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Combining national forest inventory (NFI) data with auxiliary information allows downscaling and improving the precision of NFI estimates for small domains, where normally too few field plots are available to produce reliable estimates. In most situations, small domains represent administrative units that could greatly vary in size and forested area. In small and poorly sampled domains, the precision of estimates often drop below expected standards.

To tackle this issue, we introduce a downscaling algorithm generating the smallest possible groups of domains satisfying prescribed sampling density and estimation error. The binary space partitioning algorithm recursively divides the population of domains in two groups while the prescribed precision conditions are fulfilled.

The algorithm was tested on two major forest attributes (i.e. growing stock and basal area) in an area of 7,500 km 2 dominated by hardwood forests in the centre of France. The estimation domains consisted in 157 municipalities. The field data included 819 NFI plots surveyed during a 5 years period. The auxiliary data consisted in 48 metrics derived from a forest map, photogrammetric models and Landsat images. A model-assisted framework was used for estimation. For each forest attribute, the best model was selected using a best-subset approach using a Bayesian Information Criteria. The retained models explained 58 % and 41 % of the observed variance for the growing stocks and basal areas respectively. The performance of the algorithm was evaluated using a minimum of 3 NFI points per domain and estimation errors varying from 10 to 50 %.

For a target estimation error set to 10 %, the algorithm led to a limited number of estimation domains (< 23 for both attributes) of large size (~ 15,000 ha) having an average estimation error lower than 7.7 % for both attributes. Relaxing the targeted error threshold to 50 % led to a larger amount of smaller domains (80 domains of 4,176 ha in average) for both attributes, and maximum estimation errors reaching 42.8 %. Among those domains 65 % consisted in single municipalities. For the sake of comparison, the estimation was also conducted at the scale of municipalities. Out of the 157 municipalities studied, only 93 were sampled with at least 3 NFI points and therefore estimated.

Missing values were generated for the remaining 64 municipalities. Average errors of 15.9 % and 15.6 % were obtained for growing stock and basal area respectively, but estimation errors greater than 50 % were obtained for some municipalities.

The algorithm provides a flexible estimation framework for small area estimation. The key advantages of the approach are relying on its capacity to produce estimations based on a preselected precision threshold and to produce results over the whole area of interest, avoiding areas without any estimates. The algorithm could also be used on any kind of polygon layers (not only administrative ones), provided that the field sampling design enable estimation. This makes the proposed algorithm a convenient tool notably for decision makers and forest managers.

Introduction

National Forest Inventories (NFIs) are designed to produce estimates and associated confidence intervals of forest attributes over scales ranging from the national down to the regional levels [START_REF] Haakana | Precision of exogenous post-stratification in small-area estimation based on a continuous national forest inventory[END_REF]. Below those scales, the properties of the estimation domains (i.e. a computation area) are too sparsely sampled and the precision of estimates decreases [START_REF] Coelho | A spatial unit level model for small area estimation[END_REF]. In most countries, this decrease in precision prevents from using NFI estimates to support decision-making at the scale of functional territories, at which management strategies are applied.

Precision improvements can be achieved through the combined use of NFI data with auxiliary information correlated with the forest attributes of interest. Such a combination has a long tradition in forest inventories, with the use of aerial photographs in two-phase sampling designs for improving estimation of both forest area and attributes. With the development and the diversification of auxiliary data sources, mainly driven by remote sensing technologies, such data combination approaches have been grouped under the term of multisource national forest inventory (MS-NFI) [START_REF] Tomppo | Combining national forest inventory field plots and remote sensing data for forest databases[END_REF].

The development of 3D remote sensing, especially airborne laser scanning [START_REF] Kangas | Remote sensing and forest inventories in Nordic countries -roadmap for the future[END_REF][START_REF] Nilsson | A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory[END_REF]) and digital photogrammetry [START_REF] Irulappa | Increasing Precision for French Forest Inventory Estimates using the k-NN Technique with Optical and Photogrammetric Data and Model-Assisted Estimators[END_REF]Vega and St-Onge, 2008), contributed to enhance precision gains, due to their high correlation with the forest attributes of interest when used as auxiliary variables [START_REF] Hill | A Double-Sampling Extension of the German National Forest Inventory for Design-Based Small Area Estimation on Forest District Levels[END_REF]. Such precision gains allow to downscale estimates of key forest attributes to small domains for which the sample size is normally too small to provide reliable estimates based solely on field plots [START_REF] Tomppo | Combining national forest inventory field plots and remote sensing data for forest databases[END_REF][START_REF] Vandendijck | Model-based inference for small area estimation with sampling weights[END_REF]. Those small domains often correspond to administrative areas such as municipalities [START_REF] Breidenbach | Small area estimation of forest attributes in the Norwegian National Forest Inventory[END_REF][START_REF] Tomppo | Combining national forest inventory field plots and remote sensing data for forest databases[END_REF], or management units [START_REF] Mauro | Analysis of area level and unit level models for small area estimation in forest inventories assisted with LiDAR auxiliary information[END_REF][START_REF] Magnussen | Model-Dependent Forest Stand-Level Inference with and without Estimates of Stand-Effects[END_REF].

Several estimation approaches have been used in MS-NFI. Some authors have applied modelassisted, others model-based approaches, to compute estimates at plot or stand levels [START_REF] Mauro | Analysis of area level and unit level models for small area estimation in forest inventories assisted with LiDAR auxiliary information[END_REF][START_REF] Mcroberts | Accuracy and Precision for Remote Sensing Applications of Nonlinear Model-Based Inference[END_REF][START_REF] Rao | Small area estimation[END_REF]. Each method has its pros and cons and the selection of an inference framework is dictated by the sampling design and the plot distribution over the areas of interest. In design-based approaches, inference relies on the sampling design and estimators are unbiased by construction [START_REF] Ene | Large-scale estimation of aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data[END_REF][START_REF] Ståhl | Use of models in largearea forest surveys: comparing model-assisted, model-based and hybrid estimation[END_REF]. However, the performance of design-based approaches depends on the sampling effort over the area of interest [START_REF] Mcroberts | Accuracy and Precision for Remote Sensing Applications of Nonlinear Model-Based Inference[END_REF][START_REF] Breidenbach | Comparison of nearest neighbour approaches for small area estimation of tree species-specific forest inventory attributes in central Europe using airborne laser scanner data[END_REF][START_REF] Haakana | Precision of exogenous post-stratification in small-area estimation based on a continuous national forest inventory[END_REF]. For some specific domains, field sample size might therefore be too small and the uncertainty too large to meet the precision requirements. In such cases, as well as in areas of interest without any field plots, model-based approaches represent alternatives [START_REF] Vandendijck | Model-based inference for small area estimation with sampling weights[END_REF][START_REF] Magnussen | Arguments for a Model-Dependent Inference[END_REF]. Those so-called indirect estimators [START_REF] Rao | Small area estimation[END_REF] take advantage of sample plots and auxiliary data available outside of the area of interest. This makes model-based approaches appealing for management inventories with limited sample plots [START_REF] Kangas | Remote sensing and forest inventories in Nordic countries -roadmap for the future[END_REF][START_REF] Naesset | Practical large-scale forest stand inventory using a small-footprint airborne scanning laser[END_REF]. Although various methods have been developed to build estimates [START_REF] Datta | Model-based approach to small area estimation[END_REF], the performance of modelbased estimations still amply depends on model specifications [START_REF] Magnussen | Arguments for a Model-Dependent Inference[END_REF][START_REF] Knaub | Comparison of Model-Based to Design-Based Ratio Estimators[END_REF][START_REF] Kangas | Model-assisted forest inventory with parametric, semiparametric, and nonparametric models[END_REF]. In complex managed forests, models often exhibits saturation or heteroscedasticity problems [START_REF] Chirici | Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data[END_REF]Frank et al., 2020;[START_REF] Saarela | Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors[END_REF] which could be associated to the limitations of auxiliary data to capture the whole dynamic of field attributes or their increased variability induced by management practices, among others. In such cases, if the sampling design and target scales are relevant, the model-assisted inference is an appealing estimation framework owing to the theoretical unbiasedness of the estimators (Chen et al., 2016;[START_REF] Magnussen | National forest inventories in the service of small area estimation of stem volume[END_REF].

Another MS-NFI aspect that could be considered as a significant constraint in some situations is its dependence on administrative boundaries [START_REF] Magnussen | National forest inventories in the service of small area estimation of stem volume[END_REF]. Administrative domains can be heterogeneous in size and forest coverage. These variations may lead to improperly reduce sample size in some area of interest, and yield inappropriate small area estimations [START_REF] Vandendijck | Model-based inference for small area estimation with sampling weights[END_REF][START_REF] Magnussen | National forest inventories in the service of small area estimation of stem volume[END_REF]. [START_REF] Breidenbach | Small area estimation of forest attributes in the Norwegian National Forest Inventory[END_REF] and Hill et al. (2015) reported a significant amount of domains not estimated due to the lack of field plots. For the same reasons, [START_REF] Tomppo | Combining national forest inventory field plots and remote sensing data for forest databases[END_REF] restricted their estimates to groups of municipalities in some areas. Thus, definition and generation of optimal estimation domains is an important matter with direct consequences on prediction availability over some areas. Their availability depends on the sampling rate, the forest heterogeneity, the inference framework and the user needs. The later could vary greatly within the stakeholder sphere, from landscape scale for decision makers to forest stands for local managers.

In this context, this paper intended to analyse the balance between spatial scale and estimation precision under a model-assisted framework. We proposed a flexible algorithm designed to build up estimation domains, here corresponding to municipalities or groups of municipalities, with areas as small as possible given a targeted precision level (i.e. maximum error allowed in a given domain). The method relies on polygon layers as a support for a top-down binary space partitioning approach to generate a flexible multiscale small area data structure.

Material and Methods

Study site

The study site covers the Sologne and Orléans area, in the Centre of France (Fig. 1). It represents a territory of 7,335 km 2 , forested at 48 % (3,600 km 2 ). The forests spread over 157 municipalities. The forest area at the municipality level ranges from 11 to 8,495 ha, hence creating a heterogeneous context for small area estimation.

The area is influenced by a degraded oceanic climate, with mean annual temperatures of 10.9°C and mean annual precipitations of 731 mm. The slowly undulating relief ranges from 70 m to 180 m elevations, and supports soils made of sand and clay. The forests are representative of oakdominated French broadleaved forests [START_REF] Jarret | Guide des sylvicultures : Chênaie atlantique[END_REF]. Broadleaved species account for 75.3 % of the area and are dominated by oaks (i.e. Quercus robur L. and Quercus petraea Mill.). Coniferous stands represent 15.5 % of the forest area and are mainly composed of maritime pines (Pinus pinaster Ait.) and Scots pines (Pinus sylvestris L.). The remaining forest area is covered by mixed stands consisting mostly of oaks and Scots pine. Forest structure is mainly and markedly influenced by ownership through management strategies. The Southern part of the study site is dominated by private forests (90 %) with various intensities of management. The Northern part includes the largest French state forest, which covers around 346 km 2 and is intensely managed. 

NFI data

Since 2005, the French NFI is continuous over time and space, covering the whole metropolitan territory each year with independent samples. The two-phase sampling scheme relies on a systematic grid having a 1 km resolution. Each year, one-tenth of the grid (~80,000 points) is photointerpreted on infrared aerial photographs (0.5 m resolution) for land use and land cover, which build the first-phase sample. The second phase sample is drawn from the first phase with sampling rates depending on land cover types. For forested areas, around 6,500 points are surveyed every year country-wise.

In this study, data from 819 NFI plots acquired between 2010 and 2014 were considered. Such a 5 years interval allows the computation of consolidated estimates and is used routinely for the official French NFI statistics. The last inventory year corresponded to the acquisition time for the majority of the auxiliary data. Details of the NFI sampling scheme, field measurements and estimation methods are provided in [START_REF] Robert | Developement of France's national forest inventory[END_REF] and [START_REF] Hervé | L'inventaire des ressources forestières en France: Un nouveau regard sur de nouvelles forêts[END_REF]. For the purpose of this study, growing stock volume and basal area were considered as response variables (Table 1). 

Auxiliary data sources and processing

The auxiliary data consisted in 1) the forest map (BDForêt® v2) of the French National Institute of Geographic and Forest Information (IGN), 2) a canopy height model derived from digital aerial photographs (DAP), and 3) Landsat images. Various metrics were extracted from the auxiliary data, at a 30 m spatial resolution. Such a resolution matches the pixel size of Landsat images and the diameter of the field plots in which dendrometric measurements are made.

The BD Forêt® V2 is a vector map generated through the photo-interpretation of near-infrared aerial photographs. The map provides information about vegetation structure and composition following a national nomenclature, for forest patches of at least 0.5 ha in size. The map over the region of interest was generated using aerial images acquired in 2008. For the purpose of this study, the map information was summarized into 3 forest types (FT): pure hardwood, pure conifers and mixed stands. Each cell of the auxiliary grid was assigned the value of the FT map at the centre of the cell.

Only the cells completely included in the FT map were considered for the analysis [START_REF] Särndal | Design-Based and Model-Based Inference in Survey Sampling[END_REF].

The DAP Digital Surface Models (DSM) were generated using aerial images acquired in 2013 (July 06 to 12) and 2014 (May 18 to July 16) using an IGN camera (sensor V28T, 14,650 x 10,700 pixels of 6.8 µm each) mounted with a 125 mm Zeiss lens. The acquisition was done at 6,400 m above ground level, leading to an image resolution of 0.35 m at ground level. The image overlap was 60 % along track and 25 % across track, allowing photogrammetric processing. Images were oriented by IGN's production services. The photogrammetric reconstruction was done using Micmac open source photogrammetric software [START_REF] Rupnik | MicMac -A free, open-source solution for photogrammetry[END_REF]. The dense image matching strategy relies on a Per-Images Matching approach in image geometry and a 'Scale-Invariant-Feature Transform' (SIFT)

detector [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. The 3D point cloud resulting from the dense matching was converted into a 1 m digital surface model (DSM) using the maximum elevation per pixels. A canopy height model (CHM) was then produced by subtracting to the DSM a DTM generated at the same resolution using airborne laser scanning data acquired in 2014. Multiple metrics were derived from the CHM (see [START_REF] Irulappa | Increasing Precision for French Forest Inventory Estimates using the k-NN Technique with Optical and Photogrammetric Data and Model-Assisted Estimators[END_REF] for each cell of the 30 m grid. Those included standard height descriptive statistics such as percentiles 0 to 100 by 10 (p0, p10, …, p100), percentiles 95 and 99 (p95, p99), mean (hmean), standard deviation (hstd), variance (hvar), and median absolute deviation (hmad). These metrics were completed with attributes describing the canopy structure, namely : mean inner canopy volume (Vi), mean outer canopy volume (Vo, defined as the volume comprised between the CHM and hmax), mean inner canopy volume above a given threshold value (Th) fixed here at 5 m (Vci), mean outer canopy volume above Th (Vco, complement of Vci to the maximum height), mean inner canopy volume below Th (Vgi) and its complement (Vgo), gap ration (Ga) defined as the proportion of plot area below Th, and rumple area (Ra) defined as the ratio of the CHM surface to the plot surface (see [START_REF] Vega | On the interest of penetration depth, canopy area and volume metrics to improve Lidar-based models of forest parameters[END_REF] for more details).

Four level 2A Landsat images were collected from Theia platform (https://theia-landsat.cnes.fr). The images were acquired on September 8, 2014. The processing level 2A includes atmospheric corrections, cloud detection and orthorectification [START_REF] Hagolle | A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENUS and Sentinel-2 Images[END_REF]. The following auxiliary variables were considered: 7 raw reflectance bands, brightness (Br), greenness (Gr), wetness (We) [START_REF] Baig | Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance[END_REF], normalized difference vegetation index (NDVI), Green NDVI (GNDVI), Enhance

Vegetation Index (EVI), Specific Leaf Area Vegetation Index (SLAVI), Soil Adjusted Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index (MSAVI), simple ratio (SR), Normalized Difference Moisture Index (NDMI) and Normalized Difference Water Index (NDWI) [START_REF] Barati | Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas[END_REF]. The values corresponding to the centre of the 30 m grid cells were assigned to each cell.

Metrics computational details are provided in [START_REF] Irulappa | Increasing Precision for French Forest Inventory Estimates using the k-NN Technique with Optical and Photogrammetric Data and Model-Assisted Estimators[END_REF].

Estimation framework

The relationship between growing stock, basal area and the auxiliary variables was investigated using multiple linear models. A best subset approach with a Bayesian information criterion (BIC) was applied to identify the optimal model for each forest attribute. The performance of the selected models was evaluated using a 10 fold cross validation approach and summarized with the crossvalidated coefficient of determination (R 2 ), the cross-validated root mean squared error (RMSE) and the relative RMSE (RMSE%). The RMSE was computed as follow:

∑ (1)
where is the number of field plots, the field observed values and the predicted ones.

The small domain estimation procedure relied on the small area estimator for exhaustive auxiliary information provided in Mandallaz (2013, equations 20 and 21). The mean and variance estimators are defined as follow:

.
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where are the observed values (with i = 1 for auxiliary data and i = 2 for NFI data), * ^ the predicted ones, ^ the residual in small area g, ^ , the mean residual over g, n1,g and n2,g the number of pixels of auxiliary data and NFI plots in g respectively. The estimation error ( % ) is defined as the ratio of the standard deviation and the mean:
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These estimators are implemented in the R package forestinventory (Hill and Massey 2017).

Multiscale estimation framework

A top-down binary space partitioning (BSP) was used to downscale the estimates from the whole set of municipalities up to individual municipalities. It recursively divides the set municipalities into two equally-sized sets, thus generating a Small Area Estimation Tree structure (SAETree). At each iteration, the division is performed on the direction perpendicular to the major axis of the bounding box either in x or y dimension in order to minimize the perimeter to surface ratio (Fig. 2). The mean ( . , Equation 2), variance (Va ^r& . ', Equation 3) and error value ( % , Equation 4) are reevaluated for each newly created domain pair. The division process iterates until either a user defined error threshold ( % ) for one of the two children domain or the minimum number of NFI plots per domain is reached (3. 4. % > % ) (Fig. 3). In both cases the parent domain of the SAETree is selected. Fig. 2. Principle of binary space partitioning of municipalities Fig. 3. Illustration of the small area estimation tree construction (SAETree) for the estimation domain optimisation

Results

The growing stock and the basal area were modelled as a function of the auxiliary data. Table 2 shows the models selected for the two surveyed forest attributes. The model for growing stock included the forest type, 3 CHM-based distribution variables (p60, hmad and hvar), a canopy roughness index (Ra), and a measure of the amount of vegetation (SR). The model explained 58 % of the field observed variation in growing stock. The 10-fold cross validated model RMSE was 69.4 m 3 .ha -1 , corresponding to 43.5 % of the field observed stock. The model for basal area explained 41 % of the field observed variance, and had a cross-validated RMSE of 8.9 m 2 .ha -1 (42.4 %). The model shared 5 predictor variables with the growing stock model (FT, p60, hmad, Ra, SR) and hvar is replaced with 2 volume metrics describing the gap structure (Vgi and Vgo). Both models showed residual heteroscedasticity (i.e. increased residuals for high field attributes levels) which could not be alleviated by neither variable transformations nor interaction terms (Fig. 4).

Table 2. Predictor variables and 10-fold cross validated R2, RMSE and RMSE% for growing stock volume and basal area.

Response variables Predictor variables R2 RMSE RMSE%

Growing stock (m 3 .ha -1 ) FT, p60, hmad, hvar, Ra, SR 0.58 69.4 43.5

Basal area (m 2 .ha -1 ) FT, p60, hmad, Ra, SR, Vgi, Vgo 0.41 8.9 42.4 Table 3 and Fig. 5 illustrate the estimation means and errors achieved at the municipality levels and the corresponding estimation errors. Over the 157 municipalities of the study region, only 90 had at least 3 NFI points and were estimated. Those 90 municipalities represent 78.9 % of the study region.

The mean growing stock is estimated at 155 m 3 .ha -1 with an average error of 15.9 % ranging from 2.8 % to 51.4 %. Compared to a simple random sampling estimation based on the field data alone (results not reported), the relative efficiency (RE) of the model-assisted estimations, defined as the ratio of estimated variances achieved a value of 4.7. Similarly, the mean basal area is estimated at 20.4 m 2 .ha -1 with an average error of 15.6 % ranging from 4.7 to 50.8 %. The relative efficiency of the estimation reached 2.83. Spatially, most of the municipalities that could not be estimated are found along the Loire river basin in the Northern part of the area, as well as in the South-Eastern part.

Estimation means revealed the heterogeneity of the area, despite the Northern and the South-Eastern areas exhibit higher values than the central part, which is more agricultural. Overall, the error patterns appeared correlated to the municipality area, the lowest errors being found in municipalities having a greater forested area and a higher number of NFI points. The results of the multiscale approach are presented Table 4, Fig. 6 and7. For the two forest attributes surveyed, relaxing the accepted error (Em%) translated into an increase in the number of domains, along with an increase in mean estimation error ( % , and a decrease in the average number of NFI plots per domain. For growing stock, the number of domains ranged from 20 to 80.

This corresponded to domain varying from 16705 ± 8673 ha (Em% = 10) to 4176 ± 2319 ha (Em% = 50) in area. The mean growing stock ranged from 153.5 ± 21.1 m 3 .ha -1 at Em% = 10 to 159.9 ± 36.1 m 3 .ha -1 at Em% = 20. Despite the relaxing of Em% the increases in average error remained moderated varying from 7.5 % at Em% = 10 to 15.1 at Em% = 50. This behaviour is further illustrated by the relative efficiency which stabilized after 30 % Em% with an average value of 3.7. Similar results were obtained for basal area. The number of domains varied from 23 to 80, which corresponded to average domain area of 14527 ± 8557 ha and 4176 ± 2319 ha respectively. The mean estimated basal area ranged from 20.1 ± 2.2 m 2 .ha -1 (Em% = 10) to 20.8 ± 3.8 m 2 .ha -1 (Em% = 30). The corresponding mean domain error is minimum at Em% = 10 with a value of 7.7 ± 1.4 % and maximum at Em% = 50, with a value of 14.6 ± 5.7 %. The relative efficiency was stable over the scales, reaching a maximum value of 2.7. For both forest attributes, the estimation stabilized with errors greater than 30 %. 

Discussion

Small area estimation approaches applied to NFI data usually rely on the spatial limits of administrative units such as forest districts or municipalities [START_REF] Magnussen | Model-Dependent Forest Stand-Level Inference with and without Estimates of Stand-Effects[END_REF]. In the model assisted framework, estimation is only possible if the amount of field inventory plots allows it. Such a limit often prevents from providing estimates at fine scales [START_REF] Hill | A Double-Sampling Extension of the German National Forest Inventory for Design-Based Small Area Estimation on Forest District Levels[END_REF]. In areas characterized by heterogeneous and fragmented forests or in areas with limited forest coverage, the number of NFI points is thus critical for estimation. In such situations, the use of administrative units for small area estimations becomes sub-optimal and the question of grouping municipalities becomes central [START_REF] Tomppo | Combining national forest inventory field plots and remote sensing data for forest databases[END_REF]. The need to ventilate attributes, for example by species or diameter classes, further emphasizes the importance of adjusting the computation domains to the local conditions.

The proposed algorithm provides a flexible framework to adapt small area domains to the user needs, according to a targeted estimation error. The downscaling framework thus enables users to balance between precision and spatial scale, and to optimize the rendering of attributes of interest, with respect to the performance of the underlying algorithm.

The models used in the present study exhibit saturation for growing volume above 300 m 3 .ha -1 , as well as heteroscedasticity of the model residuals. Such issues have been reported in various studies [START_REF] Chirici | Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data[END_REF]Frank et al., 2020;[START_REF] Breidenbach | Unit-level and area-level small area estimation under heteroscedasticity using digital aerial photogrammetry data[END_REF][START_REF] Saarela | Effects of sample size and model form on the accuracy of model-based estimators of growing stock volume[END_REF][START_REF] Breidenbach | Small area estimation of forest attributes in the Norwegian National Forest Inventory[END_REF]. Heterogeneity in forest attributes resulting from stand history and disturbances [START_REF] Sheil | Interpreting forest diversity-productivity relationships: volume values, disturbance histories and alternative inferences[END_REF] as well as the incapacity of the auxiliary data to describe this variability could explain these results [START_REF] Ni-Meister | Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing[END_REF]. In this study, photogrammetric models derived from aerial photographs were used to assess canopy structure and related properties. On the one hand, such models benefit from large spatial coverage and frequent renewal, making them attractive for updating estimates and monitoring forest dynamics (Vega and St-Onge, 2008). Height growth estimation from diachronic models also showed potential for improving estimation of flux variables such as growing stock increment [START_REF] Irulappa | Increasing Precision for French Forest Inventory Estimates using the k-NN Technique with Optical and Photogrammetric Data and Model-Assisted Estimators[END_REF]. On the other hand, the quality of photogrammetric models depends on the acquisition conditions and matching algorithms [START_REF] Remondino | State of the art in high density image matching[END_REF]. The usual widespread design of aerial surveys (i.e. 60 %-30 % image overlap along and between flight lines respectively; 25-50 cm image resolution at the ground level) often fails to render fine scale canopy structures such as canopy gaps between crowns (White et al., 22 2013). Also, the incapacity of photogrammetric models to describe the sub-canopy structure, limits their capability to capture the variability in forest structures as compared to lidar data [START_REF] Drake | Estimation of tropical forest structural characteristics using large-footprint lidar[END_REF] and results in a partial description of forest structures. The problem of heteroscedasticity reveals possible model misspecification issues and was considered in various studies. Methods proposed to address this issue include variable transformations [START_REF] Hill | A Double-Sampling Extension of the German National Forest Inventory for Design-Based Small Area Estimation on Forest District Levels[END_REF], the use of mixed-models adapted to heteroscedastic residuals [START_REF] Hou | Effects of temporally external auxiliary data on model-based inference[END_REF][START_REF] Saarela | Effects of sample size and model form on the accuracy of model-based estimators of growing stock volume[END_REF], or the use of a variance model (Frank et al., 2020). Frank et al. (2020) advocated that heteroscedasticity could not be alleviated from models of some forest attributes. Possible improvements could be achieved by using adequate auxiliary data. Indeed, lidar derived metrics were not found to saturate at high biomass levels (Vega et al., 2015) and seem to capture greater details in the forest structure variability [START_REF] White | The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning[END_REF]. Times series of both photogrammetric [START_REF] Irulappa | Increasing Precision for French Forest Inventory Estimates using the k-NN Technique with Optical and Photogrammetric Data and Model-Assisted Estimators[END_REF] and satellite data [START_REF] Morin | Estimation and Mapping of Forest Structure Parameters from Open Access Satellite Images: Development of a Generic Method with a Study Case on Coniferous Plantation[END_REF] also have the potential to provide additional information about stand trajectories or structures that could improve prediction of attributes related to fluxes for example.

The analysis of the domains estimated with various targeted error levels provides insights into forest structure at the scale of territory. with Em% greater than 20. This indicates that that the heterogeneity in forest within municipalities strongly penalized the downscaling process. Furthermore, a close look at Fig. 6 and 7 reveals that estimation at the municipality level is reached for a large number of municipalities (65%), such as the large forested municipalities located in the South-Eastern part of the study area. Conversely, municipalities having a low forest area and a limited number of NFI points (i.e. black municipalities in Fig. 5) prevented the division process of the algorithm independently from Em%.

Compared with the results obtained for single municipalities, which left some municipalities without any estimation, the proposed multiscale approach succeeded in providing estimations for the entire region of interest with a higher precision and preserved the capacity to produce estimates at the municipality level in densely forested areas, wherever Em% allows such estimations. Being able to fix

Em% to a given level is attractive for official statistics or decision makers who require estimates with a high degree of precision. At the management level or for forest prospection, the greater spatial resolution generated by increasing Em%, could be privileged for orienting local management strategies. The possibility of grouping together municipalities having a limited number of NFI points due to low forest coverage or highly fragmented forests could be considered by some as having a limited interest. However, those areas are also currently experiencing an increase in forested area and stocks due to the forest expansion associated with agricultural land abandonment [START_REF] Mather | The course and drivers of the forest transition: The case of France[END_REF]. This forest expansion is at the origin of new resources for wood production which are currently not taken into account by stakeholders, while representing a growing amount of forest area and stock [START_REF] Denardou | L'expansion séculaire des forêts françaises est domintée par l'accroissement du stock et ne sature pas dans le temps[END_REF]. With the increase in NFI points expected following the expansion in forest areas, the algorithm will allow to provide strategic information about the localisation and characteristics of those new resources thus enhancing the capabilities of forest stakeholders to take them into account in management strategies.

The proposed downscaling approach remains naive by construction and is probably not optimal, since a fixed binary division factor is applied at each step of the SAETree. Indeed, if one out of the two child nodes does not pass the error threshold, the estimation will remain at the parent node.

Improved spatial resolution might be obtained using an aggregation approach [START_REF] Gómez | Spatial aggregation: Data model and implementation[END_REF].

Aggregative approaches also provide the opportunity to aggregate neighbours with respect to either their spatial or attribute properties, making the approach attractive. That said, the SAETree approach allow comparisons between scales and attributes, making for example pair-wise division simpler and more efficient than aggregative approaches that might conduct to different domain shapes with respect to the aggregation criteria used or the auxiliary variable considered.

In the method developed here, NFI plots are required to produce estimates of forest attributes. This requirement is a major limitation for domains in which the number of NFI plots is insufficient. In such situations, domain aggregations are unavoidable in a model-assisted approach. If finer scales are nevertheless required, the remaining option would be to use a model-based approach [START_REF] Ene | Large-scale estimation of aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data[END_REF][START_REF] Saarela | Effects of sample size and model form on the accuracy of model-based estimators of growing stock volume[END_REF][START_REF] Magnussen | Arguments for a Model-Dependent Inference[END_REF]. Such approaches could be privileged for reaching management units or for small area estimation in a context of environmental crises such as forest fire [START_REF] Moisen | Small area estimation in forests affected by wildfire in the Interior West[END_REF] or biotic damages (e.g. insect outbreaks). In such situations therefore, careful attention must be paid to model specifications [START_REF] Ståhl | Use of models in largearea forest surveys: comparing model-assisted, model-based and hybrid estimation[END_REF].

Conclusions

In response to the need of adapting computation domains to spatial properties of administrative units, the proposed algorithm enables partitioning a study area into smaller domains, where sample size and area are adaptively tuned according to a selected error level. Thus, it creates a partitioning of domains, down to the smallest possible size, depending on the error threshold fixed by users.

The downscaling potential of the algorithm depends on the statistical strength between field attributes and auxiliary variables, but also on the spatial heterogeneity of the forests. While different partitions are obtained based on the targeted error threshold and the forest attributes considered, estimations remain spatially consistent owing to the hierarchical structure of the SAEtree. It thus offers the possibility to balance between estimation error and domain size. At the largest scales, generated by relaxing the error threshold, the limiting factor to obtain estimates remains the amount of field plots in the domain, which is a well-known constrain affecting model-assisted estimation approaches.

As the proposed approach rely simply on an iterative division of space, it could be applied to polygon or point (i.e. through an appropriate tessellation of space) layers, independently from administrative boundaries. Therefore, it can be adapted to reflect forest heterogeneity, making partitions more relevant either geographically or ecologically, as needed.

While the estimation scales required by stakeholders are often vague, especially in terms of optimum domain size, the proposed algorithm constitutes an appealing approach for flexible and user controlled precision.
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 1 Fig. 1. Localization of the study area, showing the forest mask and the NFI plots along with the
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 4 Fig. 4. Observed versus predicted values for growing stock volume (left) and basal area (right).
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 5 Fig. 5. Estimation mean and corresponding mean error at the scale of municipality for the growing
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 6 Fig. 6 Multiscale mean growing volume and associated errors generated using maximum errors (Em%)

  Fig. 5 to 7 show that the algorithm enables to render the spatial complexity of the forest attributes at various spatial scales. For example, greater growing stock and basal area values were found in the Northern and South-Eastern part of the study area. Those areas correspond to pure deciduous or pine forests which are state forests that are generally more intensely managed and with higher growing stock levels. By contrast, the central and Western parts are dominated by open forests and humid areas and exhibited lower attribute values with either greater domain sizes or estimation errors. Surprisingly, the number of domain generated saturate

  

  

  

Table 1 .

 1 Mean, minimum, maximum and standard deviation of growing stock and basal area from the 819 field plots surveyed.

	Response variable	Mean	Min	Max	SD
	Growing stock (m 3 .ha -1 )	152.14	0.69	721.21	107.26
	Basal area (m 2 .ha -1 )	20.14	0.40	62.69	11.32

Table 3 .

 3 Model-assisted estimates and error at the scale of municipalities. RE stands for the relative efficiency, ratio of the variance of estimates obtained without and with auxiliary data. Out of the 157

	Attribute	Mean	Mean error	Error range	RE
		estimate	(%)	(%)	
	Growing stock (m 3 .ha -1 )	155 (35.3)	15.9 (7.4)	2.8-51.4	4.7(6)
	Basal area (m 2 .ha -1 )	20.4 (4.0)	15.6 (7.1)	4.7-50.8	2.83(3.7)

municipalities, only 90 had at least 3 NFI points and were estimated. Average municipality area is 5035.9 ± 2129.5 ha. Average NFI point per municipality is 7.1 ± 3.9. Numbers in parenthesis are standard deviations.

Table 4 .

 4 Optimised small area estimation means, for different error thresholds ranging from 10 to 50 %. Numbers in parenthesis are standard deviations. Em% values of 10 and 50 %. For both forest attributes, a low Em% results in a small number of large domains having similar errors. Such a constraining error condition provide a broad description of the resource, highlighting contrasted differences in forest attributes such as the ones differencing the high values in the north-western area from the low ones found in the central part. Increasing Em% provided a more detailed representation of the distribution of forest resources, at the cost of a higher variability of error locally, and for the whole area.

	Attribute		% Number	Area (ha)	NFI plots	Estimate	Error	Max	RE
			of				%	Error
			domains					(%)
	Growing	10	20	16705(8673) 35.1(16.6) 153.5(21.1) 7.5(1.0) 9.5	2.8(0.8)
	stock	20	61	5477(4107) 11.5(8.2) 159.9(36.1) 13.7(3.9) 19.9	3.7(4.4)
	m 3 .ha -1	30	78	4283(2325) 9.0(5.0)	159.1(37.1) 14.6(4.6) 26.0	3.7(4.1)
		40	79	4229(2341) 8.9(5.1)	159.5(37.1) 14.7(4.9) 31.8	3.7(4.1)
		50	80	4176(2319) 8.8(5.0)	159.6(36.9) 15.1(5.8) 42.5	3.7(4.1)
	Basal area	10	23	14527(8557) 30.1(16.1) 20.1(2.2)	7.7(1.4) 10.0	2.7(3.8)
	m 2 .ha -1	20	67	4987(3139) 10.5(6.6) 20.8(3.7)	13.0(3.5) 19.5	2.5(2.9)
		30	77	4339(2332) 9.1(5.1)	20.7(3.8)	14.0(4.4) 24.3	2.7(3.5)