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A well connected, locally‑oriented and efficient multi‑scale topology 
optimization (EMTO) strategy

Edouard Duriez1  · Joseph Morlier1  · Miguel Charlotte1  · Catherine Azzaro‑Pantel2 

Abstract
Multi-scale topology optimization (a.k.a. micro-structural topology optimization, MTO) consists in optimizing macro-scale 
and micro-scale topology simultaneously. MTO could improve structural performance of products significantly. However, 
a few issues related to connectivity between micro-structures and high computational cost have to be addressed, without 
resulting in loss of performance. In this paper, a new efficient multi-scale topology optimization (EMTO) framework has been 
developed for this purpose. Connectivity is addressed through adaptive transmission zones which limit loss of performance. 
A pre-computed database of micro-structures is used to speed up the computing. Design variables have also been chosen 
carefully and include the orientation of the micro-structures to enhance performance. EMTO has been successfully tested 
on two-dimensional compliance optimization problems. The results show significant improvements compared to mono-scale 
methods (compliance value lower by up to 20% on a simplistic case or 4% on a more realistic case), and also demonstrate 
the versatility of EMTO.

Keywords Multi-scale topology optimization · Micro-structure connectivity · Metamodel · Material orientation · Structural 
database

1 Introduction

1.1  Multi‑scale topology optimization

Topology optimization consists in optimizing a structure 
performance by distributing material within a design space 
without topological constraints (Bendsoe and Sigmund 
2004). This research field now comprises a vast variety of 
methods: homogenization (Bendse and Kikuchi 1988), Solid 
Isotropic Material with Penalization (SIMP) (Bendse 1989), 
evolutionary methods (Xie and Steven 1993), level set meth-
ods (Wang et al. 2003), moving morphable components 
(MMC) (Guo et al. 2014), generalized geometry projection 

(GGP) (Coniglio et al. 2019), among others. Those methods 
are described in more detail in Xia et al. (2018) and Norato 
(2018).

Another approach named micro-structural design or 
architectured materials design is based on the same idea 
but at a micro-scale, leading to macro-scale materials with 
new apparent and effective properties. The properties are 
obtained generally by homogenization and can also be opti-
mized. These optimized properties are of many kinds and 
include for instance terms of the thermo-elasticity tensors 
(Sigmund 1994) like bulk or shear modulus (Huang et al. 
2011), Poisson’s ratio (Xie et al. 2014), or thermal expansion 
(Sigmund and Torquato 1997). This is usually done using 
periodic boundary conditions (Xia and Breitkopf 2015a).

MTO consists in keeping the best of both micro-scale 
and macro-scale worlds. The micro-structure of cells is opti-
mized by micro-structural design and those cells are in turn 
used as macro-elements for a macro-scale topology optimi-
zation. A simple way to achieve this is to consider a unique 
micro-scale topology (Liu et al. 2008; Deng et al. 2013; Yan 
et al. 2014). However, these approaches do not give results 
as competitive as with a simple mono-scale topology optimi-
zation (Li et al. 2017; Sivapuram et al. 2016). A further step 
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is to consider a small number of micro-scale topologies, for 
example, one optimized for tension/compression and another 
one optimized for shearing (Liu et al. 2020b). Although this 
gives better results, it is still far from being optimal, as the 
material has to take into account the principal stress ori-
entation for its layout to be optimal (Bendsoe et al. 1994). 
Having a different micro-structure for each cell enables to 
follow the orientation of local stress. However, this leads 
to other problems, namely micro-structure connectivity and 
computation time.

1.2  Main challenges in MTO

Today, MTO faces two main challenges: one is connecting 
neighbouring micro-structures without reducing the design 
space too much, and the other one is acceptable computation 
times. The micro-structure connectivity issue arises when 
homogenization is used abusively. Indeed the cell proper-
ties obtained through homogenization are meaningful only 
if all the neighbouring cells share the same structure or 
at least have very similar structures. However, when cell 
micro-structure designs spatially vary rapidly, the proper-
ties obtained through homogenization are not representative 
of how the structure will react because two neighbouring 
micro-structures can be badly connected or disconnected, as 
in Fig. 1a. In that case, the load transfer is not efficient from 
a micro-structure to the other.

When a single micro-scale topology is used, connection 
between micro-structures is not generally a problem espe-
cially if density vary smoothly as in Watts et al. (2019) and 
Wang et al. (2017a). When a small number of micro-scale 
topologies is used, the issue can be managed by focussing on 
compatibility between them, as in Liu et al. (2020b). How-
ever, being limited to a small number of micro-structures 
makes it impossible to follow the orientation of local stress.

Other strategies can be implemented for more general 
cases. For instance, one possibility is to separate cells into 
spatial groups, or clusters, of same topology in order to 
ensure connectivity inside those clusters. In that case, con-
nectivity at the cluster interfaces must be managed precisely 
(Zhou et al. 2019; Du et al. 2018. Another strategy is to 
impose a non-design zone on the border of every cell to 
ensure that they will all be connected as in the Kinematical 
connective Constraint (KC) method (Zhou and Li 2008; Jia 
et al. 2020) or Qiu et al. (2020), or going further, these zones 
can be optimized but uniform throughout the structure. How-
ever, these two strategies restrict the design space and lead 
to non-optimal micro-structures. All the micro-structures 
can also be made connectable during the optimization by 
coupling their designs (Liu et al. 2020a), but in that case, the 
coupling of the cells can lead to huge computational time.

Methods using micro-structures that are well adapted to 
local stress generally have high computational costs, since 

each individual micro-structure has to be optimized during 
the global optimization, and this is even worse if the cells 
are coupled as explained above.

These high computational costs can be managed through 
parallel computing, but the computational costs remain 
high (Rodrigues et al. 2002; Coelho et al. 2008). Another 
approach is to approximate the material behaviour using a 
reduced database model (Xia and Breitkopf 2015b). The 
micro-structural computations are therefore performed off-
line and thus only once. Precomputed databases have also 
been proposed for parametrized lattice cells. In this case a 
polynomial model is usually used to access cells in between 
database points (Wang et al. 2018; Imediegwu et al. 2019; 
Wang et al. 2020). An alternative is to train a neural network 
surrogate on the geometrical parameters (White et al. 2019). 
Using the macro-scale material properties of the micro-
structures instead of their geometry as input in the database, 
enables to vary the topology of the micro-structures (Zhu 
et al. 2017). A database of pre-computed micro-structures 
can also be used directly (Ferrer et al. 2018). However, con-
nectivity is not guaranteed in these methods.

The methods mentioned above to ensure connectivity, 
such as a unique micro-structure design or spatial-clustering, 
are also a way to lower computational costs but give results 
that are far from optimal. Other clustering strategies can 

Fig. 1  Different qualities of micro-structure connection
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lower computational costs such as grouping together cells 
that have similar densities (Li et al. 2017), similar stress or 
strain directions (Xu and Cheng 2018), etc. However, the 
fact that cells are clustered means that their designs cannot 
be perfectly adapted to the local stress encountered by each 
cell, and performance is therefore limited. Moreover, clus-
tering that is not based on physical proximity will generally 
lead back to connectivity issues.

In order to be efficient, a method has therefore to try to 
address both issues of connectivity and computational cost 
at the same time while still being adapted to local stress or 
strain. Rank-two laminates can be used to solve this issue. 
Those structures have been demonstrated to be optimal for 
two-dimensional compliance minimization problems (Avel-
laneda 1987; Allaire et al. 2019). They give therefore excel-
lent results (Jog et al. 1994) but are not easily manufactur-
able because of the different length scales implied.

An alternative strategy is through variable lattice struc-
tures. In that case the topology of the micro-structure will be 
fixed to a lattice, but the parameters of the lattice are adapted 
to the local environment (Wang et al. 2017b). For this strat-
egy, the lattice type needs to be chosen carefully. This strat-
egy reduces somewhat the design space but an acceptable 
performance can be obtained (Wang et al. 2017a). In this last 
case, a unique micro-structure topology is used but its den-
sity as well as the thicknesses of its resulting features vary. 
In order to have cells that are better adapted to local stresses/
strains, and thus to obtain better performances, simple lat-
tices can be oriented with respect to those fields. However, 
in order to maintain a good connectivity between micro-
structures, cosine waves (Groen and Sigmund 2018) and a 
conformal treatment of orientations are used (Allaire et al. 
2019; Li et al. 2020). These methods give generally excellent 
results. This can be coupled with clustering and generalized 
to other micro-structures (Kumar and Suresh 2020). In this 
last case, a non-design region is necessary, leading to sub-
optimal designs if one principal stress vanishes. The designs 
obtained with these methods can then be de-homogenized, 
meaning that a mechanically well-performing structure is 
extracted (Stutz et al. 2020).

1.3  MTO formulation

In a two-scale topology optimization formulation, the 
domain is discretized in n macro-elements, which are them-
selves discretized in m micro-elements, leading to a total of 
m × n micro-elements throughout the domain, as in Fig. 2.

Two types of design variables corresponding to the 
two scales of optimization are used. The macro-variables 
correspond to the cell choice: typically, one considers the 
macro-density xi

dens
 (with 1 ≤ i ≤ n and 0 < 𝜖 ≤ xi

dens
≤ 1 ) 

in combination with other macro-variables ( xi
a
 , xi

b
,… ) to 

specify hereafter as related to the ith macro-element. Here 
� has a typical value of 10−9 . The considered micro-varia-
ble is simply the micro-element density, which is denoted 
�i,j(x

i
dens

, xi
a
, xi

b
,…) (with 1 ≤ j ≤ m and 𝜖 < 𝜌i,j < 1 ) for the 

jth micro-element of the ith macro-element. These micro-
densities �i,j , that are functions of the macro-variables, 
define the cell structure.

The compliance of the overall structure c[u]
Def
= uTKu is 

generally used as objective function, u(xi
dens

, xi
a
, xi

b
,…) being 

the global displacement vector, and K the global stiffness 
matrix. Additionally, a global volume fraction constraint is 
imposed like:

In general, the following steps are used to carry out the 
MTO. In each cell, the current macro-variables are used to 
access the micro-variable densities �i,j . The effective micro-
element elasticity tensors are derived as �i,j = (�i,j)

p
× �0 

from the homogeneous material elasticity tensor �0 by SIMP 
interpolation, with a penalization factor of default value 
p = 3 . Those tensors are then used to assemble the ith-cell 
stiffness matrix Ki . The homogenized elasticity tensor of 
the ith-cell

is then derived using the three strain field unit-tests illus-
trated in Fig. 3. They correspond to two normal strain fields 
and one shear strain field.

All this process is described in more detail in Xia and 
Breitkopf (2015a). Those homogenized elasticity tensors are 
then used at the macro-scale to assemble the global stiff-
ness matrix K of the macro-structure. This matrix is finally 
inverted to solve the equilibrium problem u = K−1f  , and 
compute the global compliance c. The macro-design vari-
ables are then updated to start a new iteration.

Equation (2) summarizes the problem being solved. 

n
∑

i=1

m
∑

j=1

𝜌i,j ≤ n × m × vf, for a given 0 < vf < 1

(1)�
i
=

(

Ei
klpq

)

k,l,p,q∈{1,2}

Fig. 2  Illustration of macro-elements and micro-elements in a case 
where n = 60 and m = 25 in a rectangular domain
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This is the problem formulation solved in this paper.

1.4  Main contributions and composition of this 
paper

In this paper we show that, compared to aforementioned tra-
ditional MTO strategies, the use of naturally well connected 
and oriented micro-structures can significantly improve the 
structure performance. The main contributions of this paper 
are:

• Adaptive transition zones resulting in natural connectiv-
ity between micro-structures. These transmission zones 
only slightly reduce the design space compared to unre-
stricted unit-cell designs (second category in Wu et al. 
(2021)), thus leading to better performance than micro-
structures with a unique topology (Li et al. 2021). They 
also enable the micro-structures to vary rapidly to adapt 
to local stress, which is not possible when connectivity 
is tackled through clustering and interface material (Luo 
et al. 2021). Unlike other methods in the literature, such 
as the use of intermediate cells (Hu et al. 2020) or the use 
of compound cells (Garner et al. 2018), the use of adap-
tive transmission zones frees us from the need to couple 
the cells’ designs in order for them to be well connected. 
This in turn enables the cells to be stored in a database.

• A cell database containing not only homogenized proper-
ties but also the underlying micro-structures, leading to 
fast computations. This is made possible by the use of 
transmission zones.

(2a)minimize
xi
dens

,xi
a
,xi
b
,…

uTKu

(2b)subject to Ku = f

(2c)
n
∑

i=1

m
∑

j=1

�i,j ≤ n × m × vf

(2d)𝜖 < 𝜌i,j < 1

• Bridging the macro-scale and micro-scale through well 
chosen variables, including orientation, enabling adap-
tation of micro-structures to local stresses and a great 
adaptability to different problem constraints. The use of 
an orientation variable is different from the de-homogeni-
zation approach (Groen and Sigmund 2018; Allaire et al. 
2019). Unlike in this approach, the cells aren’t rotate to 
fit in a deformed grid, but rather, the micro-structure is 
rotated inside the cell. This doesn’t lead to lower connec-
tivity, thanks to the use of adaptive transmission zones.

Based on the review by Wu et al. (2021), our approach can 
be classified as using unrestricted density (category A) 
but can easily be adapted for a fixed density problem (cat-
egory C), as is demonstrated in Sect. 4. In terms of restric-
tion on the cell designs, our approach can be classified as 
using restricted unit-cell designs (category III) because of 
the adaptive transmission zones. However, because these 
are not non-design zones, our approach will have a design 
freedom close to a typical approach using unrestricted unit-
cells (category II), as is illustrated in Sect. 2.1. At the same 
time, we show that three parameters (density, orientation and 
cubicity) are sufficient to obtain good performance, meaning 
that we can benefit from the advantages of parameterized 
unit-cells with multiple parameters (category IV), namely a 
database of pre-computed cells.

Having already given a description of related works, the 
rest of this paper is composed as follows.

Section 2 describes how the micro-structures are made 
to adapt to their environment and connect well with each 
other. We develop in Sect. 3 our multi-scale strategy. We 
explain in particular how we use a surrogate cell model 
based on a database to speed up the optimization, and how 
we improve performance through post-processing and avoid-
ing local minima. Section 4 provides some comparison to 
other strategies on classical problems and shows the effec-
tiveness of EMTO. Finally, Sect. 5 concludes the paper by 
summarizing its main features and suggesting future work. 
In complement, numerical codes are freely provided as well 
as companion items for this paper.

2  Connected and adapted micro‑structures

2.1  New‑adapted variables and objective function

In MTO, the macro-scale and micro-scale topology opti-
mizations are coupled through the macro-scale design 
variables, which are used as the objective function or the 
constraints of the micro-scale optimization. For instance, 
we use the macro-scale density variable (denoted xi

dens
 ) as 

a constraint on the micro-scale density variables �i,j during 
the micro-scale optimization, as in Eq. (3).

Fig. 3  Unit-test strain fields used for homogenization
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In the simplest forms of MTO, only the density variable 
is used. However, this leads to generic cells that are not 
adapted to their environment. Bendsoe et al. (1994) shows 
that in the case of material and structure simultaneous opti-
mization for minimum compliance, the optimal material is 
orthotropic with its directions following those of principal 
strains. Therefore, we choose to add the orientation of the 
cell as a variable (denoted xi

or
 ). We also add a variable defin-

ing the relative importance of the two principal directions. A 
value of 1 means the two principal directions are equivalent, 
while a value of 0 means the first principal direction alone 
is considered. Therefore, we name this variable cubicity 
(denoted xi

cub
 ). Examples of micro-structures obtained for 

different variable values can be seen in Fig. 4. In this figure, 
the three variables are successively made to vary, based on 
an initial cell whose density value is 0.5, orientation angle 
value is 0, and cubicity value is 0.

In order to obtain these cells, we use the work of Xia 
and Breitkopf (2015a). In this work, an energy-based 

(3)
m
∑

j=1

�i,j ≤ m × xi
dens

homogenization approach is used and the 4D homogenized 
stiffness tensor �i of the ith-macrocell is obtained by Eq. (4)

where m is the number of finite elements representing the 
cell micro-structure, kij is the stiffness matrix of micro-ele-
ment j of the ith-macrocell, and uA(pq)

ij
 are the displacement 

solutions corresponding to the unit-test strain fields in Fig. 3 
for micro-element j of the ith-macrocell. In this figure, unit-
test strain fields (a), (b) and (c) correspond respectively to 
(p,q)=(1,1), (2,2) and (1,2). We change the original objective 
function as follows. First, instead of using directly the 4D 
homogenized stiffness tensor �i of the ith-macrocell, we 
transform that tensor as in Eq. (5a) 

 using a rotation tensor �� . �� is defined for a rotation 
angle � = xi

or
 measured with respect to a chosen global basis 

vector. The ith-macrocell objective function ci in Eq. (5b) 
combines then the stiffness component terms for that rota-
tion as well as the ith-macrocell cubicity variable denoted 
xi
cub

 . In the codes named topMulti.m and cellOptim.m (acces-
sible through a link at the end of the paper), the 2D matrix 
notation of the stiffness tensors (�i,�i�

) is used everywhere, 
except in the rotation function where the 4D tensor shape 
is used.

Taking into account the orientation and relative impor-
tance of the two principal directions enables intermediate 
densities to be much less penalized than in the case of a 
generic cell. This can be seen in Fig. 5, where these oriented 
cells are compared to a quasi-isotropic cell or to the theoreti-
cal Hashin–Shtrikman bound (Hashin and Shtrikman 1962), 
in terms of Ei�

1111
.

Equation (6) summarizes the problem being solved at the 
micro-scale to obtain the ith ith-macrocell. 

(4)Ei
klpq

=
1

m

m
∑

j=1

(u
A(kl)

ij
)
Tkiju

A(pq)

ij

(5a)�
i�
= �

T
�
× �

i
×�� ≡ (Ei�

klpq
)k,l,p,q∈{1,2}

(5b)ci = Ei�
1111

× (1 −
xi
cub

2
) + Ei�

2222
×

xi
cub

2

(6a)minimize
�i,j

ci = Ei�
1111

× (1 −
xi
cub

2
) + Ei�

2222
×

xi
cub

2

(6b)subject to Kiu
A(pq)

i
= f

(pq)

i

(6c)
m
∑

j=1

�i,j ≤ m × xi
dens

Fig. 4  Influence of the 3 macro-design variables on a micro-structure 
with an initial density of 0.5, an initial orientation angle of �∕4 , and 
an initial cubicity of 0. In each subfigure, two of these variables are 
fixed, while the third varies
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where Ki is the ith-macrocell assembled stiffness matrix, 
u
A(pq)

i
 and f (pq)

i
 are the global displacement vector and the 

external force vector of the ith-macrocell for the case (pq) 

(6d)𝜖 < 𝜌i,j < 1 respectively, �i,j is the density of the jth micro-element of 
the ith-macrocell.

In all the results presented in Sect. 4, micro-structures of 
size 100 × 100 are used.

Fig. 5  Comparison of Ei�
1111

 
(first term of the rotated stiff-
ness tensor) for different cells 
and at different densities in 
a uni-directional case. The 
designs are shown for densities 
of 1/3 and 2/3. The connectivity 
constraint lowers very slightly 
the performance compared to 
a cell without transmission 
zones. Far better performances 
are obtained with oriented 
cells compared to theoretical 
isotropic cells (Hashin–Shtrik-
man bound) or an example of 
quasi-isotropic cell
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2.2  Micro‑structure connection

As seen previously, well-oriented cells are not sufficient 
to guarantee the good performance of the whole struc-
ture. Indeed, homogenization theory can give results far 
from reality if micro-structures are not well connected. By 
referring to the definition of connectivity from Wang et al. 
(2017a), neighbouring micro-structures can be connected 
without overhanging regions, but there may be some mate-
rial mismatch. Indeed, as can be seen in Fig. 1a, overhanging 
regions exhibited by badly connected micro-structures will 
prevent stresses from being effectively transmitted from one 
cell to another. As a result, stiffnesses derived from homog-
enization theory will be overestimated. On the contrary, well 
connected micro-structures, as in Fig. 1b will pass stresses 
along effectively.

For this, we choose a number of connection points, pic-
tured in red in Figs. 6. The cell in Fig. 6a has 4 transmis-
sion points (2 per edge), whereas the cell in Fig. 6b has 12 
transmission points (4 per edge). The stresses will be forced 
to transit from a micro-structure to its neighbours through 
these points. In order to enforce that condition, we change 
the original periodic boundary conditions described in the 
work of Xia and Breitkopf (2015a). Instead of applying them 
on all the edge elements of the cell, we only apply them to a 
specific zone around each transmission points. Those zones 
are named transmission zones. They are defined as all the 
edge elements attached to the corresponding transmission 
point. An edge element is attached to a transmission point if 
no unused element, lies between them; an unused element 
being one whose density is below a certain threshold. In 
the rest of this paper, we use a density threshold of 0.5. For 
example, in Fig. 6b, there are four transmission zones on the 
top edge of the cell: the first ranges from the first element 
(leftmost) to the element labelled 0, the second ranges from 
the element labelled 1 to the element labelled 2, the third 
ranges from the element numbered 3 to the one labelled 4, 
and the last zone ranges from the element numbered 5 to the 
last element (rightmost).

The number of transmission points has to be chosen 
before the optimisation process and must be the same for 
all the cells in the structure, because two cells with a dif-
ferent number of transmission points would be badly con-
nected. A higher number of transmission points will enable 
micro-structures to be more locally-adapted. Indeed, there 
will be more possibilities in that case for the micro-structure 
to connect different transmission points and be aligned with 
the local principal directions. This leads to better homog-
enized properties. However, a higher number of transmission 
points also means that stresses may be transmitted unequally 
through different transmission points. This means that neigh-
bouring micro-structures will be connected less effectively, 
leading to lower global performance of the structure. A 

number of two to three transmission points per cell edge 
seems to give the best overall performance, according to 
preliminary results.

It is worth noting that, although these transmission 
zones may seem visually to reduce the design space a lot, 
they actually only have a very low impact on the cell per-
formance, as can be seen in Fig. 5. This impact on cell 

Fig. 6  Transmission zones of adaptable lengths: all edge micro-ele-
ments connected to the transmission points (red) are part of the trans-
mission zones. (Color figure online)
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performance is accepted as it increases connectivity dra-
matically and therefore improves overall performance, as 
shown in Sect. 4.

Although the lengths of transmission zones vary from a 
cell to another, their position is the same in every cell. This 
means that micro-structures are intrinsically connected to 
each other. As a result the cell designs are uncoupled, mean-
ing that they can be computed in a parallel framework or 
computed in an off-line approach for creating a database for 
surrogate modelling (Bouhlel et al. 2019).

Within a cell, some transmission zones could be domi-
nated by others, as in the cells of Fig. 7. From a homogeni-
zation point of view, this means that more stress transits 
through the dominating transmission zones than through the 
dominated ones. If two cells with similar macro-variables 
have different dominating transmission zones, they will not 
be well connected, as in Fig. 7. In order to avoid that issue, 
it is necessary that no transmission zone be dominant. To 
ensure this, the micro-structures are first imposed to be sym-
metric about their central point, which does not impact their 
performance. The cells are also imposed to use the transmis-
sion zones located in the corners of the cells and the other 
transmission zones equally.

This strategy of transmission zones has similarities with 
the KC method in Zhou and Li (2008). One of the main dif-
ferences is that, in our strategy, the transmission zones are 
not real non-design zones, as their size changes. This means 
that EMTO can explore more creative designs, as the design 
space is less reduced.

3  Multi‑scale strategy

3.1  Micro‑structural database construction

In order to take advantage of the properties of the cells 
described in Sect. 2, a cell database is constructed off-
line once and for all with the aim to be then used in every 
macro-scale optimization. The inputs of this database are 
the three macro-scale design variables: density, orienta-
tion and cubicity. The outputs of this database are the six 
independent terms of the homogenized stiffness tensor 
obtained by solving the micro-scale optimization problem 
presented in Sect. 2.1. The corresponding micro-structures 
are also stored in a database. This is represented in Fig. 8. 
Examples of outputs for three random inputs can be found 
in Appendix 3. This database is built on a regularly-spaced 
3-dimensional grid of the three macro-scale design vari-
ables in order to have micro-structures close to any point 
in the design space. Each variable is given 32 values, lead-
ing to 323 =32,768 different entries, or sets of macro-scale 
design variables. For each of these entries, the optimum 
topology is computed following the methodology described 
in Sect. 2.

However, the micro-structure optimizations are gradient-
based, and therefore only find local minima. This leads to 
high variability in final designs and properties of cells with 
similar macro-scale variables. These noisy cell properties 
would be very detrimental to gradient-based macro-scale 
optimization. To prevent this, a multi-start strategy is used: 
different initial designs are tested for each set of macro-scale 
variables (i.e. each cell), and the final micro-structure with 
the lowest objective function value is kept. Those designs 
can be seen in Appendix 2 and are created in the Matlab 
code named initDes.m available in the link in Sect.  5.

The orientation variable is given 32 values between 0 
and �∕4 rad. The cells corresponding to orientation angles 
of �∕4 to � are derived by axial symmetry and added to the 
database. Cells corresponding to a density of 0 and 1 and 
computed only once and added to the database afterwards. 

Fig. 7  Illustration of two micro-structures obtained without anti-
domination constraints for the same macro-variables : density of 0.5, 
orientation angle of 0 and cubicity of 0. The transmission zones in the 
corners of the left cell dominate its other transmission zones, whereas 
the other transmission zones of the right cell dominate the transmis-
sion zones in its corners. Those cells would be badly connected. This 
illustrates the need for anti-domination constraints Fig. 8  Scheme of the two databases illustrating the inputs and outputs
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This leads to a total of 136000 cells contained in the 
database.

This database is included in our multi-scale strategy. Our 
macro-scale topology optimization code is adapted from 
top88, a classical mono-scale topology optimization code 
(Andreassen et al. 2011). However, instead of density being 
the only macro-design variable for each macro-element, we 
add a variable for orientation and cubicity. At each iteration, 
the stiffness matrix of each macro-element, or cell, is derived 
from those macro-design variables using the stiffness tensor 
database. In a MTO process where Ni macro-level iterations 
are needed and n macro-elements are used, this means that 
Ni × n micro-level optimizations would be needed without 
a database. This number is in the order of tens of thousands 
in the simple examples shown in Sect. 4. Therefore, a lot of 
computation time is saved through the use of this database. 
This results in the micro-optimization and macro-optimiza-
tion not being concurrent. The workflow is more precisely 
described in Fig. 9.

3.2  Surrogate prediction

To retrieve a stiffness tensor for a given set of macro-
level design variables ( xi = [xi

dens
, xi

or
, xi

cub
] ), we use the 

Nadaraya–Watson kernel-weighted average (Nadaraya 1964) 
with a Gaussian Kernel G, which read as 

 In Eq. (7), �pred(x
i
) is the predicted stiffness tensor of 

the cell corresponding to xi ; xl are the points in the data-
base; �db(xl) are the database stiffness tensors of the cells 
corresponding to those points, and b is the kernel radius; 

(7a)�pred(x
i
) =

∑k

l=1
G(xi, xl)�db(xl)

∑k

l=1
G(xi, xl)

(7b)G(xi, xl) = exp

(

−deucl(x
i, xl)

2

2b2

)

Fig. 9  Macro-optimization workflow
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deucl(x
i, xl) measures the Euclidean distance between xi and 

xl.
The foregoing kernel-weighted average provides a 

regressed stiffness tensor and, for sufficient computational 
efficiency, is applied on the k cells whose coordinates are 
within a distance of three kernel radii from the point xi 
where a prediction is sought. We set the kernel radius as 
b = 0.04 , meaning that around 3000 cells are considered 
for each regression. This is a compromise between pre-
cision and filtering the noise that was not suppressed by 
the multi-start strategy. The same method is applied to 
xi� = [xi

dens
+ �, xi

or
, xi

cub
] ,  xi�� = [xi

dens
, xi

or
+ �, xi

cub
] and 

xi��� = [xi
dens

, xi
or
, xi

cub
+ �] in order to obtain three other 

regressed stiffness tensors and be able to derive the partial 
derivatives through finite differences, as hereafter in Eq. (8), 
and using � = 0.01 . 

The stiffness matrices of the 4-node quadrilateral finite 
elements representing the cells, and their derivatives, are 
then derived from the stiffness tensors using four Gauss’ 
points for integration. Those element stiffness matrices are 
then used to build the global stiffness matrix and follow on 
with classical mono-scale topology optimization.

Matrices interpolated from a database can loose positive 
definiteness (Kumar et al. 2021). For every case that is pre-
sented in this paper, we checked the positive definiteness of 
every surrogate elastic tensor throughout the optimization, 
using Sylvester’s criterion. All were positive definite. We 
think that this is due to our Gaussian kernel surrogate and 
to the fact that we have a very large database.

3.3  Avoiding local minima

In order to avoid local minima on the border of the design 
space, a few actions have to be taken to artificially extend the 
design space. These actions are described hereafter.

The simplest way to manage the variables, is to have 
the orientation variable range from 0 to � and the cubic-
ity variable range from only one principal direction con-
sidered (value of 0) to both principal directions being as 
important (value of 1). This means that in order to move 
from a set of variables describing a cell where one of the 
two principal directions is slightly more important to a set 

(8a)
��pred

�xdens
(xi) ≈

�pred(x
i�
) − �pred(x

i
)

�

(8b)
��pred

�xor
(xi) ≈

�pred(x
i��
) − �pred(x

i
)

�

(8c)
��pred

�xcub
(xi) ≈

�pred(x
i���
) − �pred(x

i
)

�

of variable describing a cell where it is the other principal 
direction that is slightly more important, the orientation vari-
able has to change abruptly by �∕2 . For example, the third 
cell in Fig. 10a has a variable set of [0.5, 0, 0.8], whereas 
the fifth one has a variable set of [0.5, �∕2 , 0.8]. The cell in 
between could alternatively be described by the sets [0.5, 0, 
1] or [0.5, �∕2 , 1]. This introduces discontinuities which are 
detrimental for the gradient-based optimization approach. 
Indeed, we use the method of moving asymptotes (MMA) 
to solve the macro-scale topology optimization problem in 
this work (Svanberg 1987).

In order to correct that discontinuity, the cubicity variable 
is extended and normalized so that a value of 0 or 1 means 
that only one or the other principal directions is important, 
whereas a value of 0.5 means that both principal directions 
are as important. With this change it is now possible to 
move from the third cell of Fig. 10a to the fifth one only 
by a slight change in cubicity. This means that all cells now 
have two sets of variables pointing to them: [xdens, xor, xcub] 
and [xdens, xor ± �∕2, 1 − xcub] . The design space is there-
fore redundant and has been extended artificially. It also 
means that there are multiple paths from a cell to another, 
as can be seen in Fig. 10. This leads to better macro-scale 
optimizations.

Another local minimum located on the border of the 
design space is due to the orientation variable. Indeed, if 
the optimum value of this variable is located on the other 
side of the range, gradient-based optimization will lead the 
variable in the wrong direction, as illustrated schemati-
cally in Fig. 11a. A first idea to solve this is to extend the 
design space with redundant values of orientation angles, 

Fig. 10  Example showing the redundant design space in order to 
delete some local minima. There are two paths from the cell on the 
left (density = 0.5, orientation = 0, cubicity = 0.2) to the cell on the 
right (density = 0.5, orientation = 0, cubicity = 0.8 or density = 0.5, 
orientation = �∕2 , cubicity = 0.2 depending on the path followed)
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as in Fig. 11b. This way, the optimal orientation value will 
be reached whatever the initial point in the original design 
space.

However, there is another issue with the orientation vari-
able due to filtering. Indeed, in our multi-scale framework, 
all the macro-scale variables are spatially filtered. This can 
lead to bad values for periodical variables as orientation. 
More precisely, neighbouring cells can have optimal ori-
entation values that are separated by a period or more, as 
schematically illustrated in Fig. 11b. In this case the filtered 
value of this variable will be in between two optimal values, 
and display very bad properties. For this reason, extending 
the range of the orientation variable cannot be a good practi-
cal solution.

A better way to deal with this problem is to replace the 
orientation variable xor by two variables xcos and xsin , from 
which the orientation is derived as in Eq. (9).

In this case, the orientation is no more stuck in a local mini-
mum on the border of the design space. In order not to add 
an additional constraint on these variables, they are not made 
to respect x2

cos
+ x2

sin
= 1 . As a result, these variables are not 

the real cosine and sine of the orientation angle, but their 
ratio is the same.

Using these variables means once again that the design 
space is redundant, as any set of two values having the same 
ratio will correspond to the same orientation. Using these 
variables also helps reducing the observed dependency on 
initial orientations, as in Schmidt et al. (2020).

3.4  Fast post‑processing

We use three termination criteria for the macro-scale topol-
ogy optimization: a minimum design change as in top88 
(Andreassen et  al. 2011), a maximum number of itera-
tions since the best minimum was reached and a maximum 
number of overall iterations. For all the results shown in 
Sect. 4, the values used for these three termination criteria 
are respectively 0.001, 5 and 100. The iteration giving the 
minimum compliance is kept instead of the last one.

Once the topology optimization at the macro-scale level 
has converged, four variables are obtained for each cell. 
They are illustrated in Fig.12b in the case of an L-shaped 
beam. A quick post-processing step is therefore necessary to 
get the final design. For each macro-element, the final vari-
ables are used to find the closest cell in terms of Euclidean 
distance in the micro-structure database. This is immediate 
as the database is based on a regular grid. The micro-struc-
ture database was created off-line at the same time as the 
elastic tensor database. It contains the densities of the micro-
elements of each micro-structure. Each macro-element in the 
macro-design is therefore replaced with the corresponding 
micro-elements. Thus a final design is obtained with full 
detail as in Fig. 12c.

In order to improve the connection between micro-
structures and to get rid of useless elements, a second post-
processing step can be added at the end of the macro-scale 
optimization. This post-processing is made of three steps. In 
the first step a full finite element analysis (FEA) is conducted 
on the design. This enables to access the stress in all the 
micro-elements. These stresses are compared to the mean 
stress value throughout the structure. If they are lower than 
a given constant ( Cpost ) times this mean stress value, the ele-
ments are deleted (density set to 0) as they are considered 

(9)xor = arctan

(

xsin

xcos

)

Fig. 11  Issues encountered when dealing with the orientation varia-
ble. To solve these issues the orientation macro-variable was replaced 
with two variables proportional to the orientation cosine and sine
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to be useless. The total volume fraction of the structure 
therefore decreases, without having a significant impact on 
compliance. This step is applied three times (with Cpost1 , 
Cpost2 and Cpost3 ). In the second step, a classical density filter 
(Andreassen et al. 2011; Bruns and Tortorelli 2001; Bourdin 
2001) is used with a filter radius rpost , defined with respect to 
the micro-element size. This gives a minimum length scale, 
improving manufacturability. This step also transforms thin 
members into thicker grey-scale members. This is important 

to be able to recover the initial volume fraction in the last 
step. Finally all element densities are set to 0 or 1. To do this, 
a threshold is applied as in the code in Appendix 1: a density 
of 1 is assigned to all elements with a density higher than 
the threshold, while a density of 0 is assigned to all elements 
lower than this threshold. The threshold is adjusted through 
an iterative process to ensure that the desired volume frac-
tion value is restored. This final step gives a physical design, 
as in Fig. 12d. A Cpost1 value of 1.1, Cpost2 value of 2, Cpost3 

Fig. 12  Example showing the different steps leading from the end of the macro-optimization to the final design, in a L-shaped beam case using 
cells with three transmission zones per edge
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value of 20, and rpost value of 4 seem to give good results in 
many different cases. Those values are used for all the results 
presented in Sect. 4. The second step, and the creation of 
the filter matrix for the fine-scale design in particular, is 
the most computationally demanding one. This step typi-
cally takes in itself twice as long as the total macro-scale 
topology optimization without post-processing. This illus-
trates the efficiency of the multi-scale topology optimisation 
framework.

4  Results obtained

4.1  Comparison to other strategies on classical 
problems

All the codes used to obtain the following results are acces-
sible online (see Sect. 5). In all the examples presented in 
this paper, a global volume fraction of 0.5 was used.

EMTO is applied to classical test cases (L-shaped beam 
as in Fig. 12a and MBB beam) in order to compare it to 
other strategies. Fig. 13 shows an example of convergence 
graph obtained for the L-shaped beam problem on a 14 × 14 
macro-scale grid.

We compare EMTO to top88 in particular. According to 
Kumar and Suresh (2020), no method achieves clearly better 
results than top88 in terms of compliance minimization. The 
only exception is totally free MTO as in the work of Rod-
rigues et al. (2002) which is very time-consuming. EMTO 
being much faster it is interesting to see if this limit holds.

In order to evaluate a multi-scale design properly , it is 
necessary to evaluate the total design, where the cells are 

replaced by their micro-structures (Wu et al. 2021), needing 
much computation time. Therefore, in order for our evalua-
tions to be easily reproduced, we chose to compare the two 
methods on coarse grids of 14 × 14 and 30 × 10 macro-ele-
ments or cells for a L-shaped beam and MBB beam, respec-
tively. Of course, this grid is too coarse for a good design 
to be obtained with top88, but it enables the two methods 
to be compared for a same number of macro-elements, and 
therefore compare the performance of the cells to solid/void 
elements, when they are included in a structure. We also 
compare the two methods on finer 28 × 28 and 60 × 20 grids 
for a fairer comparison.

For each test case, a design from a mono-scale topology 
optimization was used as initial design. To obtain this initial 
design a penalization factor of 2 was used. This is a factor 
that gives a satisfactory approximation of our cells, based 
on Fig. 5. It can be seen in Figs. 14 and 15 that EMTO gives 
a very different design compared to classical mono-scale 
topology optimization, as in top88. However, the design 
shares some similarities at the macro-scale with oriented-
grid methods, such as developed in Kumar and Suresh 
(2020), and some similarities at the micro-scale with other 
multi-scale methods, such as Sivapuram et al. (2016).

In order to compare the design given by EMTO to the 
ones given by top88, their compliance were evaluated with 
the same penalization factor ( p = 3 ) and after projecting 
their designs on the same grid, for fairness of the compari-
son. The grid corresponding to the final design of EMTO 
( 1400 × 1400 and 2800 × 2800 for the L-shaped beam, 
3000 × 1000 and 6000 × 2000 for the MBB beam) was cho-
sen as it is the more refined. The elements of the designs 
given by top88 were therefore divided into smaller elements 
of same density in order to reach the same refinement. A 
filter radius of 1.5 is chosen for both top88 and EMTO, in 
order for top88 to give good results even with few elements. 
A sensitivity filtering is chosen for top88, as it also gives 
better results. Finally, a threshold was applied to the top88 
designs to push all densities to 0 or 1, in order to avoid 
penalizing top88 with intermediate densities. The thresh-
old conserving the volume fraction was chosen. For exam-
ple, the command used to obtain the design in Fig. 15c is 
top88(30,10,0.5,3,1.5,1) followed by the application of the 
threshold as in the code available in Appendix 1.

The results appear in Table 1. In this table, the compli-
ances and computation times obtained for each test case and 
each grid are given at three steps of the process. The com-
putation times have been obtained using a Dell Precision 
3630 desktop with an Intel Core i7-8700 processor, 32 GB 
memory, Windows 10, and MATLAB R2017b. The ‘homog-
enized’ step corresponds to the compliance computed 
at the end of the macro-optimization using homogenized 
stiffness tensors. It corresponds to the design in Fig. 12b. 
The macro-elements are not replaced by the corresponding 

Fig. 13  Convergence graph for the L-shaped beam optimization
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micro-structures yet, so connection issues have not arisen 
yet. For the other two steps, the given compliances are this 
time the real compliances computed for the whole design, 
before post-processing for one (in Fig. 12c and appearing as 
‘no PP’ in Table 1) and after post-processing for the other 
one (in Figs. 14a, b, 15a, b and appearing as ‘with PP’ in 
Table 1). These designs are compared to

– a top88 problem featuring the same number of elements 
(147 as in Fig. 14c, 588 as in Fig. 14d, 300 as in Fig. 15c 
or 1200 as in Fig. 15d)

– a top88 problem taking approximately the same time to 
compute

For this last top88 problem, the number of elements is 
increased until the computation time is approximately as 
much as that needed for EMTO to reach the considered step. 
The example in Fig. 14e corresponds to the computation 
time needed to finish post-processing of the 14 × 14 multi-
scale L-shaped beam case, whereas Fig. 15e corresponds to 
the computation time needed to finish post-processing of the 
30 × 10 multi-scale MBB beam case.

EMTO is also compared to oriented-grid methods. The 
code published in Kumar and Suresh (2020) is used for this 
comparison. We find that for a same number of macro-ele-
ments (n=147), EMTO gives a compliance that is 12.8% 
lower on the L-shaped beam problem and is faster. On the 
MBB beam problem, the oriented-grid method tested doesn’t 
give a connected design for the number of macro-elements 
(n=300) used with EMTO. Therefore a number of macro-
elements 6.25 times higher (n=1875) is chosen for this 
method. The resulting design appears in Fig. 15f. Despite 
its lower number of macro-elements, EMTO gives a compli-
ance that is 35.7% lower on this problem and is much faster.

It can be seen in Table 1 that the full use of EMTO 
(including post-processing) leads to very good results. The 
compliance can indeed be lowered by up to 20% on a coarse 

Fig. 14  Comparison of L-shaped beam designs from different meth-
ods: a EMTO on a 14 × 14 grid of cells after post-processing, b 
EMTO on a 28 × 28 grid of cells after post-processing, c, d top88 
with densities thresholded to 0 or 1 and with a number of elements 
equal to the number of macro-elements in a and b respectively, e 
top88 with densities thresholded to 0 or 1 and with a discretization 
( 140 × 140 ) leading to approximately the same computation time 
as a, f an oriented-grid method (using the code from Kumar and 
Suresh (2020)), g an alternative multi-scale method on a similar case 
(Sivapuram et al. 2016)

▸
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14 × 14 grid compared to an enhanced mono-scale method 
where densities are forced to be 0 or 1. On a more realistic 
finer grid ( 28 × 28 or 60 × 20 ), the compliance can still be 
lowered by 3 to 4%. This is significant because for most 
methods, porous material is not optimal for minimum com-
pliance design (Sivapuram et al. 2016), whereas in EMTO, 
porous design is always better, when the post-processing 
step is applied. This means that transmission zones and 
optimally-oriented cells are truly important. However, 
EMTO takes longer to run than a simple mono-scale topol-
ogy optimization method. When we compare our results 
to those obtained with a finer mono-scale method running 
in the same amount of time, our advantage vanishes. It is 
worth noting that no particular care was taken yet in EMTO 
to improve our code efficiency, as this will be addressed 
in future work. Yet, thanks to the use of a surrogate, our 
computation times are not prohibitive compared to a top88 
optimization. It is interesting to consider how each step in 
the process affects the result :

– Replacing the theoretical cells with real micro-structures 
from the database increases the compliance by 20 to 40% 
when a coarse grid is used. Indeed, as cells are different 
from their neighbours, homogenization theory does not 
apply and the effective properties of the cells are worse 
than the theoretical ones.

– Applying the post-processing step enables to overcome 
this issue through enhanced connectivity and “smooth-
ing” the design. As a result the compliances revert to 
values closer to the homogenized ones, with an increase 
of only 4 to 24%.

– In the cases with a finer mesh, the compliance increases 
only by 14 to 30% when the theoretical cells are replaced 
with their micro-structure. This is explained as in a finer 
mesh, the cells vary more smoothly and we are closer to 
a case where homogenization theory can apply. However, 
the difference between the homogenized compliances 
and the compliances after post-processing is much less 
affected by mesh refinement. Indeed, the post-processing 
is already designed to address the homogenization issue.

Another interesting observation is that cells with 4 trans-
mission zones or 8 transmission zones give very similar 
results. The cells with 4 transmission zones preform slightly 
better before post-processing because they are better con-
nected. This difference disappears after post-processing. 
Cells with 4 or 8 transmission zones are a good choice.

The better results obtained with EMTO using porous 
micro-structures than with mono-scale topology optimiza-
tion, for a same number of macro-elements, can be inter-
preted in two ways. The first one is simply to say that design-
ing the cells as micro-structures is equivalent to having a 
mono-scale design with more elements. This interpreta-
tion is illustrated in Fig. 16 where the compliance obtained 
using EMTO is compared to mono-scale designs with dif-
ferent number of elements, on the MBB beam case. All the 
designs are evaluated on a 3000 × 1000 grid, as in Table 1. 
The element densities of the top88 cases are thresholded to 
0 or 1 as previously described. Graphically, it can be seen 
that with post-processing, EMTO gives results close to a 
mono-scale method using 11 times more elements. This 
is easy to understand, as our micro-structures are made of 
100 × 100 micro-elements. In fact, results closer to a mono-
scale method featuring 10 000 times more elements could 
have been expected, but some of the improvement given by 
this high resolution is lost in micro-structure connection and 
reduced design space.

Another interpretation of the result improvement is that 
using porous micro-structures is equivalent to having a lower 
penalization. This interpretation is illustrated in Fig. 17 
where the compliance obtained using top88 is plotted for 
different penalization factors from 1 to 3. In this figure, no 
0/1 thresholding is applied, except on the blue dot, in order 
to see the effect of penalization. The compliance obtained 

Fig. 15  Comparison of MBB beam designs from different methods: 
a EMTO on a 30 × 10 grid of cells after post-processing, b EMTO on 
a 60 × 20 grid of cells after post-processing, c, d top88 with densities 
thresholded to 0 or 1 and a number of elements equal to the num-
ber of macro-elements in a and b respectively, e top88 with densities 
thresholded to 0 or 1 and with a resolution leading to approximately 
the same computation time as a, f an oriented-grid method (using the 
code from Kumar and Suresh (2020))
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with EMTO with a penalization factor of 3 on the micro-
elements is also plotted for comparison. Generally, com-
parison between isotropic and anisotropic material stiffness 
to weight ratio strongly depends on loading. Therefore, this 
comparison is done on three different loading cases: an 
MBB beam with a 60 × 20 grid, an L-shaped beam with a 
28 × 28 grid, and a cantilever beam with a 40 × 20 grid. All 
the designs are evaluated on a higher resolution grid featur-
ing 10 000 times more elements in order to evaluate the full 
multi-scale design. It can be seen that, in these mono-loading 

cases, using EMTO with post-processing gives results simi-
lar to a mono-scale topology optimization with a penaliza-
tion factor between 1.3 and 1.5. This can be understood by 
looking back at Fig. 5. Indeed, orienting the material inside 
the cells enables to have performances corresponding to a 
lower penalization factor. However, the data points for top88 
with 0/1 thresholding shows that some of the improvement 
is simply obtained through post-processing. Moreover this 
equivalent penalization factor may not be observed for more 
complex cases such as with multiple loads.

Table 1  Comparison of compliances from our results vs top88 for different problems, grids, number of transmission zones (TZ), different steps 
in the method and for different equivalent top88 cases

The top88 designs are thresholded to full/void elements to enhance their performance. A negative percentage means that performance is 
improved. The step after post-processing is the most relevant for EMTO. It can be observed that compliance can be diminished through EMTO 
(up to 20% on a toy case or 4% on a more realistic case) compared to a mono-scale topology optimization with the same number of elements

Problem Step Macro-grid Evaluation
grid

Time (s) c vs top88 
Same
Macro-grid

vs top88 
Same time
(Compliance, grid)

L-shaped top88 – 14 × 14 (Fig. 14c) 1400 × 1400 1 119.2 – –
L-shaped 8TZ Homogenized 14 × 14 – 10 76.3 − 36.0 − 13.2% (87.9, 70 × 70)
L-shaped 4TZ Homogenized 14 × 14 – 9 76.3 − 36.0 − 13.2% (87.9, 70 × 70)
L-shaped 8TZ No PP 14 × 14 1400 × 1400 15 108.6 − 8.9 + 24.4% (87.3, 88 × 88)
L-shaped 4TZ No PP 14 × 14 1400 × 1400 15 104.9 − 12.0 + 20.2% (87.3, 88 × 88)
L-shaped 8TZ With PP 14 × 14 1400 × 1400 56 94.3 − 20.9 + 9.3% (86.3, 140 × 140 , Fig. 14e)
L-shaped 4TZ With PP 14 × 14 1400 × 1400 52 94.5 − 20.7 + 9.5% (86.3, 140 × 140 , Fig. 14e)
L-shaped top88 – 28 × 28 (Fig. 14d) 2800 × 2800 1 93.6 – –
L-shaped 8TZ Homogenized 28 × 28 – 38 75.9 − 18.9 − 13.8% (88.1, 122 × 122)
L-shaped 4TZ Homogenized 28 × 28 – 40 75.8 − 19.0 − 14.0% (88.1, 122 × 122)
L-shaped 8TZ No PP 28 × 28 2800 × 2800 45 97.9 + 4.6 + 11.3% (88.0, 134 × 134)
L-shaped 4TZ No PP 28 × 28 2800 × 2800 47 96.6 + 3.2 + 9.8% (88.0, 134 × 134)
L-shaped 8TZ With PP 28 × 28 2800 × 2800 230 90.7 − 3.1 + 3.4% (87.7, 280 × 280)
L-shaped 4TZ With PP 28 × 28 2800 × 2800 234 90.6 − 3.2 + 3.3% (87.7, 280 × 280)
MBB top88 – 30 × 10 (Fig. 15c) 3000 × 1000 1 223.4 – –
MBB 8TZ Homogenized 30 × 10 – 15 196.6 − 12.0 − 1.7% (199.9, 120 × 40)
MBB 4TZ Homogenized 30 × 10 – 20 196.4 − 12.1 − 1.1% (198.4, 150 × 50)
MBB 8TZ No PP 30 × 10 3000 × 1000 20s 234.8 + 5.1 + 18.3% (198.4, 150 × 50)
MBB 4TZ No PP 30 × 10 3000 × 1000 25 216.3 − 3.2 + 9.0% (198.4, 150 × 50)
MBB 8TZ With PP 30 × 10 3000 × 1000 78 203.8 − 8.8 + 3.9% (196.1, 231 × 77 , Fig. 15e)
MBB 4TZ With PP 30 × 10 3000 × 1000 81 201.9 − 9.6 + 3.0% (196.1, 231 × 77 , Fig. 15e)
MBB top88 – 60 × 20 (Fig. 15d) 6000 × 2000 2 211.7 – –
MBB 8TZ Homogenized 60 × 20 – 47 195.0 − 7.9 − 1.9% (198.8, 201 × 67)
MBB 4TZ Homogenized 60 × 20 – 49 195.1 − 7.8 − 1.9% (198.8, 201 × 67)
MBB 8TZ No PP 60 × 20 6000 × 2000 52s 221.5 + 4.6 + 11.4% (198.8, 201 × 67)
MBB 4TZ No PP 60 × 20 6000 × 2000 55 212.2 + 0.2 + 6.7% (198.8, 201 × 67)
MBB 8TZ With PP 60 × 20 6000 × 2000 340 202.3 − 4.4 + 1.5% (199.4, 429 × 143)
MBB 4TZ With PP 60 × 20 6000 × 2000 272 201.6 − 4.8 + 1.3% (199.1, 375 × 125)
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4.2  A versatile framework for other constraints

In the previous examples, small-size macro-grids of the 
order of 150 to 1200 elements were used. It is of course 
possible to use finer grids for finer designs. This gives better 
results and in general reduces the need for post-processing. 
Indeed, if the filter radius is also increased, variables vary 
more smoothly from a cell to its neighbour and conditions 
are therefore closer to those enabling homogenization the-
ory. An example of a high definition design can be seen in 
Fig. 18 for a cantilever beam problem. However, this gives 
a design represented by a matrix too large to compute the 
compliance of the full structure at micro-scale level with the 
limited memory computing resources used. Therefore, only 
theoretical compliance from the macro-scale optimization is 
accessible in this case.

The method presented in this paper (EMTO) is very ver-
satile and can accommodate various problems or constraints. 
This versatility is due in particular to the design variables 
presented in Sect. 2.1. Three examples of new problems are 
presented in the rest of this section: controlled porosity, fixed 

topology, and fixed orientation. All these problems are easily 
run by changing only the bounds of the design variables.

A first problem that can be treated with EMTO is a case 
where porosity is constrained. For example, it is possible to 
easily impose a same porosity ( pfixed ) to all the micro-struc-
tures as in Eq. (10a) or a minimum porosity ( pmin ) by impos-
ing limits on the density variable ( xdens ) as in Eq. (10b). 

Example of designs obtained with such constraints 
appears in Fig. 19.

EMTO can also accommodate a case where the topology 
is fixed. In this case, only the orientation and cubicity vari-
ables are fixed and only the density varies. This is illustrated 
in Fig. 20a for an orientation angle of �∕4 and a cubicity 
of 0.5. This gives designs that are similar to other works in 
literature (Fig.20b from Li et al. (2017)).

Another possibility is to fix only the orientation variable, 
which can help achieve designs more easily manufactured 
at small scales, where the features of the design would be 
aligned with the printing path. This is illustrated in Fig. 20c, 
for an orientation angle of �∕4.

5  Conclusion

In this paper, a new efficient multi-scale topology optimiza-
tion (EMTO) method is proposed in order to address recur-
rent issues such as high computational costs, connectivity 
issues and lower performance due to reduced design spaces. 
EMTO uses micro-structures that are well connected through 
adaptable transmission zones, which limit loss of perfor-
mance. Although a regular, non-oriented-grid is proposed, 
the micro-structure is oriented inside each cell to enable bet-
ter performance. In order to speed up the process, a surrogate 
model is used both for the cell elastic tensor and for the cell 
micro-structure. For design on small grids, where cells vary 
rapidly, a post-processing is used to improve connectivity. It 
is shown that EMTO achieves significant improvements (up 
to 20% on a simplistic case or 4% on a more realistic case) 
compared to mono-scale methods on the same grid, and is 
promising in terms of speed. Future work includes speeding 
up the macro-optimization and post-processing, generalizing 

(10a)xdens = 1 − pfixed

(10b)xdens ≤ 1 − pmin

Fig. 16  Comparison of the compliances obtained with EMTO and 
with top88 for different numbers of elements. All the optimiza-
tions are conducted with a penalization factor of 3 and evaluated on 
a 3000 × 1000 high-resolution grid, as in the coarse case of Table 1. 
For EMTO, the macro-grid has 300 elements. Graphically, the results 
of EMTO with post-processing are equivalent to an increase in the 
number of elements by a factor of 11
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to a 3-d case and to other problem formulations featuring 
stress or manufacturing constraints.

Appendix 1: Code for thresholding densities 
to 0 or 1

Appendix 2: Initial designs used 
in micro‑structure optimization multi‑start 
strategy

The different initial designs in Figs. 21 and 22 were used as 
part of the micro-structure optimization multi-start strategy. 
Each of these designs was the best initial design for at least 
one of the points in the database.

Fig. 17  Comparison of the compliances obtained with EMTO and 
with top88 for different penalization factors. The top88 designs where 
densities are thresholded to 0 or 1 and with a penalization of 3, cor-
responding to Figs. 14d and 15d are added for reference. All the other 
top88 points correspond to designs were the final intermediate den-
sities (grey elements) are left unchanged. For EMTO, the micro-ele-
ments penalization factor is p = 3 . Graphically, the results of EMTO 
are equivalent to using a penalization factor between 1.3 and 1.5 
instead of 3, in the different loading cases studied

▸
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Appendix 3: Input–output examples 
from the database

Three random sets of input were tested on the database to 
exemplify how it works. The database of cells with 3 trans-
mission zones per edge is used. The inputs appear on the 
left in Figs. 23, 24 and 25. The top input is density, the 
second input is orientation (in radians), and the lowest input 
is cubicity, as in Fig. 8. The output tensors and micro-struc-
tures appear on the right in those figures.

Fig. 18  High-resolution design obtained for a cantilever beam on a 
100 by 40 elements grid. Cells with 3 transmission zones per edge 
are used, and no post-processing is applied. Theoretical compliance 
is 115

Fig. 19  Example of designs for a cantilever beam obtained with con-
straints on porosity
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Fig. 20  Example of designs for 
a cantilever beam obtained by 
limiting the design space



A well connected, locally‑oriented and efficient multi‑scale topology optimization (EMTO)…

Fig. 21  Initial designs for cells with 2 transmission zones per edge
Fig. 22  Initial designs for cells with 3 transmission zones per edge
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