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Abstract

Although digital simulations are becoming increasingly important in the industrial

world owing to the transition toward Industry 4.0, as well as the development of digital

twin technologies, they have become increasingly computationally intensive. Many

authors have proposed the use of Machine Learning (ML) metamodels to alleviate this

cost and take advantage of the enormous amount of data that are currently available in

industry. In an industrial context, it is necessary to continuously train predictive models

integrated into decision support systems to ensure the consistency of their prediction

quality over time. This led the authors to investigate Active Learning (AL) concepts in

the particular context of the sawmilling industry. In this paper, a method based on AL

is proposed to combine simulation and an ML metamodel that is trained incrementally

using only selected data (smart data). A case study based on the sawmilling industry

and experiments are shown, the results of which prove the possible advantages of this

approach.

Keywords: Stream based Active Learning, K-Nearest Neighbors, simulation meta-

model, Sawmill, Smart Data, Artificial Intelligence

1 Introduction

The use of simulation and digital prediction tools to sustain both the integrated design of

production systems and factory management is of crucial importance when planning to

transition toward an industry of the future framework (European Factories of the Future

Research Association and others (2012)). On the one hand, market constraints and a

highly competitive commercial environment increase the need for such tools, whereas

on the other hand, the increased complexity of the production system induced by the

development of Industry 4.0 makes it necessary for the production facility to stay predictable,

analyzable, able to be simulated at all times, flexible and adaptable (figure 1). This should
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Figure 1: Development stages toward Industry 4.0. Source: FIR e.V. at RWTH Aachen

University

be managed despite an increasing tendency to decentralization induced by the adoption

of Cyber Physical Production System technologies (Monostori (2014)) and more generally

by modular manufacturing systems (Rossgoderer (2015)). In addition to modularity, these

systems introduce notions of connectivity, autonomy, and a dual view (physical and virtual).

Owing to these properties, as well as to the variety of virtual representations used in the

life cycle of both products and processes, the co-simulation of smart factories has become

increasingly credible. Authors such as Wu et al. (2015) demonstrate that this virtualization

and IoT technologies will facilitate information sharing through a virtualization of a closed

loop centered around the concept of digital twins (Bril El Haouzi (2017)).

Simulations are currently a widely accepted tool in the industrial world, and in particular,

Masood and Sonntag (2020) identify it as a key Industry 4.0 technology with low complexity

and high benefit for SMEs. Authors such as Salama and Eltawil (2018), however, have noted

their ever-increasing computational costs and have thus proposed a coupling with predictive

artificial intelligence metamodels, which can benefit from historical data and advances in

Machine Learning (ML) technologies. Similarly, Thomas and Thomas (2011) proposed

the use of a multilayer perceptron to reduce the simulation model of a sawmill workshop.

In addition, Nesrine and Henri (2019) used a simulation to completely generate a dataset

and train a neural network to drive decision making in the card based control system of a

manufacturing installation. All of these studies demonstrate in different ways the interest

of coupling simulations and ML models in an industrial context.

However, if unlabeled data are increasingly easy to gather, the labeled data necessary to
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train ML metamodels can still be a limiting factor because their production often implies

the intervention of an expert team or the use of a computationally intensive, gold standard

simulation. This is even more problematic when multiple classifiers must be trained

to correspond to multiple settings of the simulation or of the environment. A linked

example, albeit not in a simulation context, was presented by Htike and Hogg (2016),

who considered the problem of training multiple, context-dependent, pedestrian detectors

needed for autonomous cars. Among other solutions, they pointed toward Active Learning

(AL) as a promising research direction. This goal of efficiently using the data to train ML

models is also linked with the transition of a paradigm from big data to smart data, which

aims to leverage only useful data among the mass gathered by big data technologies (Iafrate

(2014)).

Active Learning is a field of Machine Learning, and deals with the selection of a small

subset of to-be-labeled individuals in an unlabeled database when the cost of labeling the

entire base is intractable. However, despite showing excellent results on multiple benchmark

datasets, Settles (2011) noted that Active Learning strategies had rarely been used in the

industrial world. They, additionally, noticed that empirical studies with real annotators

had mixed or negative results. They attribute this dichotomy to open challenges that were

rarely studied by the literature. An example of such problem is to consider settings where

the different classes in the classification problem are unknown. Recently, Abraham and

Dreyfus-Schmidt (2020) have interpreted the mistrust of the industry toward AL application

as being partially caused by the literature striving for ever increasing prediction scores, while

the industry has a higher interest in robust methodologies, performing at least better than

random strategies.

This paper explores a method, based on Active Learning concepts, to combine two main

technologies associated to industry 4.0: a simulator, considered as exact in this study but

computationally costly, and an ML classifier, less costly to use online but whose predictions

are only approximations of the simulator. More precisely, this study considers a case

inspired from the sawmill industry where sawing simulators are used to simulate the sawing

of logs using their 3D scans, that is, point clouds sampled from the log surface, and an ML

classifier that directly uses those scans to predict the results of the simulator. This method

is tested on a dataset provided by the Canadian forest wood industry, which contains a

particularly large number of labels with respect to the number of instances. Three elements

stemming from an industrial setup are important to consider when designing an Active

Learning strategy (figure 2). The first is the way it accesses the unlabeled data. Is there

an existing massive database or are the data generated by a stream? The second problem

is the actual classification problem that one wants to solve. Is it a binary or multi-class

problem? In addition, are the input data structured? The third is the notion of budget, that

is, which proportion of the unlabeled instances can be labeled. This proposed workflow

outline general principles that should be considered in any AL study and will guide us

to design the solution implemented in our simulated experiments. The remainder of this
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Figure 2: Proposed workflow

paper is structured as follows. Section 2 discusses the industrial context along with previous

studies on the development of ML metamodels for sawing simulators. Section 3 provides an

overview of the Active Learning concepts presented in figure 2. The AL method studied in

this paper is then described in Section 4. Section 5 provides details about the experimental

setup, the results of which are presented in Section 6. Finally, section 7 provides some

concluding remarks along with some perspectives regarding this research.

2 Sawing simulation in the wood industry

Sawmills process logs of varied lengths and shapes to produce lumber. This process is

described as divergent with a co-production because several products, each with potentially

different dimensions and grades, are produced at the same time from the sawing of a single

log (figure 3).

Owing to these characteristics, predicting in advance the set of lumber (called a basket of

products in the following) resulting from the sawing of a specific log, is a difficult problem.

This complicates the optimization of operational or strategic planning, as well as the running

of simulations needed to make long-term decisions, such as the remodeling of a sawmill,

or simply the acceptation of a command containing unusual products, since acceptation of

such a command would require the modification of mill setup and impact the whole mix

of lumber produced in a way difficult to predict (Wery et al. (2018)). However, the wood
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Figure 3: Breaking a log into a set of lumber. Morin et al. (2015)

industry has several sawing simulation tools at its disposal to tackle this issue. Examples

of such simulators include Optitek (FPInnovation), SAWSIM (HALCO software systems

ltd. ) and Autosaw (Todoroki et al. (1990)). Considering 3D scans of the exterior shape of

the logs, these simulators are able to digitally break it into a basket of products. However,

depending on the simulation setting required and the log considered, simulators may need

from a few seconds to 3 hours or more CPU time to determine the optimal breaking of a

single log, which renders them impractical in cases in which a large number of simulations

are needed. As an example of such an issue, Morneau-Pereira et al. (2014) proposed a mixed

integer programming (MIP) model using Optitek simulation results on a few sampled logs

to optimize the allocation of logs from cutblocks to sawmills. They reported that, although

the MIP can be solved within a few seconds, the simulation itself takes several hours.

Considering this problem, Morin et al. (2015) proposed replacing the simulators with

Machine Learning metamodels, which learn from the results of previous simulations and

are able to approximate the simulator output. They used six features describing the logs to

train several ML models, including random forest and k-Nearest Neighbor (kNN) classifiers.

In Morin et al. (2020), the same authors used those classifiers to generate data later applied

in a MIP model to optimize the log allocation from cutblocks to sawmills.

However, considering that these ML models use only six features describing the logs

while the simulator makes use of a full 3D scan, Selma et al. (2018) and Chabanet et al.

(2021) proposed an algorithm based on the iterative closest point algorithm (ICP) to compute

the similarity between log scans. These similarities were then used in a kNN classifier.

Whereas previous studies on both structured and unstructured data offer interesting

perspectives in terms of the computing time and prediction scores, they consider disposing

from the start of a labeled database used to train an ML model with the objective of fully

replacing the simulator. However, such ML metamodels are only applicable to a single

sawmill using one configuration. Its efficiency also depends on the input log distribution

staying stationary over time. Therefore, it is preferable to couple the simulator and the

ML classifier using AL concepts to continually improve the latter while alleviating the

computational cost of the former.
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3 Literature review on Active Learning

In this section, Active Learning concepts and scenarios common in the literature are re-

viewed, along with popular sampling strategies.

3.1 Definition

Active Learning can be defined as a field of artificial intelligence that considers the problem

of selecting only a few individuals from an unlabeled database. These instances are then

iteratively labeled and used to train an ML model, that is, a function that can yield a

prediction Ĥ for the label of an instance G. The main motivation is that, while huge,

unlabeled databases have become increasingly easier to produce with the development of

big data technologies, creating labeled databases remains time consuming and costly in some

cases, particularly when the labeling process involves human experts or computationally

intensive simulations. However, in the AL framework, only a few specific individuals are

selected to be labeled by an expert, called an Oracle, to train or improve an ML classifier.

From our reading, an efficient AL strategy should be able to train such a classifier so

that it is nearly as good as the model trained on the whole database by using only a fraction

of the available data. Here, "nearly as good" refers to the occurrence of an expected error.

Considering a loss function ; (H, Ĥ) that measures the cost of making an erroneous prediction

Ĥ instead of the true label H, an AL strategy should be able to train a predictive model ℎ�!

such that:

E(G,H) [; (H, ℎ�! (G)] < (1 + n)E(G,H) [; (H, ℎ"! (G)] , (1)

with E the probabilistic expected value of the loss ; over new data instances G with label H,

ℎ"! a predictive model trained on the whole dataset and n a small value.

3.2 Data access scenarios

Various studies have explored several ways in which an Active Learning engine can gain

access to a dataset, which are referred to as data access scenarios in this study for easy

differentiation from other AL concepts. Occasionally, however, they are also simply called

Active Learning scenarios in the literature. As identified in Kumar and Gupta (2020), the

data access scenario considered in the literature can be classified into three categories:

pool-based, stream-based, and membership query synthesis.

• Pool-based Active Learning (figure 4) occurs when the AL engine has access from

the start to a huge base of unlabeled data, and potentially of a small set of labeled

data. This database is not supposed to evolve, except for the addition of labels to

existing instances. Here, the AL engine goal is to select only a subset of the unlabeled

data to be labeled by the Oracle and included in the labeled database. This labeled
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database is simultaneously used by the ML engine to train and improve the ML

model. For example, Rastogi and Sharma (2019) propose to carefully select points

from a database to label them and train a Laplacian twin support vector machine,

which is a classifier able to learn from both labeled and unlabeled data. Similarly,

Martinez Arellano and Ratchev (2019) propose an application of pooled-based active

learning in an Industry 4.0 context. They study the use of Bayesian Neural Networks

for tool wear detection. The uncertainty of the prediction is, interestingly, measured

using Bayesian inference over the network parameters.

Figure 4: Explanatory diagram of pool-based Active Learning scenario

• Contrary to what occurs in a pool-based case, stream-based Active Learning (figure

5) strategies do not consider having access to the whole unlabeled database at once.

The new data instances arrive iteratively from an unlabeled data stream. The goal

of the AL engine considering the current state of the ML model is to then decide

whether to call the Oracle or not.

Figure 5: Explanatory diagram of the stream based Active Learning scenario

For example, Lughofer et al. (2015) proposed an active learning application based on

fuzzy classifiers to classify visual defects on micro fluid chips. An important point of

their study is the ability of the proposed model to incorporate on the fly new classes,

that is, new type of defects never observed before. More recently, Lowrance and
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Lauf (2019) proposed a comprehensive framework for developing the online Active

Learning of the wireless connection quality for mobile robots.

• In membership query synthesis based Active Learning (figure 6), no stream or existing

database is used. The AL engine generates query instances that are labeled by the

Oracle. This framework was first introduced by Angluin (1988), who considered the

problem of identifying an unknown subset from a larger universal set. However, a

disadvantage of this strategy is that it may be difficult for human experts to classify

artificially generated instances. To solve this issue, Wang et al. (2015) proposed a

framework merging a membership query synthesis scenario and a pool-based sce-

nario, where the AL engine generates an artificial query, but the one being labeled is

its nearest neighbor in a real database.

Figure 6: Explanatory diagram of the query synthesis

In addition to these scenarios, the AL process can either start from a small subset of

already labeled data or with no labeled data. The latter case is referred to as cold start.

As shown in figure 2, the determination of which scenario to use is highly dependent

on the application context. Pooled-based strategies are suitable when a huge unlabeled

database is already present and no concept drift or concept shift is expected. Concept drift

refers to the emergence of a new class or a change in the data generation process slowly over

time, while concept shift refers to a brutal change in the data. In such a case, the predictor

can be trained off line at one point in time and used consistently with no loss of prediction

accuracy.

However, if concept drift is expected, if new unlabeled data are continuously generated,

or if a single pass over the dataset is considered preferable due to computational limitations,

a stream-based strategy might be preferable. This study focuses on a stream-based scenario,

since it is more generally applicable than the pool-based case. However, while concept drift

is to be expected in the forest-wood industry on which this study is based, no drift or

shift was naturally present on the studied dataset. Therefore, in the last set of experiments

presented in this paper, concept shift has been simulated to assess its effect on the proposed

solution.
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Lastly, a membership query synthesis might be an interesting choice when even unla-

beled data are difficult to gather. However, in the case of a human the Oracle, a hybrid

strategy is preferable.

3.3 Budget

As emphasized in Settles (2011), the notion of budget is crucial for an Active Learning

strategy to be practical and accepted in an industrial context. What defines the budget

and the strategies proposed to avoid overspending may vary depending on the data access

scenario and industrial setup being considered. In a pool-based scenario, the budget is

often expressed as the maximum number of calls to the Oracle. A popular strategy, as

used in Gikunda and Jouandeau (2020), for example, is to iteratively select instances from

the unlabeled dataset, which maximize some criteria and adds them to the labeled dataset

until the budget is exhausted. In a stream-based scenario, it might be argued that a budget

over time, that is, a maximum proportion 1 ∈ [0, 1] of the stream instances to be selected

per time period, is more practical than a fixed budget. Indeed, if the stream is infinite but

the budget is fixed, the AL process will stop at some point in time when the budget is

exhausted, whereas the stream will continue indefinitely, rendering the adaptation of the

ML classifier to structural changes in the stream difficult. In Kottke et al. (2015), such a

budget is considered and the use of an adaptive threshold is proposed on some computed

quantity, which ensures that the Oracle budget is met within some tolerance window.

In addition, depending on the chosen ML classifier, an increase in the labeled database

size might also increase its training time (e.g., random forest classifier) or prediction time

(e.g., kNN). It might then be necessary to limit the size of the labeled database by dropping

the least interesting instances. In Kurlej and Woźniak (2011), such a design is implemented

by systematically dropping the oldest labeled instance, with the idea of helping a kNN

model adapt to sudden drifts in the data stream.

3.4 Overview of AL methods

Once the scenario, budget constraints, and classification problem have been identified, it

is necessary to develop an appropriate sampling strategy to select a subset of the available

instances. As shown in Figure 2, the final choice of this strategy should be motivated

by those characteristics. In an industrial context, it might also be important to choose an

interpretable model.

Numerous AL strategies have been reported in the literature. For example, uncertainty

sampling methods, introduced in Lewis and Gale (1994), is a natural heuristic for performing

AL when the ML classifier output can be interpreted as a probability distribution over the

labels given the features. An AL engine using uncertainty sampling queries instances that

are more uncertain, that is, when maxH ?(H |G) is below a certain threshold. For example,

Schmidt et al. (2016) propose an application in text classification. An unlabeled document
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is first classified by a precise but fixed SVM ensemble, which attributes a probability to each

of the document possible classes. If, however, the most probable class for the document is

under a decision confidence threshold, the document is classified by a single SVM which

is regularly trained on a database built using active learning principles. When this class

probability is additionally under a annotation confidence threshold, the document is added

to this classifier training database. A natural variant of uncertainty sampling, margin

sampling, is used in Schein and Ungar (2007) for example. Consider H and H′ as the most

probable and second-most probable classes for G. The margin is defined as ?(H |G)− ?(H′ |G),

and the instances sampled are those with the lowest margin.

Similarly, query-by-committee methods were introduced in Seung et al. (1992). This

method maintains a committee of several ML models and queries the Oracle in case of dis-

agreement among its members. Several methods have been used in the literature to measure

disagreement among committees. According to Settles (2009), two popular methods are

vote entropy and Kullback-Leibler divergence. A more straightforward methodology, used

for example in Rajpathak et al. (2020), is to train several classifiers, 8 in their case, and to

select instances leading to tie in the vote, that is, in this example, instances with 4 vote for

each class.

Whereas the former methods can be said to search for informative data points, other

methods search for representative points. For example, in Wu et al. (2006), an AL strategy

combining several criteria are proposed to measure the interest in selecting an instance,

including a measure of representativeness pushing for the selection of points in a dense

area of the input data space. Similarly, Wang et al. (2017) proposed an algorithm to build

clusters from an unlabeled database and select representative points for each cluster.

In Lughofer (2017), a family of methods based on soft computing is identified, which has

been gaining attention during the last few years. Similar to uncertainty sampling methods,

these strategies aim to quantify prediction uncertainty, but do not necessarily use the ML

model outputs to do so. This allows them to consider other sources of uncertainty. For

example, Kumar and Halder (2020) proposed an Active Learning strategy based on fuzzy

rough logic for the classification of cancer samples.

Whereas most of the above methods propose a heuristic to select the points, the ultimate

goal of the AL engine is to select data to reduce the prediction error of the ML model

being trained, as defined in equation 1. This is a difficult task, however, as it requires an

accurate estimation of the output probabilities without access to a test set of labeled instances

Chapelle (2005). In addition, as described in Dasgupta (2011), the Active Learning engine

may induce sampling bias in the labeled database, which means that the data distribution in

this database does not reflect the real data distribution. To bypass these problems, several

authors have proposed the use of Bayesian inference and sample weighting. See Kottke et al.

(2020) for an example of a pool-based model and Mohamad et al. (2018) for a stream-based

model.

In addition, an AL strategy should consider at least two sources of uncertainty. In
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Lughofer (2012), conflict and ignorance concepts are presented:

• A conflict occurs when an instance appears near the decision boundary between

classes.

• Ignorance occurs when an instance appears in a region of the input space that has not

been sufficiently explored or has not been explored at all.

In Bondu et al. (2010), an interpretation of similar concepts is proposed under the

exploration-exploitation framework. The AL engine should compromise between sampling

from unknown areas of the input space, that is, exploration, and sampling from an area

already known to increase the ML classifier performance there, that is, exploitation. A

model performing only exploitation might be extremely precise on a small area of the

input space and extremely imprecise everywhere else, whereas a model performing only

exploration might miss areas of the input space where the classifier performs poorly and

where more sampling is necessary.

4 Proposed method

Even if the proposed approach considers a particular problem from the sawmilling industry,

a generalization of that problem can be made, with minimal assumptions on the data

structures and class labels.

The data access scenario considered here is a stream-based one. Instances sampled

from a possibly ill-defined space B arrive one by one from a stream, and an AL engine has

to decide whether to call the Oracle and add the instances to a labeled database used to

train an ML classifier. The instances from the set B are not supposed to have any structure,

and therefore, can only be compared using a dissimilarity function, that is, a function

3 : B ×B ↦→ R, which intuitively measures the difference between two instances. No other

assumption was made for the dissimilarity function. In particular, neither symmetry nor

triangular inequality, which are properties of a valid distance, are required. In addition,

there is no consideration of having prior knowledge on the set . of possible classes, neither

on its size nor on the class probability distribution.

In this study, the Oracle is a simulator. Therefore, the instances whose classes were

attributed by the Oracle are considered to be the gold standard and stored in a database

used to further improve the ML model. A k-nearest neighbor classifier was used. A kNN

is well suited for the problem considered in this study because it allows the direct use of a

non-metric dissimilarity, and do not considers the extraction of a context dependent vector

of features.

A second advantage of kNN is that this algorithm belongs to the family of instance-

based classifiers. This means that it does not require any training phase, but directly uses a

database of known examples to make a prediction. Hence, the task of the ML engine is only

to add the instances selected by the AL engine to this example database. This also means,
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however, that the computational cost of making a prediction increases with the size of the

example database.

A last noticeable advantage is that a kNN classifier does not require prior knowledge of

the number of classes or their probability distribution. This is useful in the setup described

in the present paper because it does not consider any prior knowledge on the composition

of realistic baskets of products before running the simulation.

However, considering that this kNN classifier makes use of dissimilarities, which in

some cases can be relatively costly to compute, there is a real need to limit the growth of

the example database.

4.1 The kNN model

The kNN rule (Fix (1951)) is well known and commonly used in the industry owing to

its simple implementation and overall results. Given a set of labeled instances and a new

instance G with an unknown label, the kNN rule searches for the : instances (G1, ..., G:) that

are more similar to G, that is, the : instances with minimal dissimilarity. The class predicted

for G is as follows:

Ĥ = argmax
H∈.

1

:

:∑

8=1

1{H8=H} , (2)

where 1 is the indicator function and (H1, ..., H:) are the respective labels of (G1, ..., G:).

Therefore, the kNN rule predicts the most frequent class among : instances that are most

similar to G.

It is expected, however, that instances farther from the query will have a lower probability

of sharing its class than the closer ones. Some authors, for example Dudani (1976), rectify

this by weighting the instance votes with a function decreasing with the dissimilarity. In this

study, a similar approach was explored, which only considers a neighbor if its dissimilarity

with G is below some threshold C==. Such neighbors are later referred to as acceptable. The

prediction Ĥ then becomes the following:

Ĥ = argmax
H∈.

∑:
8=1 1{3 (G,G8)≤C== and H8=H}∑:

8=1 1{3 (G,G8)≤C==}
, (3)

where 3 is the dissimilarity. Therefore, the indicative function 1{3 (G,G8)≤C==} as a weight can

be seen as an extreme case of weighting scheme.

In this study, the dissimilarity introduced in Selma et al. (2018) is used. Figure 7 shows

the ratio of logs sharing the same basket as a function of this dissimilarity. As expected,

this ratio decreased rapidly with increasing dissimilarity.

In the remainder of this paper, the threshold C== is tuned to 250, which is approximately

the value at which the ratio is lower than 0.5.
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Figure 7: Ratio of pair of logs having the same basket, as a function of the ICP dissimilarity

between the logs

Furthermore, as the specificity of this dataset, each log belongs to one of three categories

depending on its length. These categories are different from the class labels. Therefore, the

neighbor search is restricted to logs from the same length category only.

When the set of acceptable neighbors is empty but for some reasons a prediction is

still needed for G, the modified kNN rule falls back to a simple 1NN rule, that is, the

predicted basket is the basket of the known instance that is more similar to the query G.

The conflict measure used in this paper as a measure of the predictor uncertainty cannot,

indeed, take more than : values. : needs, therefore, to be high enough to allow this

measure to differentiate multiple situations. However, the size of the example database used

by the kNN model to make its prediction is expected to remain small in our experiments.

Therefore, the value of : should be chosen to remain small compared with the size of this

database. No further optimization of : had been made. More experiments, however, have

been done, changing the value of : to 5 or 15. This had very little impact on the overall

results. Consequently, in the following, the parameter : is fixed to 10 as a reasonable value

considering the expected size of the built database and the way the prediction confidence is

measured.

4.2 Prediction confidence assessment

The kNN algorithm is not, by nature, probabilistic. However, numerous heuristics have

been proposed for measuring the uncertainty of its output. For example, Delany et al. (2005)

proposed 5 confidence measures, and Cheetham and Price (2004) proposed 12.

In this study, two measures of uncertainty were chosen, one adapted to measure the

ignorance and the other to measure the conflict.
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Figure 8: Example of an application of the AL strategy.

The ignorance measure is the inverse of the distance from G to its nearest neighbor in

the example database.

D86= (G) =
1

min1<8<: (3 (G, G8))
, (4)

The conflict measure is defined as the margin between the two most frequent classes

among the k-Nearest Neighbors of G used by the modified kNN classifier, that is, those with

a dissimilarity lower than C==. More precisely, first consider ?1 as follows:

?1 =

∑:
8=1 1{H8=Ĥ and 3 (G,G8)<C==}∑:

8=1 1{3 (G,G8)<C==}
. (5)

Similarly, consider ?2 as the score of the second most frequent class:

?2 = max
H∈.\{Ĥ}

∑:
8=1 1{H8=H and 3 (G,G8)<C==}∑:

8=1 1{3 (G,G8)<C==}
, (6)

The conflict measure is as follows:

D2>= 5 = ?1 − ?2 (7)

This measure is used as follows. Consider two thresholds C86= and C2>= 5 (these thresholds

can either be fixed in advance based on prior knowledge or adjusted over time to ensure

that the budget is respected). When D86= (G) < C86= or D2>= 5 (G) < C2>= 5 , the Oracle is called

for the new instance G, and the result is added to the example database. If the Oracle is

not called, the class predicted for G is given by the modified kNN presented in the previous

section.

Figure 8 presents an example of the threshold usage. The query instance is represented

by a cross and is surrounded by instances from three classes, circle, square, and star. Among

these instances, seven are acceptable, i.e., have a dissimilarity lower than the threshold C==.

Here, 3<8= is the minimum dissimilarity among the neighbors. The two more frequent
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Algorithm 1 Application of the use of the ignorance and conflict measures to decide whether

to send a new instance to the Oracle.
Input New instance G, a database B

Output toAdd, Boolean, whether to add G to B or not

kNearestNeighbors← list of k elements in B most similar to G

acceptableNeighbors←∅

toAdd← FALSE

for nn in kNearestNeighbors do

if Dissimilarity(x, nn) < C== then

add nn to acceptableNeighbors

end if

end for

D_86=← D86= (G,B)

D_2>= 5 ← D2>= 5 (G, acceptableNeighbors)

if D_86= < C86= OR D_2>= 5 < C2>= 5 then

toAdd← TRUE

end if

return toAdd

classes are circle and star, with a margin of 4
7
− 2

7
= 0.286. The cross query is sent to the

Oracle if and only if 0.286 < C2>= 5 or 1
3<8=

< C86=.

4.3 Budget

This study runs four set of experiments. The first two sets of experiments do not consider

any notion of budget and use fixed ignorance and conflict thresholds. However, this would

be considered unsatisfactory in most industrial contexts. As previously described, budget

management is, indeed, particularly important in such a case. The third and fourth set of

experiments will, therefore, introduce a simulation budget, which will also be considered

in the last set of experiments assessing the impact of concept shift. More precisely, the

coupling of an ML classifier and a simulator requires to take into consideration the maximum

simulator capacity. Inspired by the methodology presented in Kottke et al. (2015), the

following extension is proposed to ensure that the budget will not be exceeded, that is, that

no more instances will be sent to the simulator-oracle than can be simultaneously managed.

Consider 1C as the ratio of free slots in the simulator at time step C. The thresholds C86= and

C2>= 5 will be adjusted such that, for an incoming instance G, the probability of sending it to

the Oracle is lower than 1C ; that is, P(D86= (G) < C86= or D2>= 5 (G) < C2>= 5 ) < 1C . Therefore,

when no free slot is available, 1C = 0 and the probability of sending a new instance to the

Oracle is null. However, it is also desirable to keep P(D86= (G) < C86= or D2>= 5 (G) < C2>= 5 )

sufficiently high such that the simulator does not remain unused. Multiple choices of C86=

and C2>= 5 satisfy these constraints. To select only one, a hyperparameter U ∈ [0, 1] is

introduced, which can be seen as a measure of the relative importance accorded to the
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ignorance measure, compared with the conflict measure. The thresholds C86= and C2>= 5 are

then chosen as the quantiles at level U1C over the distribution of D86= and at level (1 − U)1C

over the distribution of D2>= 5 . Then, by definition of the quantile,

P(D86= (G) < C86= or D2>= 5 (G) < C2>= 5 ) ≤ P(D86= (G) < C86=) + P(D2>= 5 (G) < C2>= 5 )

≤ U1C + (1 − U)1C (8)

≤ 1C .

As in Kottke et al. (2015), the quantiles were estimated on a sliding window on the past

data from the stream. It is expected that this estimate may be biased, as the distributions

of D86= and D2>= 5 are expected to vary over time with the addition of new instances to the

example database. However, this strategy ensures that the simulator will not be overloaded.

However, it should be noted that the conflict measure D2>= 5 can only take values in a

finite set. Considering that the conflict threshold being defined has a quantile that often takes

one of those values, the strict inequality comparison seemingly leads to an under sampling

of the stream, particularly for small values of U. This behavior was corrected using the

following scheme. When D2>= 5 (G) = C2>= 5 , consider 3? = (1−U)1C −P(D2>= 5 (G) < C2>= 5 ).

The instance G is sent to the simulator according to the value of a Bernoulli random variable

of parameter 3?.

An overall summary of the complete proposed method is presented figure 9. In this

figure, the budget is represented as a number of free slots in the simulator, or free capacity

2C . The two notions are linked by the formula 1C =
2C

#B;>CB
where #B;>CB is the maximal

capacity of the simulator.

Figure 9: Outline summary of our proposed method
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5 Experiments setup

The strategy described in the previous section was simulated using the programming lan-

guage Python, with a 3D scan dataset supplied by the Canadian wood industry. The

following is a detailed description of the database and an evaluation of the scores.

5.1 Log database

The database used in this paper contains 1207 3D scans of logs (figure 10), as well as their

associated baskets of products simulated by the software Optitek. As said earlier, these logs

can be separated into three length classes. The very short logs have a length under 2.48 m.

shorts logs are defined as having a length between 2.48 m and 3.5 m. The vast majority

of them, however, have a standard length of 2.5 m. Similarly, long logs are defined has

having a length above 3.5 m and have, in nearly all cases, a standard length of 5 m. The 19

different types of lumber appearing in the database are numbered from 1 to 19, and each

basket is represented by a vector of length 19, where the element in position 8 is the amount

of product 8 resulting from the breaking of the log. It should be noted that, because no

basket contains more than five different kinds of products, such vectors are sparse.

Figure 10: Example of a 3D scan of a log.

The base contains up to 105 different types of baskets, including 72 that appear only

once because of their rarity and the size of the database. Each basket was considered a class

in the classification problem. Because our goal is to create a metamodel of the original

simulator, that is, the Oracle, these rare labels are not considered as outliers.

The scans are composed of a succession of ellipsoids, which together sample the log

surface. However, some scans initially contained missing sections, that is, parts without

ellipsoids. These sections were filled by repeating the ellipsoid that immediately preceded

them.
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5.2 Evaluation scores

To evaluate and compare the performances of the different ML classifiers, a score must be

defined. In Morin et al. (2015), the prediction-production score is specifically introduced

for the problem of evaluating ML models that predict the log baskets of products.

Consider H as the real basket of products of a log, and Ĥ as the predicted basket of

products. Because both H and Ĥ are sparse, including all (0, 0) real/predicted pairs would

bias the score optimistically. Hence, all such (0, 0) values are removed. The new length of

the vectors is denoted by ?.

The production score is introduced as follows:

B?A> =
1

?

?∑

8=1

min(1,
H8

max(n, Ĥ8)
), (9)

where H8 and Ĥ8 are the 8Cℎ components of vectors H and Ĥ, respectively, and n is a small

value to avoid dividing by zero.

The prediction score is similarly defined as follows:

B?A4 =
1

?

?∑

8=1

min(1,
Ĥ8

max(n, H8)
). (10)

The production score can be seen as the proportion of the prediction that is effectively

produced, whereas the prediction score is the proportion of the production that is correctly

predicted.

The prediction-production score is then naturally defined by the following:

B?A4×?A> = B?A4 × B?A> . (11)

The evolution of the kNN performance is monitored as the stream progresses using the

accumulated B?A4×?A>: �(?A4×?A>. This accumulated score allows following the evolution

of the performance profile of the classifier with respect to the stream advancement, as

recommended in Lughofer (2017) for short stream simulations.

The value of �(?A4×?A> is initially set to zero. Then, whenever a new log appears in

the stream, a prediction Ĥ is always performed using the current example database, before

potentially completing this database with the new log depending on the result of the AL

rules.

The accumulated score is then updated using the following formula:

�(?A4×?A>
=

�(?A4×?A> (8 − 1) + B?A4×?A>

8
, (12)

with i being the number of previous updates.

When not working under budget, ��(?A4×?A> is introduced as a version of the accu-

mulated score and is only updated when the log is not sent to the Oracle and is therefore
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not added to the database. In this case, the growth of the database was also monitored.

Similarly, when working under budget, ��(?A4×?A> is introduced, which is either updated

with 1 when the log is sent to the Oracle, and B?A4×?A> when it is not. A strategy with a

higher ��(?A4×?A> is better at dispatching incoming instances between the simulator and

the ML classifier under budget constraints.

The second performance measure considered in this study is the number of classes

present on the example dataset at the end of the stream. This measure is not directly linked

to the prediction score. It is, however, a measure of the effectiveness of the exploration

of the input data space by the AL strategy. This stems from the idea that a strategy with

a better exploration is expected to be, in general, more robust against a potential concept

shift. Such a measure is considered in Mohamad et al. (2018) under section class discovery

performance.

6 Results

In this section, four sets of experiments are described. First, no budget restrictions are

considered. Therefore, the thresholds are set to fixed values. The example database used

by the kNN classifier is initially empty, and the logs are considered individually in random

order to simulate a stream. Three models were considered in this study. One model adds

all instances from the stream to the example database. One model adds only the instances

whose ignorance measure is lower than C86=. The third model selects instances when the

ignorance measure is lower than C86= or when the conflict measure is lower than C2>= 5 .

A second set of experiments repeated the previous experiment 100 times and considered

the influence of the stream order.

The third set of experiments considers the budget with the strategy presented in Section

4. To avoid problems at the beginning of the stream, the example database is initialized

with one log at random per category of length. These logs are, therefore, removed from the

stream. This experiment was repeated 100 times for different stream orders.

The last set of experiments consider a set up similar to the third set of experiments. In

particular, budget is considered and managed with the same strategy, presented in section 4.

Contrary to what is done in the third set of experiment, however, concept shift is introduced

here. More particularly, long logs are only included in the stream after the first 600 time

steps.

6.1 Experiment with no budget

This section focuses on the results of the simulation for one random ordering of the stream.

Rather than an independent set of experiments over an implementable solution, this section

should be seen as an example of what happen in a particular case to gain insight over

the mechanics at play. Budget is not considered yet, so that the base can freely grow.
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The conflict threshold is set to C2>= 5 = 0.3, as previous experiments make it appears an

interesting compromise between database growth and prediction score. Further details

about these experiments and the roles of the thresholds will be given in the next section.

The ignorance threshold is, similarly, set to C86= =
1

250
, that is, C86= =

1
C==

. In this particular

case, the modified kNN rule never has to fall back to the 1NN rule because the Oracle is

called whenever no neighbors have a dissimilarity lower than C==.

Figure 11: Evolution of �(?A4×?A> with the progress of the stream for three AL models.

Figure 11 shows the evolution of the accumulated score with the progress of the stream.

Here, the next instance is always predicted by the modified kNN rule, whether sent to the

Oracle or not. For readability, the plot starts only after the first 50 instances have passed in

the stream. The experiment was conducted on the three models. The first considers only

the ignorance measure and therefore performs only an exploration on the input data space.

The second experiment considers both ignorance and conflict thresholds, whereas the third

experiment adds all instances from the stream to the example database for future predictions.

As can be seen, there is little difference between the three accumulated score curve profiles.

They all grow rapidly at the beginning of the stream before stabilizing around similar final

values. However, the curves for the models using thresholds are slightly lower than those of

the model that adds all examples to the labeled database. A symmetric Wilcoxon signed rank

test between the scores of the last 500 predictions of the model when adding all instances

of the model using the ignorance threshold shows a p-value of 0.02, which is statistically

significant at the 5% confidence level. However, the p-value of the test between the model

when adding all instances and the model using both ignorance and the conflict threshold

was 0.51.

More importantly, a significant difference can be observed between the model manage-

ment of the example database in Figure 12. This figure shows the growth of the example
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Figure 12: Growth of the example database with the progress of the stream for two AL

models.

database for the models using either the ignorance rule only, or both the ignorance and con-

flict rules. Whereas the model adding all examples to the labeled database is not presented

for clarity, its curve would be a straight line H = G. As can be seen from this figure, however,

at the end of the stream, the model using both rules selects only 45% of the instances,

whereas the model using the ignorance rule alone selects only 39%. Considering that the

nearest neighbor search in this study uses brute force because the data input does not belong

to a vector space, and therefore has a linear prediction cost with respect to the size of the

example database, reducing this base, as was applied herein, reduces the prediction cost by

a similar amount.

Figure 13: Evolution of ��(?A4×?A> with the progress of the stream for two AL models.
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The benefit of the conflict rule is shown in Figure 13. This figure shows the evolution

of ��(?A4×?A> as the stream progresses, i.e., the evolution of the accumulated predic-

tion/production score when it is only updated with the prediction/production scores of the

predicted class of instances not sent to the Oracle. In this case, the model that adds all

aspects to the example database cannot be considered because ��(?A4×?A> would never be

updated. Here, whereas the evolution of the scores is less stable than in Figure 11, the curves

are clearly separated, with the model using the conflict rule having a final score higher than

a model that does not. The difference was found to be statistically significant based on a

Mann-Whitney U test. Hence, in this case, the conflict rule is effective at detecting instances

that would be poorly predicted by the current kNN model.

6.2 Influence of stream order

To study the influence of the stream order, the experiment carried out previously was

repeated 100 times for 100 random orders in the stream. The end values of �(?A4×?A> of

��(?A4×?A> and of the example database size were stored for each repetition. The total

number of classes in the example database was also recorded. These values are listed in

Table 1.

tign tconf ASpre×pro AASpre×pro Example database size Number of classes

1
200

Not used 77.8 ± 0.1 86.3 ± 0.2 577 ± 1 105.0 ± 0

0.1 77.9 ± 0.1 88.4 ± 0.2 620 ± 2 105.0 ± 0

0.3 78.2 ± 0.1 92.4 ± 0.2 707 ± 3 105.0 ± 0

0.5 78.3 ± 0.1 96.1 ± 0.1 807 ± 2 105.0 ± 0

1
250

Not used 76.2 ± 0.2 81.7 ± 0.3 355 ± 1 101.0 ± 0.2

0.1 77.5 ± 0.2 85.5 ± 0.2 426 ± 3 101.4 ± 0.2

0.3 77.8 ± 0.1 88.9 ± 0.2 534 ± 4 101.5 ± 0.2

0.5 78.2 ± 0.1 91.8 ± 0.2 655 ± 4 101.7 ± 0.2

1
300

Not used 74.8 ± 0.4 78.7 ± 0.5 234 ± 1 88.4 ± 0.4

0.1 76.8 ± 0.2 82.5 ± 0.3 300 ± 3 88.5 ± 0.4

0.3 77.1 ± 0.2 84.7 ± 0.3 392 ± 5 88.6 ± 0.4

0.5 77.5 ± 0.2 86.5 ± 0.3 504 ± 6 88.8 ± 0.4

add all 78.5 ± 0.1 - 1207 105

Table 1: Accumulated scores, example database size, and number of classes discovered

at the end of the stream, averaged over 100 runs of the experiment, with random stream

ordering.
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The experiments were repeated for three different ignorance thresholds C86= and three

conflict thresholds C2>= 5 . In addition, the table also contains the results for AL models using

only the ignorance rule. They correspond to the models marked "Not used" in the C2>= 5

column.

As the first remark, the end of the stream accumulated scores of the AL models are on

average nearly as good as the model that adds every instance from the stream to the example

database. However, they are not as good as this last model, as confirmed by the Wilcoxon

signed-rank tests between the end of the stream values, with a confidence level of 5%.

However, the worst accumulated score, 74.8%, also corresponds to the model with the

most reduced example database. Indeed, 234 logs were selected, which corresponds to only

29% of the total stream. The AL model with the highest example database is, unsurprisingly,

the model with the highest ignorance threshold, C86= =
1

200
, and the highest conflict threshold

C2>= 5 = 0.5, as they increase the sensitivity of the rules. The size of the example database

in this case is 807 logs, which corresponds to a reduction of approximately 33% with the

initial model. Despite selecting fewer samples, the AL models are efficient at detecting

new classes. Indeed, by the end of the stream, at least 95 different classes are present in

the example database, out of a total of 105 present in the entire dataset. The models with

the lowest ignorance threshold systematically selected at least one instance of each class.

For comparison, a set of 807 logs sampled randomly from the entire database contains on

average only 80 different classes. Similarly, a random set of size 234 contains only 34

classes.

In addition, the average accumulated scores updated only for instances not added to the

example database, ��(?A4×?A>, is always higher than the average accumulated score for all

instances from the stream, �(?A4×?A>. In fact, they are always higher than the maximum

value of �(?A4×?A> obtained for the model that adds all components to the example database.

The only model for which this difference is not statistically significant is the model using

C86= =
1

300
and no C2>= 5 , with a p-value of the Wilcoxon test at 0.5. Therefore, the proposed

set of rules is efficient at detecting instances from the stream that would be poorly predicted

by the current model, sending them to the Oracle.

Concerning the threshold role, a higher conflict threshold for a fixed ignorance threshold

coincides on average with a higher end of stream ��(?A4×?A>, as confirmed using Wilcoxon

signed rank tests. Similarly, this results in a higher �(?A4×?A>. A higher ignorance threshold

for a fixed conflict threshold also results in a higher ��(?A4×?A> and �(?A4×?A>.

However, it can be observed that when C86= or C2>= 5 increases, the size of the example

database also increases because higher thresholds mean that the Oracle is called more often.

6.3 Budget experiment

In this section, a budget limitation is added to the simulation using the strategy defined in

Section 4. The number of steps needed to obtain the result of the simulation was fixed to

20, and the number of slots in the simulator was fixed to 10, and thus no more than half of

23



the instances from the stream could possibly be sent to the simulator. The experiments were

run for five values of parameter U. For U = 0, only the conflict measure is used. For U = 1,

only the ignorance measure is used. For U = 0.3, 0.5, and 0.7, both measures are used but

are more or less important. For comparison, a greedy strategy to dispatch logs between the

simulator and classifier is also considered, i.e., whenever a slot is free in the simulator, the

next instance is sent to fill it.

U AASpre×pro BASpre×pro Example

database size

Number

of classes

Average

simulator use

0 79.5 ± 0.2 86.6 ± 0.1 412.2 ± 0.7 20.2 ± 0.7 6.5 ± 0.1

0.3 83.4 ± 0.2 89.1 ± 0.1 412.2 ± 0.7 69.9 ± 0.7 6.5 ± 0.1

0.5 84.0 ± 0.2 89.5 ± 0.1 409.2 ± 0.78 84.6 ± 0.7 6.5 ± 0.1

0.7 83.8 ± 0.2 89.3 ± 0.2 403.4 ± 0.9 93.4 ± 0.6 6.3 ± 0.1

1 81.6 ± 0.3 87.8 ± 0.2 400.0 ± 0.7 98.7 ± 0.4 6.3 ± 0.1

Greedy

strategy
77.8 ± 0.2 88.9 ± 0.2 597.0 ± 0 65.1 ± 1 9.5 ± 0.1

Table 2: Accumulated scores, example database size, number of classes discovered at

the end of the stream, and average number of occupied slots in the simulator, averaged over

100 runs of the experiment, with random stream ordering.

Table 2 presents the results of the simulations: The average end of stream ��(?A4×?A>,

which measures the performance of the kNN model alone, the average end of stream

��(?A4×?A>, which measures the global performance of the couple simulator-ML classifier,

the average end size of the example database, the average number of classes discovered, and

the average number of occupied slots in the simulator along the whole stream.

As can be seen, the strategy using only one of the conflict and ignorance measures, that

is, for U = 0 or U = 1, underperforms in terms of both ��(?A4×?A> and ��(?A4×?A> when

compared with models using both measures. In particular, the model using only the conflict

measure has the worst accumulated scores among all non-greedy models. It also discovers

far fewer classes than the other, i.e., 20 classes on average against more than 65 for all the

others, despite sending in slightly more instances to the simulator and example database on

average.

Among the models using both measures, U = 0.5 yields slightly better results than the

others. This difference was rarely found to be statistically significant, however, because

when repeating the Wilcoxon test under the hypothesis in which the "prediction production

score for U = 0.3 is less than the prediction/production score on the same instance for

U = 0.5", with simulation prediction scores equal to 1, the p-value was never lower than the

(Bonferroni corrected) level of 0.0005; in addition, it was under the non-corrected threshold

for only four of the experiments.
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All models have a similar management of the number of occupied slots and database

growth. Indeed, they all use an average of 6 out of 10 slots of the simulators, whereas the

size of the example database at the end of the stream is approximately 400.

Figure 14: Average number of used slots in the simulator as a function of time, for each

value of the parameter U

The greedy strategy, despite having a decent average end of stream ��(?A4×?A> of

higher than U = 1 but lower than U = 0.3, has the worst ��(?A4×?A> among all models

considered. Indeed, the example base used by the kNN classifier is built this time at random

and therefore does not perform as well as the kNN using the selected example base.

Figure 14 exposes the averaged number of occupied simulator slots for each step of

the stream and value of U. For clarity, the plot was stopped after 600 time steps, but the

curves keep going as expected. As can be seen, this figure can be separated into a transient

state, where the kNN and distributions used for the computation of the quantile threshold

are set up, and a steady state. The differences observed between different values of U can

be, at least in part, explained by the correction 3?. This correction, indeed, push to select

instances with a probability closer from 1C during the set up time where the quantiles are

ill-defined. However, in the steady state, the average simulator usage is stable and appears

independent of the value of U. This might be different, however, in the presence of concept

drift, which might be expected to trigger a higher use of the simulator.

6.4 Impact of concept shift

This section presents the results of experiments with concept shift. The notion of budget is

considered and managed as in the previous section. Concept shift is similarly introduced,

and simulated as follow: As explained in section 5.1, the logs present in the studied dataset

belong to three length classes. For the 600 first iterations of the stream, the logs are selected
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randomly among the very shorts and shorts logs only. After the 600Cℎ time step, logs are

chosen among the all the ones not already passed in the stream, including the long logs.

U AASpre×pro BASpre×pro Example

database size

Number

of classes

Average

simulator use

0 78.7 ± 0.2 86.0 ± 0.1 409.9 ± 0.7 17.0 ± 0.5 6.5 ± 0.1

0.3 82.4 ± 0.2 88.5 ± 0.1 411.9 ± 0.8 60.5 ± 0.7 6.5 ± 0.1

0.5 83.5 ± 0.2 89.2 ± 0.1 402.7 ± 0.8 79.1 ± 0.6 6.5 ± 0.1

0.7 83.5 ± 0.2 89.0 ± 0.2 402.7 ± 0.9 89.5 ± 0.6 6.4 ± 0.1

1 81.9 ± 0.3 88.0 ± 0.2 401.2 ± 0.8 95.8 ± 0.4 6.3 ± 0.1

Greedy

strategy
77.6 ± 0.2 88.8 ± 0.1 597.0 ± 0 64.7 ± 0.8 9.5 ± 0

Table 3: Accumulated scores, example database size, number of classes discovered at

the end of the stream, and average number of occupied slots in the simulator, averaged over

100 runs of the experiment, with random stream ordering. Concept shift is included in these

tests.

Table 3 presents the same scores used in the previous section. The difference lays in the

simulation of data drift in this set of experiment. These scores are, unsurprisingly, similar

to what was obtained in the previous set of experiments, albeit slightly lower in general.

Figure 15: Average number of used slots in the simulator as a function of time, for each

value of the parameter U. Long logs are introduced from the step 600 only.

Figure 15 appears, in that aspect, of higher interest. This figure is similar to figure 14

and shows the average number of occupied slots in the simulator for each time step. The
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influence of the concept shift is visible from the simulator usage increase, for a short period

following the appearance of long logs in the stream. This effect is similar for all values of

the parameters U, except for U = 0, for which no such increase in the number of occupied

slots is observed. This is not surprising considering that for U = 0, only the conflict measure

is used, which will not be able to immediately detect the apparition of logs very dissimilar

with the ones previously seen in the stream.

7 Conclusion and limitations

In this paper, an application of an Active Learning concept was proposed to couple two

technologies pushed by the transition toward Industry 4.0, by adding one of the mains

industry of the future capabilities: predictive capacity to anticipate and react to changes and

avoid potential issues. More precisely, a simulator and an ML classifier were coupled. Log

scans from a stream were dispatched to one or the other to ensure a high prediction quality

of the ML classifier and reduce the number of calls to the costly simulator. Furthermore,

the logs sent to the simulator were used to improve the classifier.

It was shown that, when budget limitations are not considered, the method presented

in this paper allows the training of a kNN on a fraction of the log scans with nearly as

high of an accumulated score than the kNN which adds all instances from the stream to its

example database. In addition, the accumulated score computed only over instances that

were not added to the database was significantly higher than the accumulated score over

the predictions of all instances from the stream. Therefore, the set of measures used in this

study can be considered efficient at detecting instances that would be poorly predicted by

the kNN, sending them to the simulator instead.

Similarly, when working under a budget, the method presented in this paper can lead

to global accumulated scores of over 89% and kNN scores of over 83% on the effectively

predicted examples while reducing the number of logs sent to the simulator by a controlled

amount.

However, there are some limitations to this study. In particular, the choice of the

hyperparameters U for the AL strategy and C== for the kNN rule are far from easy to achieve,

particularly at the beginning of the stream when no information is known on the log scan

properties. Whereas it appears from these experiments that the choice of U has little

influence on the results as long as both the ignorance and conflict measures are used, this is

not a given and might be different for another application. These parameters could, however,

be initialized to reasonable values, for example U = 0.5, to balance the exploitation and

exploration, and C== = +∞ to start with a standard kNN rule, and evolve over time according

to the system results.

The cost of making a prediction using the kNN model considered in this study is bound

to increase as the example database is continuously gathered. Further studies will therefore

focus on either limiting the maximum size of the database, using an approximate version of
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the classifier, for example with a similarity graph, or by using other ML classifiers able to

apply dissimilarity inputs.
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