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Abstract

In this paper we deal with the controllability properties of a system of m coupled Stokes systems or m coupled
Navier-Stokes systems. We show the null-controllability of such systems in the case where the coupling is in
a cascade form and when the control acts only on one of the systems. Moreover, we impose that this control
has a vanishing component so that we control a m × N state (corresponding to the velocities of the fluids) by
N − 1 distributed scalar controls. The proof of the controllability of the coupled Stokes system is based on a
Carleman estimate for the adjoint system. The local null-controllability of the coupled Navier-Stokes systems is
then obtained by means of the source term method and a Banach fixed point.
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1 Introduction

Controllability issues related to a single parabolic equation or to a single Stokes or Navier-Stokes system have been
intensively studied in the last fifty years giving rise to interesting techniques, new challenges and open problems.
See some seminal results [12,16,25] for the heat equation and [8,14,21] for the Navier-Stokes system. The literature
is vast and it is difficult to mention all the intensive studies about this subject. However, it is only in the last fifteen
years that the challenging issue of controlling coupled parabolic systems has attracted the interest of the control
community. This kind of systems appears mathematically in optimal control theory as a characterization of the
optimal control (with one equation coupled to its adjoint) but also appears, for example, in the study of chemical
reactions (see e.g. [11], [7]), and in a wide variety of mathematical biology and physical situations (see e.g. [20] ). In
the case of scalar (heat) coupled equations an important number of challenging problems has been solved (see [1] for
a survey of results until 2011) and sometimes the results have been surprising [2–4]. In the case of coupled Stokes
or Navier-Stokes systems, to our knowledge, only some cases of two coupled systems have been treated [5,6,18,29].
Here our aim is to generalize results for a m scalar cascade system [17] to a mN -dimensional Stokes or Navier-Stokes
cascade system but including an extra deal: to eliminate one component on the N -dimensional control.

Let us be more specific: we consider a bounded domain Ω of RN (N = 2, 3) whose boundary ∂Ω is regular enough.
Let T > 0 and let ω ⊂ Ω be a (arbitrary small) nonempty open subset which will usually be referred as the control
domain. We will use the notation Q = Ω× (0, T ) and Σ = ∂Ω× (0, T ).

In this article, we are interested in the null controllability of a coupled system of m Stokes or Navier-Stokes
systems, with m > 2:

∂ty
(i) −∆y(i) +∇p(i) + ε

(
y(i) · ∇

)
y(i) =

m∑
j=1

Ai,jy
(j) +Div1ω in Q, (1 6 i 6 m)

∇ · y(i) = 0 in Q, (1 6 i 6 m)
y(i) = 0 on Σ, (1 6 i 6 m)

y(i)(·, 0) = y
(i)
0 in Ω, (1 6 i 6 m)

with ε = 0 for Stokes systems and ε = 1 for Navier-Stokes systems, where Ai,j ∈MN (R) and where Di ∈MN,r(R)
for some r ∈ N∗. We have denoted by 1ω the characteristic function of ω. Let us notice that we take in this work
the viscosities of the fluids constant and equal to 1 to simplify.

We can write the above systems in a more compact way as
∂ty −∆y +∇p = Ay +Dv1ω in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y|t=0 = y0 in Ω,

(1.1)

or 
∂ty −∆y + (y · ∇)y +∇p = Ay +Dv1ω in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y|t=0 = y0 in Ω,

(1.2)

where we set
y =

(
y(1), . . . , y(m)

)
, p =

(
p(1), . . . , p(m)

)
, y0 =

(
y

(1)
0 , . . . , y

(m)
0

)
,

∆y =
(
∆y(1), . . . ,∆y(m)

)
, ∇p =

(
∇p(1), . . . ,∇p(m)

)
,

(y · ∇) y =
((
y(1) · ∇

)
y(1), . . . ,

(
y(m) · ∇

)
y(m)

)
, ∇ · y =

(
∇ · y(1), . . . ,∇ · y(m)

)
and

Ay =

( m∑
j=1

A1,jy
(j), . . . ,

m∑
j=1

Am,jy
(j)

)
Dv =

(
D1v, . . . , Dmv

)
.
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In this work, we will focus in the particular case where the partitioned matrix A has the form

A =


A1,1 A1,2 A1,3 . . . A1,m

A2,1 A2,2 A2,3 . . . A2,m

0 A3,2 A3,3 . . . A3,m

...
...

. . .
. . .

...
0 0 . . . Am,m−1 Am,m

 (1.3)

with all the blocks under the diagonal non zero and such that all its blocks are scalar matrices. More precisely, our
hypotheses on A are

Ai,j = ai,jIN , ai,i−1 6= 0 (2 6 i 6 m), ai,j = 0 if i > j + 2. (1.4)

We also control (1.1) or (1.2) by acting only on one of the Stokes or of the Navier-Stokes systems, for instance the
first one, and with N − 1 scalar controls on this system. Thus, without loss of generality, we assume

r = N − 1, Dj = 0 (j > 2), D1 =

(
1
0

)
(if N = 2) or D1 =

1 0
0 1
0 0

 (if N = 3). (1.5)

The above choice of the matrix A corresponds to a particular coupling considered in the context of the null-
controllability of systems of m linear heat equations, see [17] and our aim is to extend this result in the case of
coupled of Stokes or Navier-Stokes systems.

In order to state our main results, we recall some standard functional spaces associated with the Stokes system:

H =
{
y ∈ L2(Ω)N : ∇ · y = 0 in Ω, y · n = 0 on ∂Ω

}
(1.6)

and
V =

{
y ∈ H1

0 (Ω)N : ∇ · y = 0 in Ω
}
. (1.7)

Our main result is the following theorem.

Theorem 1.1. Assume (1.4) and (1.5). Then, for any T > 0 and for any y0 ∈ Hm, there exists a control
v ∈ L2(0, T ;L2(ω)N−1) such that the corresponding solution y =

(
y(1), ..., y(m)

)
to (1.1) satisfies

y(·, T ) = 0 in Ω.

Remark 1.2. As a consequence, we deduce that we can control the system (1.1) of N ×m scalar equations with
N − 1 scalar controls.

From Theorem 1.1 and a general method to deal with the controllability of nonlinear parabolic systems, we
deduce the local null controllability of the system (1.2):

Theorem 1.3. Assume (1.4) and (1.5). Then, for any T > 0, there exists δ > 0 such that, for any y0 ∈ V m

satisfying
‖y0‖Vm 6 δ,

there exists v ∈ L2(0, T ;L2(ω)N−1) such that the corresponding solution y to (1.2) satisfies

y(·, T ) = 0 in Ω.

In order to prove Theorem 1.1, we introduce the adjoint system:

−∂tϕ(i) −∆ϕ(i) +∇π(i) =
i+1∑
j=1

Aj,iϕ
(j) in Q, (1 6 i 6 m− 1)

−∂tϕ(m) −∆ϕ(m) +∇π(m) =
m∑
j=1

Aj,mϕ
(j) in Q,

∇ · ϕ(i) = 0 in Q, (1 6 i 6 m)
ϕ(i) = 0 on Σ, (1 6 i 6 m)

ϕ(i)(·, T ) = ϕ
(i)
T in Ω, (1 6 i 6 m)

(1.8)
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with ϕ
(i)
T ∈ H (1 6 i 6 m) and we denote by ϕ

(i)
j , j = 1, . . . , N the coordinates of ϕ(i). Note that by setting

ϕ(m+1) ≡ 0, am+1,i = 0 (1 6 i 6 m),

we can write the first above equations as

− ∂tϕ(i) −∆ϕ(i) +∇π(i) =

i+1∑
j=1

aj,iϕ
(j) in Q, (1 6 i 6 m). (1.9)

Following a standard duality argument (see, for instance, [34, Theorem 11.2.1, p.357]), Theorem 1.1 will be obtained
as a consequence of the following observability inequality:∫

Ω

m∑
i=1

∣∣∣ϕ(i)(x, 0)
∣∣∣2 dx 6 C(T )

∫∫
ω×(0,T )

N−1∑
j=1

∣∣∣ϕ(1)
j

∣∣∣2 dxdt. (1.10)

for some C depending on T , Ω and ω.
The proof of (1.10) is based on (global) Carleman inequalities introduced in [16] for the controllability of parabolic

equations. Such inequalities have been used by many authors to deal with Stokes of Navier-Stokes systems (for
instance, [22] or [14]). The case of controls with some vanishing components was considered in [15], [9] and [6]. We
follow here the method introduced in [9]. As a first step, one can get rid of the pressure by applying a differential
operator on (1.9) (or on components of (1.9)) such as curl or ∆. This leads to a system of coupled heat equations but
without prescribed boundary conditions. Using results such as [13] or [24], one can obtain a Carleman estimate with
boundary terms that can be absorbed by some standard arguments. Let us note that to recover the observability
on the components that are not observed, one has to use the divergence-free condition on ϕ(i) and the Dirichlet
boundary conditions. Unhappily in this process, one loses part of the weights on these components. The last part

of the proof of (1.10) consists in estimating the local terms associated with ϕ
(i)
j , i > 1 and this is done by using

(1.4). An important work related to this subject is [10] where the authors obtain the local null controllability of the
Navier-Stokes system in dimension 3 with a control having two vanishing components. In that case, the method is
based on a different linearization and on a different approach based on results of Gromov.

This paper is organized as follows. In Section 2, we introduce the weights for our Carleman estimates and we
recall some results, in particular some Carleman estimates for other systems. Section 3 corresponds to the statement
and to the proof of the Carleman estimate for (1.8). Finally, in Section 4, we use this estimate to prove Theorem 1.1
and Theorem 1.3.

2 Preliminaries

In the whole article, we use the notation C for a generic positive constant that depends on Ω, ω. We can assume to
simplify that T ∈ (0, 1) and that will allow us to avoid some dependence on T for some constants. Finally we only
write the proof in the case N = 2, the case N = 3 can be done similarly.

To write our Carleman inequalities, we introduce standard weights and functions. First, we consider a nonempty
domain ω0 such that ω0 ⊂ ω. Then, using [16] (see also [34, Theorem 9.4.3, p.299]), there exists η0 ∈ C2(Ω)
satisfying

η0 > 0 in Ω, η0 = 0 on ∂Ω, max
Ω

η0 = 1, ∇η0 6= 0 in Ω \ ω0. (2.1)

Then, we define the following functions:

α(x, t) =
exp {λ(2`+ 2)} − exp{λ(2`+ η0(x))}

t`(T − t)`
, ξ(x, t) =

exp{λ(2`+ η0(x))}
t`(T − t)`

, (2.2)

α∗(t) = max
x∈Ω

α(x, t) =
exp {λ(2`+ 2)} − exp{2λ`}

t`(T − t)`
, ξ∗(t) = min

x∈Ω
ξ(x, t) =

exp{2λ`}
t`(T − t)`

, (2.3)
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where ` > 14, λ > 1. In literature ` > 3 is enough. However, to prove our result we need to use ` > 14 (see Proof
of Proposition 3.2).

Note that we have the following useful relations: there exists C > 0 depending on Ω such that

|∂tα|+ |∂tξ| 6 CTξ1+1/`, (2.4)∣∣(α∗)′∣∣+
∣∣(ξ∗)′∣∣ 6 CT (ξ∗)

1+1/`
,
∣∣(α∗)′′∣∣+

∣∣(ξ∗)′′∣∣ 6 CT 2 (ξ∗)
1+2/`

, (2.5)

ξ∗ >
C

T 2`
, (2.6)

|∇α| = |∇ξ| 6 Cλξ, |∆α| = |∆ξ| 6 Cλ2ξ. (2.7)

Weights of the kind (2.2) were first considered in [16]. In its present form, these weights have already been used
in [19] in order to obtain Carleman estimates for the controllability of strongly coupled parabolic equations and
later in [18] for the existence of insensitizing controls for Stokes systems.

Now, we recall some standard results. The first one is a Carleman estimate for the gradient operator, it is stated
and proved in [9]:

Lemma 2.1. Let r ∈ R. There exists C > 0 depending only on r,Ω and ω0 such that, for every T > 0, s > C and
every u ∈ L2(0, T ;H1(Ω)),

∫∫
Q

e−2sαsr+2ξr+2|u|2dxdt 6 C

∫∫
Q

e−2sαsrξr|∇u|2dxdt+

∫∫
ω0×(0,T )

e−2sαsr+2ξr+2|u|2dxdt.

 .

The second result is a Carleman estimate for the heat equation with non-homogeneous Dirichlet boundary con-
ditions. It is proved in [24].

Lemma 2.2. There exists a constant C > 0 such that for any λ > C, s > C, f0, f1, ..., fN ∈ L2(Q) and

u ∈ L2
(
0, T ;H1(Ω)

)
∩H1

(
0, T ;H−1(Ω)

)
satisfying

∂tu−∆u = f0 +

N∑
j=1

∂jfj in Q,

we have∫∫
Q

e−2sα
(
s−1ξ−1 |∇u|2 + sξ |u|2

)
dxdt 6 C

(∫∫
ω0×(0,T )

e−2sαsξ |u|2 dxdt

+
∥∥∥e−sα∗s−1/4(ξ∗)−1/4+1/`u

∥∥∥2

L2(Σ)
+
∥∥∥e−sα∗s−1/4(ξ∗)−1/4u

∥∥∥2

H
1
4
, 1
2 (Σ)

+

∫∫
Q

e−2sαs−2ξ−2 |f0|2 dxdt+

N∑
j=1

∫∫
Q

e−2sα |fj |2 dxdt

 . (2.8)

Recall that

‖u‖
H

1
4
, 1
2 (Σ)

=
(
‖u‖2H1/4(0,T ;L2(∂Ω)) + ‖u‖2L2(0,T ;H1/2(∂Ω))

)1/2

.

The next result concerns the regularity of the solutions of the Stokes system
∂tu−∆u+∇p = f in Q,

∇ · u = 0 in Q,

u = 0 on Σ,

u(·, 0) = 0 in Ω.

(2.9)
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This result can be found in [33].

Lemma 2.3. Assume T > 0. For any f ∈ L2(Q)N , there exists a unique solution

u ∈ L2(0, T ;H2(Ω)N ) ∩H1(0, T ;H), p ∈ L2(0, T ;H1(Ω)/R)

to the Stokes system (2.9) and there exists a constant C > 0 depending only on Ω such that

‖u‖2L2(0,T ;H2(Ω)N ) + ‖u‖2H1(0,T ;L2(Ω)N ) 6 C ‖f‖2L2(0,T ;L2(Ω)N ) . (2.10)

Assume moreover that
f ∈ L2(0, T ;V )

then
u ∈ L2(0, T ;H3(Ω)N ) ∩H1(0, T ;V )

and there exists a constant C > 0 depending only on Ω such that

‖u‖2L2(0,T ;H3(Ω)N) + ‖u‖2H1(0,T ;V ) 6 C ‖f‖2L2(0,T ;V ) . (2.11)

Assume moreover that
f ∈ L2

(
0, T ;H3(Ω)N

)
∩H1 (0, T ;V ) , f (·, 0) = 0 in Ω.

Then, u ∈ L2(0, T ;H5(Ω)N ) ∩H1(0, T ;H3(Ω)N ) ∩H2(0, T ;V ) and there exists a constant C > 0 depending only
on Ω such that

‖u‖2L2(0,T ;H5(Ω)N ) + ‖u‖2H1(0,T ;H3(Ω)N ) + ‖u‖2H2(0,T ;V ) 6 C
(
‖f‖2L2(0,T ;H3(Ω)N ) + ‖∂tf‖2L2(0,T ;V )

)
.

3 The Carleman estimate for the adjoint system

As before, we denote by C various positive constants which depends only on Ω and ω (they depend also in general
on the choice of η0 and ω0 but one can consider that η0 as well as ω0 depend Ω and ω). Without any lack of
generality, we treat the case of dimension N = 2 and j = 2. The same proof can be performed in the general case.

Our aim is to estimate the following quantity associated with the solutions of the system (1.8):

I1(s, ϕ(i)) :=

∫∫
Q

e−2sα

(
s−1ξ−1

∣∣∣∇3∆ϕ
(i)
1

∣∣∣2 + sξ
∣∣∣∇2∆ϕ

(i)
1

∣∣∣2 + s3ξ3
∣∣∣∇∆ϕ

(i)
1

∣∣∣2 + s5ξ5
∣∣∣∆ϕ(i)

1

∣∣∣2) dxdt
+

∫∫
Q

e−2sα∗(sξ∗)5
∣∣∣ϕ(i)

∣∣∣2 dxdt. (3.1)

Thus, our main result states as follows:

Theorem 3.1. There exists C > 0 depending on the geometry such that for any s > C and for any ϕT ∈ Hm, the
solution (ϕ(1), ..., ϕ(m)) of (1.8) satisfies

m∑
i=1

I1(s, ϕ(i)) 6 C

∫∫
ω×(0,T )

e−2sαs2m+3−6ξ2m+3−6
∣∣∣ϕ(1)

1

∣∣∣2 dxdt. (3.2)

In order to prove the above proposition, we first start by estimating each I1(s, ϕ(i)) (i = 1, . . . ,m) independently.
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Proposition 3.2. Let ω̂ ⊂ Ω be a nonempty open set such that ω0 b ω̂. Then, there exists a constant C such that
for any s > C and for any ϕT ∈ Hm, the solution ϕ of (1.8) satisfies

I1(s, ϕ(i)) 6 C

(∫∫
ω̂×(0,T )

e−2sαs5ξ5
∣∣∣∆ϕ(i)

1

∣∣∣2 dxdt

+

m∑
j=1

∫∫
Q

(
e−2sα∗s9/2(ξ∗)5

∣∣∣ϕ(j)
∣∣∣2 + e−2sαs−2ξ−2

∣∣∣∇2∆ϕ
(j)
1

∣∣∣2) dxdt

 (1 6 i 6 m). (3.3)

Proof of Proposition 3.2. First taking the divergence of (1.9), we remark that

∆π(i) = 0 in Q (1 6 i 6 m).

Thus, using a standard method for the Stokes system (see, for instance [9]), we apply the operator ∇2∆ to the first
components of (1.9), and we deduce

− ∂t∇2∆ϕ
(i)
1 −∆∇2∆ϕ

(i)
1 =

i+1∑
j=1

aj,i∇2∆ϕ
(j)
1 in Q, (1 6 i 6 m). (3.4)

Applying Lemma 2.2 to the above equations, we deduce that for λ > λ̂1 and for s > ŝ1,∫∫
Q

e−2sα

(
s−1ξ−1

∣∣∣∇3∆ϕ
(i)
1

∣∣∣2 + sξ
∣∣∣∇2∆ϕ

(i)
1

∣∣∣2) dxdt
6 C

(∫∫
ω0×(0,T )

e−2sαsξ
∣∣∣∇2∆ϕ

(i)
1

∣∣∣2 dxdt+
∥∥∥e−sα∗s−1/4(ξ∗)−1/4+1/`∇2∆ϕ

(i)
1

∥∥∥2

L2(Σ)4

+
∥∥∥e−sα∗(sξ∗)−1/4∇2∆ϕ

(i)
1

∥∥∥2

H
1
4
, 1
2 (Σ)4

+

i+1∑
j=1

∫∫
Q

e−2sαs−2ξ−2
∣∣∣∇2∆ϕ

(j)
1

∣∣∣2 dxdt
 . (3.5)

The rest of the proof is divided into several steps:

• In Step 1, we complete the left-hand side of (3.5) with weighted integrals of ϕ(i) in Q, and adding some local
terms in the right-hand side.

• In Step 2, we obtain an upper bound of the boundary terms.

• Finally, in Step 3, we estimate the local terms that do not appear in (3.3).

Step 1. We apply Lemma 2.1 with u = ∇∆ϕ
(i)
1 and r = 1: for any s > C and λ > C,

∫∫
Q

e−2sαs3ξ3
∣∣∣∇∆ϕ

(i)
1

∣∣∣2 dxdt 6 C

∫∫
Q

e−2sαsξ
∣∣∣∇2∆ϕ

(i)
1

∣∣∣2 dxdt+

∫∫
ω0×(0,T )

e−2sαs3ξ3
∣∣∣∇∆ϕ

(i)
1

∣∣∣2 dxdt

 . (3.6)

Then, we apply Lemma 2.1 with u = ∆ϕ
(i)
1 and r = 3: for any s > C and λ > C,

∫∫
Q

e−2sαs5ξ5
∣∣∣∆ϕ(i)

1

∣∣∣2 dxdt 6 C

∫∫
Q

e−2sαs3ξ3
∣∣∣∇∆ϕ

(i)
1

∣∣∣2 dxdt+

∫∫
ω0×(0,T )

e−2sαs5ξ5
∣∣∣∆ϕ(i)

1

∣∣∣2 dxdt

 . (3.7)
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Now, using the divergence condition of ϕ(i), we have∣∣∣∂2ϕ
(i)
2

∣∣∣ =
∣∣∣∂1ϕ

(i)
1

∣∣∣ 6 ∣∣∣∇ϕ(i)
1

∣∣∣ .
Then using the Poincaré inequality and the ellipticity of the Laplace operator with Dirichlet boundary conditions,
we deduce the existence of a constant C depending on Ω such that∫

Ω

∣∣∣ϕ(i)
∣∣∣2 dx 6 C

∫
Ω

∣∣∣∆ϕ(i)
1

∣∣∣2 dx.

Combining the above relation with (3.5), (3.6) and (3.7), we deduce that I1(s, ϕ(i)) defined by (3.1) satisfies

I1(s, ϕ(i)) 6 C

(∫∫
ω0×(0,T )

e−2sα

(
sξ
∣∣∣∇2∆ϕ

(i)
1

∣∣∣2 + s3ξ3
∣∣∣∇∆ϕ

(i)
1

∣∣∣2 + s5ξ5
∣∣∣∆ϕ(i)

1

∣∣∣2) dxdt

+
∥∥∥e−sα∗s−1/4(ξ∗)−1/4+1/`∇2∆ϕ

(i)
1

∥∥∥2

L2(Σ)4
+
∥∥∥e−sα∗(sξ∗)−1/4∇2∆ϕ

(i)
1

∥∥∥2

H
1
4
, 1
2 (Σ)4

+

i+1∑
j=1

∫∫
Q

e−2sαs−2ξ−2
∣∣∣∇2∆ϕ

(j)
1

∣∣∣2 dxdt
 . (3.8)

Step 2. In this step, we get rid of the boundary terms in the right-hand side of (3.8). To estimate the first term,
we notice that since ` > 4, (ξ∗)−1/4+1/` is bounded in (0, T ) (see (2.6)). Thus∥∥∥e−sα∗s−1/4(ξ∗)−1/4+1/`∇2∆ϕ

(i)
1

∥∥∥2

L2(Σ)4
6 Cs−1/2

∥∥∥e−sα∗∇2∆ϕ
(i)
1

∥∥∥2

L2(Σ)4

6 Cs−1/2

(∥∥∥e−sα∗∇2∆ϕ
(i)
1

∥∥∥2

L2(Q)4
+
∥∥∥s1/2e−sα

∗
(ξ∗)1/2∇2∆ϕ

(i)
1

∥∥∥
L2(Q)4

∥∥∥s−1/2e−sα
∗
(ξ∗)−1/2∇3∆ϕ

(i)
1

∥∥∥
L2(Q)8

)
6 Cs−1/2

∫∫
Q

e−2sα∗
(
sξ
∣∣∣∇2∆ϕ

(i)
1

∣∣∣2 + s−1ξ−1
∣∣∣∇3∆ϕ

(i)
1

∣∣∣2) dxdt 6 Cs−1/2I1(s, ϕ(i)). (3.9)

For the second boundary term, we will use a trace inequality (see, for instance, [27, Theorem 2.1, p.9]) and by
an interpolation argument (see, for instance, [26, Corollary 9.2, p.46]), we have∥∥∥(ξ∗)−1/4e−sα

∗
∇2∆ϕ

(i)
1

∥∥∥2

H
1
4
, 1
2 (Σ)4

6 C
∥∥∥(ξ∗)−1/4e−sα

∗
∇2∆ϕ

(i)
1

∥∥∥2

L2(0,T ;H1(Ω)4)∩H1/2(0,T ;L2(Ω)4)

6 C
∥∥∥(ξ∗)−1/4e−sα

∗
∇2∆ϕ

(i)
1

∥∥∥2

L2(0,T ;H1(Ω)4)∩H1(0,T ;H−1(Ω)4)
. (3.10)

Our goal is to estimate the last term. First we consider the function

θ1(t) := s3/2(ξ∗)3/2−1/`e−sα
∗
.

From (2.5)-(2.6), for s > C,
|θ′1| 6 Cs5/2(ξ∗)5/2e−sα

∗
. (3.11)

Then, from (1.8), (θ1ϕ
(i), θ1π

(i)) is the solution of
−∂t

(
θ1ϕ

(i)
)
−∆

(
θ1ϕ

(i)
)

+∇
(
θ1π

(i)
)

=
i+1∑
j=1

aj,iθ1ϕ
(j) − θ′1ϕ(i) in Q,

∇ ·
(
θ1ϕ

(i)
)

= 0 in Q,(
θ1ϕ

(i)
)

= 0 on Σ,(
θ1ϕ

(i)
)
|t=T = 0 in Ω.

(3.12)
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Applying Lemma 2.3 to the above system and using (3.11), we obtain∥∥∥θ1ϕ
(i)
∥∥∥2

L2(0,T ;H2(Ω)2)∩H1(0,T ;L2(Ω)2)

6 C

i+1∑
j=1

∥∥∥s3/2(ξ∗)3/2e−sα
∗
ϕ(j)

∥∥∥2

L2(Q)2
+
∥∥∥s5/2(ξ∗)5/2e−sα

∗
ϕ(i)

∥∥∥2

L2(Q)2

 .

Now, combining the above estimate with an interpolation inequality, we deduce∥∥∥s2(ξ∗)2−1/(2`)e−sα
∗
ϕ(i)

∥∥∥2

L2(0,T ;H1(Ω)2)
6 C

∥∥∥θ1ϕ
(i)
∥∥∥
L2(0,T ;H2(Ω)2)

∥∥∥s5/2(ξ∗)5/2e−sα
∗
ϕ(i)

∥∥∥
L2(Q)2

6 C

i+1∑
j=1

∥∥∥s3/2(ξ∗)3/2e−sα
∗
ϕ(j)

∥∥∥2

L2(Q)2
+
∥∥∥s5/2(ξ∗)5/2e−sα

∗
ϕ(i)

∥∥∥2

L2(Q)2

 . (3.13)

Second, we introduce
θ2 = s(ξ∗)1−3/(2`)e−sα

∗
.

From (2.5)-(2.6), for s > C,
|θ′2| 6 Cs2(ξ∗)2−1/(2`)e−sα

∗
. (3.14)

Then, from (1.8), (θ2ϕ
(i), θ2π

(i)) is the solution of
−∂t

(
θ2ϕ

(i)
)
−∆

(
θ2ϕ

(i)
)

+∇
(
θ2π

(i)
)

=
i+1∑
j=1

aj,iθ2ϕ
(j) − θ′2ϕ(i) in Q,

∇ ·
(
θ2ϕ

(i)
)

= 0 in Q,(
θ2ϕ

(i)
)

= 0 on Σ,(
θ2ϕ

(i)
)
|t=T = 0 in Ω.

(3.15)

Using that the right-hand side of the first equation is divergence free and with null trace on ∂Ω, we can apply
Lemma 2.3 to the above system and we deduce∥∥∥θ2ϕ

(i)
∥∥∥2

L2(0,T ;H3(Ω)2)∩H1(0,T ;V )
6 C

(
i+1∑
j=1

∥∥∥θ2ϕ
(j)
∥∥∥2

L2(0,T ;V )
+
∥∥∥θ′2ϕ(i)

∥∥∥2

L2(0,T ;V )

)
.

Using θ2 6 Cs2(ξ∗)2−1/(2`)e−sα
∗

and combining the above result with (3.14) and (3.13)∥∥∥θ2ϕ
(i)
∥∥∥2

L2(0,T ;H3(Ω)2)∩H1(0,T ;V )
6 C

m∑
j=1

∥∥∥s5/2(ξ∗)5/2e−sα
∗
ϕ(j)

∥∥∥2

L2(Q)2
. (3.16)

Finally, we introduce
θ3 = (ξ∗)−5/(2`)e−sα

∗
.

From (2.5)-(2.6), for s > C,
|θ′3| 6 Cθ2, |θ′′3 | 6 Cs2(ξ∗)2−1/(2`)e−sα

∗
. (3.17)

Then, from (1.8), (θ3ϕ
(i), θ3π

(i)) is the solution of
−∂t

(
θ3ϕ

(i)
)
−∆

(
θ3ϕ

(i)
)

+∇
(
θ3π

(i)
)

=
i+1∑
j=1

Aj,iθ3ϕ
(j) − θ′3ϕ(i) in Q,

∇ ·
(
θ3ϕ

(i)
)

= 0 in Q,(
θ3ϕ

(i)
)

= 0 on Σ,(
θ3ϕ

(i)
)
|t=T = 0 in Ω.

(3.18)
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We can again apply Lemma 2.3 to the above estimate to deduce∥∥∥θ3ϕ
(i)
∥∥∥2

L2(0,T ;H5(Ω)2)∩H1(0,T ;H3(Ω)2)∩H2(0,T ;V )

6 C

i+1∑
j=1

∥∥∥θ3ϕ
(j)
∥∥∥2

L2(0,T ;H3(Ω)2)
+
∥∥∥∂t (θ3ϕ

(j)
)∥∥∥2

L2(0,T ;H1(Ω)2)

+
∥∥∥θ′3ϕ(i)

∥∥∥2

L2(0,T ;H3(Ω)2)
+
∥∥∥∂t (θ′3ϕ(i)

)∥∥∥2

L2(0,T ;H1(Ω)2)

)
. (3.19)

Using θ3 6 Cθ2 and applying (3.17), (3.16), and (3.13), we deduce from (3.19)

∥∥∥θ3ϕ
(i)
∥∥∥2

L2(0,T ;H5(Ω)2)∩H1(0,T ;H3(Ω)2)∩H2(0,T ;V )
6 C

 m∑
j=1

∥∥∥s5/2(ξ∗)5/2e−sα
∗
ϕ(j)

∥∥∥2

L2(Q)2

 . (3.20)

Using the trace inequality (3.10) and that ` > 14, we have∥∥∥(ξ∗)−1/4e−sα
∗
∇2∆ϕ

(i)
1

∥∥∥2

H
1
4
, 1
2 (Σ)4

6 C
∥∥∥(ξ∗)−1/4e−sα

∗
∇2∆ϕ

(i)
1

∥∥∥2

L2(0,T ;H1(Ω)4)∩H1(0,T ;H−1(Ω)4)

6 C
∥∥∥(ξ∗)−1/4e−sα

∗
ϕ

(i)
1

∥∥∥2

L2(0,T ;H5(Ω))∩H1(0,T ;H3(Ω))
6 C

∥∥∥θ3ϕ
(i)
∥∥∥2

L2(0,T ;H5(Ω)2)∩H1(0,T ;H3(Ω)2)
. (3.21)

Combining (3.20) and (3.21), we deduce that∥∥∥e−sα∗(sξ∗)−1/4∇2∆ϕ
(i)
1

∥∥∥2

H
1
4
, 1
2 (Σ)4

6 Cs−1/2
m∑
j=1

∥∥∥s5/2(ξ∗)5/2e−sα
∗
ϕ(j)

∥∥∥2

L2(Q)2
.

Putting together (3.8), the above relation and (3.9), we deduce at this step the following inequality:

I1(s, ϕ(i)) 6 C

(∫∫
ω0×(0,T )

e−2sα

(
sξ
∣∣∣∇2∆ϕ

(i)
1

∣∣∣2 + s3ξ3
∣∣∣∇∆ϕ

(i)
1

∣∣∣2 + s5ξ5
∣∣∣∆ϕ(i)

1

∣∣∣2) dxdt

+

m∑
j=1

∫∫
Q

(
e−2sα∗s9/2(ξ∗)5

∣∣∣ϕ(j)
∣∣∣2 + e−2sαs−2ξ−2

∣∣∣∇2∆ϕ
(j)
1

∣∣∣2) dxdt

 . (3.22)

Step 3. To estimate the local terms, we proceed in a standard way: we consider ω1 an open subset satisfying
ω0 b ω1 b ω̂ and

η1 ∈ C2
c (ω1), η1 ≡ 1 in ω0, η1 > 0.

Then, an integration by parts gives

∫∫
ω0×(0,T )

e−2sαsξ

(
∂2

∂xk∂xq
∆ϕ

(i)
1

)2

dxdt 6
∫∫

ω1×(0,T )

η1e
−2sαsξ

(
∂2

∂xk∂xq
∆ϕ

(i)
1

)2

dxdt

= −
∫∫

ω1×(0,T )

∂

∂xk

(
η1e
−2sαsξ

) ∂2

∂xk∂xq
∆ϕ

(i)
1

∂

∂xq
∆ϕ

(i)
1 dxdt

−
∫∫

ω1×(0,T )

η1e
−2sαsξ

∂3

∂x2
k∂xq

∆ϕ
(i)
1

∂

∂xq
∆ϕ

(i)
1 dxdt.
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Using (2.7) and Young’s inequality, we deduce from the above relation that there exists C > 0 such that for all
ε > 0,∫∫

ω0×(0,T )

e−2sαsξ
∣∣∣∇2∆ϕ

(i)
1

∣∣∣2 dxdt 6 ε

∫∫
Q

e−2sα

(
s−1ξ−1

∣∣∣∇3∆ϕ
(i)
1

∣∣∣2 + sξ
∣∣∣∇2∆ϕ

(i)
1

∣∣∣2) dxdt
+
C

ε

∫∫
ω1×(0,T )

e−2sαs3ξ3
∣∣∣∇∆ϕ

(i)
1

∣∣∣2 dxdt. (3.23)

Now we estimate, in an analogous way, the local term associated with ∇∆ϕ
(i)
1 : we consider

η2 ∈ C2
c (ω̂), η2 ≡ 1 in ω1, η2 > 0.

Then, integrating by parts, we obtain∫∫
ω1×(0,T )

e−2sαs3ξ3

(
∂

∂xk
∆ϕ

(i)
1

)2

dxdt 6
∫∫

ω̂×(0,T )

η2e
−2sαs3ξ3

(
∂

∂xk
∆ϕ

(i)
1

)2

dxdt

= −
∫∫

ω̂×(0,T )

∂

∂xk

(
η2e
−2sαs3ξ3

) ∂

∂xk
∆ϕ

(i)
1 ∆ϕ

(i)
1 dxdt

−
∫∫

ω̂×(0,T )

η2e
−2sαs3ξ3 ∂2

∂x2
k

∆ϕ
(i)
1 ∆ϕ

(i)
1 dxdt.

Using (2.7) and the Young’s inequality, we deduce from the above relation that there exists C > 0 such that for
all ε > 0,∫∫

ω1×(0,T )

e−2sαs3ξ3
∣∣∣∇∆ϕ

(i)
1

∣∣∣2 dxdt 6 ε

∫∫
Q

e−2sα

(
s3ξ3

∣∣∣∇∆ϕ
(i)
1

∣∣∣2 + sξ
∣∣∣∇2∆ϕ

(i)
1

∣∣∣2) dxdt
+
C

ε

∫∫
ω̂×(0,T )

e−2sαs5ξ5
∣∣∣∆ϕ(i)

1

∣∣∣2 dxdt. (3.24)

The above estimate, together with (3.22) and (3.23) implies (3.3). This concludes the proof of Proposition 3.2.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Summing (3.3) for i = 1, . . . ,m, and taking s > C for a constant C large enough, we deduce
that

m∑
i=1

I1(s, ϕ(i)) 6 C

m∑
i=1

∫∫
ω̂×(0,T )

e−2sαs5ξ5
∣∣∣∆ϕ(i)

1

∣∣∣2 dxdt. (3.25)

In order to get rid of the local terms in the right-hand side (except the term corresponding to i = 1), we introduce
a sequence of open sets Oi, (0 6 i 6 m) such that

ω̂ =: O0 b O1 b ... b Oi b ... b Om b ω

and functions
ζi ∈ C2

c (Oi) such that ζi ≡ 1 in Oi−1, ζi > 0 (1 6 i 6 m).

Then, we consider the equation m−1 of (1.9), we apply the Laplace operator on the first component of this equation
and we multiply it by ζ1:

ζ1am,m−1∆ϕ
(m)
1 = −ζ1∂t∆ϕ(m−1)

1 − ζ1∆2ϕ
(m−1)
1 − ζ1

m−1∑
j=1

aj,m−1∆ϕ
(j)
1 . (3.26)
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Then, using the above equation combined with (1.4) and integrating by parts, we deduce∫∫
ω̂×(0,T )

e−2sαs5ξ5
∣∣∣∆ϕ(m)

1

∣∣∣2 dxdt 6
∫∫
O1×(0,T )

ζ1e
−2sαs5ξ5

∣∣∣∆ϕ(m)
1

∣∣∣2 dxdt

=
−1

am,m−1

∫∫
O1×(0,T )

ζ1e
−2sαs5ξ5

(
∆ϕ

(m)
1

)∂t∆ϕ(m−1)
1 + ∆2ϕ

(m−1)
1 +

m−1∑
j=1

aj,m−1∆ϕ
(j)
1

 dxdt. (3.27)

Integrating by parts and applying ∆ to the first component of the equation (1.9) with i = m, we obtain∫∫
O1×(0,T )

ζ1e
−2sαs5ξ5∆ϕ

(m)
1 ∂t∆ϕ

(m−1)
1 dxdt = −

∫∫
O1×(0,T )

ζ1∂t
(
e−2sαs5ξ5

)
∆ϕ

(m)
1 ∆ϕ

(m−1)
1 dxdt

+

∫∫
O1×(0,T )

ζ1e
−2sαs5ξ5∆2ϕ

(m)
1 ∆ϕ

(m−1)
1 dxdt

+

m∑
j=1

∫∫
O1×(0,T )

ζ1e
−2sαs5ξ5aj,m∆ϕ

(j)
1 ∆ϕ

(m−1)
1 dxdt. (3.28)

By integrating by parts, we also find∫∫
O1×(0,T )

ζ1e
−2sαs5ξ5

(
∆ϕ

(m)
1

)(
∆2ϕ

(m−1)
1

)
dxdt =

∫∫
O1×(0,T )

∆
(
ζ1e
−2sαs5ξ5

)
∆ϕ

(m)
1 ∆ϕ

(m−1)
1 dxdt

+

∫∫
O1×(0,T )

ζ1e
−2sαs5ξ5∆2ϕ

(m)
1 ∆ϕ

(m−1)
1 dxdt

+

∫∫
O1×(0,T )

2∇
(
ζ1e
−2sαs5ξ5

)
· ∇∆ϕ

(m)
1 ∆ϕ

(m−1)
1 dxdt. (3.29)

Let us now estimate the right-hand side of (3.28) and (3.29) and the last term in (3.27).
Using (2.4), we have ∣∣∂t (e−2sαs5ξ5

)∣∣ 6 Ce−2sαs6ξ6+1/`.

Combining this inequality and Young’s inequality, we deduce the existence of C such that for any s > C and for
any ε > 0,∣∣∣∣∣
∫∫
O1×(0,T )

ζ1∂t
(
e−2sαs5ξ5

)
∆ϕ

(m)
1 ∆ϕ

(m−1)
1 dxdt

∣∣∣∣∣
6 ε

∫∫
Q

e−2sαs5ξ5
∣∣∣∆ϕ(m)

1

∣∣∣2 dxdt+
C

ε

∫∫
O1×(0,T )

e−2sαs7ξ7+2/`
∣∣∣∆ϕ(m−1)

1

∣∣∣2 dxdt. (3.30)

Using (2.7), we have ∣∣∆(ζ1e
−2sαs5ξ5)

∣∣ 6 Ce−2sαs7ξ7.

Combining this inequality and Young’s inequality, we deduce the existence of C such that for any s > C and for
any ε > 0,∣∣∣∣∣
∫∫
O1×(0,T )

∆
(
ζ1e
−2sαs5ξ5

)
∆ϕ

(m)
1 ∆ϕ

(m−1)
1 dxdt

∣∣∣∣∣
6 ε

∫∫
Q

e−2sαs5ξ5
∣∣∣∆ϕ(m)

1

∣∣∣2 dxdt+
C

ε

∫∫
O1×(0,T )

e−2sαs9ξ9
∣∣∣∆ϕ(m−1)

1

∣∣∣2 dxdt. (3.31)
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Using (2.7), we have ∣∣∇(ζ1e
−2sαs5ξ5)

∣∣ 6 Ce−2sαs6ξ6.

Combining this inequality and Young’s inequality, we deduce the existence of C such that for any s > C and for
any ε > 0,∣∣∣∣∣
∫∫
O1×(0,T )

2∇
(
ζ1e
−2sαs5ξ5

)
· ∇∆ϕ

(m)
1 ∆ϕ

(m−1)
1 dxdt

∣∣∣∣∣
6 ε

∫∫
Q

e−2sαs3ξ3
∣∣∣∇∆ϕ

(m)
1

∣∣∣2 dxdt+
C

ε

∫∫
O1×(0,T )

e−2sαs9ξ9
∣∣∣∆ϕ(m−1)

1

∣∣∣2 dxdt. (3.32)

Finally, the other terms can be estimated by using Young’s inequality:∣∣∣∣∣
∫∫
O1×(0,T )

ζ1e
−2sαs5ξ5∆2ϕ(m)∆ϕ

(m−1)
1 dxdt

∣∣∣∣∣
6 ε

∫∫
Q

e−2sαsξ
∣∣∣∆2ϕ

(m)
1

∣∣∣2 dxdt+
C

ε

∫∫
O1×(0,T )

e−2sαs9ξ9
∣∣∣∆ϕ(m−1)

1

∣∣∣2 dxdt, (3.33)

∣∣∣∣∣∣
m∑
j=1

∫∫
O1×(0,T )

ζ1e
−2sαs5ξ5aj,m∆ϕ(j)∆ϕ

(m−1)
1 dxdt

∣∣∣∣∣∣
6 ε

m∑
j=1

∫∫
Q

e−2sαs5ξ5
∣∣∣∆ϕ(j)

1

∣∣∣2 dxdt+
C

ε

∫∫
O1×(0,T )

e−2sαs5ξ5
∣∣∣∆ϕ(m−1)

1

∣∣∣2 dxdt, (3.34)

∣∣∣∣∣∣ −1

am,m−1

∫∫
O1×(0,T )

ζ1e
−2sαs5ξ5∆ϕ

(m)
1

m−1∑
j=1

aj,m−1∆ϕ
(j)
1 dxdt

∣∣∣∣∣∣
6 ε

∫∫
Q

e−2sαs5ξ5
∣∣∣∆ϕ(m)

1

∣∣∣2 dxdt+
C

ε

m−1∑
j=1

∫∫
O1×(0,T )

e−2sαs5ξ5
∣∣∣∆ϕ(j)

1

∣∣∣2 dxdt. (3.35)

The combination of (3.27) with (3.30), (3.31), (3.32), (3.33), (3.34), and (3.35) yields the existence of a constant
C such that for any s > C and for any ε > 0,

∫∫
ω̂×(0,T )

e−2sαs5ξ5
∣∣∣∆ϕ(m)

1

∣∣∣2 dxdt 6 ε

m∑
j=1

I1(s, ϕ(j)) +
C

ε

∫∫
O1×(0,T )

e−2sαs9ξ9
∣∣∣∆ϕ(m−1)

1

∣∣∣2 dxdt
+
C

ε

m−2∑
j=1

∫∫
O1×(0,T )

e−2sαs5ξ5
∣∣∣∆ϕ(j)

1

∣∣∣2 dxdt. (3.36)

We can repeat the same analysis for ∆ϕ
(m−1)
1 and we obtain the existence of a constant C such that for any s > C
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and for any ε > 0,∫∫
O1×(0,T )

e−2sαs9ξ9
∣∣∣∆ϕ(m−1)

1

∣∣∣2 dxdt 6 ε

m∑
j=1

I1(s, ϕ(j)) +
C

ε

∫∫
O2×(0,T )

e−2sαs17ξ17
∣∣∣∆ϕ(m−2)

1

∣∣∣2 dxdt.
+
C

ε

m−3∑
j=1

∫∫
O2×(0,T )

e−2sαs13ξ13
∣∣∣∆ϕ(j)

1

∣∣∣2 dxdt. (3.37)

Proceeding by induction, we can estimate all the local terms and we deduce from (3.25) that

m∑
i=1

I1(s, ϕ(i)) 6 C

∫∫
Om×(0,T )

e−2sαs2(m+1)+1ξ2(m+1)+1
∣∣∣∆ϕ(1)

1

∣∣∣2 dxdt. (3.38)

Finally, we estimate the above local term in terms of ϕ
(1)
1 . In order to do this, we consider ω̃ an open subset

satisfying Om b ω̃ b ω and
ζ̃ ∈ C2

c (ω̃) such that ζ̃ ≡ 1 in Om, ζ̃ > 0.

Then by integrating by parts, we obtain∫∫
Om×(0,T )

e−2sαs2(m+1)+1ξ2(m+1)+1
∣∣∣∆ϕ(1)

1

∣∣∣2 dxdt 6
∫∫

ω̃×(0,T )

ζ̃e−2sαs2(m+1)+1ξ2(m+1)+1
∣∣∣∆ϕ(1)

1

∣∣∣2 dxdt

= −
∫∫

ω̃×(0,T )

∇
(
ζ̃e−2sαs2(m+1)+1ξ2(m+1)+1

)
∆ϕ

(1)
1 · ∇ϕ

(1)
1 dxdt

−
∫∫

ω̃×(0,T )

ζ̃e−2sαs2(m+1)+1ξ2(m+1)+1∆∇ϕ(1)
1 · ∇ϕ

(1)
1 dxdt. (3.39)

Using (2.7), we have ∣∣∣∇(ζ̃e−2sαs2(m+1)+1ξ2(m+1)+1)
∣∣∣ 6 Ce−2sαs2(m+1)+2ξ2(m+1)+2.

Combining this inequality and Young’s inequality, we deduce the existence of C such that for any s > C and for
any ε > 0,∫∫

Om×(0,T )

e−2sαs2(m+1)+1ξ2(m+1)+1
∣∣∣∆ϕ(1)

1

∣∣∣2 dxdt 6 ε

∫∫
Q

e−2sα

(
s3ξ3

∣∣∣∇∆ϕ
(1)
1

∣∣∣2 + s5ξ5
∣∣∣∆ϕ(1)

1

∣∣∣2) dxdt
+
C

ε

∫∫
ω̃×(0,T )

e−2sαs2(m+2)−1ξ2(m+2)−1
∣∣∣∇ϕ(1)

1

∣∣∣2 dxdt. (3.40)

Then, we consider
ζ ∈ C2

c (ω) such that ζ ≡ 1 in ω̃, ζ > 0

and we integrate by parts:∫∫
ω̃×(0,T )

e−2sαs2(m+2)−1ξ2(m+2)−1
∣∣∣∇ϕ(1)

1

∣∣∣2 dxdt 6 ∫∫
ω×(0,T )

ζe−2sαs2(m+2)−1ξ2(m+2)−1
∣∣∣∇ϕ(1)

1

∣∣∣2 dxdt
= −

∫∫
ω×(0,T )

∇
(
ζe−2sαs2(m+2)−1ξ2(m+2)−1

)
· ∇ϕ(1)

1 ϕ
(1)
1 dxdt

−
∫∫

ω×(0,T )

ζe−2sαs2(m+2)−1ξ2(m+2)−1∆ϕ
(1)
1 ϕ

(1)
1 dxdt.

14



Using (2.7), we have ∣∣∣∇(ζe−2sαs2(m+2)−1ξ2(m+2)−1)
∣∣∣ 6 Ce−2sαs2(m+2)

ξ2(m+2)

.

Combining this inequality and Young’s inequality, we deduce the existence of C such that for any s > C and for
any ε > 0,∫∫
ω̃×(0,T )

e−2sαs2(m+2)−1ξ2(m+2)−1
∣∣∣∇ϕ(1)

1

∣∣∣2 dxdt
6 ε

∫∫
Q

e−2sαs6ξ6|∇ϕ(1)
1 |2 dxdt+

∫∫
Q

e−2sαs5ξ5|∆ϕ(1)
1 |2 dxdt


+
C

ε

∫∫
ω×(0,T )

e−2sαs2(m+3)−6ξ2(m+3)−6
∣∣∣ϕ(1)

1

∣∣∣2 dxdt. (3.41)

Using Lemma 4 in [9] (see [23] for the proof) and the definition (3.1) of I1, we deduce that

I1(s, ϕ(i)) +

∫∫
ω×(0,T )

e−2sαs8ξ8
∣∣∣ϕ(i)

1

∣∣∣2 dxdt > ∫∫
Q

e−2sαs5ξ5
∣∣∣∆ϕ(i)

1

∣∣∣2 dxdt+

∫∫
ω×(0,T )

e−2sαs8ξ8
∣∣∣ϕ(i)

1

∣∣∣2 dxdt
> C

∫∫
Q

e−2sαs8ξ8
∣∣∣ϕ(i)

1

∣∣∣2 dxdt+

∫∫
Q

e−2sαs6ξ6
∣∣∣∇ϕ(i)

1

∣∣∣2 dxdt
 .

This estimate, combined with (3.38), (3.40) and (3.41) yields the conclusion of Theorem 3.1.

4 Proof of the main results

4.1 Final state observability

In this section, we use Theorem 3.1 in order to prove the final state observability of the adjoint system (1.8).

Lemma 4.1. Assume T ∈ (0, 1) and ω is non empty open set of Ω. Then, there exists C > 0 and ` > 14 such that
for any ϕ0 ∈ Hm, the solution ϕ of (1.8) satisfies∫

Ω

m∑
i=1

∣∣∣ϕ(i)(x, 0)
∣∣∣2 dx 6 Ce

C

T2`

∫∫
ω×(0,T )

∣∣∣ϕ(1)
1

∣∣∣2 dxdt. (4.1)

Proof. First, we consider an energy estimate of the adjoint system (1.8). Multiplying each equation (1.9) by ϕ(i)

and integrating by parts, we deduce

− 1

2

d

dt

∫
Ω

m∑
i=1

∣∣∣ϕ(i)
∣∣∣2 dx+

∫
Ω

m∑
i=1

∣∣∣∇ϕ(i)
∣∣∣2 dx =

∫
Ω

m∑
i,j=1

Aj,iϕ
(i) · ϕ(j) dx. (4.2)

Thus, using the Grönwall lemma, there exists C > 0 such that

t 7→ eCt
∫
Ω

m∑
i=1

∣∣∣ϕ(i)(x, t)
∣∣∣2 dx

15



is nondecreasing. In particular, for some constant C > 0,

∫
Ω

m∑
i=1

∣∣∣ϕ(i)(x, 0)
∣∣∣2 dx 6

2

T
eCT

3T/4∫
T/4

∫
Ω

m∑
i=1

∣∣∣ϕ(i)(x, t)
∣∣∣2 dx dt. (4.3)

On the other hand, from (3.2) and (3.1), we deduce that∫∫
Q

e−2sα∗(sξ∗)5
m∑
i=1

∣∣∣ϕ(i)
∣∣∣2 dxdt 6 C

∫∫
ω×(0,T )

e−2sα (sξ)
2m+3−6

∣∣∣ϕ(1)
1

∣∣∣2 dxdt. (4.4)

Using that for t ∈ [T/4, 3T/4],
3T 2

16
6 t(T − t) 6 T 2

4
,

we deduce, from (2.3), the existence of two constants C1, C2 > 0 such that for t ∈ [T/4, 3T/4],

α∗(t) 6
C1

T 2`
, ξ∗(t) >

C2

T 2`

and consequently, for some constant C3 > 0,

e−2sα∗(sξ∗)5 > e−
C3
T2` . (4.5)

Similarly, from (2.2), there exist two constants c1, c2 > 0 such that for (x, t) ∈ Ω× [0, T ],

α(x, t) >
c1

t`(T − t)`
, ξ(x, t) 6

c2
t`(T − t)`

and consequently, for some constant c3 > 0,

e−2sα (sξ)
2m+3−6 6 e

−2s
c1

t`(T−t)`

(
s

c2
t`(T − t)`

)2m+3−6

6 c3. (4.6)

Combining (4.3), (4.4), (4.5) and (4.6), we deduce that for some constant C,∫
Ω

m∑
i=1

∣∣∣ϕ(i)(x, 0)
∣∣∣2 dx 6

C

T
eC(T+ 1

T2` )
∫∫

ω×(0,T )

∣∣∣ϕ(1)
1

∣∣∣2 dxdt.

This implies that (4.1).

4.2 Proof of Theorem 1.1

We recall that H and V are defined by (1.6) and (1.7). We also set

H := Hm, V := V m. (4.7)

We define P0 : L2(Ω)N → H the Leray projector and the projection P defined as:

P :
[
L2(Ω)N

]m → H, y =
(
y(1), . . . , y(m)

)
7→
(
P0y

(1), . . . , P0y
(m)
)
.

We also consider the unbounded operator in H defined by

D(A) :=
[
H2(Ω)N ∩ V

]m
, Ay := P∆y +Ay. (4.8)
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Finally, we define the control operator B ∈ L(U ,H) by

U := L2(ω)N−1, Bv = B
(
v1, . . . , vN−1

)
:=
(
P0

((
v1, . . . , vN−1, 0

)
1ω
)
, 0, . . . , 0

)
. (4.9)

With the above definition, we can write (1.1) as{
y′ = Ay + Bv,
y(0) = y0.

(4.10)

As it is well-known (see, for instance, [34, p.357]), system (4.10) is null-controllable in time T > 0 if and only if
there exists K(T ) > 0 such that∥∥∥eTA∗ϕ0

∥∥∥2

H
6 K(T )2

∫ T

0

∥∥∥B∗etA∗ϕ0

∥∥∥2

H
dt (ϕ0 ∈ H). (4.11)

One can check that
D(A∗) =

[
H2(Ω)N ∩ V

]m
, A∗y = P∆y +A∗y,

where A∗ is the transpose of the matrix A and that

B∗ϕ =

((
ϕ

(1)
1

)
|ω
, . . . ,

(
ϕ

(1)
N−1

)
|ω

)
.

Thus, we deduce Theorem 1.1 from Lemma 4.1.

4.3 Proof of Theorem 1.3

In order to prove Theorem 1.3, we recall a method introduced in [28,32] to deal with the controllability of nonlinear
parabolic systems. We consider H and U two Hilbert spaces, A : D(A) → H the infinitesimal generator of an
analytic semigroup

(
etA
)
t>0

and B ∈ L(U ,H) a control operator. We also assume the final state observability for

all T > 0 ∥∥∥eTA∗ϕ0

∥∥∥2

H
6 K(T )2

∫ T

0

∥∥∥B∗etA∗ϕ0

∥∥∥2

H
dt (ϕ0 ∈ H), (4.12)

with K : (0,∞)→ [0,∞) continuous and non increasing. Let us consider T > 0 and suppose there exist ρ0, ρ1, ρ ∈
C0([0, T ],R+), non increasing, positive in [0, T ) such that ρ0(T ) = ρ1(T ) = ρ(T ) = 0 and such that, for some
constant q > 1,

ρ0(t) := ρ1(q2(t− T ) + T )K((q − 1)(T − t))
(
t ∈
[
T

(
1− 1

q2

)
, T

])
, (4.13)

ρ0 6 Cρ, ρ1 6 Cρ, |ρ′|ρ0 6 Cρ2 (t ∈ [0, T ]) . (4.14)

for some constant C > 0. We denote by L2
ρ1(0, T ;H) the space

L2
ρ1(0, T ;H) :=

{
f ∈ L2(0, T ;H) ;

f

ρ1
∈ L2(0, T ;H)

}
and we define similarly L2

ρ0(0, T ;U).
Then we can consider the control problem {

y′ = Ay + Bv + f,

y(0) = y0.
(4.15)

We have the following result (see [28]):
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Theorem 4.2. With the above assumptions, there exists a bounded operator

ET ∈ L
(
D
(

(−A)
1/2
)
× L2

ρ1(0, T ;H), L2
ρ0(0, T ;U)

)
such that for any y0 ∈ D

(
(−A)

1/2
)

and for any f ∈ L2
ρ1(0, T ;H), the solution y of (4.15) with u = ET (y0, f)

satisfies
y

ρ
∈ L2(0, T ;D(A)) ∩ C0

(
[0, T ];D

(
(−A)

1/2
))
∩H1(0, T ;H).

Moreover there exists a constant C such that∥∥∥∥yρ
∥∥∥∥
L2(0,T ;D(A))∩C0([0,T ];D((−A)1/2))∩H1(0,T ;H)

6 C
(
‖y0‖D((−A)1/2) + ‖f‖L2

ρ1
(0,T ;H)

)
.

Remark 4.3. Note that in [28], A is assumed to be self-adjoint negative but the result can be extended to the
case where A is the generator of an analytic semigroup. Indeed, the hypothesis used in the proof is the maximal
regularity of (4.15) for v = 0.

Remark 4.4. Since ρ(T ) = 0, the above result implies in particular that y(T ) = 0, that is the null-controllability
of (4.15).

In the previous section, we have defined for our problem the spaces H, U , A and B, see (4.7), (4.8) and (4.9).
To show that A is the generator of an analytic semigroup, we first note that P∆ is self-adjoint negative (see, for
instance, [31, Theorem 2.1.1, p.128]) and thus is the generator of an analytic semigroup. Then using a perturbation
argument (see, for instance, [30, Theorem 2.1, p.80]), we deduce that A is the generator of an analytic semigroup
in H.

Finally, applying Lemma 4.1, we deduce that (4.12) holds with

K(T ) = CKe
CK
T2` ,

for some constant CK > 0.
Let us consider

q ∈
(

1, 2
1
4`

)
.

and let us set

ρ0(t) := CKe
− C0

(T−t)2` , ρ1(t) := e
− C1

(T−t)2` , ρ(t) := e
− C?

(T−t)2`

with C0, C1, C? some positive constants such that

C0 :=
C1

q4`
− CK

(q − 1)2`
>
C1

2
,

C1

2
< C? < C0 < C1.

Then we can check that (4.13) and (4.14) hold and we have moreover that

ρ2 6 ρ1. (4.16)

Consequently, we deduce from Theorem 4.2 a controllability result on the system

∂ty
(1) −∆y(1) +∇p(1) =

m∑
j=1

A1,jy
(j) + ve11ω + f (1) in Q,

∂ty
(i) −∆y(i) +∇p(i) =

m∑
j=i−1

Ai,jy
(j) + f (i) in Q, (2 6 i 6 m)

∇ · y(i) = 0 in Q, (1 6 i 6 m)
y(i) = 0 on Σ, (1 6 i 6 m)

y(i)(·, 0) = y
(i)
0 in Ω. (1 6 i 6 m)

(4.17)
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More precisely, there exists

ET ∈ L
(
V × L2

ρ1(0, T ;
[
L2(Ω)N

]m
), L2

ρ0(0, T ;L2(ω))
)

such that for any y0 ∈ V and for any f =
(
f (1), . . . , f (m)

)
∈ L2

ρ1(0, T ;
[
L2(Ω)N

]m
), the solution y of (4.17) with the

control v = ET (y0, f) satisfies

y

ρ
∈ L2(0, T ;

[
H2(Ω)N

]m
) ∩ C0

(
[0, T ];

[
H1(Ω)N

]m) ∩H1(0, T ;H). (4.18)

Moreover we have the following estimate∥∥∥∥yρ
∥∥∥∥
L2(0,T ;[H2(Ω)N ]m)∩C0([0,T ];[H1(Ω)N ]m)∩H1(0,T ;H)

6 C
(
‖y0‖V + ‖f‖L2

ρ1
(0,T ;[L2(Ω)N ]m)

)
. (4.19)

We are now in a position to prove Theorem 1.3:

Proof of Theorem 1.3. First we notice that y is solution of (1.2) if it is a solution of (4.17) with

f =
(
−(y(1) · ∇)y(1), ...,−(y(m) · ∇)y(m)

)
.

Thus, we consider the mapping

NT : f ∈ BR 7→ (−(y(1) · ∇)y(1), ...,−(y(m) · ∇)y(m)),

where

BR :=

{
f ∈ L2

ρ1(0, T ;
[
L2(Ω)N

]m
) ;

∥∥∥∥ fρ1

∥∥∥∥
L2(0,T ;[L2(Ω)N ]m)

6 R

}
where R > 0 is such that

‖y0‖V 6 R.

We are going to show that for R small enough (and thus ‖y0‖V small enough), NT (BR) ⊂ BR and that (NT )|BR
is a strict contraction. Using the Banach fixed point theorem we deduce the existence of a fixed point of NT . The
corresponding solution y of (4.17) is a solution of (1.2) and from (4.18), we deduce that y(·, T ) = 0.

It thus remains to prove that for R small enough, NT (BR) ⊂ BR and that (NT )|BR is a strict contraction. In

order to do this, we first note that, using (4.16), Sobolev’s embeddings and Hölder’s inequalities, we have∫ T

0

∫
Ω

∣∣∣∣v · ∇wρ1

∣∣∣∣2 dxdt 6
∫ T

0

∫
Ω

∣∣∣∣(vρ
)
· ∇
(
w

ρ

)∣∣∣∣2 dxdt 6 C

∥∥∥∥vρ
∥∥∥∥2

L∞(0,T ;L6(Ω)N )

∥∥∥∥∇wρ
∥∥∥∥2

L2(0,T ;L6(Ω)N )

6 C

∥∥∥∥vρ
∥∥∥∥2

L∞(0,T ;H1(Ω)N )

∥∥∥∥wρ
∥∥∥∥2

L2(0,T ;H2(Ω)N )

. (4.20)

Using this relation and (4.19), we deduce that∥∥∥∥NT (f)

ρ1

∥∥∥∥
L2(0,T ;[L2(Ω)N ]m)

6 C
(
‖y0‖V + ‖f‖L2

ρ1
(0,T ;[L2(Ω)N ]m)

)2

6 4CR2 6 R,

for R small enough. For such R, we have NT (BR) ⊂ BR.

Now, let us consider f̃ , f̂ ∈ BR and let us write f = f̃ − f̂ . We consider the solution ỹ (resp. ŷ) the solution of

(4.17) associated with the control ṽ = ET (y0, f̃) (resp. v̂ = ET (y0, f̂)). Then, y := ỹ − ŷ is the solution of (4.17)
associated with the control v := ET (0, f) and thus∥∥∥∥yρ

∥∥∥∥
L2(0,T ;[H2(Ω)N ]m)∩C0([0,T ];[H1(Ω)N ]m)∩H1(0,T ;H)

6 C ‖f‖L2
ρ1

(0,T ;[L2(Ω)N ]m) .
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Using this and (4.20), we obtain∥∥∥∥∥NT (f̃)

ρ1
− NT (f̂)

ρ1

∥∥∥∥∥
L2(0,T ;[L2(Ω)N ]m)

6

∥∥∥∥( ỹρ
)
· ∇
(
y

ρ

)∥∥∥∥
L2(0,T ;[L2(Ω)N ]m)

+

∥∥∥∥(yρ
)
· ∇
(
ŷ

ρ

)∥∥∥∥
L2(0,T ;[L2(Ω)N ]m)

6 CR ‖f‖L2
ρ1

(0,T ;[L2(Ω)N ]m) .

Thus for R small enough, (NT )|BR is a strict contraction and this ends the proof of Theorem 1.3
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[11] P. Érdi and J. Tóth. Mathematical models of chemical reactions. Nonlinear Science: Theory and Applications.
Princeton University Press, Princeton, NJ, 1989. Theory and applications of deterministic and stochastic
models.

[12] H. O. Fattorini and D. L. Russell. Uniform bounds on biorthogonal functions for real exponentials with an
application to the control theory of parabolic equations. Quart. Appl. Math., 32:45–69, 1974/75.
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[19] S. Guerrero. Null controllability of some systems of two parabolic equations with one control force. SIAM J.
Control Optim., 46(2):379–394, 2007.

[20] M. Iida, H. Monobe, H. Murakawa, and H. Ninomiya. Vanishing, moving and immovable interfaces in fast
reaction limits. J. Differential Equations, 263(5):2715–2735, 2017.

[21] O. Y. Imanuvilov. On exact controllability for the Navier-Stokes equations. ESAIM Control Optim. Calc. Var.,
3:97–131, 1998.

[22] O. Y. Imanuvilov. Remarks on exact controllability for the Navier-Stokes equations. ESAIM Control Optim.
Calc. Var., 6:39–72, 2001.

[23] O. Y. Imanuvilov and J.-P. Puel. Global Carleman estimates for weak solutions of elliptic nonhomogeneous
Dirichlet problems. Int. Math. Res. Not., (16):883–913, 2003.

[24] O. Y. Imanuvilov, J.-P. Puel, and M. Yamamoto. Carleman estimates for parabolic equations with nonhomo-
geneous boundary conditions. Chin. Ann. Math. Ser. B, 30(4):333–378, 2009.

[25] G. Lebeau and L. Robbiano. Contrôle exacte de l’équation de la chaleur. In Séminaire sur les Équations aux
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