Electrophilic fluorosulfoxonium cations as hidden Brønsted acid catalysts in (n+2) annulations of strained cycloalkanes

Augustin Manel, Jordan Berreur, Frédéric R. Leroux, Armen Panossian

To cite this version:
Augustin Manel, Jordan Berreur, Frédéric R. Leroux, Armen Panossian. Electrophilic fluorosulfoxonium cations as hidden Brønsted acid catalysts in (n+2) annulations of strained cycloalkanes. Organic Chemistry Frontiers, In press, 10.1039/D1QO00840D. hal-03325336

HAL Id: hal-03325336
https://hal.science/hal-03325336
Submitted on 24 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

This article can be cited before page numbers have been issued, to do this please use: A. Manel, J. Berreur, F. R. Leroux and A. Panossian, Org. Chem. Front., 2021, DOI: 10.1039/D1QO00840D.
Electrophilic fluorosulfoxonium cations as hidden Brønsted acid catalysts in (n+2) annulations of strained cycloalkanes

Augustin Manel, a Jordan Berreur, a Frédéric R. Leroux a and Armen Panossian a

The highly electrophilic fluorosulfoxonium cation \([\text{Ph}_3\text{S(O)}^+\text{F}]^+\) \([\text{B}(\text{CF}_3)_2]\) is shown to promote (n+2) annulation on Donor-Acceptor (D-A) strained cycles. This study highlights new reactions catalysed by highly electrophilic sulfoxonium cations and the thin barrier between Lewis acid catalysis and Brønsted acid catalysis.

Among non metal-based Lewis acid catalysts, Electrophilic Phosphonium Cations (EPCs) have attracted interest as efficient promoters for a wide variety of reactions: hydrosilylation of olefins, alkenes, imines and ketones;\(^1\)\(^,\)\(^2\) deoxygenation of ketones,\(^3\) amides\(^4\) and phosphate oxides;\(^5\) catalytic benzylolation/alkylation by hydrodefluorination;\(^6\) CO\(_2\) capture;\(^7\) hydrogenation of olefins;\(^8\) Friedel-Crafts dimerisations;\(^1\) hydroarylation and hydrothiolation of olefins;\(^9\) cyanosilylation of carbonyls;\(^16\)\(^,\)\(^11\) pericyclic reactions such as Diels-Alder or Nazarov cyclisations.\(^12\) As a particular type of EPCs, highly electrophilic fluorophosphonium cations seem especially appealing due to their quick access by Umpolung of phosphines (Figure 1).\(^13\) They have been extensively investigated by Stephan and coworkers, who prepared and studied a wide variety of new EPCs.\(^14\) Many of these highly electrophilic cations were assessed to be superacids, their Lewis acidity being derived from the \(\sigma^*_{p-p}\) orbital lobe oriented opposite to the fluoride ligand and sterically shielded by the surrounding substituents.\(^15\)

This Umpolung strategy for phosphines was extended to sulfoxides to form fluorosulfoxonium cations (Figure 1),\(^16\) which were already known species.\(^16\)–\(^18\) However, electrophilic sulfoxonium cation-based catalysis is yet to be fully developed beyond hydroarylation, hydrothiolation and polymerisation of THF.\(^15\) Considering their high Lewis acidity and their apparent \(\sigma\) and \(\pi\) activating nature, we reasoned that annulation reactions with polarized cycloalkanes ought to be feasible and an interesting new application of ESC catalysis.

Indeed, small strained ring compounds, such as cyclopropanes or cyclobutanes, have long been of interest in organic synthesis.\(^19\)\(^,\)\(^20\) Their stability and strain have been studied, as well as the preparation of the ring itself, and their application in synthesis. Activated cycloalkanes have been broadly investigated for use in annulations.\(^21\)\(^,\)\(^22\) Electron donating groups activate the cycle, increasing its reactivity toward an electrophile, while the presence of an electron-withdrawing group increases its electrophilicity. These two entities, wisely located on either side of the carbon-carbon bond, result in efficient polarisation through a push-pull mechanism. Various reaction pathways can be imagined, from \(S_0\) to entirely ionic, which may explain the erosion of the enantiomeric purity.\(^23\) The groups of Wenkert (on donor cyclopropanes)\(^24\), Danishefsky (on acceptor cyclopropanes)\(^25\) and Reissig (on donor-acceptor cyclopropanes)\(^26\) pioneered the study of activated cyclopropanes. While annulations on D-A cyclopropane derivatives (Donor-Acceptor cyclopropanes) catalysed by Lewis acids are amongst the most widespread methodologies to synthetise heterocyclic or carbocyclic substrates, the use of homologous D-A cyclobutane derivatives (Donor-Acceptor cyclobutanes) is less, but continuously, studied.\(^19\)\(^,\)\(^27\)–\(^33\) Among reactions with activated cyclopropanes or -butanes, annulation with 1,2 dipoles such as carbonyls can lead to the formation of tetrahydrofurans or -pyrans. These are common patterns in natural and pharmaceutical products (e.g. (-)-mucocine, spliceostatine etc.).\(^34\)\(^–\)\(^37\) Lewis and Brønsted acids were previously investigated for the access to these saturated heterocycles.\(^38\)\(^,\)\(^39\)

Herein, we disclose electrophilic fluorosulfoxonium cation-promoted (n+2) annulations of D-A cyclopropane and -butane derivatives with various (hetero)carbonyl donors. Alongside, we will discuss the possible alternative behaviour of the...
fluousulfoxonium salts as well. Thus, we developed an alternative strategy to form [RO][B(Cl)], which are unstable over time at the bench, and that such conclusion would most likely apply to highly electrophilic silylium salt [EtSi•C]4+. Looking for an alternative strategy, we had to consider that the nature of the counter-ion was reported to be primordial for catalytic activities of EPCs, and that such methodology benefits from the affinity (FIA) or Global Electrophilicity Index (GEI), and its rather convenient preparation.15 The first step is the oxidative difluorination with XeF2 in the presence of catalytic NEt3.Cl.17,18 The second step is the monodefluorination with an external fluorophile. Both steps are performed sequentially, without change of the catalyst. Stephan et al. described the use of the silylim reagent [Et3Si•C=H][B(Cl)]4 to perform the monodefluorination and installation of the lipophilic non-coordinating counter-ion at the same time. While this elegant strategy is step-economical, the low stability of the silylim salt over time requires its fresh synthesis, which may be inconvenient. Looking for an alternative strategy, we had to consider that the nature of the counter-ion was reported to be primordial for catalytic activities of EPCs, and that such conclusion would most likely apply to highly electrophilic sulfoxonium salts as well. Thus, we developed an alternative preparation, namely the use of BF3•OEt2 as fluoride abstractor to form [RO][B(Cl)], followed by an anion metathesis step with potassium salts, which are stable over time at the bench, furnishing the targeted fluorosulfoxonium with the desired counter-ion, namely [B(Cl)]4- here (Figure 2). Interestingly, an analogous approach was published very recently on EPCs.40 [B(Cl)]4- is among the weakest coordinating anions while providing the highest solubility in organic solvents for related EPCs.15,41,42 This alternative methodology benefits from the exclusive use of inexpensive, stable, and commercially available compounds.

We found that Cat.1 could efficiently catalyse the (3+2) cyclisation of donor-acceptor cyclopropanes 1 with various aromatic and aliphatic aldehydes (Figure 3). A catalyst loading of 10 mol% and a reaction time of 15 h at room temperature in dichloromethane were sufficient for the full conversion of 1 with most reagents (Table 1). The shortest reaction time observed was 4 h, with para-chlorobenzaldehyde as reactant (2ab, Table 1, entry 2). This strategy delivered the desired tetrahydrofurans in 18–92% yields (entries 1–9), depending on the nature of the carbonyl. Aromatic carbonyls, either activated or deactivated, gave the best results (entries 1–5) whereas 2-thiophenecarboxaldehyde afforded complex reaction mixtures from which the tetrahydrofuran 2ai was nevertheless isolated (entry 9). Heteroaromatic aldehydes were investigated but only the richest ones undergo the (3+2) annulation with low to moderate yield (2ah–i, entries 8–9) while electron-deficient heteroaromatics (e.g. nicotinaldehyde 2aj, 2-k) do not undergo conversion under these reaction conditions (entry 10). Diastereoselectivity was dependent on the electron density of the reactant: the more electron-rich the reactant, the higher the diastereoselectivity, in favour of the cis diastereomer (entries 1 vs 6). The diastereomeric ratio was measured in the crude reaction mixture, even if, for most products, both diastereomers could easily be separated by chromatography on silica gel.

Figure 2 Synthesis of a highly electrophilic fluorosulfoxonium

[Cat.1] was selected as catalyst for its high Lewis acidity, assessed computationally by either Fluoride Ion Affinity (FIA) or Global Electrophilicity Index (GEI), and its rather convenient preparation.15 The first step is the oxidative difluorination with XeF2 in the presence of catalytic NEt3.Cl.17,18 The second step is the monodefluorination with an external fluorophile. Both steps are performed sequentially, without change of the solvent. Stephan et al. described the use of the silylim reagent [Et3Si•C=H][B(Cl)]4 to perform the monodefluorination and installation of the lipophilic non-coordinating counter-ion at the same time. While this elegant strategy is step-economical, the low stability of the silylim salt over time requires its fresh synthesis, which may be inconvenient. Looking for an alternative strategy, we had to consider that the nature of the counter-ion was reported to be primordial for catalytic activities of EPCs, and that such conclusion would most likely apply to highly electrophilic sulfoxonium salts as well. Thus, we developed an alternative preparation, namely the use of BF3•OEt2 as fluoride abstractor to form [RO][B(Cl)], followed by an anion metathesis step with potassium salts, which are stable over time at the bench, furnishing the targeted fluorosulfoxonium with the desired counter-ion, namely [B(Cl)]4- here (Figure 2). Interestingly, an analogous approach was published very recently on EPCs.40 [B(Cl)]4- is among the weakest coordinating anions while providing the highest solubility in organic solvents for related EPCs.15,41,42 This alternative methodology benefits from the exclusive use of inexpensive, stable, and commercially available compounds.

We found that Cat.1 could efficiently catalyse the (3+2) cyclisation of donor-acceptor cyclopropanes 1 with various aromatic and aliphatic aldehydes (Figure 3). A catalyst loading of 10 mol% and a reaction time of 15 h at room temperature in dichloromethane were sufficient for the full conversion of 1 with most reagents (Table 1). The shortest reaction time observed was 4 h, with para-chlorobenzaldehyde as reactant (2ab, Table 1, entry 2). This strategy delivered the desired tetrahydrofurans in 18–92% yields (entries 1–9), depending on the nature of the carbonyl. Aromatic carbonyls, either activated or deactivated, gave the best results (entries 1–5) whereas 2-thiophenecarboxaldehyde afforded complex reaction mixtures from which the tetrahydrofuran 2ai was nevertheless isolated (entry 9). Heteroaromatic aldehydes were investigated but only the richest ones undergo the (3+2) annulation with low to moderate yield (2ah–i, entries 8–9) while electron-deficient heteroaromatics (e.g. nicotinaldehyde 2aj, 2-k) do not undergo conversion under these reaction conditions (entry 10). Diastereoselectivity was dependent on the electron density of the reactant: the more electron-rich the reactant, the higher the diastereoselectivity, in favour of the cis diastereomer (entries 1 vs 6). The diastereomeric ratio was measured in the crude reaction mixture, even if, for most products, both diastereomers could easily be separated by chromatography on silica gel.

Figure 2 Synthesis of a highly electrophilic fluorosulfoxonium

[Cat.1] was selected as catalyst for its high Lewis acidity, assessed computationally by either Fluoride Ion Affinity (FIA) or Global Electrophilicity Index (GEI), and its rather convenient preparation.15 The first step is the oxidative difluorination with XeF2 in the presence of catalytic NEt3.Cl.17,18 The second step is the monodefluorination with an external fluorophile. Both steps are performed sequentially, without change of the solvent. Stephan et al. described the use of the silylim reagent [Et3Si•C=H][B(Cl)]4 to perform the monodefluorination and installation of the lipophilic non-coordinating counter-ion at the same time. While this elegant strategy is step-economical, the low stability of the silylim salt over time requires its fresh synthesis, which may be inconvenient. Looking for an alternative strategy, we had to consider that the nature of the counter-ion was reported to be primordial for catalytic activities of EPCs, and that such conclusion would most likely apply to highly electrophilic sulfoxonium salts as well. Thus, we developed an alternative preparation, namely the use of BF3•OEt2 as fluoride abstractor to form [RO][B(Cl)], followed by an anion metathesis step with potassium salts, which are stable over time at the bench, furnishing the targeted fluorosulfoxonium with the desired counter-ion, namely [B(Cl)]4- here (Figure 2). Interestingly, an analogous approach was published very recently on EPCs.40 [B(Cl)]4- is among the weakest coordinating anions while providing the highest solubility in organic solvents for related EPCs.15,41,42 This alternative methodology benefits from the exclusive use of inexpensive, stable, and commercially available compounds.

We found that Cat.1 could efficiently catalyse the (3+2) cyclisation of donor-acceptor cyclopropanes 1 with various aromatic and aliphatic aldehydes (Figure 3). A catalyst loading of 10 mol% and a reaction time of 15 h at room temperature in dichloromethane were sufficient for the full conversion of 1 with most reagents (Table 1). The shortest reaction time observed was 4 h, with para-chlorobenzaldehyde as reactant (2ab, Table 1, entry 2). This strategy delivered the desired tetrahydrofurans in 18–92% yields (entries 1–9), depending on the nature of the carbonyl. Aromatic carbonyls, either activated or deactivated, gave the best results (entries 1–5) whereas 2-thiophenecarboxaldehyde afforded complex reaction mixtures from which the tetrahydrofuran 2ai was nevertheless isolated (entry 9). Heteroaromatic aldehydes were investigated but only the richest ones undergo the (3+2) annulation with low to moderate yield (2ah–i, entries 8–9) while electron-deficient heteroaromatics (e.g. nicotinaldehyde 2aj, 2-k) do not undergo conversion under these reaction conditions (entry 10). Diastereoselectivity was dependent on the electron density of the reactant: the more electron-rich the reactant, the higher the diastereoselectivity, in favour of the cis diastereomer (entries 1 vs 6). The diastereomeric ratio was measured in the crude reaction mixture, even if, for most products, both diastereomers could easily be separated by chromatography on silica gel.
First, the electron-withdrawing substituents were altered: monoester-, dinitrile-, or mixed ester/nitrile-functionalised D-A cyclopropanes (respectively described conditions (entry 11). Second, the donor part was the acceptor moiety. In this case, the phenyl-substituted changed as well, while maintaining the two ester functions of electron-deficient (hetero)aromatic rings (cyclopropane substituents were incompatible with the described leads to a complex reaction mixture from which no formation of tetrahydrofuran was observed (entry 11).

Conversely, the more electron-rich benzaldehyde phenylhydrazone remained unconverted. The NMR follow-up of the reaction with deuterated solvent, the formation of the corresponding tetrahydrofuran was observed. Additionally and surprisingly, benzonitrile as reactant did not yield any product either, whereas nitriles were previously used successfully for similar reactions by Pagenkopf et al. with milder Lewis acids or Brønsted acids.43

For the sake of diversity, the synthesis of tetrahydrothiophene derivatives was attempted with a thionoester as reactant, which is a convenient alternative to thiaoaldehydes and thioketones. However, after purification, only the opened by-product 2al was obtained (entry 12). This side product had been observed by Oshima et al., who explained its formation by water substitution followed by a ring-opening reaction.44 This result was surprising, considering especially the work of Ruppert et al.45 (Figure 5, a.) and previous work on moisture-sensitive EPCs and ESCs which urged us, from the beginning, to work under strictly anhydrous conditions and in a glovebox. Reactions were therefore duplicated with fresh and dry batches of substrate, reagent, catalyst and solvent. It appeared thus that the desired cyclised product could in fact be observed by NMR of the crude when the analysis was carried out using a J. Young valve-equipped NMR tube, but hydrolyzed upon exposure of the reaction medium to air prior to purification leading to 2al.
Aside from cyclopropanes, this methodology was extended to D-A cyclobutanones, a less strained ring requiring a slightly higher reaction temperature and resulting in a narrower library of reactants (Table 2). Benzaldehyde derivatives proved suitable as reaction partners in most cases, with yields up to 76% (4aa-ag, entries 1–7). However, no conversion was obtained with aldehydes derived from heteroaromatics, whether electron-rich or poor (4ai-aj, Table 2, entry 9). Concerning aliphatic substituents, only the use of pivaldehyde allowed the isolation of the desired tetrahydropyran 4ah (Table 2, entry 8), while other aliphatics yielded complex reactions mixtures that remained hardly refinable. p-Anisaldehyde and 2-bromobenzaldehyde (leading to 4ac and 4af) also afforded complex reaction mixtures and poor yields (entries 3 and 6). Variation of the donor group (for the obtention of 4b and 4c) on the cyclobutane was then investigated. Even under harsher reaction conditions (higher temperature and/or catalyst loading), neither a proton nor a methyl as donor groups were able to yield cyclised tetrahydropyrans (entry 10). Unlike 3a which succeeded in producing 4aa, the parent monoester 3d was not a suitable substrate under the described reaction conditions, no matter which diastereomer, which highlights the need for a strong electron withdrawing effect.

Considering the known ability of Lewis acids to generate Brønsted acids as competitive catalysts in the presence of trace moisture,
46 we were curious about the exact nature of the catalyst. Indeed, regarding water, highly electrophilic fluorosulfoxonium salts such as Cat.1 should behave like the corresponding difluorosulfurane oxide, which was reported to hydrolyse to the sulfone while concomitantly releasing 2 molecules of HF. In the case of Cat.1, one would therefore expect the formation of the sulfone, HF and [H][B(C6F5)4] (Figure 5, a). Test reactions were carried out to assess the stability of the fluorosulfoxonium salt and to distinguish the different catalytically active species. First, the stability of Cat.1 towards moisture was investigated: about 20 equivalents of H2O were added to a solution of Cat.1 in DCM and monitoring by NMR was performed. Surprisingly, even after 24 hours, the fluorosulfoxonium salt was still in extra majority. Compressed air was then bubbled into a solution of Cat.1 in DCM. The fluorosulfoxonium/sulfone ratio was found unchanged. Then, for the sake of clarity, we decided to carry out (n+2) cyclisations on D-A cycloalkanes in the presence of 2,6-di-tert-butylpyridine as a proton scavenger that would be too congested to quench the Lewis acidity of the fluorosulfoxonium. The absence of coordination between the Lewis base and Cat.1 was thus checked beforehand by 1H, 11B, 13C and 19F NMR experiments, which showed no observable chemical shift modification of signals of either one of the two species (see ESI). Then, cyclisation reactions were carried out in the presence of 30 mol% of this Brønsted base as added reactant, i.e. an excess of base to trap the expected 10 mol% of HF and 10 mol% of [H][B(C6F5)4] which could be released by the hydrolysis of the 10 mol% of fluorosulfoxonium salt. Interestingly, the cyclisation of both types of D-A cycloalkanes (Figure 5, c) was fully prohibited. The activity of the fluorosulfoxonium salt as a “hidden Brønsted acid” is hereby pinpointed. Out of precaution, the corresponding pyridinium salt was synthesised and used in catalytic amount under identical reaction conditions (Figure 5, d). No conversion of the substrate was observed, as expected. Furthermore, the B(C6F5)4– analogue of the Brookhart acid as potential “hidden Brønsted acid” catalyst was synthesised, and was shown to promote both cyclisations (Figure 5, b). Yet, the distinct d.r. of the cyclised product when using either the fluorosulfoxonium or [H•(OEt)2][B(C6F5)4] might highlight a difference of active catalytic species, whose exact nature will remain difficult to ascertain.

Since the (n+2) annulations of cycloalkanes with carbonyl derivatives were apparently catalysed by a “hidden Brønsted acid” derived from the fluorosulfoxonium hydrolysis, we continued our studies with the development of a more practical method using triflic acid as a readily available Brønsted acid. The latter was indeed chosen for its potency as a strong Brønsted acid and as an attempt of continuity with the work of Wang et al. and Moran et al. on reactions of D-A cyclopropane derivatives mediated by TfOH.50,51 Surprisingly, the (3+2) cyclisation of D-A cyclopropanes with carbonyl derivatives under Brønsted acid catalysis was not reported. Accordingly, we assessed TfOH in these reactions and applied the same conditions as for the (3+2) cyclisation mediated by Cat.1 (Figure 6). Gratifyingly, the method turned out to be effective in the case of electron-rich or -neutral arylaldehydes (Table 3, entries...
Aliphatic aldehydes proved to be more troublesome. Indeed, only the use of a non-enolisable one, namely pivaldehyde, yielded a viable reaction mixture. Heteroaromatic aldehydes, either electron-rich or -poor, could not be used in this strategy (Table 3, entry 5). Notably, similarly to the case of fluorosulfoxonium **Cat.1**, the di-cyano functionalised D-A cyclopropane did not undergo any conversion with TFOH as catalyst either. Surprisingly, in the case of 4-nitrobenzaldehyde and N-tosylnbenzalimidine as reaction partners, the tetrahydrofuran was obtained, but was unexpectedly accompanied with diethyl 2-benzylidenemalonate in a non-negligible 25% and 28% yield respectively (Table 3, entries 7 and 8). The mechanism for the formation of the latter alkene is still unclear. Interestingly, in the successful reactions of Table 3, the d.r. of the product was usually higher (>20:1) than when using **Cat.1** as promoter (Table 1, entry 1 and Table 3, entry 1). The variation of the concentration of TFOH over time was investigated, to assess if a high concentration in Brønsted acid could explain the catalysis of side reactions. However, no improvement of the reaction cleanliness was observed through these tests. Finally, the use of TFOH to catalyse the cycloaddition of D-A cyclobutanones at 50 °C (no conversion was observed at 25 °C) afforded complex reaction mixtures for all investigated reaction partners, with conversions far below the results obtained with **Cat.1**.

![Figure 6](image_url) **Figure 6** Typical reaction conditions for TFOH-catalysed (3+2) cyclisation of D-A cyclopropanes with carbonyl derivatives

Table 3 TFOH-catalysed (3+2) cyclisation of D-A cyclopropanes with carbonyl derivatives

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Yield (%)</th>
<th>Alkene</th>
<th>d.r.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2aa</td>
<td>68</td>
<td>-</td>
<td>>20:1</td>
</tr>
<tr>
<td>2</td>
<td>2ab</td>
<td>99</td>
<td>-</td>
<td>>20:1</td>
</tr>
<tr>
<td>3</td>
<td>2ac</td>
<td>63</td>
<td>-</td>
<td>>20:1</td>
</tr>
<tr>
<td>4</td>
<td>2af</td>
<td>65</td>
<td>-</td>
<td>>20:1</td>
</tr>
<tr>
<td>5</td>
<td>2ah</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>2ag</td>
<td>22</td>
<td>-</td>
<td>1.5:1</td>
</tr>
<tr>
<td>7</td>
<td>2ae</td>
<td>5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>8*</td>
<td>2aa</td>
<td>9</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>2aj</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* N-Tosylbenzalimidine was used instead of the carbonyl derivative

In conclusion, we straightforwardly accessed a highly electrophilic fluorosulfoxonium salt via an anion metathesis strategy employing bench-stable reagents. The fluorosulfoxonium salt was successfully used as a promoter for (n+2) cyclisations of D-A cycloalkanes with carbonyl derivatives, affording tetrahydrofurans and -pyranes. Yet, it appeared that the reaction was not promoted by the fluorosulfoxonium as Lewis acid, but rather by a “hidden Brønsted acid” catalyst arising from reaction of the former with trace moisture. Accordingly, TFOH was also evaluated as catalyst and proved successful in some of the same annulations. Interestingly, the use of the fluorosulfoxonium salt nevertheless prevailed over that of TFOH, since a wider library of reactants was tolerated and led to much more selective reactions. Furthermore, TFOH was not potent to catalyse the formation of tetrahydrofurans. The key for the efficiency of such cyclisations of D-A cycloalkanes with carbonyl derivatives might be in the subtle balance between the strength of the elusive Brønsted acid catalyst and its concentration to avoid undesired side-reactions, which are numerous in the chemistry of D-A cyclopropanes.

Acknowledgements

We gratefully acknowledge the French Agence Nationale pour la Recherche (ANR) (grant number ANR-18-CE07-0007-01, CLABCat), the CNRS, the Université de Strasbourg and the Université de Haute-Alsace for financial support. JB is much grateful to the French Ministry of Higher Education, Research and Innovation for funding.
Commun. J. Name. 2021, 00, 1-3

Notes and references

