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Abstract. We identify the Baker–Campbell–Hausdorff recursion driven by a weight λ = 1 Rota–

Baxter operator with the Magnus expansion relative to the post-Lie structure naturally associated to

the corresponding Rota–Baxter algebra.
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1. Introduction

The well-known Baker–Campbell–Hausdorff (BCH) formula BCH(x, y) is a formal power series,

which lives in the completion of the free Lie algebra L(x, y) generated (over a base field K of

characteristic zero) by the two non-commutating variables x and y. It is defined by:

exp(x) exp(y) = exp
(
BCH(x, y)

)
= exp

(
x + y + B̃CH(x, y)

)

or

BCH(x, y) = log
(
exp(x) exp(y)

)
= x + y + B̃CH(x, y).
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It plays a prominent role in modern mathematics1 [3, 7].

A fruitful connection between the BCH-series and the notion of Rota–Baxter algebra has been

explored in [13, 14, 15]. The latter originated in the seminal 1960 article [5] by the American math-

ematician G. Baxter, which in turn was motivated by F. Spitzer’s 1956 article [33]. Baxter’s algebra

was further developed foremost in the commutative realm in the 1960s and ’70s by P. Cartier, G.-

C. Rota and F. V. Atkinson, among others, from algebraic, combinatorial and analytic viewpoints.

We refer the reader to the review article [20] as well as the monograph [23] for details.

A weight-λ Rota–Baxter operator on an associative K-algebraA is a K-linear map R : A −→ A,

satisfying the Rota–Baxter identity of weight λ ∈ K:

R(x)R(y) = R
(
R(x)y + xR(y) + λxy

)
, x, y ∈ A. (1)

For example, the indefinite Riemann integral satisfies (1) when the weight λ = 0 (integration by

parts). The linear map R̃ := −λidA − R is also Rota–Baxter of weight λ, and satisfies together with

R the mixed identity

R(x)R̃(y) = R̃
(
R(x)y

)
+ R(xR̃(y)

)
, x, y ∈ A.

Starting from a Rota–Baxter operator R of weight λ, the BCH-recursion [15] is defined by:

χλ(a) := a +
1

λ
B̃CH

(
R
(
χλ(a)

)
, R̃

(
χλ(a)

))
, a ∈ A. (2)

It lies at the heart of the solution of an exponential factorisation problem [15] and thereby permits

the generalisation of a classical result for commutative Rota–Baxter algebras, known as Spitzer’s

identity [33], to non-commutative Rota–Baxter algebras. The resulting non-commutative Spitzer

identity says that for a ∈ A the exponential

X := exp

(
R
(
χλ

( log(1 + tλa)

λ

)))

solves the fixed point equation inA[[t]]

X = 1 + tR(aX). (3)

Here the formal parameter t commutes with all elements in A. More precisely, iterating the fixed

point equation (3) yields the rather non-trivial equality

1 + tR(a) + t2R
(
aR(a)

)
+ t3R

(
a
(
R(aR(a))

))
+ · · · = exp

(
R
(
χλ

( log(1 + tλa)

λ

)))
.

Thanks to the commuting parameter t, the last equality can be seen as between formal power series

and therefore encompasses at each order a specific relation between coefficients. For instance, at

order two, that is, comparing the coefficients of t2, we have the identity

2R
(
aR(a)

)
= R(a)R(a) − R

(
[R(a), a] + λa2),

which is easily verifiable in a Rota–Baxter algebra of weight λ by using the Rota–Baxter identity (1)

on the righthand side. We note that the fixed point equation (3) is reminiscent of the integral fixed

1The remainder Baker–Campbell–Hausdorff series, B̃CH(x, y), is denoted by BCH(x, y) in [15]. We adopt here a

more conventional notation.
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point equation naturally associated to a linear matrix-valued initial value problem; the indefinite

Riemann integral is a weight-zero Rota–Baxter map. Indeed, the series (2) turns out to be closely

related to a well-known Lie algebra expansion due to W. Magnus [24]. This connection to the so-

called Magnus expansion was studied in reference [15] in the case of the weight being zero (λ = 0).

The adequate algebraic setting is provided through the notion of pre-Lie algebra, which is naturally

defined on any non-commutative Rota–Baxter algebra. In [16] it was shown that the pre-Lie Magnus

expansion can be expressed in terms of the BCH-recursion as follows:

Ω′
�

(a) := a +
∑

n>0

Bn

n!
L

(n)
�

[Ω′
�

(a)](a) = χλ
( log(1 + λa)

λ

)
. (4)

Here Bn is the n-th Bernoulli number and L�[x](y) = L
(1)
�

[x](y) := x� y is the left-multiplication op-

erator defined in terms of the aforementioned (left) pre-Lie product, denoted�, on a non-commutative

Rota–Baxter algebra. Note that the weight λ is absorbed in the definition of the pre-Lie product. In

the weight-zero case of the indefinite Riemann integral, this pre-Lie product is defined for –matrix-

valued– functions A, B as (A�B)(t) := [
∫ t

0
A(s)ds, B(t)]. When inserted in (4), one recovers Magnus’

original expansion [24].

In this work, we are revisiting the BCH-recursion (2) and its relation to the Magnus expansion.

This time, in the context of post-Lie algebra defined in terms of a Rota–Baxter operator of non-zero

weight [4]. We will recall the abstract definition of the so-called post-Lie Magnus expansion in the

context of the universal enveloping algebra of a post-Lie algebra. Our main result shows that the

post-Lie Magnus expansion and the BCH-recursion in (2) coincide in the context of a Rota–Baxter

algebra endowed with its naturally associated post-Lie structure.

We close this introduction by noting that the Magnus expansion, in its various forms (classical

[24, 27], pre-Lie [1, 10, 16] and post-Lie [17, 18, 19, 26]), has been studied in applied mathematics,

control theory, physics and chemistry. See reference [6] for details on the classical Magnus expan-

sion in applied mathematics. The reader can also find a brief summary in the recent work [12].

This paper consists of four sections accompanied by two appendices. In section 2, we review

some basic topics related to post-Lie algebras and their universal enveloping algebras. The post-Lie

structure defined on any Rota–Baxter algebra is recalled from [4]. Section 3 contains the description

of the Baker–Campbell–Hausdorff recursion and its inverse, as well as their properties. Several im-

portant details on the post-Lie Magnus expansion and its inverse are included in section 4. Section

5 is the main part of this work, in which the identification of the post-Lie Magnus expansion with

the BCH-recursion is proven. Finally, the two appendices A and B contain low-order computations

of the post-Lie Magnus expansion and its inverse.
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4 MAHDI J. HASAN AL-KAABI, KURUSCH EBRAHIMI-FARD, AND DOMINIQUE MANCHON

Research Council of Norway through project 302831 “Computational Dynamics and Stochastics

on Manifolds” (CODYSMA). The third author is supported by Agence Nationale de la Recherche,

projet CARPLO ANR20-CE40-0007.

2. Post-Lie algebras

A post-Lie algebra is a Lie algebra (L, [. , .]) together with a bilinear mapping � : L × L −→ L,

which is compatible with the Lie bracket in the following sense:

x � [y, z] = [x � y, z] + [y, x � z] (5)

[x, y] � z = a�(x, y, z) − a�(y, x, z), (6)

for any x, y, z ∈ L. Here, a�(x, y, z) is the associator defined by:

a�(x, y, z) = x � (y � z) − (x � y) � z.

Any Lie algebra can be seen as a post-Lie algebra by setting the second product � to zero. Another

possibility is to take for the second product � the opposite of the Lie bracket.

A (left) pre-Lie algebra is an abelian post-Lie algebra, i.e., a post-Lie algebra with Lie bracket set

to zero. The defining relation is the left pre-Lie identity

0 = a�(x, y, z) − a�(y, x, z). (7)

We refer the reader to [25] for a short survey on pre-Lie algebras. The post-Lie operation � permits

to produce two other operations:

[[x, y]] := x � y − y � x + [x, y], (8)

x � y := x � y + [x, y], (9)

for all x, y ∈ L. From (5) and (6), one can see that
(
L, [[. , .]]

)
forms a Lie algebra, denoted L̃. In the

case of an abelian post-Lie algebra, this amounts to Lie admissibility of pre-Lie algebras. The triple(
L,−[. , .],�

)
forms another post-Lie algebra [12, 28] sharing the same double Lie bracket, i.e.

[[x, y]] = x � y − y � x + [x, y] = x � y − y � x − [x, y].

For more details on post-Lie algebras, we refer to [11, 17, 18, 28] and references therein.

2.1. The universal enveloping algebra of a post-Lie algebra. Inspired by the work of J.-M. Oudom

and D. Guin in the pre-Lie context [22], the authors in [17] consider the enveloping algebra U(L)

of the Lie algebra
(
L, [. , .]

)
underlying a post-Lie algebra

(
L, [. , .],�

)
. The post-Lie product � is

then extended to L ⊗U(L)→ U(L) by requiring x � 1 := 0 and

x � (x1 · · · xn) :=

n∑

i=1

x1 · · · xi−1(x � xi)xi+1 · · · xn, (10)

for all x, x1, . . . , xn ∈ L. Here, 1 denotes the unit in U(L). Recall that the enveloping algebra

U(L) together with the concatenation as product and the deshuffle coproduct has the structure of a

non-commutative, co-commutative Hopf algebra. The deshuffle coproduct ∆ is defined for all letters

x ∈ L ֒→ U(L), by ∆(x) := x ⊗ 1 + 1 ⊗ x and extended multiplicatively. We employ Sweedler’s

notation, ∆(X) := X(1)⊗X(2), for the coproduct of any X ∈ U(L). The final definition of the extended

post-Lie product onU(L), together with its properties, is given by the next two propositions.
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Proposition 1. [17, Proposition 3.1] There is a unique extension of the post-Lie product � from L

toU(L) satisfying:

1 � X = X,

xX � y = x � (X � y) − (x � X) � y,

X � YZ = (X(1) � Y)(X(2) � Z),

for all x, y ∈ L, and X, Y, Z ∈ U(L).

Proposition 2. [17, Proposition 3.2] The extended post-Lie product � on U(L) possesses the fol-

lowing properties:

X � 1 = ǫ(X),

ǫ(X � Y) = ǫ(X)ǫ(Y),

∆(X � Y) = (X(1) � Y(1)) ⊗ (X(2) � Y(2)),

xX � Y = x � (X � Y) − (x � X) � Y,

X � (Y � Z) = (X(1)(X(2) � Y)) � Z,

for all x ∈ L and X, Y, Z ∈ U(L), where ǫ : U(L)→ K is the counit map.

From the last equality in Proposition 2, an associative product, known as Grossman–Larson product,

can be defined onU(L) as follows:

X ∗ Y := X(1)(X(2) � Y), (11)

for all X, Y ∈ U(L). As an example, for any x, y ∈ L, we find x ∗ y = x � y + xy, since any element

of L is primitive. The Grossman–Larson product (11) defines together with the coproduct ∆ another

structure of Hopf algebra on U(L). The corresponding antipode will be denoted by S ∗. The Hopf

algebras
(
U(L), ∗,∆

)
and

(
U(L̃), .,∆

)
are isomorphic [15, Section 3], [22, Section 2].

Remark 3. Conversely, the product of the enveloping algebra can be expressed in terms of the

Grossman–Larson product and the deshuffle coproduct as follows:

XY = X(1) ∗ (S ∗X(2) � Y). (12)

This is seen by plugging (11) into the right-hand side of (12).

2.2. Free post-Lie Algebras. F. Chapoton and M. Livernet presented in [9] the free pre-Lie algebra

in terms of (non-planar) decorated rooted trees. Similarly, H. Munthe-Kaas and A. Lundervold gave

in [28] an explicit description of the free post-Lie algebra in terms of formal Lie brackets of planar

decorated rooted trees. Let us briefly review this construction: a magma is a set M together with a

binary operation, without any further properties. For any (non-empty) set E, the set of all parenthe-

sized words on the alphabet E is the free magma over E, denoted M(E). A practical presentation of

it can be given in terms of planar rooted trees. Indeed, consider the set T
pl

E
of all planar rooted trees

with vertices decorated by E, and let ◦ց denote the left Butcher product defined on T
pl

E
as:

σ◦ցτ = Be
+(στ1τ2 · · · τk), (13)
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for σ, τ1, τ2, . . . , τk ∈ T
pl

E
and τ := Be

+(τ1τ2 · · · τk). Here, Be
+ is the operation defined by grafting a

monomial τ1τ2 · · · τk of E-decorated rooted trees on a common root decorated by some element e in

E, to obtain a new tree. For example (in the undecorated context):

◦
ց = , ◦

ց = , ◦
ց = .

Denote by T
pl

E
the linear span of the set T

pl

E
. Besides the left Butcher product, ◦ց, this space has

another magmatic product defined through left grafting, denotedց and defined by

σց τ =
∑

v vertex of τ

σցv τ, (14)

where σ ցv τ is the tree obtained by grafting the root of the tree σ onto the vertex v of the tree τ,

such that σ becomes the leftmost branch starting from vertex v. See for example references [2, 8].

Computing some examples (in the undecorated context) we find:

ց = + , ց = + + .

By freeness universal property, there is a unique morphism of magmatic algebras

Ψ : (T
pl

E
, ◦ց) −→ (T

pl

E
,ց)

τ 7−→ eτ := Ψ(τ)

such that Ψ(•a) = •a for any a ∈ E, which is a linear isomorphism. A detailed account of the map Ψ

can be found in [2].

Let L(T
pl

E
) be the free Lie algebra generated by T

pl

E
. It can be endowed with a structure of

post-Lie algebra by extending the aforementioned left grafting,ց, as follows:

σց [ τ, τ′] = [σց τ, τ′] + [ τ, σց τ′] ,

[σ, τ]ց τ′ = aց(σ, τ, τ′) − aց(τ, σ, τ′) ,

for all σ, τ, τ′ ∈ T
pl

E
. The triple (L(T

pl

E
), [ . , . ],ց) is the free post-Lie algebra generated by E ([31],

see also [28, 29]).

Recall that an E-decorated planar forest f = τ1 · · · τn is a (non-commutative) product of E-

decorated planar rooted trees τi ∈ T
pl

E
, i = 1, . . . , n. Denote by F

pl

E
the set of all E-decorated planar

forests, and by F
pl

E
its linear span. The space F

pl

E
forms together with the concatenation product

the free associative algebra generated by T
pl

E
. The left grafting, ց, defined by (14) on T

pl

E
can be

generalized to a grafting of forests as follows:

• Left grafting a tree on a forest is also defined by (14). We thus have

σց f f ′ = (σց f ) f ′ + f (σց f ′),

for any tree σ ∈ T
pl

E
and any two forests f , f ′ ∈ F

pl

E
.

• The left grafting of a forest f = τ1 · · · τk onto a forest f ′ is the sum of forests obtained by

summing over all ways of successively left grafting the trees τk, . . . , τ1 to any node of f ′.
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The well-known (planar) Grossman–Larson product on F
pl

E
is defined by [21]:

f ⋆ f ′ := B−
(
f ց Be

+( f ′)
)
, (15)

where B− is the left inverse operation of Be
+, which removes the root of a tree and thus produces a

forest. This product endows the space F
pl

E
with a structure of an non-commutative associative unital

algebra, called the Grossman–Larson algebra. This algebra acts naturally on T
pl

E
by extended left

grafting:

( f ⋆ f ′)ց τ := f ց ( f ′ ց τ),

for all f , f ′ ∈ F
pl

E
and τ ∈ T

pl

E
. The universal enveloping algebra U(L(T

pl

E
)) of the free post-Lie

algebra L(T
pl

E
) can be identified with F

pl

E
. More precisely,

Proposition 4. [17, Proposition 3.5] The universal enveloping algebra
(
U(L(T

pl

E
)), ∗

)
is identical

to the Grossman–Larson algebra
(
F

pl

E
, ⋆

)
.

2.3. Post-Lie structure on a Rota–Baxter algebra. Recall that a Rota–Baxter algebra of weight

λ ∈ K is a unital associative K-algebra A together with a linear operator R : A −→ A, which

satisfies the Rota–Baxter identity2:

R(x)R(y) = R
(
R(x)y + xR(y) + λxy

)
, (16)

for all x, y ∈ A. The identity (16) is called the Rota–Baxter identity of weight λ. There is another

Rota–Baxter operator, of weight λ, defined onA by:

R̃ := −λ idA − R. (17)

The two maps satisfy the mixed identity R(x)R̃(y) = R̃
(
R(x)y

)
+ R

(
xR̃(y)

)
for all x, y ∈ A.

Recall that a unital algebra is said to be complete filtered if it is equipped with a separating

complete filtration

A = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · ·

by ideals [13]. Separation means that the intersection of the An’s is equal to {0}, and complete-

ness refers to the topology associated with the filtration, so that any series a =
∑

n≥1 an with

an ∈ An converges in A. The filtration is moreover supposed to be compatible with the prod-

uct, i.e., An1
An2
⊆ An1+n2

for any n1, n2 ≥ 0. A Rota–Baxter algebra is said to be complete filtered

if it is equipped with a separating complete filtration by Rota–Baxter ideals, i.e., by idealsAn stable

by the Rota–Baxter operator.

The Rota–Baxter Algebra
(
A,R

)
of weight λ has a structure of a post-Lie algebra defined by the

following operations:

[x, y]λ := λ[x, y] (18)

x � y := [R(x), y], (19)

for all x, y ∈ A. We leave it to the reader to show that the operations in (18), (19) satisfy the post-Lie

identities (5) and (6) (see [4, § 5.2]). As expected, the post-Lie algebra
(
A, [., .]λ,�

)
reduces to a

(left) pre-Lie algebra in the case of a weight zero Rota–Baxter algebra. Indeed, if λ = 0, the product

� defined by (19) verifies the left pre-Lie identity (7).

2The convention for the weight is with the opposite sign in [15].
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3. Baker–Campbell–Hausdorff (BCH)-recursion

We give here a brief account of the Baker–Campbell–Hausdorff recursion, which was defined and

explored in [13, 14, 15]. Let A = K 〈〈x, y〉〉 be the free complete (non-commutative) associative

K-algebra of formal power series generated by non-commuting variables x and y. The Baker–

Campbell–Hausdorff expansion BCH(x, y) is the element inA satisfying the following equation:

exp(x) exp(y) = exp
(
BCH(x, y)

)
. (20)

The first terms are given by

BCH(x, y) = x + y + B̃CH(x, y)

= x + y +
1

2
[x, y] +

1

12
[x, [x, y]] −

1

12
[y, [x, y]] −

1

24
[x, [y, [x, y]]] + · · · ,

where [x, y] := xy − yx is the usual commutator of x and y inA. See, e.g., [7] for details.

Proposition 5. [15, Proposition 1] Let A be a complete filtered K-algebra, and let R be a K-linear

map preserving the filtration of A. There exists a unique (usually non-linear) map χ : A1 −→ A1,

such that (χ − idA)(An) ⊂ A2n, for all n ≥ 1, and

BCH
(
R
(
χ(x)

)
, R̃

(
χ(x)

))
= x, (21)

for all x ∈ A1, where R̃ := idA − R. This map is bijective, and its inverse is:

χ−1(x) = BCH
(
R(x), R̃(x)

)
= x + B̃CH

(
R(x), R̃(x)

)
. (22)

As a consequence of (21), we have the exponential factorization

exp
(
R
(
χ(x)

))
exp

(
R̃
(
χ(x)

))
= exp(x), (23)

for any x ∈ A1. Note also that (21) yields the non-linear BCH-recursion

χ(x) := x − B̃CH
(
R
(
χ(x)

)
, R̃

(
χ(x)

))
, (24)

for all x ∈ A1.

Lemma 6. [15] Let A be a complete filtered (associative) algebra. According to the nature of the

linear map R : A −→ A, we have the following cases:

(1) If R preserves the filtration ofA, then the map χ given by (24), can be simplified:

χ(x) = x + B̃CH
(
− R

(
χ(x)

)
, x

)
, ∀x ∈ A1. (25)

(2) If R is an idempotent algebra homomorphism, which preserves the filtration of A, then the

map χ in (25) is further simplified, namely χ(x) = x + B̃CH
(
− R(x), x

)
.

Proof. See [15, Lemmas 6, 7]. �

The BCH-recursion in the Rota–Baxter algebra framework is given as follows in the case where the

weight λ is different from zero:
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Proposition 7. [15, Proposition 11] Let
(
A,R

)
be a complete filtered Rota–Baxter algebra of weight

λ , 0, and set R̃ := −λ idA − R. The λ-weighted BCH-recursion is written:

χλ(x) = x +
1

λ
B̃CH

(
R
(
χλ(x)

)
, R̃

(
χλ(x)

))
, (26)

for all x ∈ A1. It can be simplified to:

χλ(x) = x −
1

λ
B̃CH

(
− R

(
χλ(x)

)
, λx

)
.

Its inverse is given by:

χ−1
λ (x) = x −

1

λ
B̃CH

(
R(x), R̃(x)

)
.

Moreover, the factorization obtained in (21) becomes:

exp
(
R
(
χλ(x)

))
exp

(
R̃
(
χλ(x)

))
= exp(−λx). (27)

The expansion χλ can be written as the infinite sum:

χλ(x) =
∑

n≥1

χ
(n)

λ
(x),

where χ
(n)

λ
∈ An is the n-th homogenous component of the BCH-recursion. Here, we write the

components χ
(n)

λ
up to order n = 4 using the post-Lie algebra notation (18) and (19).

χ
(1)

λ
(x) = x,

χ
(2)

λ
(x) =

1

2λ

[
R
(
χ

(1)

λ
(x)

)
, R̃(χ

(1)

λ
(x))

]

=
1

2λ

[
R
(
χ

(1)

λ
(x)

)
,
(
− λ idA − R

)(
χ

(1)

λ
(x)

)]
= −

1

2
[R(x), x] = −

1

2
x � x,

χ
(3)

λ
(x) =

1

2λ

([
R(χ

(1)

λ
(x)), R̃(χ

(2)

λ
(x))

]
+

[
R(χ

(2)

λ
(x)), R̃(χ

(1)

λ
(x))

])

+
1

12λ

([
R(χ

(1)

λ
(x)), [R(χ

(1)

λ
(x)), R̃(χ

(1)

λ
(x))]

]
−

[
R̃
(
χ

(1)

λ
(x)

)
, [R

(
χ

(1)

λ
(x)

)
, R̃

(
χ

(1)

λ
(x)

)
]
])

=
1

4
(x � x) � x +

1

12
x � (x � x) +

1

12
[x � x, x]λ,

χ
(4)

λ
(x) =

λ − 1

24
x �

(
(x � x) � x

)
−
λ + 1

24
(x � x) � (x � x) +

λ − 3

24

(
(x � x) � x

)
� x

−
λ + 1

24

(
x � (x � x)

)
� x +

1

24

[
x, x � (x � x) + (x � x) � x

]
λ.

4. Magnus Expansion

W. Magnus [24] considered the problem of expressing the solution of the matrix-valued linear

initial value problem Ẏ(t) = M(t)Y(t), Y(0) = Y0 as an exponential [6, 27]

Y(t) = exp(Ω(M)(t))Y0.

The Magnus expansion, Ω(M)(t) = log(Y(t)), is determined by the particular differential equation

Ω̇(M) := M +
∑

n>0

Bn

n!
ad

(n)

Ω(M)
(M) (28)

= dexp−1
Ω(M)(M)
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:=
adΩ(M)

eadΩ(M) − 1
(M), (29)

with Ω(M)(0) = 0. Here, Bn are the Bernoulli numbers and ad
(n)

M1
(M2) := ad

(n−1)

M1
([M1,M2]),

ad
(0)

M1
(M2) = M2. Defining the pre-Lie product, (M1 � M2)(t) := [

∫ t

0
M1(s)ds,M2(t)], we can rewrite

(29) using the left-multiplication operator defined in terms of the pre-Lie product

Ω̇(M) =
L�[Ω̇(M)]

eL�[Ω̇(M)] − 1
(M).

4.1. Post-Lie Magnus Expansion. We consider now the universal enveloping algebra F
pl

E
:=

U
(
L(T

pl

E
)
)

of the free post-Lie algebra
(
L(T

pl

E
), [. , .],ց

)
, graded by the number of vertices of

the forests. Denote by
̂

U(L(T
pl

E
)) its completion with respect to the grading. Any element of the

completion can be written as a so-called Lie-Butcher series [17, 28, 29]

α =
∑

f∈F
pl

E

〈α, f 〉 f ,

where 〈 · , · 〉 :
̂

U
(
L(T

pl

E
)
)
⊗ U

(
L(T

pl

E
)
)
→ K is the natural pairing defined on any pair ( f , f ′) of

forests by:

〈 f , f ′〉 =


0, f , f ′

1, f = f ′.

The deshuffle coproduct, ∆, is naturally extended to the completion. The set Prim(F
pl

E
) consists in

primitive elements (infinitesimal characters), whereas G(F
pl

E
) denotes the set of group-like elements

(characters):

Prim(F
pl

E
) :=

{
α ∈

̂
U(L

(
T

pl

E
)
)
|∆(α) = 1 ⊗ α + α ⊗ 1

}
=
̂
L(T

pl

E
), (30)

G(F
pl

E
) :=

{
α ∈

̂
U

(
L(T

pl

E
)
)
|∆(α) = α ⊗ α

}
. (31)

Both products on U
(
L(T

pl

E
)
)

–the concatenation and the Grossman–Larson product (15)– can also

be extended to products on the completion
̂

U(L
(
T

pl

E
)
)
. As a result, two different exponential func-

tions can be defined on
̂

U
(
L(T

pl

E
)
)
, namely:

exp∗( f ) =

∞∑

n=0

f ∗n

n!
= 1 + f +

1

2
f ∗ f +

1

6
f ∗ f ∗ f + · · · ,

exp( f ) =

∞∑

n=0

f n

n!
= 1 + f +

1

2
f f +

1

6
f f f + · · · .

Both these exponential functions map Prim(F
pl

E
) bijectively onto G(F

pl

E
). See [17] for details. The

post-Lie Magnus expansion χ is the bijective map from
̂
L(T

pl

E
) onto itself defined by:

exp∗
(
χ( f )

)
= exp( f ), (32)

namely:

χ( f ) = log∗
(

exp( f )
)
. (33)
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Introducing a formal commuting indeterminate t, it can also be described as χ( f t) =
∑

n≥1 χ
(n)( f )tn,

where χ(n)( f ) is the n-th order component of the post-Lie Magnus expansion χ. The latter is defined

recursively by χ(1)( f ) = f , and [17, 18, 19]:

χ(n)( f ) :=
f n

n!
−

n∑

k=2

1

k!

∑

p1+···+pk=n
pi>0

χ(p1)( f ) ∗ χ(p2)( f ) ∗ · · · ∗ χ(pk)( f ). (34)

The computation of χ(n)( f ) for the first five values of n is displayed in Appendix A below. Comparing

with the computations at the end of Section 3, one observes that, up to order n = 4, the coefficient

χ(n)( f ) coincides with the coefficient χ
(n)

λ
( f ) of the BCH-recursion – if the weight λ = 1. We shall

prove this fact at any order in Theorem 14 below.

Remark 8. By universal property of the free post-Lie algebra, the post-Lie Magnus expansion de-

fined above gives rise to a post-Lie-Magnus expansion in any complete filtered post-Lie algebra.

If the underlying Lie algebra is Abelian, then the post-Lie Magnus expansion is reduced to the

so-called pre-Lie Magnus expansion.

Remark 9. We may deduce a Magnus-type differential equation similar to (28) for the post-Lie

Magnus expansion (33), by differentiating exp∗
(
χ( f t)

)
= exp( f t) with respect to t. This results in

χ̇( f t) = dexp∗−1
−χ( f t)

(
exp∗(−χ( f t)) � f

)
, χ(0) = 0. (35)

4.2. Inverse Post-Lie Magnus Expansion. The inverse post-Lie Magnus expansion θ is the bijec-

tive map from
̂
L(T

pl

E
) onto itself given by the following formula:

θ( f ) = log
(

exp∗( f )
)

(36)

or

exp
(
θ( f )

)
= exp∗( f ). (37)

The homogeneous component θ(n) = θ(n)( f ) of degree n of the expansion

θ( f t) =
∑

k≥1

θ(k)( f )tk

is given by θ(1)( f ) = f and the following recursive formula [17]:

θ(n)( f ) =
1

n

( n−1∑

j=1

1

j!

∑

k1+···+k j=n−1

ki>0

(θ(k1)θ(k2) · · · θ(k j)) � f +

n−1∑

j=1

B j

j!

∑

k1+···+k j=n−1

ki>0

adθ(k1) · · · ad
θ

(k j) f

+

n−1∑

j=2

(( j−1∑

q=1

Bq

q!

∑

k1+···+kq= j−1

ki>0

adθ(k1) · · · adθ(kq)

) ( n− j∑

p=1

1

p!

∑

k1+···+kp=n− j

ki>0

(θ(k1)θ(k2) · · · θ(kp)) � f
)))
, (38)

where adθ(i)( f ) := [θ(i), f ], and the Bi’s are the Bernoulli numbers. The computation of the first θ(n)’s

is given in Appendix B.

Remark 10. The same fact, described in Remark 8, will be repeated again in the case of the inverse

post-Lie Magnus Expansion. In other words, the formula in (38) for the inverse post-Lie Magnus



12 MAHDI J. HASAN AL-KAABI, KURUSCH EBRAHIMI-FARD, AND DOMINIQUE MANCHON

expansion is reduced, in the case of commutative post-Lie algebras, to the inverse pre-Lie Magnus

expansion formula [1] described below. See also [16, 25].

W(x) :=
eL�[x] − 1

L�[x]
(x) =

∞∑

n=0

1

(n + 1)!
L

(n)
�

[x](x). (39)

Remark 11. Similar to Remark 9, we may deduce a Magnus-type differential equation similar to

(28) for the inverse post-Lie Magnus expansion [17, 19]

θ̇( f t) = dexp−1
−θ( f t)

(
exp(θ( f t)) � f

)
, θ(0) = 0. (40)

5. Post-LieMagnus Expansion and BCH-recursion

We now show that the Baker–Campbell–Hausdorff recursion driven by a weight λ = 1 Rota–

Baxter operator identifies with the Magnus expansion relative to the post-Lie structure naturally

associated to the corresponding Rota–Baxter algebra.

Theorem 12. Let
(
A,R

)
be a complete filtered Rota–Baxter algebra of weight λ = 1. We have the

following equality in Û(A) for any x ∈ A and t ∈ K:

exp∗(tx) = exp
(
− tR̃(x)

)
exp

(
− tR(x)

)
, (41)

where R̃ = −idA − R, and ∗ is the associative product defined in (11), using the post-Lie product

x � y = [R(x), y].

The proof of this theorem will rely on the following proposition:

Proposition 13. In any complete filtered Rota–Baxter algebra
(
A,R

)
of weight λ = 1, we have the

following identity in Û(A):

dn

dtn
exp

(
− tR̃(x)

)
exp

(
− tR(x)

)
= exp

(
− tR̃(x)

)
x∗n exp

(
− tR(x)

)
. (42)

Proof. The proof goes by induction. The base case k = 0 is trivial. For k = 1, we have in Û(A):

d

dt
exp

(
− tR̃(x)

)
exp

(
− tR(x)

)
= exp

(
t(idA + R)(x)

)
(idA + R)(x) exp

(
− tR(x)

)

− exp
(
t(idA + R)(x)

)
R(x) exp

(
− tR(x)

)

= exp
(
− tR̃(x)

)
x exp

(
− tR(x)

)
.

Now, suppose that the statement is true in the case k = n − 1, i.e.:

dn−1

dtn−1
exp

(
− tR̃(x)

)
exp

(
− tR(x)

)
= exp(−tR̃(x)) x∗n−1 exp(−tR(x)).

We then get:

dn

dtn
exp

(
− tR̃(x)

)
exp

(
− tR(x)

)
=

d

dt

dn−1

dtn−1
exp

(
− tR̃(x)

)
exp

(
− tR(x)

)

=
d

dt
exp

(
− tR̃(x)

)
x∗n−1 exp

(
− tR(x)

)

= exp
(
− tR̃(x)

)
(idA + R)(x) x∗n−1 exp

(
− tR(x)

)
− exp

(
− tR̃(x)

)
x∗n−1R(x) exp

(
− tR(x)

)

= exp
(
− tR̃(x)

) (
xx∗n−1 + R(x)x∗n−1 − x∗n−1R(x)

)
exp

(
− tR(x)

)
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= exp
(
− tR̃(x)

) (
xx∗n−1 + x � x∗n−1) exp

(
− tR(x)

)

= exp
(
− tR̃(x)

) (
x ∗ x∗n−1) exp

(
− tR(x)

)

= exp
(
− tR̃(x)

)
x∗n exp

(
− tR(x)

)
.

Which means that (42) is true for k = n, and it is true for all n ≥ 0. This ends the proof. �

Proof of Theorem 12. We have that:

dn

dtn
exp∗(tx) = x∗n exp∗(tx),

thus,
dn

dtn

∣∣∣∣∣
t=0

exp∗(tx) =
dn

dtn

∣∣∣∣∣
t=0

exp
(
− tR̃(x)

)
exp

(
− tR(x)

)
, for all n ≥ 0.

One can therefore conclude that both members of (41) do coincide as infinite formal series. �

Theorem 14. The post-Lie Magnus expansion χ, described in (33), coincides with the weighted

BCH-recursion χλ recursively given by (26), with weight λ = 1.

Proof. From Equation (27), specialized to λ = 1, and by setting θBCH := χ−1
1

, we obtain that:

exp
(
− θBCH(tx)

)
= exp

(
tR(x)

)
exp

(
tR̃(x)

)
(43)

in Û(A), which is equivalent to

exp
(
θBCH(tx)

)
= exp

(
− tR̃(x)

)
exp

(
− tR(x)

)
. (44)

From (36), (41) and (44) we have:

exp
(
θBCH(tx)

)
= exp∗(tx) = exp

(
θ(tx)

)
. (45)

Then the two θ’s, namely the inverse BCH-recursion in (44) and the inverse post-Lie Magnus ex-

pansion (45), do coincide. �
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Appendix A. Calculations on post-LieMagnus expansion

The first five elements of the post-Lie Magnus expansion are:

χ(1)( f ) = f

χ(2)( f ) = −
1

2
f � f

χ(3)( f ) =
1

12
f � ( f � f ) +

1

4
( f � f ) � f +

1

12
[ f � f , f ]

χ(4)( f ) = −
1

12

(
( f � f ) � ( f � f ) + ( f � ( f � f )) � f + (( f � f ) � f ) � f

)

+
1

24

(
[ f , f � ( f � f )] + [ f , ( f � f ) � f ]

)

χ(5)( f ) = −
1

720
f � ( f � ( f � ( f � f ))) +

1

144

(
( f � f ) � ( f � ( f � f )) − f � ((( f � f ) � f ) � f )−

f � (( f � ( f � f )) � f ) − f � ( f � (( f � f ) � f )) + 5 ( f � ( f � f )) � ( f � f ) +

5 (( f � f ) � f ) � ( f � f ) + 6 (( f � f ) � ( f � f )) � f + 3 (( f � ( f � f )) � f ) � f +

3 ( f � ( f � ( f � f ))) � f + 3 ( f � (( f � f ) � f )) � f + 3 ( f � f ) � (( f � f ) � f ) +

3 ((( f � f ) � f ) � f ) � f
)
+

1

180
[ f , [ f , f � ( f � f )] − f � ( f � ( f � f ))] −

1

120

[ f � f , f � ( f � f )] −
1

36
[ f , ( f � f ) � ( f � f )] −

1

72
[ f , f � (( f � f ) � f ) +

( f � ( f � f )) � f + ((( f � f ) � f ) � f ] −
1

360
[ f � f , [ f , f � f ]] +

1

720
[ f , [ f , [ f , f � f ]]]

Appendix B. Computations on the inverse post-LieMagnus expansion

Here, we calculate the first five inverse post-Lie Magnus elements:

θ(1)( f ) = f

θ(2)( f ) =
1

2
f � f

θ(3)( f ) =
1

6
f � ( f � f ) +

1

12
[ f , f � f ]

θ(4)( f ) =
1

24

(
f � ( f � ( f � f )) + [ f , f � ( f � f )]

)

θ(5)( f ) =
1

120
f � ( f � ( f � ( f � f ))) +

1

80
[ f , f � ( f � ( f � f ))]

+
1

720

(
[ f , [ f , f � ( f � f )]] − [ f , [ f , [ f , f � f ]]]

)

+
1

120
[ f � f , f � ( f � f )] −

1

240
[ f � f , [ f , f � f ]]
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