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Introduction

The present paper consists in a quick survey of post-Lie algebras, Baker-Campbell-Haudorff recursion, Rota-Baxter algebras and post-Lie Magnus expansion (Sections 2, 3 and 4), followed by a new result in Section 5, which establishes an equality between two seemingly different formal series: the Baker-Campell-Hausdorff recursion in a weight-one Rota-Baxter algebra, and the post-Lie Magnus expansion relative to the associated post-Lie algebra structure described in [START_REF] Bai | Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras[END_REF]. Our motivation comes from a result obtained in 2006 by the second and the third author together with Li Guo [START_REF] Ebrahimi-Fard | Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[END_REF], identifying the BCH-recursion with the pre-Lie Magnus expansion in the weight-zero case.

Interest in Magnus-type expansions results from their appearance in the context of numerical integration methods for Lie group valued problems [START_REF] Iserles | On the solution of linear differential equations in Lie groups[END_REF]. In [START_REF] Curry | The Magnus expansion and post-Lie algebras[END_REF], we studied the relation between the classical and the post-Lie Magnus expansions by looking at a non-autonomous matrix-valued initial value problem from the viewpoint of the theory of numerical Lie group integrators. Post-Lie algebras and the post-Lie Magnus expansion play a central part in the latter. In this context post-Lie algebras characterise the relation between two Lie algebras (one coming from the Jacobi Lie bracket and the other from the torsion Lie bracket, in the context of a flat connection with constant torsion). This relation can be lifted to the level of the (completed) enveloping algebra (of the Lie algebra implied by the torsion Lie bracket). In a nutshell, the post-Lie Magnus expansion naturally appears in the context of backward error analysis for the Lie-Euler method. This is consistent with the fact that the pre-Lie Magnus expansion plays an analogous role with respect to backward error analysis for the Euler method.

The well-known Baker-Campbell-Hausdorff (BCH) formula BCH(x, y) is a formal power series, which lives in the completion of the free Lie algebra L(x, y) generated (over a base field K of characteristic zero) by the two non-commutating variables x and y. It is defined by exp(x) exp(y) = exp BCH(x, y) = exp x + y + BCH(x, y) or BCH(x, y) = log exp(x) exp(y) = x + y + BCH(x, y).

It plays a prominent role in modern mathematics [START_REF] Arnal | A note on the Baker-Campbell-Hausdorff series in terms of right-nested commutators[END_REF][START_REF] Bonfiglioli | Topics in noncommutative algebra[END_REF]. 1A fruitful connection between the BCH-series and the notion of Rota-Baxter algebra has been explored in [START_REF] Ebrahimi-Fard | Spitzer's identity and the algebraic Birkhoff decomposition in pQFT[END_REF][START_REF] Ebrahimi-Fard | Integrable renormalization. II. The general case[END_REF][START_REF] Ebrahimi-Fard | Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[END_REF]. The latter originated in the seminal 1960 article [START_REF] Baxter | An analytic problem whose solution follows from a simple algebraic identity[END_REF] by the American mathematician G. Baxter, which in turn was motivated by F. Spitzer's 1956 article [START_REF] Spitzer | A combinatorial lemma and its application to probability theory[END_REF]. Baxter's algebra was further developed foremost in the commutative realm in the 1960s and '70s by P. Cartier, G.-C. Rota and F.V. Atkinson, among others, from algebraic, combinatorial and analytic viewpoints. We refer the reader to the review article [START_REF] Ebrahimi-Fard | From iterated integrals and chronological calculus to Hopf and Rota-Baxter algebras[END_REF] as well as the monograph [START_REF] Guo | An introduction to Rota-Baxter algebra[END_REF] for details.

A weight-λ Rota-Baxter operator on an associative K-algebra A is a K-linear map R: A -→ A, satisfying the Rota-Baxter identity of weight λ ∈ K:

R(x)R(y) = R R(x)y + xR(y) + λxy , x, y ∈ A. (1.1)
The pair (A, R) is a weight λ Rota-Baxter algebra. 2 For example, the indefinite Riemann integral satisfies (1.1) when the weight λ = 0 (integration by parts). The linear map R := -λid A -R is also Rota-Baxter of weight λ, and satisfies together with R the mixed identity

R(x) R(y) = R R(x)y + R x R(y) , x, y ∈ A.
Starting from a Rota-Baxter operator R of weight λ, the BCH-recursion [START_REF] Ebrahimi-Fard | Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[END_REF] is defined by

χ λ (a) := a + 1 λ BCH R χ λ (a) , R χ λ (a) , a ∈ A. (1.2)
It lies at the heart of the solution of an exponential factorisation problem [START_REF] Ebrahimi-Fard | Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[END_REF] and thereby permits the generalisation of a classical result for commutative Rota-Baxter algebras, known as Spitzer's identity [START_REF] Spitzer | A combinatorial lemma and its application to probability theory[END_REF], to non-commutative Rota-Baxter algebras. The resulting non-commutative Spitzer identity says that for a ∈ A the exponential

X := exp R χ λ log(1 + tλa) λ
solves the fixed point equation

X = 1 + tR(aX) (1.3) in the algebra A[[t]
] of formal series with coefficients in A. Here the formal parameter t commutes with all elements in A. More precisely, iterating the fixed point equation (1.3) yields the rather non-trivial equality

1 + tR(a) + t 2 R aR(a) + t 3 R aR aR(a) + • • • = exp R χ λ log(1 + tλa) λ .
Thanks to the commuting parameter t, the last equality can be seen as between formal power series and therefore encompasses at each order a specific relation between coefficients. For instance, at order two, that is, comparing the coefficients of t 2 , we have the identity

2R aR(a) = R(a)R(a) -R [R(a), a] + λa 2 ,
which is easily verifiable in a Rota-Baxter algebra of weight λ by using the Rota-Baxter identity (1.1) on the right-hand side. We note that the fixed point equation (1.3) is reminiscent of the integral fixed point equation naturally associated to a linear matrix-valued initial value problem; the indefinite Riemann integral is a weight-zero Rota-Baxter map. Indeed, the series (1.2) turns out to be closely related to a well-known Lie algebra expansion due to W. Magnus [START_REF]On the exponential solution of differential equations for a linear operator[END_REF]. This connection to the so-called Magnus expansion was studied in reference [START_REF] Ebrahimi-Fard | Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[END_REF] in the case of the weight being zero (λ = 0). The adequate algebraic setting is provided through the notion of pre-Lie algebra, which is naturally defined on any non-commutative Rota-Baxter algebra. In [START_REF] Ebrahimi-Fard | A Magnus-and Fer-type formula in dendriform algebras[END_REF] it was shown that the pre-Lie Magnus expansion can be expressed in terms of the BCH-recursion as follows

Ω (a) := a + n>0 B n n! L (n) Ω (a) (a) = χ λ log(1 + λa) λ . (1.4)
Here B n is the n-th Bernoulli number and L [x](y) = L (1) [x](y) := x y is the left-multiplication operator defined in terms of the aforementioned (left) pre-Lie product, denoted , on a noncommutative Rota-Baxter algebra. Note that the weight λ is absorbed in the definition of the pre-Lie product. In the weight-zero case, (1.4) boils down to

Ω (a) = χ 0 (a). (1.5) 
In particular, for the indefinite Riemann integral, the pre-Lie product is defined for -matrixvalued -functions A, B as (A B)(t) := t 0 A(s)ds, B(t) . When inserted in (1.4), one recovers Magnus' original expansion [START_REF]On the exponential solution of differential equations for a linear operator[END_REF].

Recall that any Rota-Baxter algebra with nonzero weight gives rise to a post-Lie algebra structure [START_REF] Bai | Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras[END_REF]. In this work, we describe a close relationship between the BCH-recursion (1.2) in the nonzero weight case and the Magnus expansion in its post-Lie version [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF][START_REF] Ebrahimi-Fard | Post-Lie algebras, factorization theorems and isospectral flows[END_REF][START_REF] Ebrahimi-Fard | Post-Lie algebras and factorization theorems[END_REF][START_REF] Mencattini | Post-symmetric braces and integration of post-Lie algebras[END_REF]. Our main result (Theorem 5.3) shows that the post-Lie Magnus expansion and the BCH-recursion in (1.2) coincide in the context of a Rota-Baxter algebra of weight 1 endowed with its naturally associated post-Lie structure. This is an extension to nonzero weight of one of the main results of [START_REF] Ebrahimi-Fard | Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[END_REF], resumed by (1.5), identifying the weight zero BCH-recursion with the pre-Lie Magnus expansion. The special role of weight one here simply comes from the definition of the post-Lie structure (2.9), (2.10), and any Rota-Baxter algebra with nonzero weight can be set to weight one by an appropriate rescaling of the Rota-Baxter operator.

We close this introduction by noting that the Magnus expansion, in its various forms (classical [START_REF]On the exponential solution of differential equations for a linear operator[END_REF][START_REF] Mielnik | Combinatorial approach to Baker-Campbell-Hausdorff exponents[END_REF], pre-Lie [START_REF] Agrachev | Chronological algebras and nonstationary vector fields[END_REF][START_REF] Chapoton | Enveloping algebras of preLie algebras, Solomon idempotents and the Magnus formula[END_REF][START_REF] Ebrahimi-Fard | A Magnus-and Fer-type formula in dendriform algebras[END_REF] and post-Lie [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF][START_REF] Ebrahimi-Fard | Post-Lie algebras, factorization theorems and isospectral flows[END_REF][START_REF] Ebrahimi-Fard | Post-Lie algebras and factorization theorems[END_REF][START_REF] Mencattini | Post-symmetric braces and integration of post-Lie algebras[END_REF]), has been studied in applied mathematics, control theory, physics and chemistry. See reference [START_REF] Blanes | The Magnus expansion and some of its applications[END_REF] for details on the classical Magnus expansion in applied mathematics. The reader can also find a brief summary in the recent work [START_REF] Curry | The Magnus expansion and post-Lie algebras[END_REF].

This paper consists of four sections accompanied by two appendices. In Section 2, we review some basic topics related to post-Lie algebras and their universal enveloping algebras. The post-Lie structure defined on any Rota-Baxter algebra is recalled from [START_REF] Bai | Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras[END_REF]. Section 3 contains the description of the Baker-Campbell-Hausdorff recursion and its inverse, as well as their properties. Several important details on the post-Lie Magnus expansion and its inverse are included in Section 4. Section 5 is the main part of this work, in which the identification of the post-Lie Magnus expansion with the BCH-recursion is proven. Finally, the two Appendices A and B contain low-order computations of the post-Lie Magnus expansion and its inverse.

Post-Lie algebras

A post-Lie algebra is a Lie algebra (L, [• , •]) together with a bilinear mapping : L × L -→ L, which is compatible with the Lie bracket in the following sense

x [y, z] = [x y, z] + [y, x z],
(2.1)

[x, y] z = a (x, y, z) -a (y, x, z), (2.2) 
for any x, y, z ∈ L. Here, a (x, y, z) is the associator defined by

a (x, y, z) = x (y z) -(x y) z.
Any Lie algebra can be seen as a post-Lie algebra by setting the second product to zero. Another possibility is to take for the second product the opposite of the Lie bracket.

A (left) pre-Lie algebra is an abelian post-Lie algebra, i.e., a post-Lie algebra with Lie bracket set to zero. The defining relation is the left pre-Lie identity 0 = a (x, y, z) -a (y, x, z).

(2.3)

We refer the reader to [START_REF] Manchon | A short survey on pre-Lie algebras[END_REF] for a short survey on pre-Lie algebras. The post-Lie operation permits to produce two other operations:

[[x, y]] := x y -y x + [x, y], x y := x y + [x, y],
for all x, y ∈ L. From (2.1) and ( 2. For more details on post-Lie algebras, we refer to [START_REF] Curry | What is a post-Lie algebra and why is it useful in geometric integration[END_REF][START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF][START_REF] Ebrahimi-Fard | Post-Lie algebras, factorization theorems and isospectral flows[END_REF][START_REF] Munthe-Kaas | On post-Lie algebras, Lie-Butcher series and moving frames[END_REF] and references therein.

The universal enveloping algebra of a post-Lie algebra

Inspired by the work of J.-M. Oudom and D. Guin in the pre-Lie context [START_REF] Oudom | On the Lie enveloping algebra of a pre-Lie algebra[END_REF], the authors in [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF] consider the enveloping algebra

U(L), • of the Lie algebra L, [• , •] underlying a post- Lie algebra L, [• , •], . The post-Lie product is then extended to L ⊗ U(L) → U(L) by requiring x 1 := 0 and x (x 1 • • • x n ) := n i=1 x 1 • • • x i-1 (x x i )x i+1 • • • x n ,
for all x, x 1 , . . . , x n ∈ L. Here, 1 denotes the unit in U(L). Recall that the enveloping algebra U(L) together with the product • and the unshuffle coproduct has the structure of a noncommutative, co-commutative Hopf algebra. The unshuffle coproduct ∆ is defined for all letters x ∈ L → U(L), by ∆(x) := x ⊗ 1 + 1 ⊗ x and extended multiplicatively. We employ Sweedler's notation, ∆(X) := X (1) ⊗ X (2) , for the coproduct of any X ∈ U(L). The final definition of the extended post-Lie product on U(L), together with its properties, is given by the next two propositions.

Proposition 2.1 ([16, Proposition 3.1]). There is a unique extension of the post-Lie product from L to U(L) satisfying:

1 X = X, xX y = x (X y) -(x X) y, X Y Z = X (1) Y X (2) Z ,
for all x, y ∈ L, and X, Y, Z ∈ U(L). Proposition 2.2 ([16, Proposition 3.2]). The extended post-Lie product on U(L) possesses the following properties:

X 1 = (X), (X Y ) = (X) (Y ), ∆(X Y ) = (X (1) Y (1) ) ⊗ (X (2) Y (2) ), xX Y = x (X Y ) -(x X) Y, X (Y Z) = (X (1) X (2) Y ) Z,
for all x ∈ L and X, Y, Z ∈ U(L), where : U(L) → K is the counit map.

From the last equality in Proposition 2.2, an associative product, known as Grossman-Larson product, can be defined on U(L) as follows

X * Y := X (1) X (2) Y , (2.4) 
for all X, Y ∈ U(L). As a main example, for any x ∈ L and Y ∈ U(L), we find Remark 2.3. Conversely, the product of the enveloping algebra can be expressed in terms of the Grossman-Larson product and the unshuffle coproduct as follows

x * Y = x Y + xY, (2.5 
XY = X (1) * S * X (2) Y . (2.6)
This is seen by plugging (2.4) into the right-hand side of (2.6).

Free post-Lie algebras

F. Chapoton and M. Livernet presented in [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF] the free pre-Lie algebra in terms of (non-planar) decorated rooted trees. Similarly, H. Munthe-Kaas and A. Lundervold gave in [START_REF] Munthe-Kaas | On post-Lie algebras, Lie-Butcher series and moving frames[END_REF] an explicit description of the free post-Lie algebra in terms of formal Lie brackets of planar decorated rooted trees. Let us briefly review this construction: a magma is a set M together with a binary operation, without any further properties. For any (non-empty) set E, the set of all parenthesized words on the alphabet E is the free magma over E, denoted M (E). A practical presentation of it can be given in terms of planar rooted trees. Indeed, consider the set T pl E of all planar rooted trees with vertices decorated by E, and let • denote the left Butcher product defined on T pl E as

σ • τ = B e + (στ 1 τ 2 • • • τ k ), for σ, τ 1 , τ 2 , . . . , τ k ∈ T pl E and τ := B e + (τ 1 τ 2 • • • τ k ).
Here, B e + is the operation defined by grafting a monomial τ 1 τ 2 • • • τ k of E-decorated rooted trees on a common root decorated by some element e in E, to obtain a new tree. For example (in the undecorated context)

T pl E as: σ • ցτ = B e + (στ 1 τ 2 • • • τ k ), for σ, τ 1 , τ 2 , . . . , τ k ∈ T pl E and τ := B e + (τ 1 τ 2 • • • τ k ).
Here, B e + is the operation defined by grafting a monomial τ 1 τ 2 • • • τ k of E-decorated rooted trees on a common root decorated by some element e in E, to obtain a new tree. For example (in the undecorated context):

• ց = , • ց = , • ց = .
Denote by T pl E the linear span of the set T pl E . Besides the left Butcher product, • ց, this space has another magmatic product defined through left grafting, denoted ց and defined by

σ ց τ = v vertex of τ σ ց v τ, (2.9) 
where σ ց v τ is the tree obtained by grafting the root of the tree σ onto the vertex v of the tree τ, such that σ becomes the leftmost branch starting from vertex v. See for example references [START_REF] Al-Kaabi | Monomial bases for free pre-Lie algebras[END_REF][START_REF] Butcher | An algebraic theory of integration methods[END_REF]. Computing some examples (in the undecorated context) we find:

ց = + , ց = + + .
By freeness universal property, there is a unique morphism of magmatic algebras

Ψ : (T pl E , • ց) -→ (T pl E , ց) τ -→ e τ := Ψ(τ)
such that Ψ(• a ) = • a for any a ∈ E, which is a linear isomorphism. A detailed account of the map Ψ can be found in [START_REF] Al-Kaabi | Monomial bases for free pre-Lie algebras[END_REF].

Let L(T pl E ) be the free Lie algebra generated by T pl E . It can be endowed with a structure of post-Lie algebra by extending the aforementioned left grafting, ց, as follows:

σ ց [ τ, τ ′ ] = [ σ ց τ, τ ′ ] + [ τ, σ ց τ ′ ] ,
Denote by T pl E the linear span of the set T pl E . Besides the left Butcher product, • , this space has another magmatic product defined through left grafting, denoted and defined by

σ τ = v vertex of τ σ v τ, (2.7) 
where σ v τ is the tree obtained by grafting the root of the tree σ onto the vertex v of the tree τ , such that σ becomes the leftmost branch starting from vertex v. See for example references [START_REF] Al-Kaabi | Monomial bases for free pre-Lie algebras[END_REF][START_REF] Butcher | An algebraic theory of integration methods[END_REF]. Computing some examples (in the undecorated context) we find T pl E as:

σ • ցτ = B e + (στ 1 τ 2 • • • τ k ), for σ, τ 1 , τ 2 , . . . , τ k ∈ T pl E and τ := B e + (τ 1 τ 2 • • • τ k ).
Here, B e + is the operation defined by grafting a monomial τ 1 τ 2 • • • τ k of E-decorated rooted trees on a common root decorated by some element e in E, to obtain a new tree. For example (in the undecorated context):

• ց = , • ց = , • ց = .
Denote by T pl E the linear span of the set T pl E . Besides the left Butcher product, • ց, this space has another magmatic product defined through left grafting, denoted ց and defined by

σ ց τ = v vertex of τ σ ց v τ, (2.9) 
where σ ց v τ is the tree obtained by grafting the root of the tree σ onto the vertex v of the tree τ, such that σ becomes the leftmost branch starting from vertex v. See for example references [START_REF] Al-Kaabi | Monomial bases for free pre-Lie algebras[END_REF][START_REF] Butcher | An algebraic theory of integration methods[END_REF]. Computing some examples (in the undecorated context) we find:

ց = + , ց = + + .
By freeness universal property, there is a unique morphism of magmatic algebras

Ψ : (T pl E , • ց) -→ (T pl E , ց) τ -→ e τ := Ψ(τ)
such that Ψ(• a ) = • a for any a ∈ E, which is a linear isomorphism. A detailed account of the map Ψ can be found in [START_REF] Al-Kaabi | Monomial bases for free pre-Lie algebras[END_REF].

Let L(T pl E ) be the free Lie algebra generated by T pl E . It can be endowed with a structure of post-Lie algebra by extending the aforementioned left grafting, ց, as follows:

σ ց [ τ, τ ′ ] = [ σ ց τ, τ ′ ] + [ τ, σ ց τ ′ ] ,
By freeness universal property, there is a unique morphism of magmatic algebras

Ψ : T pl E , • -→ T pl E , , τ -→ e τ := Ψ(τ ),
such that Ψ(• a ) = • a for any a ∈ E, which is a linear isomorphism. A detailed account of the map Ψ can be found in [START_REF] Al-Kaabi | Monomial bases for free pre-Lie algebras[END_REF]. Let L T pl E be the free Lie algebra generated by T pl E . It can be endowed with a structure of post-Lie algebra by extending the aforementioned left grafting, , as follows

σ [τ, τ ] = [σ τ, τ ] + [τ, σ τ ], [σ, τ ] τ = a (σ, τ, τ ) -a (τ, σ, τ ), for all σ, τ, τ ∈ T pl E . The triple L T pl E , [• , •],
is the free post-Lie algebra generated by E [START_REF] Vallette | Homology of generalized partition posets[END_REF] (see also [START_REF] Munthe-Kaas | On post-Lie algebras, Lie-Butcher series and moving frames[END_REF][START_REF] Munthe-Kaas | On the Hopf algebraic structure of Lie group integrators[END_REF]).

Recall that an E-decorated

planar forest f = τ 1 • • • τ n is a (non-commutative) product of E-decorated planar rooted trees τ i ∈ T pl E , i = 1, . . . , n.
Denote by F pl E the set of all E-decorated planar forests, and by F pl E its linear span. The space F pl E forms together with the concatenation product the free associative algebra generated by T pl E . The left grafting, , defined by (2.7) on T pl E can be generalized to a grafting of forests as follows:

• Left grafting a tree on a forest is also defined by (2.7). We thus have

σ f f = (σ f )f + f (σ f ),
for any tree σ ∈ T pl E and any two forests f, f ∈ F pl E . • The left grafting of a forest f = τ 1 • • • τ k onto a forest f is the sum of forests obtained by summing over all ways of successively left grafting the trees τ k , . . . , τ 1 to any node of f .

The well-known (planar) Grossman-Larson product on F pl E is defined by [START_REF] Grossman | Hopf-algebraic structure of families of trees[END_REF] f

f := B -f B e + (f ) , (2.8) 
where B -is the left inverse operation of B e + , which removes the root of a tree and thus produces a forest. This product endows the space F pl E with a structure of an non-commutative associative unital algebra, called the Grossman-Larson algebra. This algebra acts naturally on T pl E by extended left grafting

(f f ) τ := f (f τ ),
for all f, f ∈ F pl E and τ ∈ T pl E . The universal enveloping algebra U L T pl E of the free post-Lie algebra L T pl E is the free associative algebra on T pl E , and can therefore be identified with F pl E . The terminology is justified by the following Proposition 2.4 ([16, Proposition 3.5]). With the identification recalled above, the Grossman-Larson product * on U L T pl E is identical to the Grossman-Larson product on F pl E , .

Post-Lie structure on a Rota-Baxter algebra

Recall that a unital algebra is said to be complete filtered if it is equipped with a separating complete filtration

A = A 0 ⊇ A 1 ⊇ A 2 ⊇ • • • ⊇ A n ⊇ • • •
by ideals [START_REF] Ebrahimi-Fard | Spitzer's identity and the algebraic Birkhoff decomposition in pQFT[END_REF]. Separation means that the intersection of the A n 's is equal to {0}, and completeness refers to the topology associated with the filtration, so that any series a = n≥1 a n with a n ∈ A n converges in A. The filtration is moreover supposed to be compatible with the product, i.e., A n 1 A n 2 ⊆ A n 1 +n 2 for any n 1 , n 2 ≥ 0. A Rota-Baxter algebra is said to be complete filtered if it is equipped with a separating complete filtration by Rota-Baxter ideals, i.e., by ideals A n stable by the Rota-Baxter operator. The Rota-Baxter Algebra A, R of weight λ has a structure of a post-Lie algebra defined by the following operations:

[x, y] λ := λ[x, y],
(2.9)

x y := [R(x), y],

(2.10) for all x, y ∈ A. We leave it to the reader to show that the operations in (2.9), (2.10) satisfy the post-Lie identities (2.1) and (2.2) (see [START_REF] Bai | Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras[END_REF]Section 5.2]). As expected, the post-Lie algebra A, [• , •] λ , reduces to a (left) pre-Lie algebra in the case of a weight zero Rota-Baxter algebra. Indeed, if λ = 0, the product defined by (2.10) verifies the left pre-Lie identity (2.3).

Baker-Campbell-Hausdorff (BCH)-recursion

We give here a brief account of the Baker-Campbell-Hausdorff recursion, which was defined and explored in [START_REF] Ebrahimi-Fard | Spitzer's identity and the algebraic Birkhoff decomposition in pQFT[END_REF][START_REF] Ebrahimi-Fard | Integrable renormalization. II. The general case[END_REF][START_REF] Ebrahimi-Fard | Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[END_REF]. Let A = K x, y be the free complete associative K-algebra of formal power series generated by non-commuting variables x and y. The Baker-Campbell-Hausdorff expansion BCH(x, y) is the element in A satisfying the following equation exp(x) exp(y) = exp BCH(x, y) .

The first terms are given by BCH(x, y) = x + y + BCH(x, y)

= x + y + 1 2 [x, y] + 1 12 [x, [x, y]] - 1 12 [y, [x, y]] - 1 24 [x, [y, [x, y]]] + • • • ,
where [x, y] := xy -yx is the usual commutator of x and y in A. See, e.g., [START_REF] Bonfiglioli | Topics in noncommutative algebra[END_REF] for details.

Proposition 3.1 ([15, Proposition 1]). Let A be a complete filtered K-algebra, and let R be a K-linear map preserving the filtration of A. There exists a unique (usually non-linear) map χ :

A 1 -→ A 1 , such that (χ -id A )(A n ) ⊂ A 2n , for all n ≥ 1, and BCH R(χ(x)), R(χ(x)) = x, (3.1) 
for all x ∈ A 1 , where R := id A -R. This map is bijective, and its inverse is

χ -1 (x) = BCH R(x), R(x) = x + BCH R(x), R(x) . (3.2) 
As a consequence of (3.1), we have the exponential

factorization exp R(χ(x)) exp R(χ(x)) = exp(x), (3.3) 
for any x ∈ A 1 . Note also that (3.2) yields the non-linear BCH-recursion

χ(x) := x -BCH R(χ(x)), R(χ(x)) , (3.4) 
for all x ∈ A 1 .

Lemma 3.2 ([15]

). Let A be a complete filtered algebra, and let R : A -→ A be a linear map preserving the filtration. The following holds:

1. The map χ given by (3.4), can be simplified:

χ(x) = x + BCH -R(χ(x)), x ∀x ∈ A 1 . (3.5) 
2. If R is an idempotent algebra homomorphism, then the map χ in (3.5) is further simplified, namely χ(x) = x + BCH(-R(x), x).

Proof . See [START_REF] Ebrahimi-Fard | Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[END_REF]Lemmas 6 and 7].

The BCH-recursion in the Rota-Baxter algebra framework is given as follows in the case where the weight λ is different from zero: Proposition 11]). Let A, R be a complete filtered Rota-Baxter algebra of weight λ = 0, and set R := -λid A -R. The λ-weighted BCH-recursion is written

Proposition 3.3 ([15,
χ λ (x) = x + 1 λ BCH R(χ λ (x)), R(χ λ (x)) , (3.6) 
for all x ∈ A 1 . It can be simplified to

χ λ (x) = x - 1 λ BCH -R(χ λ (x)), λx .
Its inverse is given by

χ -1 λ (x) = x - 1 λ BCH R(x), R(x) .
Moreover, the factorization obtained in

(3.3) becomes exp R(χ λ (x)) exp R(χ λ (x)) = exp(-λx). (3.7)
The expansion χ λ can be written as the infinite sum

χ λ (x) = n≥1 χ (n) λ (x), where χ (n) 
λ ∈ A n is the n-th homogenous component of the BCH-recursion. Here, we write the components χ (n) λ up to order n = 4 using the post-Lie algebra notation (2.9) and (2.10)

χ (1) λ (x) = x, χ (2) 
λ (x) = 1 2λ R χ (1) λ (x) , R χ (1) 
λ (x) = 1 2λ R χ (1) 
λ (x) , -λid A -R χ (1) 
λ (x) = - 1 2 R(x), x = - 1 2 x x, χ (3) 
λ (x) = 1 2λ R χ (1) 
λ (x) , R χ (2) 
λ (x) + R χ (2) λ (x) , R χ (1) λ (x) 
+ 1 12λ R χ (1) 
λ (x) , R χ (1) 
λ (x) , R χ (1) λ (x) 
-R χ

(1)

λ (x) , R χ (1) 
λ (x) , R χ (1) 
λ (x) = 1 4 (x x) x + 1 12 x (x x) + 1 12 [x x, x] λ , χ (4) λ (x) 
= λ -1 24 x (x x) x - λ + 1 24 (x x) (x x) + λ -3 24 (x x) x x - λ + 1 24 x (x x) x + 1 24 x, x (x x) + (x x) x λ .
These coefficients are recursively computed using (3.4).

Magnus expansion

W. Magnus [START_REF]On the exponential solution of differential equations for a linear operator[END_REF] considered the problem of expressing the solution of the matrix-valued linear initial value problem Ẏ (t) = M (t)Y (t), Y (0) = Y 0 as an exponential [START_REF] Blanes | The Magnus expansion and some of its applications[END_REF][START_REF] Mielnik | Combinatorial approach to Baker-Campbell-Hausdorff exponents[END_REF] 

Y (t) = exp Ω(M )(t) Y 0 .
The Magnus expansion, Ω(M )(t) = log(Y (t)), is determined by the particular differential equation

Ω(M ) := M + n>0 B n n! ad (n) Ω(M ) (M ) (4.1) = dexp -1 Ω(M ) (M ) := ad Ω(M ) e ad Ω(M ) -1 (M ), (4.2) 
with Ω(M )(0) = 0. Here, B n are the Bernoulli numbers and ad

(n) M 1 (M 2 ) := ad (n-1) M 1 ([M 1 , M 2 ]), ad (0) M 1 (M 2 ) = M 2 .
Defining the pre-Lie product, (M 1 M 2 )(t) := t 0 M 1 (s)ds, M 2 (t) , we can rewrite (4.2) using the left-multiplication operators L (x) := x -defined in terms of the pre-Lie product:

Ω(M ) = L [ Ω(M )] e L [ Ω(M )] -1 (M ).

Post-Lie Magnus expansion

We consider now the universal enveloping algebra F pl E := U L T pl E of the free post-Lie algebra

L(T pl E ), [• , •],
, graded by the number of vertices of the forests. Denote by U L T pl E its completion with respect to the grading. Any element of the completion can be written as a so-called Lie-Butcher series [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF][START_REF] Munthe-Kaas | On post-Lie algebras, Lie-Butcher series and moving frames[END_REF][START_REF] Munthe-Kaas | On the Hopf algebraic structure of Lie group integrators[END_REF] 

α = f ∈F pl E α, f f , where • , • : U L T pl E ⊗ U L T pl E → K is the natural pairing defined on any pair (f, f ) of forests by f, f = 0, f = f , 1, f = f .
The unshuffle coproduct, ∆, is naturally extended to the completion. The set Prim F pl E consists in primitive elements (infinitesimal characters), whereas G F pl E denotes the set of group-like elements (characters) 

Prim(F pl E ) := α ∈ U L T pl E | ∆(α) = 1 ⊗ α + α ⊗ 1 = L T pl E , G(F pl E ) := α ∈ U L T pl E | ∆(α) = α ⊗ α .
(f ) = ∞ n=0 f * n n! = 1 + f + 1 2 f * f + 1 6 f * f * f + • • • , exp(f ) = ∞ n=0 f n n! = 1 + f + 1 2 f f + 1 6 f f f + • • • .
Both these exponential functions map Prim F pl E bijectively onto G F pl E . See [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF] for details. The post-Lie Magnus expansion χ is the bijective map from L T pl E onto itself defined by

exp * χ(f ) = exp(f ), namely, χ(f ) = log * exp(f ) . (4.3)
Introducing a formal commuting indeterminate t, it can also be described as

χ(f t) = n≥1 χ (n) (f )t n ,
where χ (n) (f ) is the n-th order component of the post-Lie Magnus expansion χ. The latter is defined recursively by χ (1) (f ) = f , and [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF][START_REF] Ebrahimi-Fard | Post-Lie algebras, factorization theorems and isospectral flows[END_REF][START_REF] Ebrahimi-Fard | Post-Lie algebras and factorization theorems[END_REF]]

χ (n) (f ) := f n n! - n k=2 1 k! p 1 +•••+p k =n p i >0 χ (p 1 ) (f ) * χ (p 2 ) (f ) * • • • * χ (p k ) (f ). (4.4)
The computation of the coefficients χ (n) (f ) for the first five values of n is displayed in Appendix A below. They have been obtained by hand by the recursive formula (4.4), using (2.5) repeatedly.

Comparing with the computations at the end of Section 3, one observes that, up to order n = 4, the coefficient χ (n) (f ) coincides with the coefficient χ (n) λ (f ) of the BCH-recursion in the weight λ = 1 case. We shall prove this fact at any order in Theorem 5.3 below. Remark 4.1. Formula (4.3) defines the post-Lie Magnus expansion in any complete filtered post-Lie algebra L. If the underlying Lie algebra is Abelian, then the post-Lie Magnus expansion is reduced to the so-called pre-Lie Magnus expansion. The latter already appears in [START_REF] Agrachev | Chronological algebras and nonstationary vector fields[END_REF] and encompasses classical Magnus expansion [START_REF]On the exponential solution of differential equations for a linear operator[END_REF]. Remark 4.2. We may deduce a Magnus-type differential equation similar to (4.1) for the post-Lie Magnus expansion (4.3), by differentiating exp * χ(f t) = exp(f t) with respect to t. This results in

χ(f t) = dexp * -1 -χ(f t) exp * (-χ(f t)) f , χ(0) = 0.

Inverse post-Lie Magnus expansion

The inverse post-Lie Magnus expansion θ is the bijective map from L T pl E onto itself given by the following formula

θ(f ) = log(exp * (f )) (4.5) 
or exp(θ(f )) = exp * (f ).

The homogeneous component θ

(n) = θ (n) (f ) of degree n of the expansion θ(f t) = n≥1 θ (n) (f )t n
is given by θ (1) (f ) = f and the following recursive formula [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF] θ

(n) (f ) = 1 n n-1 j=1 1 j! k 1 +•••+k j =n-1 k i >0 θ (k 1 ) θ (k 2 ) • • • θ (k j ) f + n-1 j=1 B j j! k 1 +•••+k j =n-1 k i >0 ad θ (k 1 ) • • • ad θ (k j ) f + n-1 j=2 j-1 q=1 B q q! k 1 +•••+kq=j-1 k i >0 ad θ (k 1 ) • • • ad θ (kq ) × n-j p=1 1 p! k 1 +•••+kp=n-j k i >0 θ (k 1 ) θ (k 2 ) • • • θ (kp) f , (4.6) 
where ad θ (i) (f ) := θ (i) , f , and the B i 's are the Bernoulli numbers. The computation of the first θ (n) 's is given in Appendix B.

Remark 4.3. The same fact, described in Remark 4.1, will be repeated again in the case of the inverse post-Lie Magnus expansion. In other words, the formula in (4.6) for the inverse post-Lie Magnus expansion is reduced, in the case of commutative post-Lie algebras, to the inverse pre-Lie Magnus expansion formula described below (see also [START_REF] Ebrahimi-Fard | A Magnus-and Fer-type formula in dendriform algebras[END_REF][START_REF] Manchon | A short survey on pre-Lie algebras[END_REF])

W (x) := e L [x] -1 L [x] (x) = ∞ n=0 1 (n + 1)! L (n) [x](x).
Modulo removal of a fictitious unit, W is also known as the pre-Lie exponential [START_REF] Agrachev | Chronological algebras and nonstationary vector fields[END_REF].

Remark 4.4. Similar to Remark 4.2, we may deduce a Magnus-type differential equation similar to (4.1) for the inverse post-Lie Magnus expansion [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF][START_REF] Ebrahimi-Fard | Post-Lie algebras and factorization theorems[END_REF] θ(f t) = dexp -1 -θ(f t) exp(θ(f t)) f , θ(0) = 0.

Post-Lie Magnus expansion and BCH-recursion

We now show that the Baker-Campbell-Hausdorff recursion driven by a weight λ = 1 Rota-Baxter operator identifies with the Magnus expansion relative to the post-Lie structure naturally associated to the corresponding Rota-Baxter algebra. χ (4) (f ) = -

1 12 (f f ) (f f ) + (f (f f )) f + ((f f ) f ) f + 1 24 [f, f (f f )] + [f, (f f ) f ] , χ (5) (f ) = - 1 720 f f f (f f ) + 1 144 (f f ) f (f f ) -f ((f f ) f ) f -f (f (f f )) f -f f ((f f ) f ) + 5 f (f f ) (f f ) + 5 (f f ) f (f f ) + 6 (f f ) (f f ) f + 3 (f (f f ) f ) f + 3 f (f (f f )) f + 3 f ((f f ) f ) f + 3(f f ) (f f ) f + 3 ((f f ) f ) f f + 1 180 f, [f, f (f f )] -f (f (f f )) - 1 120 [f f, f (f f )] - 1 36 [f, (f f ) (f f )] - 1 72 f, f (f f ) f + f (f f ) f + (f f ) f f - 1 360 f f, [f, f f ] + 1 720 f, f, [f, f f ] .

B Computations on the inverse post-Lie Magnus expansion

Here, we calculate the first five inverse post-Lie Magnus elements:

θ (1) (f ) = f, θ (2) (f ) = 1 2 f f, θ (3) (f ) = 1 6 f (f f ) + 1 12 [f, f f ], θ (4) (f ) = 1 24 f f (f f ) + [f, f (f f )] ,
θ (5) 

(f ) = 1 120 f f f (f f ) + 1 80 f, f f (f f ) + 1 720 f, [f, f (f f )] -f, f, [f, f f ] + 1 120 [f f, f (f f )] - 1 240 f f, [f, f f ] .

  2), one can see that L, [[• , •]] forms a Lie algebra, denoted L. In the case of an abelian post-Lie algebra, this amounts to Lie admissibility of pre-Lie algebras. The triple L, -[• , •], forms another post-Lie algebra [12, 28] sharing the same double Lie bracket, i.e., [[x, y]] = x y -y x + [x, y] = x y -y x -[x, y].

  ) since any element of L is primitive. The Grossman-Larson product (2.4) defines together with the coproduct ∆ another structure of Hopf algebra on U(L). The corresponding antipode will be denoted by S * . The Hopf algebras U(L), * , ∆ and U( L), ., ∆ are isomorphic [15, Section 3],[START_REF] Oudom | On the Lie enveloping algebra of a pre-Lie algebra[END_REF] Section 2].

  Both products on U L T pl E -the concatenation and the Grossman-Larson product (2.8)can also be extended to products on the completion U L T pl E . As a result, two different exponential functions can be defined on U L T pl E , namely, exp *

Theorem 5 . 1 .Proposition 5 . 2 .

 5152 Let A, R be a complete filtered Rota-Baxter algebra of weight λ = 1. We have the following equality in U(A) for any x ∈ A and t ∈ K:exp * (tx) = exp -t R(x) exp -tR(x) ,(5.1)where R = -id A -R, and * is the associative product defined in (2.4), using the post-Lie productx y = [R(x), y].The proof of this theorem will rely on the following proposition: In any complete filtered Rota-Baxter algebra A, R of weight λ = 1, we have the following identity in U(A):d n dt n exp -t R(x) exp -tR(x) = exp -t R(x) x * n exp -tR(x) . (5.2)Proof . The proof goes by induction. The base case k = 0 is trivial. For k = 1, we have in U(A):d dt exp -t R(x) exp -tR(x) = exp t(id A + R)(x) (id A + R)(x) exp -tR(x) -exp t(id A + R)(x) R(x) exp -tR(x) = exp -t R(x) x exp -tR(x) .Now, suppose that the statement is true in the case k = n -1, i.e., d n-1 dt n-1 exp -t R(x) exp -tR(x) = exp -t R(x) x * n-1 exp -tR(x) .

The remainder Baker-Campbell-Hausdorff series, BCH(x, y), is denoted by BCH(x, y) in[START_REF] Ebrahimi-Fard | Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[END_REF]. We adopt here a more conventional notation.

The convention for the weight is with the opposite sign in[START_REF] Ebrahimi-Fard | Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[END_REF].
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We then get

which means that (5.2) is true for k = n, and it is true for all n ≥ 0. This ends the proof.

Proof of Theorem 5.1. We have that

for all n ≥ 0.

One can therefore conclude that both members of (5.1) do coincide as infinite formal series.

Theorem 5.3. The post-Lie Magnus expansion χ, described in (4.3), coincides with the weighted BCH-recursion χ λ recursively given by (3.6), with weight λ = 1.

Proof . From equation (3.7), specialized to λ = 1, and by setting θ BCH := χ -1 1 , we obtain that

From (4.5), (5.1) and ( 5.3) we have exp θ BCH (tx) = exp * (tx) = exp θ(tx) .

(5.4)

Then the two θ's, namely the inverse BCH-recursion in (5.3) and the inverse post-Lie Magnus expansion (5.4), do coincide.

A Calculations on post-Lie Magnus expansion

The first five elements of the post-Lie Magnus expansion are