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Electrophilic fluorosulfoxonium cations as hidden Brønsted acid 
catalysts in (n+2) annulations of strained cycloalkanes
Augustin Manel, a Jordan Berreur, a Frédéric R. Lerouxa and Armen Panossian*a 

The highly electrophilic fluorosulfoxonium cation [Ph2S(O)F]+ 

[B(C6F5)4)]- is shown to promote (n+2) annulation on Donor-
Acceptor (D-A) strained cycles. This study highlights new reactions 
catalysed by highly electrophilic sulfoxonium cations and the thin 
barrier between Lewis acid catalysis and Brønsted acid catalysis.

Among non metal-based Lewis acid catalysts, Electrophilic 
Phosphonium Cations (EPCs) have attracted interest as efficient 
promoters for a wide variety of reactions: hydrosilylation of 
olefins, alkynes, imines and ketones;1,2 deoxygenation of 
ketones,3 amides4 and phosphine oxides;5 catalytic 
benzylation/alkylation by hydrodefluorination;6 CO2 capture;7 
hydrogenation of olefins;8 Friedel-Crafts dimerisations;1 
hydroarylation and hydrothiolation of olefins;9 cyanosilylation 
of carbonyls;10,11 pericyclic reactions such as Diels-Alder or 
Nazarov cyclisations.12 As a particular type of EPCs, highly 
electrophilic fluorophosphonium cations seem especially 
appealing due to their quick access by Umpolung of phosphines 
(Figure 1).13 They have been extensively investigated by 
Stephan and coworkers, who prepared and studied a wide 
variety of new EPCs.14 Many of these highly electrophilic cations 
were assessed to be superacids, their Lewis acidity being 
derived from the σ*P–F orbital lobe oriented opposite to the 
fluorine ligand and sterically shielded by the surrounding 
substituents.15

This Umpolung strategy for phosphines was extended to 
sulfoxides to form fluorosulfoxonium cations (Figure 1),15 which 
were already known species.16–18 However, electrophilic 
sulfoxonium cation-based catalysis is yet to be fully developed 
beyond hydroarylation, hydrothiolation and polymerisation of 

THF.15 Considering their high Lewis acidity and their apparent σ 
and π activating nature, we reasoned that annulation reactions 
with polarised cycloalkanes ought to be feasible and an 
interesting new application of ESC catalysis.
Indeed, small strained ring compounds, such as cyclopropanes 
or cyclobutanes, have long been of interest in organic 
synthesis.19,20 Their stability and strain have been studied, as 
well as the preparation of the ring itself, and their application in 
synthesis. Activated cycloalkanes have been broadly 
investigated for use in annulations.21,22 Electron donating 
groups activate the cycle, increasing its reactivity toward an 
electrophile, while the presence of an electron-withdrawing 
group increases its electrophilicity. These two entities, wisely 
located on either side of the carbon-carbon bond, result in 
efficient polarisation through a push-pull mechanism. Various 
reaction pathways can be imagined, from SN2 to entirely ionic, 
which may explain the erosion of the enantiomeric purity.23 
The groups of Wenkert (on donor cyclopropanes)24, Danishefsky 
(on acceptor cyclopropanes)25 and Reissing (on donor-acceptor 
cyclopropanes)26 pioneered the study of activated 
cyclopropanes. While annulations on D-A cyclopropane 
derivatives (Donor-Acceptor cyclopropanes) catalysed by Lewis 
acids are amongst the most widespread methodologies to 
synthetise heterocyclic or carbocyclic substrates, the use of 
homologous D-A cyclobutane derivatives (Donor-Acceptor 
cyclobutanes) is less, but continuously, studied.19,27–33 Among 
reactions with activated cyclopropanes or -butanes, annulation 
with 1,2 dipoles such as carbonyls can lead to the formation of 
tetrahydrofurans or -pyrans. These are common patterns in 
natural and pharmaceutical products (e.g. (-)-mucocine, 
spliceostatine etc.).34–37 Lewis and Brønsted acids were 
previously investigated for the access to these saturated 
heterocycles.38,39

Herein, we disclose electrophilic fluorosulfoxonium cation-
promoted (n+2) annulations of D-A cyclopropane and -butane 
derivatives with various (hetero)carbonyl sources. Alongside, 
we will discuss the possible alternative behaviour of the 

a.Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, 
67000 Strasbourg.
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Figure 1 Umpolung strategy for the obtention of strong Lewis acids from P- and S- 
based Lewis bases
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fluorosulfoxonium and compare such results with those of 
cycloadditions catalysed by TfOH as Brønsted acid. 

[Ph2S(O)F][B(C6F5)4] (Cat.1) was selected as catalyst for its high 
Lewis acidity, assessed computationally by either Fluoride Ion 
Affinity (FIA) or Global Electrophilicity Index (GEI), and its rather 
convenient preparation.15 The first step is the oxidative 
difluorination with XeF2 in the presence of catalytic NEt4Cl.17,18 
The second step is the monodefluorination with an external 
fluorophile. Both steps are performed sequentially, without 
change of the solvent. Stephan et al. described the use of the 
silylium salt [Et3Si•C7H8][B(C6F5)4] to perform the 
monodefluorination and installation of the lipophilic non-
coordinating counter-ion at the same time. While this elegant 
strategy is step-economical, the low stability of the silylium salt 
over time requires its fresh synthesis, which may be 
inconvenient. Looking for an alternative strategy, we had to 
consider that the nature of the counter-ion was reported to be 
primordial for catalytic activities of EPCs, and that such 
conclusion would most likely apply to highly electrophilic 
sulfoxonium salts as well. Thus, we developed an alternative 
preparation, namely the use of BF3•OEt2 as fluoride abstractor 
to form [R2S(O)F]+[BF4]–, followed by an anion metathesis step 
with potassium salts, which are stable over time at the bench, 
furnishing the targeted fluorosulfoxonium with the desired 
counter-ion, namely [B(C6F5)4]– here (Figure 2). Interestingly, an 
analogous approach was published very recently on EPCs.40 
[B(C6F5)4]– is among the weakest coordinating anions while 
providing the highest solubility in organic solvents for related 
EPCs.15,41,42 This alternative methodology benefits from the 
exclusive use of inexpensive, stable and commercially available 
compounds.

We found that Cat.1 could efficiently catalyse the (3+2) 
cyclisation of donor-acceptor cyclopropanes 1 with various 
aromatic and aliphatic aldehydes (Figure 3). A catalyst loading 
of 10 mol% and a reaction time of 15 h at room temperature in 
dichloromethane were sufficient for the full conversion of 1 
with most reagents (Table 1). The shortest reaction time 
observed was 4 h, with para-chlorobenzaldehyde as reactant 
(2ab, Table 1, entry 2). This strategy delivered the desired 
tetrahydrofurans in 18–92 % yields (entries 1–9), depending on 
the nature of the carbonyl. Aromatic carbonyls, either activated 
or deactivated, gave the best results (entries 1–5) whereas 2-
thiophenecarboxaldehyde afforded complex reaction mixtures 
from which the tetrahydrofuran 2ai was nevertheless isolated 
(entry 9). Heteroaromatic aldehydes were investigated but only 
the richest ones undergo the (3+2) annulation with low to 

moderate yield (2ah–i, entries 8–9) while electron-deficient 
heteroaromatics (e.g nicotinaldehyde 2aj, 6-fluoro-3-
pyridinecarboxaldehyde 2ak) do not undergo conversion under 
these reaction conditions (entry 10). Diastereoselectivity was 
dependent on the electron density of the reactant: the more 
electron-rich the reactant, the higher the diastereoselectivity, 
in favour of the cis diastereomer (entries 1 vs 6). The 
diastereomeric ratio was measured in the crude reaction 
mixture, even if, for most products, both diastereomers could 
easily be separated by chromatography on silica gel.

Figure 2 Synthesis of a highly electrophilic fluorosulfoxonium
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Figure 3 (3+2) annulation of D-A cyclopropanes and carbonyl derivatives 
promoted by ESC Cat.1
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Table 1 (3+2) annulation of D-A cyclopropanes and carbonyl derivatives promoted by ESC 
Cat.1 (see Figure 3)

Variations on the D-A cyclopropane were also investigated. 
First, the electron-withdrawing substituents were altered: 
monoester-, dinitrile-, or mixed ester/nitrile-functionalised D-A 
cyclopropanes (respectively 1f, 1g and 1h) are not suitable for 
the cyclisation since no conversion was observed under the 
described conditions (entry 11). Second, the donor part was 
changed as well, while maintaining the two ester functions of 
the acceptor moiety. In this case, the phenyl-substituted 
cyclopropane 1a exhibited the highest reactivity. Indeed, 
electron-deficient (hetero)aromatic rings (1c–e) as donor 
substituents were incompatible with the described 
methodology: no conversion was observed in association with 
para-chlorobenzaldehyde or para-anisaldehyde (entry 11). 
Conversely, the more electron-rich p-anisyl-derived 
cyclopropane 1b proved not to be a suitable substrate in 
association with para-anisaldehyde (2b). The latter association 
leads to a complex reaction mixture from which no formation 
of tetrahydrofuran was observed (entry 11).
On the other hand, the analogous synthesis of pyrrolidine 
derivatives proved unsuccessful. Several imines (N-tosyl-4-
chlorobenzaldimine, N-tosyl-4-nitrobenzaldimine, N-benzyl-
benzaldimine) or benzaldehyde phenylhydrazone remained 
unconverted. The NMR follow-up of the reaction with N-tosyl 
benzaldimine under strictly anhydrous conditions exhibits no 
conversion, although when quenched with commercial grade 
deuterated solvent, the formation of the corresponding 
tetrahydrofuran was observed. Additionally and surprisingly, 
benzonitrile as reactant did not yield any product either, 
whereas nitriles were previously used successfully for similar 
reactions by Pagenkopf et al. with milder Lewis acids or 
Brønsted acids.43

For the sake of diversity, the synthesis of tetrahydrothiophene 
derivatives was attempted with a thionoester as reactant, 
which is a convenient alternative to thioaldehydes and 
thioketones. However, after purification, only the opened by-
product 2al was obtained (entry 12). This side product had been 
observed by Oshima et al., who explained its formation by 
water substitution followed by a ring-opening reaction.44 This 
result was surprising, especially considering the work of 
Ruppert et al.45 (Figure 5, a.) and previous work on moisture-
sensitive EPCs and ESCs which urged us, from the beginning, to 

work under strictly anhydrous conditions and in a glovebox. 
Reactions were therefore duplicated with fresh and dry batches 
of substrate, reagent, catalyst and solvent. It appeared thus that 
the desired cyclised product could in fact be observed by NMR 
of the crude when the analysis was carried out using a J. Young 
valve-equipped NMR tube, but hydrolyzed upon exposure of 
the reaction medium to air prior to purification leading to 2al. 

Table 2 (4+2) annulation of D-A cyclobutanes and carbonyl derivatives promoted by ESC 
Cat.1 (see Figure 4)

Entry Compound Yield (%) d.r.
1 2aa 83 20:1
2 2ab 92 >20:1
3 2ac 71 17:1
4 2ad 72 3:1
5 2ae 43 >20:1
6 2af 77 9:1
7 2ag 73 7:1
8 2ah 51 5:1
9 2ai 18 16:1

10 2aj-2ak 0 -
11 2b-2h 0 -
12 2al 73 -

Entry Compound Yield (%) d.r.

1 4aa 62 14:1
2 4ab 76 19:1
3 4ac 5 -
4 4ad 36 >20:1
5 4ae 48 >20:1
6 4af 1 -
7 4ag 73 7:1
8 4ah 36 6:1
9 4ai-4aj 0 -

10 4b-4d 0 -

R1 = Ph
R1 = 4-Cl-C6H4
R1 = 4-MeO-C6H4
R1 = 4-O2N-C6H4
R1 = 4-F-C6H4
R1 = 2-Br-C6H4
R1 = 2-Me-C6H4
R1 = t-Bu
R1 = 2-furyl
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Figure 4 (4+2) annulation of D-A cyclobutanes and carbonyl derivatives promoted 
by ESC Cat.1
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Aside from cyclopropanes, this methodology was extended to 
D-A cyclobutanes, a less strained ring requiring a slightly higher 
reaction temperature and resulting in a narrower library of 
reactants (Table 2). Benzaldehyde derivatives proved suitable 
as reaction partners in most cases, with yields up to 76% (4aa-
ag, entries 1–7). However, no conversion was obtained with 
aldehydes derived from heteroaromatics, whether electron-
rich or poor (4ai-aj, Table 2, entry 9). Concerning aliphatic 
substituents, only the use of pivaldehyde allowed the isolation 
of the desired tetrahydropyran 4ah (Table 2, entry 8), while 
other aliphatics yielded complex reactions mixtures that 
remained hardly refinable. p-Anisaldehyde and 2-
bromobenzaldehyde (leading to 4ac and 4af) also afforded 
complex reaction mixtures and poor yields (entries 3 and 6).46,47 
Variation of the donor group (for the obtention of 4b and 4c) on 
the cyclobutane was then investigated. Even under harsher 
reaction conditions (higher temperature and/or catalyst 
loading), neither a proton nor a methyl as donor groups were 
able to yield cyclised tetrahydropyrans (entry 10). Unlike 3a 
which succeeded in producing 4aa, the parent monoester 3d 
was not a suitable substrate under the described reaction 
conditions, no matter which diastereomer, which highlights the 
need for a strong electron withdrawing effect.

Considering the known ability of Lewis acids to generate 
Brønsted acids as competitive catalysts in the presence of trace 
moisture,48 we were curious about the exact nature of the 
catalyst. Indeed, regarding water, highly electrophilic 
fluorosulfoxonium salts such as Cat.1 should behave like the 
corresponding difluorosulfurane oxide, which was reported to 
hydrolyse to the sulfone while concomitantly releasing 2 
molecules of HF.49 In the case of Cat.1, one would therefore 
expect the formation of the sulfone, HF and [H][B(C6F5)4] (Figure 
5, a). Test reactions were carried out to assess the stability of 
the fluorosulfoxonium salt and to distinguish the different 
catalytically active species. First, the stability of Cat.1 towards 
moisture was investigated: about 20 equivalents of H2O were 
added to a solution of Cat.1 in DCM and monitoring by NMR was 
performed. Surprisingly, even after 24 hours, the 
fluorosulfoxonium salt was still in extra majority. Compressed 
air was then bubbled into a solution of Cat.1 in DCM. The 
fluorosulfoxonium/sulfone ratio was found unchanged. Then, 
for the sake of clarity, we decided to carry out (n+2) cyclizations 
on D-A cycloalkanes in the presence of 2,6-di-tert-butylpyridine 
as a proton scavenger that would be too congested to quench 
the Lewis acidity of the fluorosulfoxonium.48 The absence of 
coordination between the Lewis base and Cat.1 was thus 
checked beforehand by 1H, 11B, 13C and 19F NMR experiments, 
which showed no observable chemical shift modification of 
signals of either one of the two species (see ESI). Then, 
cyclisation reactions were carried out in the presence of 30 
mol% of this Brønsted base as added reactant, i.e. an excess of 
base to trap the expected 10 mol% of HF and 10 mol% of 
[H][B(C6F5)4] which could be released by the hydrolysis of the 10 
mol% of fluorosulfoxonium salt. Interestingly, the cyclisation of 
both types of D-A cycloalkanes (Figure 5, c) was fully prohibited. 
The activity of the fluorosulfoxonium salt as a “hidden Brønsted 

acid” is hereby pinpointed.48 Out of precaution, the 
corresponding pyridinium salt was synthesised and used in 
catalytic amount under identical reaction conditions (Figure 5, 
d). No conversion of the substrate was observed, as expected. 
Furthermore, the B(C6F5)4

– analogue of the Brookhart acid as 
potential “hidden Brønsted acid” catalyst was synthesised, and 
was shown to promote both cyclisations (Figure 5, b). Yet, the 
distinct d.r. of the cyclised product when using either the 
fluorosulfoxonium or [H•(OEt2)2][B(C6F5)4] might highlight a 
difference of active catalytic species, whose exact nature will 
remain difficult to ascertain.

Since the (n+2) annulations of cycloalkanes with carbonyl 
derivatives were apparently catalysed by a “hidden Brønsted 
acid” derived from the fluorosulfoxonium hydrolysis, we 
continued our studies with the development of a more practical 
method using triflic acid as a readily available Brønsted acid. The 
latter was indeed chosen for its potency as a strong Brønsted 
acid and as an attempt of continuity with the work of Wang et 
al. and Moran et al. on reactions of D-A cyclopropane 
derivatives mediated by TfOH.50,51 Surprisingly, the (3+2) 
cyclisation of D-A cyclopropanes with carbonyl derivatives 
under Brønsted acid catalysis was not reported. Accordingly, we 
assessed TfOH in these reactions and applied the same 
conditions as for the (3+2) cyclisation mediated by Cat.1 (Figure 
6). Gratifyingly, the method turned out to be effective in the 
case of electron-rich or -neutral arylaldehydes (Table 3, entries 
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O S
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Ph
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Figure 5 Control experiments to identify the active catalytic species
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1–3). Aliphatic aldehydes proved to be more troublesome. 
Indeed, only the use of a non-enolisable one, namely 
pivaldehyde, yielded a viable reaction mixture. Heteroaromatic 
aldehydes, either electron-rich or -poor, could not be used in 
this strategy (Table 3, entry 5). Notably, similarly to the case of 
fluorosulfoxonium Cat.1, the di-cyano functionnalised D-A 
cyclopropane did not undergo any conversion with TfOH as 
catalyst either. Surprisingly, in the case of 4-nitrobenzaldehyde 
and N-tosylbenzaldimine as reaction partners, the 
tetrahydrofuran was obtained, but was unexpectedly 
accompanied with diethyl 2-benzylidenemalonate in a non-
negligible 25% and 28% yield respectively (Table 3, entries 7 and 
8). The mechanism for the formation of the latter alkene is still 
unclear. Interestingly, in the successful reactions of Table 3, the 
d.r. of the product was usually higher (>20:1) than when using 
Cat.1 as promoter (Table 1, entry 1 and Table 3, entry 1). The 
variation of the concentration of TfOH over time was 
investigated, to assess if a high concentration in Brønsted acid 

could explain the catalysis of side reactions. However, no 
improvement of the reaction cleanliness was observed though 
these tests. Finally, the use of TfOH to catalyse the cycloaddition 
of D-A cyclobutanes at 50 °C (no conversion was observed at 25 
°C) afforded complex reaction mixtures for all investigated 
reaction partners, with conversions far below the results 
obtained with Cat.1.

Table 3 TfOH-catalysed (3+2) cyclisation of D-A cyclopropanes with carbonyl derivatives

a N-Tosylbenzaldimine was used instead of the carbonyl derivative

In conclusion, we straightforwardly accessed a highly 
electrophilic fluorosulfoxonium salt via an anion metathesis 
strategy employing bench-stable reagents. The 
fluorosulfoxonium salt was successfully used as a promoter for 
(n+2) cyclisations of D-A cycloalkanes with carbonyl derivatives, 
affording tetrahydrofurans and -pyranes. Yet, it appeared that 
the reaction was not promoted by the fluorosulfoxonium as 
Lewis acid, but rather by a “hidden Brønsted acid” catalyst 
arising from reaction of the former with trace moisture. 
Accordingly, TfOH was also evaluated as catalyst and proved 

successful in some of the same annulations. Interestingly, the 
use of the fluorosulfoxonium salt nevertheless prevailed over 
that of TfOH, since a wider library of reactants was tolerated 
and led to much more selective reactions. Furthermore, TfOH 
was not potent to catalyse the formation of tetrahydropyrans. 
The key for the efficiency of such cyclisations of D-A 
cycloalkanes with carbonyl derivatives might be in the subtle 
balance between the strength of the elusive Brønsted acid 
catalyst and its concentration to avoid undesired side-reactions, 
which are numerous in the chemistry of D-A cyclopropanes.52 
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Entry Compound Yield (%) Alkene d.r.
1 2aa 68 - >20:1
2 2ab 99 - >20:1
3 2ac 63 - >20:1
4 2af 65 - >20:1
5 2ah 8 - -
6 2ag 22 - 1.5:1
7 2ae 5 25 -
8a 2aa 9 28 -
9 2aj 0 - -

Figure 6 Typical reaction conditions for TfOH-catalysed (3+2) cyclisation of D-A 
cyclopropanes with carbonyl derivatives
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