biggest pattern had 20 items and C=0.25 corresponded to a pattern with five items): the patterns for IBMR in high, poor and bad statuses and IBGN in bad status. Patterns for only four contexts had a scarcity less than 0.76 (in this configuration, S=0.76 was obtained for a pattern found in more than six contexts): the patterns for IBMR and for IBGN in good and moderate statuses.

  set the boundary for excess nitrates in French freshwater at 3 mg/L. Although good-bad thresholds for micro-pollutants were discussed at the European level for the WFD guide, there was no harmonization of the thresholds for macro-pollutants, and the literature comparing them in Europe is really poor. Current French thresholds are among the highest in Europe probably because the majority of countries take the mean or the median as the annual value while France takes the 90 th percentile. The French good-Kjeldahl nitrogen, nitrites and nitrates, the boundary is 4.5 mg/L for SEQ(MEDD and AE, 2003) and 14 mg/L for WFD guide (MEEM, 2012) versus the European range [0.7-10 mg/L] (Claussen

	moderate thresholds compared to the European ranges are 1) for NH4 -: 0.5 mg/L in the
	range [0.05-1.6 mg/L] (Claussen et al., 2012), 2) for O2: 6 mg/l in the range [6-10 mg/L] -
	but the higher values are used by countries specifying different thresholds for different
	stream typologies (based on size, climate, geology, geographical location), which is not

the case in France -

(Claussen et al., 2012)

, 3) for orthophosphates: 0.5 mg/L in the range [0.05-1 mg/L] (

Arle et al., 2016)

, 4) for nitrogen adding the French good-moderate thresholds for

good NITR, 4 moderate MOOX, 1 good MINE
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biological groups responded firstly to macro-pollutants in general (Dahm et al., 2013;Marzin et al., 2012), particularly to organic matter and nutrients (Villeneuve et al., 2015). Haury et al. (2006) showed that the IBMR was sensitive to trophic disruption but also to heavy organic pollution. Nutrients did not appear to be specific to patterns extracted for IBMR or IBD indices. However high and good IBMRs (generating contexts) were associated with High PHOS and MOOX or good NITR. PHOS was also the dominant pressure category for patterns extracted for IBD index (dominant context).

Nevertheless, excess nutrients are known to have indirect effects on aquatic organisms, especially on macroinvertebrates (Dolédec et al., 2006;Lemm and Feld, 2017). The pressure acidification (ACID) was well represented (18%) in the patterns extracted for the IBD index, whereas [START_REF] Larras | Assessing anthropogenic pressures on streams: A random forest approach based on benthic diatom communities[END_REF] found a weak correlation between this pressure and diatoms, but their approach using life history traits differs substantially from our approach. Fishes are known to have lower responses to physico-chemical pressures (Dahm et al., 2013;Marzin et al., 2012;Villeneuve et al., 2015). Indeed, the patterns extracted for IPR contained the lowest number of pressures (6/10). Few authors who used large datasets tested biological responses to all micro-pollutant categories, except [START_REF] Larras | Assessing anthropogenic pressures on streams: A random forest approach based on benthic diatom communities[END_REF] and Mondy and Usseglio-Polatera (2013) respectively for diatoms and macroinvertebrates using the same French dataset. These authors found good biological responses for pesticides but poor responses for polycyclic aromatic hydrocarbons (PAH), heavy metals (MPMI) and other organic hydrocarbons (MPOR), whereas the last pressure category was widely represented in the patterns we extracted in our study.

Gap between physico-chemical statuses and biological statuses

Appendix 1: Set of thresholds used by SEQ (MEDD and AE, 2003) for the physico-chemical parameters classified according to pressure categories (here the threshold is always excluded from the better class, e.g.:

for nitrates, the threshold between the high and good classes is 2 mg/L, therefore if [NO3 -]=2 mg/L, pressure category NITR is good) 62 Appendix 2: Set of thresholds used by the WFD guide (MEEM, 2012) for physico-chemical parameters classified according to pressure categories (here for TEMP, ACID, BILO2, NUTRI: the threshold is always excluded from the better class, e.g.: for nitrates, the threshold between the high and good classes is 10 mg/L, therefore if [NO3 -] =10 mg/L, pressure category is good; in contrast, for POSPE and SDP the threshold is always included in the better class, e.g.: for arsenic, the threshold between the high and bad classes is 4.2µg/L, therefore if [As]=4.2µg/L, pressure category is high)