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Abstract24

In hyperalkaline (pH > 10) fluids that have participated in low-temperature (< 150 ◦C)25

serpentinization reactions, the dominant form of C is often methane (CH4), but the ori-26

gin of this CH4 is uncertain. To assess CH4 origin in serpentinite aquifers within the Samail27

Ophiolite, Oman, we determined fluid chemical compositions, analyzed taxonomic pro-28

files of fluid-hosted microbial communities, and measured isotopic compositions of hy-29

drocarbon gases. We found that 16S rRNA gene sequences affiliated with methanogens30

were widespread in the aquifer. We measured clumped isotopologue (13CH3D and 12CH2D2)31

relative abundances less than equilibrium, consistent with substantial microbial CH4 pro-32

duction. Further, we observed an inverse relationship between dissolved inorganic C con-33

centrations and δ13CCH4
across fluids bearing microbiological evidence of methanogenic34

activity, suggesting that the apparent C isotope effect of microbial methanogenesis is mod-35

ulated by C availability. An additional source of CH4 is evidenced by the presence of CH4-36

bearing fluid inclusions in the Samail Ophiolite and our measurement of high δ13C val-37

ues of ethane and propane, which are similar to those reported in studies of CH4-rich38

inclusions in rocks from the oceanic lithosphere. In addition, we observed 16S rRNA gene39

sequences affiliated with aerobic methanotrophs and, in lower abundance, anaerobic methan-40

otrophs, indicating that microbial consumption of CH4 in the ophiolite may further en-41

rich CH4 in 13C. We conclude that substantial microbial CH4 is produced under vary-42

ing degrees of C limitation and mixes with abiotic CH4 released from fluid inclusions.43

This study lends insight into the functioning of microbial ecosystems supported by wa-44

ter/rock reactions.45

Plain Language Summary46

Mantle rocks from beneath Earth’s crust can be thrust to the surface, where they47

are exposed to rain and air containing carbon dioxide (CO2). The groundwaters that be-48

come stored in these rocks often contain methane (CH4, a major component of “natu-49

ral gas”), which can be formed from carbon dioxide in the subsurface. To investigate these50

methane-forming processes, we sampled water, gas, and suspended particles from ground-51

waters using wells previously drilled into the rocks. The particles contained microbes with52

the genetic ability to produce methane. We also precisely measured the amounts of com-53

binations of C and H atoms of different masses (isotopes) in the natural gas to deter-54

mine how it was formed. The results of these measurements suggest that microbes could55

actively produce a considerable amount of the methane, which mixes with methane from56

another source that was formed by non-biological processes, possibly long ago under dif-57

ferent conditions than today’s. Rocks like those studied here are widespread in the So-58

lar System, so our finding that microbes live and produce methane in these rocks could59

help guide the search for life beyond Earth.60

1 Introduction61

At temperatures and pressures near the Earth’s surface (< 400 ◦C, < 100 MPa),62

ultramafic rocks such as peridotite in contact with water are thermodynamically driven63

to hydrate and oxidize, forming variable amounts of serpentine, magnetite, brucite, hy-64

drogen (H2), and other phases (Evans, 1977; Frost, 1985; McCollom & Bach, 2009; Klein65

& Bach, 2009; Klein et al., 2009, 2019). This process, often called “serpentinization”,66

can produce H2 at temperatures at least as low as 55 ◦C (Miller, Mayhew, et al., 2017).67

The resultant H2 can be thermodynamically favored to reduce carbon dioxide (CO2) to68

methane (CH4) (Shock, 1992). The reduction of CO2 by H2 to form CH4 can be catalyzed69

on mineral surfaces as in the Sabatier reaction (Etiope & Ionescu, 2015; Klein et al., 2019),70

or enzymatically through microbial methanogenesis (Whiticar, 1999).71

In continental settings undergoing serpentinization, where fluid-rock reactions typ-72

ically occur at low temperatures (< 150 ◦C), there is disagreement regarding the ori-73
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gin of CH4. Three key potential CH4 sources have been identified in these environments.74

One potential source is the abiotic reduction of CO2 to CH4 at warmer-than-present tem-75

peratures in fluid inclusions within crystals that can store CH4 and subsequently release76

it. Another potential source is the abiotic, mineral-catalyzed reduction of CO2 to CH477

at the low temperatures that prevail in the present-day weathering environment. A third78

potential source is microbial methanogenesis.79

Storage of CH4 produced at temperatures of 270 ◦C to 800 ◦C in fluid inclusions80

in minerals such as olivine and the release of this CH4 through subsequent chemical/physical81

alteration are the dominant processes contributing to CH4 fluxes from sediment-poor seafloor82

hydrothermal vents (Kelley, 1996; Kelley & Früh-Green, 1999; McDermott et al., 2015;83

D. T. Wang et al., 2018; Labidi et al., 2020). In continental, low-temperature serpen-84

tinizing settings, however, debate continues as to whether fluid inclusions can sustain ob-85

served CH4 fluxes (Etiope & Whiticar, 2019; Grozeva et al., 2020).86

Abiotic reduction of CO2 to CH4 can occur at temperatures at least as low as 20 ◦C87

when catalyzed by the transition metal ruthenium (Ru) (Etiope & Ionescu, 2015). Ru88

is present in considerable abundance in chromitite bodies in ultramafic rock accumula-89

tions (Etiope et al., 2018), but it has only been shown to catalyze CO2 hydrogenation90

under conditions where free gas phases exist (Etiope & Ionescu, 2015). The prevalence91

of this process, particularly in aquifers whose fluid compositions appear to be dominantly92

influenced by aqueous reactions with harzburgite, is another matter of ongoing debate93

(Etiope, 2017; Miller, Matter, et al., 2017).94

Low-temperature CH4 production can also be mediated by microbes called “methanogens”.95

Microbial CH4 has traditionally been viewed as a minor/negligible source of CH4 in ser-96

pentinizing settings. This is due in large part to the relatively 13C-enriched composition97

of CH4 in serpentinizing settings (δ13C commonly −20 h VPDB to 5 h VPDB), which98

contrasts with the more 13C-depleted composition of CH4 in sedimentary settings dom-99

inated by microbial methanogenesis (δ13C commonly −90 h VPDB to −50 h VPDB)100

(Etiope, 2017; Milkov & Etiope, 2018; Etiope & Whiticar, 2019). However, cultures of101

methanogens can produce CH4 with minimal C isotope fractionation in H2-rich, CO2-102

poor fluids simulating serpentinizing systems (Miller et al., 2018). In these cultures, it103

has been inferred that the net C isotope effect of methanogenesis was attenuated due to104

microbial conversion of a large proportion of available CO2 to CH4 when CO2 was the105

limiting substrate. Such results illustrate that 13C-enriched CH4 in natural serpentiniz-106

ing settings does not necessarily derive from non-microbial sources. Still, the quantity107

and isotopic composition of microbial CH4 in serpentinizing settings remains uncertain.108

In this study, we assessed sources and sinks of CH4 in the Samail Ophiolite of Oman,109

a site of active, low-temperature serpentinization and carbonation. Fluids and partic-110

ulates in groundwaters accessed via wells in the Samail Ophiolite have been sampled for111

biogeochemical studies annually from 2014 through 2018 from January to March. Mi-112

crobiological and geochemical data from sampling campaigns in 2014 through 2017 and113

a limited number of C and H bulk stable isotope analyses of CH4 sampled in 2014 have114

been previously reported (Miller et al., 2016; Rempfert et al., 2017; Kraus et al., 2021;115

Fones et al., 2019, 2020) Here, we present new geochemical and 16S rRNA gene ampli-116

con sequencing data from samples acquired in 2018. We also present new bulk stable iso-117

tope data on CH4, ethane (C2H6), and propane (C3H8) from samples obtained from 2015118

through 2018. Further, we report analyses of multiply-substituted “clumped” isotopo-119

logues of CH4, 13CH3D and 12CH2D2, for the first time on samples from this ophiolite.120

Leveraging one of the largest longitudinal data sets on CH4 biogeochemistry in an ophi-121

olite, we have identified robust trends across years and hydrogeologic settings. We ob-122

served a wide range of C isotopic compositions of CH4 and short-chain alkanes, intramolec-123

ular isotopologue disequilibrium in CH4, and widespread occurrence of gene sequences124

affiliated with methanogens, which collectively indicate that substantial quantities of mi-125

crobial CH4 are produced and mix with abiotic CH4 released from fluid inclusions in the126
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Samail Ophiolite. Our finding that microbial methanogenesis proceeds even in hyper-127

alkaline fluids lends insight into the functioning of microbial ecosystems that leverage128

reactions between water and ultramafic rocks to power metabolic processes on Earth and129

perhaps on other rocky bodies of the Solar System (Ménez, 2020; Glein & Zolotov, 2020).130

2 Geologic Setting131

The Samail Ophiolite (Figure 1) consists of pelagic sedimentary rocks (< 0.1 km),132

volcanic rocks (0.5 km to 2.0 km), sheeted dikes (1 km to 1.5 km), gabbro and igneous peri-133

dotite (0.5 km to 6.5 km), residual mantle peridotites, (8 km to 12 km), and a metamor-134

phic sole of greenschist- to granulite-facies metamorphic rocks (< 0.5 km) (Glennie et135

al., 1973; Coleman & Hopson, 1981; Lippard et al., 1986; Nicolas, 1989; Nicolas et al.,136

2000). The ophiolite crust formed from 96.12 Ma to 95.50 Ma, and convergence began137

at about the same time (Rioux et al., 2016), or up to 10 Myr earlier (Guilmette et al.,138

2018; Soret et al., 2020). Ophiolite emplacement continued until 78 Ma to 71 Ma (Rabu139

et al., 1993). Part of the ophiolite was subaerially eroded in the Late Cretaceous, then140

became covered in parts by Maastrictian to Eocene limestones due to subsidence and trans-141

gression (Nolan et al., 1990; Skelton et al., 1990).142

The mantle section of the ophiolite is mainly composed of highly depleted, resid-143

ual mantle harzburgites, together with 5 % to 15 % dunite, which both contain a few per-144

cent chromian spinel (Godard et al., 2000; Hanghøj et al., 2010; Boudier & Coleman, 1981;145

Collier, 2012). The extent of serpentinization is typically 30 % to 60 %, reaching 100 %146

in some cases (Dewandel et al., 2003; Boudier et al., 2009; Miller et al., 2016; P. Kele-147

men et al., 2020). Chromitites are most often found in association with dunites near the148

crust-mantle transition, possibly representing bases of cumulate piles, but are also found149

dispersed throughout the mantle section (Rollinson, 2005).150

Geologic reservoirs of C underlying the ophiolite include Mid Permian to Late Cre-151

taceous shallow marine carbonates, which host oil and gas fields in parts of northern Oman152

and the United Arab Emirates (Terken, 1999; Alsharhan, 1989; Etiope et al., 2015). Maas-153

trictian to Eocene limestones that partially overly the ophiolite have been shown to trans-154

fer inorganic C to peridotites where they are in contact (de Obeso & Kelemen, 2018).155

C is also stored within the ophiolite, primarily in the form of carbonate minerals (Neal156

& Stanger, 1985; P. B. Kelemen & Matter, 2008; P. B. Kelemen et al., 2011; Noël et al.,157

2018). Hydration and carbonation of > 20 000 km3 of peridotite continue today in the158

Samail Ophiolite, largely at < 60 ◦C (Neal & Stanger, 1983, 1985; P. B. Kelemen & Mat-159

ter, 2008; P. B. Kelemen et al., 2011; Streit et al., 2012; A. N. Paukert et al., 2012; Chav-160

agnac, Ceuleneer, et al., 2013; Chavagnac, Monnin, et al., 2013; Mervine et al., 2014; Falk161

et al., 2016; Miller et al., 2016; Paukert Vankeuren et al., 2019).162

3 Methods163

3.1 Fluid sampling and field measurements164

Wells were drilled into the Samail Ophiolite by the Ministry of Regional Munic-165

ipalities and Water Resources of the Sultanate of Oman prior to 2006 (“WAB” and “NSHQ”166

wells in this study) and by the Oman Drilling Project in 2016 through 2018 (“CM”) (Parsons167

International & Co., 2005; P. Kelemen et al., 2013). Information on well location, con-168

struction, and water level are given in Table 1. In sampling campaigns in 2014 and 2015,169

a 12 V submersible Typhoon R© pump (Proactive Env. Products, Bradenton, FL, USA)170

with typical flow rates of 5 L·min−1 was used. This pump was used in all years of sam-171

pling at well NSHQ04 due to partial obstruction of this well. In all other sampling from172

2016 onwards, a larger submersible pump (Grundfos SQ 2-85) with typical flow rates of173

20 L·min−1 was used. The pumping depths are reported in Tables 1 and 2. For fluids sam-174

pled in 2018, temperature, conductivity, and pH were measured using a ColeParmer PC100175
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Figure 1. Study area in Samail Ophiolite, Sultanate of Oman. Geologic map data from

Nicolas et al. (2000). Inset: overview of Samail Ophiolite (shaded in brown) with study area

(larger map) indicated by the red shaded box. A topographic map of the study area is provided

in Supporting Information Figure S1.

Meter, while Eh was measured using a Mettler Toledo SG2 SevenGo meter. The ana-176

lytical uncertainties for temperature, conductivity, pH, and Eh are 0.5 ◦C, 1.0 % of mea-177

sured value, 0.01µS·cm−1, and 1 mV, respectively. Each well was pumped for ≥ 20 min178

prior to sampling. Sampling commenced once fluid pH and conductivity measurements179

stabilized.180

3.2 Chemical and isotopic analyses of fluids181

To analyze aqueous concentrations (c) of non-carbonaceous chemical species, sam-182

ples were collected by passing groundwater through a 0.2µm filter into polypropylene183

conical tubes. Aqueous concentrations of
∑

Na,
∑

Ca,
∑

Mg,
∑

Al,
∑

Fe, and
∑

Si184

were measured by inductively coupled plasma (ICP) atomic emission spectroscopy on185

a PerkinElmer Optima 5300 (repeatability as median relative standard deviation of 3 %).186

Aqueous concentrations of Cl−, Br−, F−, and SO2−
4 were measured on a Dionex IC25187
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Table 2. Isotopic compositions of CH4, C2H6, and C3H8.

Well Sample
year

Pump depth
/ [mbct]

laboratory δ13CCH4
δDCH4

∆13CH3D ∆12CH2D2 δ13CC2H6
δ13CC3H8

WAB188
2018 50. CUB −86.7 n.d. n.d. n.d. n.d. n.d.

2017 78 CUB −60.8 n.d. n.d. n.d. n.d. n.d.

2015 20. LBNL −71.3 n.d. n.d. n.d. n.d. n.d.

WAB56 2015 12 LBNL −83.2 n.d. n.d. n.d. n.d. n.d.

NSHQ04

2018 8
CUB 4.7 −229 n.d. n.d. n.d. n.d.

UCLA 4.177 −227.396 0.229± 0.288 −24.502± 0.944 n.d. n.d.

2017 5.8
CUB 6.8 −225 n.d. n.d. n.d. n.d.
MIT 3.59 −229.67 0.12± 0.17 n.d. n.d. n.d.

2015 22
LBNL 0.8 −209 n.d. n.d. n.d. n.d.
MIT 1.60 −230.00 0.72± 0.29 n.d. n.d. n.d.

2014 18 LBNL 2.4 −205 n.d. n.d. n.d. n.d.

WAB71

2018 70. CUB 3.6 −307 n.d. n.d. n.d. n.d.

2017 50. CUB 3.9 −313 n.d. n.d. n.d. n.d.

2016 50. LBNL 3.0 n.d. n.d. n.d. n.d. n.d.

2015 18 LBNL 2.9 n.d. n.d. n.d. n.d. n.d.

CM2A 2018 75
CUB −4.3 −206 n.d. n.d. n.d. n.d.
MIT −3.83 −190.32 2.87± 0.57 n.d. n.d. n.d.

UCLA −4.710 −197.73 2.638± 0.284 −1.267± 0.886 n.d. n.d.

NSHQ14

2018 85
CUB −2.3 −314 n.d. n.d. n.d. n.d.
MIT −5.02 −311.73 0.77± 0.44 n.d. n.d. n.d.

UCLA −3.352 −293.58 2.074± 0.298 −0.204± 1.358 n.d. n.d.

2017 85
CUB 0.2 −271 n.d. n.d. −6.0 +3.3
MIT −0.08 −268.82 0.69± 0.23 n.d. n.d. n.d.

2016 70.
LBNL 1.8 −273 n.d. n.d. n.d. n.d.
MIT −6.89 −308.52 0.69± 0.17 n.d. n.d. n.d.

2015 20. LBNL 3.7 n.d. n.d. n.d. n.d. n.d.

2014 260. LBNL 3.0 −232 n.d. n.d. n.d. n.d.

All isotopic values reported in h units. δ13C and δD reported in the VPDB and VSMOW
reference frames, respectively. Data from 2014 previously reported by Miller et al. (2016).
Abbreviations: n.d., not determined; mbct, meters below casing top.
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ion chromatograph with an AS9-HC IonPac column, with the exception of NO−3 , which188

was measured on a Dionex 4500I ion chromatograph with an IonPac AS14 column us-189

ing EPA method 300.0 (analytical uncertainty of 2 %).190

The concentration and δ13C of dissolved inorganic C (
∑

CO2) were measured by191

acidification of water samples and transfer of resultant CO2 (g) via a Thermo Fisher Gas-192

Bench II to a Thermo Delta V Plus isotope ratio mass spectrometer. We optimized the193

methods of Assayag et al. (2006) for the wide range of c∑CO2
observed in ophiolite ground-194

waters. Complete methodological details are available in D. B. Nothaft (2019b). Sam-195

ple δ13C values were converted to the VPDB reference frame using measured δ13C val-196

ues of international reference materials (Harding Iceland Spar and LSVEC). Isotopic ref-197

erence frame calculations were performed using the Isoverse suite of packages (Kopf et198

al., 2021) for the statistical programming language, R (R Core Team, 2019).199

Water δ18O and δD were measured on a Picarro L2120-i cavity ring down spectrom-200

eter. The instrument analyzed each sample six times, excluding the first three analyses201

to avoid memory effects. Reported precision is the standard deviation of the last three202

measurements. Reported accuracy is the mean difference between accepted values and203

measured values of standards. Mean precision in the run was 0.06 h for δ18O and 0.23 h204

for δD; mean accuracy was 0.04 h for δ18O and 0.47 h for δD.205

Gases dissolved in pumped groundwaters were sampled by injecting water into N2206

purged vials for headspace gas analysis using methods described by Miller et al. (2016)207

in field campaigns occurring from 2014 to 2017. In addition, the bubble strip method208

(modified from (Kampbell et al., 1998)) was used from 2016 to 2018. Details on bub-209

ble strip gas sampling are available in D. B. Nothaft (2019a). The gas concentrations210

reported in this study were determined from bubble strip samples. These concentrations211

were measured on an SRI 8610C gas chromatograph (GC) with N2 as the carrier gas.212

H2, CO, CH4, and CO2 were separated with a 2 mm by 1 mm ID micropacked ShinCar-213

bon ST column, whereas alkanes of 2 to 6 C atoms (“C2−C6 short-chain alkanes”) were214

separated with a PORAPAK Q 6 ft by 0.085 in ID column. Peak intensities were mea-215

sured concurrently using a thermal conductivity detector (TCD) and a flame ionization216

detector (FID) and calibrated with standard gas mixes (Supelco Analytical, Bellefonte,217

PA, USA; accuracy of ±2 % of reported concentration). Measurement repeatability ex-218

pressed as relative standard deviation was 5 % over most of the calibrated range. The219

limit of quantitation was defined as the signal at which the relative standard deviation220

increased to 20 %. In 2018, H2 and CO were analyzed on a Peak Performer 1 gas chro-221

matograph equipped with a reducing compound photometer (RCP). Due to the high sen-222

sitivity of the RCP, the signal at limit of quantitation (SLQ) for these analyses was de-223

fined as SLQ = Sb + 10 · σb, where Smb is the mean signal of blanks prepared in field224

and σb is the population standard deviation of these blanks, in accordance with Amer-225

ican Chemical Society guidelines (MacDougall et al., 1980). Gaseous concentrations were226

converted to aqueous concentrations using gas solubilities (Sander, 2015) and corrected227

for temperature and volume changes between sampling and analysis.228

Prior to 2017, bulk stable isotope analyses of CH4 were conducted at the Center229

for Isotope Geochemistry at the Lawrence Berkeley National Laboratory (LBNL) by gas230

chromatography/combustion/pyrolysis isotope-ratio mass spectrometry (GC/C/Pyr/IRMS)231

using methods described by Miller et al. (2016). The measurement repeatability expressed232

as 1 sample standard deviation (s) for these analyses is ±0.2 h for δ13C and ±5 h for233

δD.234

From 2017 onwards, bulk stable isotope analyses of CH4 and co-occurring alkane235

gases were conducted at the University of Colorado - Boulder (CUB) by GC/C/Pyr/IRMS236

using a Trace 1310 GC equipped with an Agilent J & W GS-CarbonPLOT column (30 m237

length, 0.32 mm ID, 3.0µm film) coupled to a Thermo Scientific MAT253 IRMS. CH4238

isotope standards purchased from Airgas (uncertainties of ±0.3 h for δ13C and ±5 h239
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for δD) were used for calibration. Over the range of peak amplitudes of analyses reported240

here, the repeatability expressed as 1 s on analyses of standards is ±0.6 h for δ13C and241

±7 h for δD. The analytical uncertainty (accuracy) expressed as 1 standard error on242

a 3-point calibration was < 0.3 h for δ13C and < 9 h for δD (Supporting Information243

Section S1).244

The relative abundances of CH4 isotopologues, including the doubly-substituted245

isotopologue, 13CH3D, were measured at the Massachusetts Institute of Technology (MIT)246

by tunable infrared laser direct absorption spectroscopy following the methods described247

by Ono et al. (2014). Abundances of CH4 isotopologues, including both 13CH3D and 12CH2D2,248

were measured at the University of California, Los Angeles (UCLA) by high-mass-resolution249

gas-source isotope ratio mass spectrometry following the procedure of E. D. Young et250

al. (2016). The abundance of 13CH3D relative to a random (stochastic) distribution of251

isotopes among the isotopologues in a CH4 sample is described by its ∆13CH3D value,252

which is defined as: ∆13CH3D = lnQ, where Q is the reaction quotient of the isotope253

exchange reaction:254

13CH4 +12CH3D ⇀↽12CH4 +13CH3D. (1)

Analogous expressions can be written for doubly-deuterated CH4, 12CH2D2.255

3.3 16S rRNA gene sequencing and analysis256

Biomass for DNA extraction was concentrated by pumping 5 L to 20 L of ground-257

water through Millipore polycarbonate inline filters (0.45µm pore diameter, 47 mm fil-258

ter diameter). At well NSHQ04, a 0.22µm pore diameter polyethersulfone Millipore Sterivex259

filter was used instead due to the lower-flow pump used at this well (Section 3.1). Fil-260

ters were placed in cryovials, transported frozen in liquid N2, and stored in a −70 ◦C freezer261

until extraction. DNA was extracted from one quarter subsamples of each filter using262

a Qiagen PowerSoil DNA extraction kit. The V4 hypervariable region of the 16S rRNA263

gene was amplified by PCR in duplicate reactions using the 515 (Parada) - 806R (Ap-264

prill) primer pair modified to include Illumina adapters and the appropriate error-correcting265

barcodes. Each 25-µL reaction mixture included 12.5µL of Promega HotStart Master-266

mix, 10.5µL of PCR-grade water, 1µL of PCR primers (combined at 10µM), and 1µL267

of purified genomic DNA. PCR consisted of an initial step at 94 ◦C for 3 min followed268

by 35 cycles of 94 ◦C for 45 s, 50 ◦C for 1 min, and 72 ◦C for 1.5 min. PCR concluded with269

a final elongation step at 72 ◦C for 10 min. No-template controls and DNA extraction270

controls were subjected to PCR to check for potential contamination in our PCR and271

DNA extraction reagents, respectively. Amplification was evaluated via electrophoresis272

in a 2 % agar gel. Amplicons from duplicate reactions were pooled, cleaned, and their273

concentrations normalized using a Thermo Fisher SequalPrep normalization plate kit.274

Amplicons were sequenced on an Illumina MiSeq at the CUB Next-Generation Sequenc-275

ing Facility with 2-by-150 bp paired-end chemistry.276

Sequences were demultiplexed with idemp (Wu, 2017). The resultant fastq files were277

quality filtered using Figaro v1.1.1 (Weinstein, 2019) and the DADA2 v1.16 R package278

(Callahan et al., 2016). Amplicon sequence variants were assigned taxonomy to the genus279

level using the RDP classifier (Q. Wang et al., 2007) trained on the Silva SSU 138 ref-280

erence database (Quast et al., 2012) using the DADA2 assignTaxonomy function. Species281

level assignments were based on exact matching between amplicon sequence variants and282

sequenced reference strains using the DADA2 addSpecies function. Sequences assigned283

to mitochondria, chloroplast, and Eukaryota, or not assigned at the domain level (col-284

lectively < 1 % of sequences), were removed. After all of the above filtering, 24 000 to285

40 000 reads per sample remained for the samples presented here obtained in 2018. In286

addition, 16S rRNA gene sequencing data from previous Oman sampling campaigns (2014287

through 2017; (Miller et al., 2016; Rempfert et al., 2017; Kraus et al., 2021)) were re-288

–9–



manuscript submitted to JGR: Biogeosciences

processed in accordance with the methods outlined here to facilitate comparisons across289

the data sets. The complete data processing pipeline for samples across all years, from290

raw data provided by the sequencing facility through to taxonomic assignment, are avail-291

able in D. B. Nothaft, Rempfert, and Kraus (2021). Additional analyses and plotting292

can be found in D. B. Nothaft, Templeton, et al. (2021). For samples presented in this293

study, demultiplexed fastq files (without additional processing) are also accessible on the294

NCBI Short Read Archive under accession PRJNA655565.295

3.4 Thermodynamic calculations296

Oxidation-reduction potential, pH, and concentrations of major ions and
∑

CO2297

were used as inputs for the modeling software PHREEQC (Charlton & Parkhurst, 2011;298

Parkhurst & Appelo, 2013), with which fluids were speciated using the LLNL database.299

Activities of formate and acetate were separately calculated according to the Debye-Hückel300

equation. Activities of the aqueous gases were assumed equivalent to their concentra-301

tions, which is reasonable for neutral species in low ionic strength solutions. Standard302

Gibbs free energies (∆G◦r) of the CH4-forming reactions were calculated using the pro-303

gram SUPCRTBL (Johnson et al., 1992; Zimmer et al., 2016) using conditions of 1 bar304

and 35 ◦C to approximate in situ conditions. Gibbs free energies were then calculated305

as ∆Gr = ∆G◦r + RT lnQr, where R is the universal gas constant, T is temperature,306

and Qr is the reaction quotient. All of the above calculations and software inputs and307

outputs can be found in D. B. Nothaft, Templeton, et al. (2021).308

4 Results and discussion309

4.1 Controls on groundwater chemistry310

To assess the source and reaction histories of Samail Ophiolite groundwaters, we311

measured their stable isotopic compositions and solute concentrations. Groundwater δD312

and δ18O plotted near local and global meteoric water lines (Weyhenmeyer et al., 2002;313

Terzer et al., 2013), indicating that the groundwaters derive from rain (Table 3; Support-314

ing Information Figure S2; (Matter et al., 2006; Miller et al., 2016; Paukert Vankeuren315

et al., 2019)). The sampled groundwaters included oxidized and moderately alkaline Mg2+−316

HCO−3 waters, typical of reaction with peridotite in communication with the atmosphere,317

and reduced and hyperalkaline Ca2+−OH− waters, typical of extensive hydration and318

oxidation of peridotite in closed-system conditions with respect to the atmosphere (Ta-319

ble 3; (Barnes et al., 1967; Barnes & O’Neil, 1969; Neal & Stanger, 1985; Bruni et al.,320

2002; Cipolli et al., 2004; P. B. Kelemen et al., 2011; A. N. Paukert et al., 2012)). Ca2+−321

OH− waters had higher conductivities (930. µS·cm−1 to 3350µS·cm−1) than Mg2+−322

HCO−3 waters (498µS ·cm−1 to 1183µS ·cm−1) (Table 1). The increase in conductiv-323

ity from Mg2+−HCO−3 waters to Ca2+−OH− waters is driven by enrichments in Ca2+324

derived from dissolution of primary silicate minerals in addition to Na+ and Cl− derived325

from mineral dissolution, sea spray, and/or leaching of sea salts introduced during sub-326

seafloor alteration and/or ophiolite emplacement (Neal & Stanger, 1985; Stanger, 1986;327

Murad & Krishnamurthy, 2004; A. N. Paukert et al., 2012; Rempfert et al., 2017). The328

increase in pH from Mg2+ − HCO−3 waters (pH 8.66 to 9.62) to Ca2+ − OH− waters329

(10.51 to 11.39) was accompanied by a shift to lower fO2 and Eh (∼ 10−51 bar and −174 mV330

to −253 mV, respectively, in most Ca2+ −OH− waters) (Table 1), indicating reduced331

conditions in Ca2+ −OH− waters.332

Concentrations of
∑

CO2 were relatively high in Mg2+−HCO−3 waters and gab-333

bro waters (up to 3490µmol · L−1), but below the limit of quantitation (< 12µmol ·334

L−1) in most Ca2+−OH− waters (Table 3). This is consistent with water-harzburgite335

reaction path modeling that terminates at chrysotile-brucite-diopside-calcite equilibrium,336

corresponding to a c∑CO2
of 8µmol ·L−1 at 25 ◦C and 1 bar (Leong & Shock, 2020).337
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Literature values for c∑CO2
in ophiolitic Ca2+−OH− waters are often higher than those338

predicted by reaction path modeling, but the lower range of reported values approaches339

1µmol · L−1 (Barnes et al., 1967; Barnes & O’Neil, 1969; Barnes et al., 1978; Neal &340

Stanger, 1985; Bruni et al., 2002; Cipolli et al., 2004; A. N. Paukert et al., 2012; Falk et341

al., 2016; Brazelton et al., 2017; Canovas III et al., 2017; Crespo-Medina et al., 2017; Rempfert342

et al., 2017; Fones et al., 2019; Paukert Vankeuren et al., 2019). This spread in the data343

could reflect groundwater mixing, atmospheric contamination during sampling, differ-344

ences in reaction temperature and progress, and/or kinetic inhibitions to carbonate min-345

eral precipitation. In Mg2+−HCO−3 waters and waters from gabbroic aquifers, δ13C∑CO2
346

ranged from −13.54 h VPDB to −10.88 h VPDB (Table 3), which is comparable to δ13C∑CO2
347

of Mg2+−HCO−3 waters elsewhere in the ophiolite (−15.56 h VPDB to −13.60 h VPDB;348

(Matter et al., 2006; D. Nothaft et al., 2021)).349

Variable concentrations of H2 and CH4 across wells suggest spatial heterogeneities350

in sources and sinks of these gases in the ophiolite. In some Ca2+ −OH− waters, cH2
351

was high (up to 253µmol·L−1), but cH2
was below limits of quantitation in other Ca2+−352

OH− waters (Figure 2; Table 4). In Mg2+ − HCO−3 waters and waters from gabbroic353

aquifers, cH2 was generally below limits of quantitation. However, up to 0.992µmol·L−1354

H2 was measured in well WAB188, which is in gabbro near a faulted contact with peri-355

dotites that contain Ca2+−OH− waters (Figure 1; Table 1). This suggests production356

of H2 within the gabbro host rock or migration of H2 from peridotites into gabbros sur-357

rounding WAB188. In most Ca2+−OH− waters, cCH4
was high (up to 483µmol·L−1;358

Figure 2, Table 4). However, wells with high cCH4 did not always have high cH2 (Fig-359

ure 2; Table 4). In Mg2+−HCO−3 waters and gabbro waters, cCH4 was typically lower360

(≤ 0.1µmol ·L−1), although cCH4
reached 1.83µmol ·L−1 in well WAB188, where cH2

361

was also quantitatable.
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Figure 2. Aqueous concentrations of CH4 and H2 in Oman groundwater samples from 2017

and 2018. Left and down carrots denote “below limit of quantitation” for CH4 and H2, respec-

tively, with the adjacent point plotted at the limit of quantitation for that gas and year of analy-

sis.
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4.2 Origin of CH4 and co-occurring short-chain alkanes in the Samail362

Ophiolite363

We begin our examination of CH4 origin in the Samail Ophiolite by calculating Gibbs364

free energies (∆Gr) of potential CH4-forming reactions under relevant environmental con-365

ditions and discussing these results in light of recent microbiological studies on methano-366

genesis in the study area. Subsequent discussion focuses on fluid and particulate sam-367

ples from a subset of wells (NSHQ14, NSHQ04, and WAB188) that yielded particularly368

rich data sets from which we infer key CH4 cycle processes. Discussion of three additional369

wells (WAB71, WAB56, and CM2A) in Supporting Information Text S1 illustrates that370

the processes outlined below occur throughout the broader study area with some vari-371

ation due to local hydrogeologic factors.372

4.2.1 Assessing which CH4-forming reactions might occur using ther-373

modynamic and microbiological data374

To assess which CH4-forming aqueous reactions might occur within the Samail Ophi-375

olite, ∆Gr’s were calculated for the following reactions:376

CO2(aq) + 4H2(aq) = CH4(aq) + 2H2O(l) (hydrogenotrophic methanogenesis) (2)

CH3COO−(aq) + H+(aq) = CH4(aq) + CO2(aq) (acetoclastic methanogenesis) (3)

4HCOO−(aq)+4H+(aq) = CH4(aq)+3CO2(aq)+2H2O(l) (formatotrophic methanogenesis).
(4)

Gas-phase, abiotic reactions are also possible (Etiope & Ionescu, 2015; Etiope et al., 2018),377

but measurements of partial pressures of relevant gases in unsaturated zones of the sub-378

surface in the study area are absent. Thus, ∆Gr’s of gas-phase reactions were not cal-379

culated. In addition to the common hydrogenotrophic and acetoclastic modes of methano-380

genesis, formatotrophic methanogenesis (Equation 4) was considered because formate381

can be produced abiotically in serpentinizing settings (McCollom & Seewald, 2003; Mc-382

Dermott et al., 2015; Miller, Mayhew, et al., 2017) and has been suggested as an impor-383

tant substrate for microbial metabolism in these settings (Lang et al., 2018), including384

for methanogenesis (Fones et al., 2020).385

Rather than calculate ∆Gr’s of the above reactions for each individual groundwa-386

ter chemical analysis, we investigate a range of generalized cases to highlight the most387

important factors controlling ∆Gr’s and to assess energetic states of the system that lay388

beyond our analytical limits. For instance,
∑

CO2 was below the limit of quantitation389

for the majority of the Ca2+ −OH− groundwaters sampled in 2018 (< 12µmol · L−1;390

Table 3). H2 was also below the limit of quantitation for several Ca2+−OH− and Mg2+−391

HCO−3 groundwaters (< 0.048 nmol · L−1 in 2017 and < 0.598 nmol · L−1 in 2018; Ta-392

ble 4). Further, formate and acetate were not measured explicitly for this study, but were393

measured on groundwaters from the studied wells sampled in 2015 (Rempfert et al., 2017).394

Thus, while robust constraints on the above parameters are available for the study area,395

complete sets of these parameters were generally not directly or simultaneously measured.396

In light of this, we considered a representative Mg2+ − HCO−3 groundwater and397

a representative Ca2+−OH− groundwater, made informed assumptions when direct con-398
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Table 5. Gibbs free energies of potential CH4-forming reactions and log activities of relevant

species. Abbreviations: H, hydrogenotrophic (Equation 2); A, acetoclastic (Equation 3); F, forma-

totrophic methanogenesis (Equation 4).

log (activity) ∆Gr /
[
kJ ·mol−1

]
water type H+ CO2(aq) HCOO− CH3COO− CH4(aq) H2(aq) H A F

Ca2+ −OH− −11.1 −11.6 −6.1 −6.1 −4.0
−9.0 64 −115 −90
−6.0 −6 −115 −90
−3.0 −77 −115 −90

Mg2+ −HCO−3 −8.7 −4.9 −6.0 −6.0 −7.0
−9.0 8 −107 −47
−6.0 −63 −107 −47

centration measurements were lacking, and evaluated ∆Gr’s for a range of H2 concen-399

trations. Measurements of major inorganic dissolved constituents, pH, and Eh from wells400

WAB105 and NSHQ14 were used for the model Mg2+−HCO−3 and Ca2+−OH− flu-401

ids, respectively (Tables 1 and 3). Since measured c∑CO2
was below the limit of quan-402

titation in the water sample from NSHQ14, 8µmol · kg−1 was taken as the c∑CO2
of403

the representative Ca2+−OH− water, corresponding to the value at chrysotile-brucite-404

diopside-calcite equilibrium at 25 ◦C and 1 bar obtained from water-harzburgite reaction405

path modeling (Leong & Shock, 2020). Concentrations of formate and acetate were both406

assumed to be 1µmol·kg−1, which is consistent with their concentrations in earlier sam-407

ples from wells in Samail Ophiolite (Rempfert et al., 2017). Concentrations of CH4 were408

assumed to be 100µmol ·kg−1 and 0.1µmol ·kg−1 for the representative Ca2+−OH−409

and Mg2+−HCO−3 waters, respectively, reflecting typical concentrations for these flu-410

ids (Table 4, Figure 2). H2 concentrations vary widely between and within fluid types411

(Table 4, Figure 2), so calculations were performed for multiple H2 concentrations (1 mmol·kg−1,412

1µmol·kg−1, and 1 nmol·kg−1) encompassing the range of concentrations observed in Ca2+−413

OH− fluids. The 1 mmol·kg−1 H2 case was omitted for the Mg2+−HCO−3 fluid, where414

such high H2 concentrations are not observed. The log activities (a) of all relevant species415

are tabulated in Table 5.416

The calculated ∆Gr’s (Table 5) indicate that all of the CH4-forming reactions con-417

sidered here can have sufficient chemical potential to sustain microbial life in certain states418

of the system. That is, ∆Gr > ∆Gmin, where ∆Gmin (also known as the Biological En-419

ergy Quantum) is the minimum free energy that must be available to sustain life in a420

given environment (thought to be around −9 kJ·mol−1 to −20 kJ·mol−1; (Schink, 1997;421

Hoehler, 2004; Schink & Stams, 2006)). Acetoclastic methanogenesis had the most neg-422

ative ∆Gr in all conditions tested. formatotrophic methanogenesis had more negative423

∆Gr than hydrogenotrophic methanogenesis in all Ca2+−OH− conditions tested, but424

formatotrophic methanogenesis had less negative ∆Gr than hydrogenotrophic methano-425

genesis in the Mg2+−HCO−3 case at 1µmol·kg−1 H2. Hydrogenotrophic methanogen-426

esis had sufficient chemical potential to sustain microbial life only when aH2
was high427

enough, with the threshold aH2 being higher in Ca2+−OH− waters, where aCO2(aq) is428

lower. These calculations are generally consistent with those of Canovas III et al. (2017),429

who found that hydrogenotrophic methanogenesis had modest potential energy yields430

in waters from surface seeps in the Samail Ophiolite at pH ranging from 8 to 12.431

Several additional factors should be considered when interpreting the ∆Gr results.432

First, reactions proceeding in environmental systems are often drawn towards equilib-433

rium, and thus a large negative ∆Gr of a given reaction may indicate that that reaction434

is not actively occuring, but only has the potential to occur. Second, substrate trans-435

port into the cell is not addressed in our calculations. A more complete model would ac-436

count for rates of CO2 diffusion across the cell membrane and/or energy expended to437
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transport charged species such as formate and acetate into the cell (Hoehler, 2004). Third,438

mixing is not explicitly accounted for in our calculations. Mixing has been suggested as439

a key factor controlling energetic favorability of various reactions in the Samail Ophi-440

olite. This is especially pertinent to hydrogenotrophic methanogenesis because cCO2
is441

so much lower in endmember hyperalkaline fluids than in near-surface, atmosphere-influenced442

fluids (Canovas III et al., 2017; Leong & Shock, 2020). The cCO2
used for the example443

Ca2+−OH− fluid in our calculations is representative of a minimum value for the sys-444

tem (Leong & Shock, 2020). Mixing would tend to inject CO2 into the fluids and increase445

the energetic favorability of hydrogenotrophic methanogenesis.446

In addition to energetic considerations, microbiological approaches can help elu-447

cidate which CH4-forming reactions occur. Kraus et al. (2021) found higher transcript448

abundances of carbonic anhydrase and formate dehydrogenase relative to acetate kinase449

and phosphate acetyltransferase in hyperalkaline groundwaters from wells in the Samail450

Ophiolite, suggesting that CO2/HCO−3 and formate are more actively used substrates451

for methanogenesis than acetate in these conditions. Further, Fones et al. (2020) iden-452

tified two lineages of Methanobacterium in Samail Ophiolite groundwaters that were shown453

by genomic and microcosm-based radiotracer approaches to use different methanogenic454

pathways. Methanobacterium Type I lineage predominated in circumneutral waters and455

is capable of using either CO2 or formate for methanogenesis. Methanobacterium Type456

II lineage, which was more abundant in hyperalkaline waters and which branched from457

the Type I lineage, was exclusively capable of formatotrophic methanogenesis. It was pos-458

tulated that gene loss and acquisition in Type II lineage allowed it to be specially suited459

to the high-pH and low-
∑

CO2 conditions resulting from extensive serpentinization. Thus,460

microbiological data suggest that hydrogenotrophic or formatotrophic methanogenesis461

are the most likely pathways for methanogenesis in the Samail Ophiolite and that the462

relative contributions of each of these pathways to microbial CH4 production at a given463

site may depend on local geochemical factors such as aCO2(aq). This notion is generally464

supported by our calculations in that formatotrophic methanogenesis had more nega-465

tive ∆Gr than hydrogenotrophic methanogenesis in all Ca2+−OH− conditions tested,466

whereas the reverse was true for the Mg2+ −HCO−3 case at 1µmol · kg−1 H2.467

Remarkably, although acetoclastic methanogenesis had the most negative ∆Gr of468

the investigated CH4-forming reactions (Table 5), it has the least microbiological evi-469

dence of being a major methanogenic pathway in the Samail Ophiolite. Conversion of470

isotopically labeled acetate (13CH3OO−) to 13CH4, has, however, been documented in471

cultures from serpentinite springs in the Voltri Massif, Italy (Brazelton et al., 2017), in-472

dicating that acetoclastic methanogenesis can operate in some serpentinizing settings.473

In the aquifers sampled via wells in the Samail Ophiolite, methanogens may be out-competed474

for acquisition of acetate by other groups of microbes, such as sulfate reducers. Indeed,475

geochemical evidence of microbial acetate oxidation coupled to sulfate reduction has been476

reported in alkaline, H2-rich, crystalline rock aquifers inhabited by microbial communi-477

ties dominated by sulfate reducing bacteria and methanogens (Moser et al., 2005).478

4.2.2 Abiotic, 13C-enriched CH4, C2H6, and C3H8 mixed with micro-479

bial CH4 produced under C-limited conditions in the Ca2+−OH−480

waters of well NSHQ14481

Well NSHQ14 is situated in a catchment dominated by partially serpentinized harzbur-482

gite with meter-scale partially serpentinized dunite bands (Figure 1; Supporting Infor-483

mation Figure S1; Table 1). The well is cased to 5.8 meters below ground level (mbgl)484

and drilled to 304 mbgl (Table 1). Groundwaters accessed via NSHQ14 had the highest485

pH (11.39), and lowest Eh (−253 mV) and fO2 (1.19 · 10−51 bar) among the wells in-486

vestigated (Table 1), indicating that fluids sampled from NSHQ14 have extensively par-487

ticipated in serpentinization. This is also reflected in the cH2
of groundwaters sampled488

at NSHQ14, which was the highest among the studied wells (253µmol·L−1 and 131µmol·489
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L−1 in 2017 and 2018, respectively; Table 4; Figure 2). NSHQ14 waters also had high490

cCH4 (106µmol · L−1 and 71.2µmol · L−1 in 2017 and 2018, respectively).491

CH4 has ranged in δ13C from −6.89 h VPDB to +3.7 h VPDB in fluid samples492

from NSHQ14, with a mean weighted by sample year of −0.8 h VPDB (Figure 3a; Ta-493

ble 2). These δ13C values are generally higher than those of CH4 emanating from sediment-494

poor seafloor hydrothermal vents, where a dominantly abiotic origin has been proposed495

((Welhan & Craig, 1983; Merlivat et al., 1987; J. L. Charlou et al., 1996; J. Charlou et496

al., 2000, 2002; Proskurowski et al., 2008; Kumagai et al., 2008; McDermott et al., 2015;497

D. T. Wang et al., 2018); represented by Mid-Cayman Rise, Lost City, and Ashadze II498

in Figure 3a), higher than typical mantle values (Deines, 2002), and similar to marine499

carbonate (Schidlowski, 2001). CH4 δ
13C at NSHQ14 is generally higher than δ13C of500

carbonate veins in NSHQ14 (−7.05 h VPDB to −4.69 h VPDB; (Miller et al., 2016)),501

which is opposite to that which would be expected at equilibrium (Bottinga, 1969), in-502

dicating that CH4 is not in isotopic equilibrium with co-existing carbonate minerals.503
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Figure 3. Molecular and isotopic compositions of natural gases. (a) Plot of δDCH4 vs.

δ13CCH4 . Shaded fields of typical gas origin after Milkov and Etiope (2018). Abbreviations:

PM, primary microbial; SM, secondary microbial; T, thermogenic; A, abiotic. (c) Plot of ratio of

methane (C1) to the sum of ethane (C2) and propane (C3) vs. δ13CCH4 . Only analyses for which

C2 was above limit of quantitation are plotted. If C3 was below limit of quantitation, its contri-

bution to C1/ (C2 + C3) was assumed to be negligible, and therefore C1/C2 is plotted. Fields and

abbreviations same as in (a). In (a) and (c), uncertainties are smaller than plotted symbols. (b)

Plot of εmethane/water vs. ∆13CH3D. X and Y axes are swapped with respect to original publi-

cation of this type of plot (D. T. Wang et al., 2015) so that (b) is comparable against (d). The

data from (b) are plotted in the D. T. Wang et al. (2015) orientation in Supporting Information

Figure S4. Equilibrium line from Horibe and Craig (1995) and E. Young et al. (2017). Abbrevi-

ations: LTA-KC, low-temperature abiotic (Kidd Creek-type); M, microbial. Green dot-dashed

lines in (b) and (d) indicate a range of CH4 isotopic compositions that have been attributed to

either low cell-specific rates of methanogenesis or anaerobic oxidation of methane; that is, they

start at isotopic compositions produced by methanogen cultures and end at isotopic equilibrium

between 5 ◦C and 70 ◦C, which is the range of temperatures over which anaerobic oxidation of

methane has been documented (D. T. Wang et al., 2015; D. Stolper et al., 2015; E. Young et

al., 2017; Ash & Egger, 2019; Giunta et al., 2019). (d) Plot of ∆13CH3D vs. ∆12CH2D2, after

E. Young et al. (2017). Fields, abbreviations, and temperature axis same as in (b). In (b) and

(d), error bars represent 95 % confidence interval for analyses performed at MIT, and 1 standard

error for analyses performed at UCLA. Contextual data from ophiolites: Oman/UAE (Fritz et

al., 1992; Etiope et al., 2015; Boulart et al., 2013; Miller et al., 2016; Vacquand et al., 2018), the

Philippines (Abrajano et al., 1990; Grozeva et al., 2020); sediment-poor seafloor hydrothermal

vents: Mid-Cayman Rise (McDermott et al., 2015; D. T. Wang et al., 2018; Grozeva et al., 2020),

Lost City (Proskurowski et al., 2008; D. T. Wang et al., 2018; Labidi et al., 2020), Ashadze II

(J. L. Charlou et al., 2010); Precambrian Shield: Kidd Creek, Canada (Sherwood Lollar et al.,

2008; E. Young et al., 2017); and laboratory Sabatier reaction catalyzed by Ru (E. Young et al.,

2017).

CH4 is accompanied by C2−C6 alkanes in fluids from NSHQ14 (Table 4). These504

alkanes had C1/ (C2 + C3) ratios of 1240 in 2017 and 881 in 2018, which are similar to505

fluid samples and rock crushings from other ophiolites and sediment-poor seafloor hy-506

drothermal vents (Abrajano et al., 1990; J. L. Charlou et al., 2010; McDermott et al.,507

2015; Grozeva et al., 2020), but 102 times higher than those of Kidd Creek mine, Canada,508

for which a low-temperature, abiotic origin of alkanes has been proposed (Sherwood Lol-509

lar et al., 2002, 2008; E. Young et al., 2017) (Figure 3c). Thus, C1/ (C2 + C3) ratios could510

reflect differences in alkane formation mechanisms or extents of reaction in Precambrian511

shield sites like Kidd Creek versus ophiolites and sediment-poor seafloor hydrothermal512

vents.513

C2H6 and C3H8 at NSHQ14 are strongly 13C-enriched (δ13C of −6.0 h VPDB and514

+3.3 h VPDB, respectively; Table 2; Figure 4). The observed δ13C values are ∼ 15 h515

higher than those in the most mature (and therefore most 13C-enriched) thermogenic516

C2H6 and C3H8 samples from confined systems (Milkov & Etiope, 2018; Fiebig et al.,517

2019). Increases in δ13CC3
of ∼ 15 h have been attributed to microbial oxidation of short-518

chain alkanes, which enriches the residual in 13C (Martini et al., 2003). However, short-519

chain alkane oxidizing microbial species (Shennan, 2006; Singh et al., 2017; Laso-Pérez520

et al., 2019) were not detected in 16S rRNA gene sequences of DNA obtained from NSHQ14.521

Thus, there is not strong evidence to suggest that δ13CC2
and δ13CC3

at NSHQ14 re-522
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sult from post-genetic microbial alteration. Rather, δ13CC2 and δ13CC3 should reflect523

formation conditions and C source(s).524

C2H6 and C3H8 at NSHQ14 are not likely to derive from nearby organic matter.525

Hydrocarbon-rich sedimentary formations in northern Oman not only lack a clear struc-526

tural connection to the ophiolite aquifer, but also yield oils with δ13C values (Terken,527

1999) at least 20 h lower than those of C2H6 and C3H8 at NSHQ14. Furthermore, to-528

tal organic C in peridotites exposed to alteration at the seafloor, a proxy for organic C529

endogenous to the Samail Ophiolite, is also relatively 13C-depleted (approximately −25±530

5 h VPDB; (Alt et al., 2013; Alt, Garrido, et al., 2012; Alt, Shanks, et al., 2012; Dela-531

cour et al., 2008)). Closed-system thermal cracking of these organic matter sources is532

unlikely to have produced the comparatively 13C-enriched C2H6 and C3H8 at NSHQ14533

and previously reported elsewhere in the ophiolite (Figure 4; (Fritz et al., 1992)).534

Thermal cracking of organic matter and open-system degassing can enrich late-produced535

short-chain alkanes in 13C due to kinetic isotope effects associated with the cleavage of536

precursor sites in the parent organic matter and the resultant Rayleigh distillation of these537

sites (Rooney et al., 1995; Fiebig et al., 2019). Thermogenic gas production can proceed538

slowly at temperatures as low as 60 ◦C, but substantial thermogenic gas production typ-539

ically occurs at reservoir temperatures above 120 ◦C (Burnham, 1989; Hunt, 1996; D. A. Stolper540

et al., 2018; Cumming et al., 2019; Fiebig et al., 2019). These temperatures are higher541

than temperatures along groundwater flow paths intersecting the wells in this study. Mea-542

sured groundwater temperatures in the study area are ∼ 35 ◦C (Table 1), and H2−H2O543

isotope thermometry and C−O clumped isotope thermometry on carbonate veins with544

significant 14C contents in Samail Ophiolite peridotites both indicate equilibrium ≤ 60 ◦C545

(P. B. Kelemen & Matter, 2008; P. B. Kelemen et al., 2011; Mervine et al., 2014; Miller546

et al., 2016). Geothermal gradients derived from geophysical logs of NSHQ14 are 25 ◦C·547

km−1 (A. Paukert, 2014; Matter et al., 2017), which is typical of near-surface, continen-548

tal settings (Lowell et al., 2014). At the low temperatures and ordinary geothermal gra-549

dients within the active alteration zone of the Samail Ophiolite, thermal cracking of or-550

ganic matter is unlikely to proceed at sufficient rates to attain the high extents of reac-551

tion progress necessary to explain the observed 13C enrichments in short-chain alkanes552

at NSHQ14 over relevant timescales.553

Alternatively, short-chain alkanes in NSHQ14 fluids may have an abiotic source.554

Several studies have demonstrated storage of large quantities of CH4 and associated short-555

chain alkanes in fluid inclusions in ophiolites (Sachan et al., 2007; Klein et al., 2019; Grozeva556

et al., 2020). However, the findings of these studies disagree with those of Etiope et al.557

(2018), who measured relatively low concentrations of CH4 stored in serpentinized peri-558

dotites from Greek ophiolites. Since the rocks analyzed by Etiope et al. (2018) were sam-559

pled from outcrops, it is possible that chemical or physical processes associated with sur-560

face exposure resulted in loss of CH4 once stored in peridotite-hosted fluid inclusions prior561

to analysis. Although further study of the quantity and spatial distribution of CH4 stor-562

age in ophiolitic rocks is warranted, the presence of CH4+H2 inclusions in olivine and563

CH4±graphite inclusions in orthopyroxene in Samail Ophiolite harzburgites (Miura et564

al., 2011) requires that fluid inclusions be considered as a potential source for abiotic CH4565

and associated short-chain alkanes at NSHQ14 and elsewhere in the ophiolite.566

A fluid inclusion source of CH4 and short-chain alkanes is compatible with C sta-567

ble isotopic compositions of these compounds in groundwaters pumped from NSHQ14.568

CH4, C2H6, and C3H8 δ
13C values at NSHQ14 (−6.89 h VPDB to +3.7 h VPDB; Ta-569

ble 2) overlap with CH4 and C2H6 δ
13C values measured by Grozeva et al. (2020) in rock570

crushing experiments on CH4-rich fluid inclusion-bearing peridotites and dunites sam-571

pled from the Zambales ophiolite in the Philippines (−12.4 h VPDB to −0.9 h VPDB;572

Figure 4), which, in turn, overlap with δ13C values of CH4 from nearby gas seeps at Los573

Fuegos Eternos and Nagsasa in the Philippines (−7.4 h VPDB to −5.6 h VPDB; Fig-574

ure 3a; (Abrajano et al., 1990; Vacquand et al., 2018)). Grozeva et al. (2020) also crushed575
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CH4-rich fluid inclusion-bearing rocks from the Mid-Cayman Rise. Of the Mid-Cayman576

Rise samples that yielded sufficient CH4 and C2H6 for precise C isotopic analysis, which577

were all mafic intrusive rocks, δ13C values ranged from −14.0 h VPDB to +0.7 h VPDB.578

The lower end of Mid-Cayman Rise rock crushing short-chain alkane δ13C values are sim-579

ilar to those measured in Mid-Cayman Rise hydrothermal vent fluids (−15.8 h VPDB580

to −9.7 h VPDB; (McDermott et al., 2015)), whereas the higher end are similar to those581

of NSHQ14 (Figure 4). Furthermore, C2H6 and C3H8 δ
13C values of NSHQ14 fluids re-582

semble those of fluids discharging from the sediment-poor hydrothermal vents at Ashadze583

II, Mid-Atlantic Ridge (Figure 4; (J. L. Charlou et al., 2010)). The similarities in short-584

chain alkane δ13C values between circulating fluids and rock-hosted fluid inclusions in585

ophiolites and present-day oceanic lithospheric sites suggest that circulating fluids in both586

environments derive much of their CH4 and short-chain alkanes from fluid inclusions.587
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Figure 4. Plot of δ13C of CH4 and co-occurring n-alkanes vs. the number of C atoms per

molecule. Error bars represent uncertainties on δ13C analyses performed at CUB. Only samples

for which δ13CC2 was determined are plotted. Contextual data from ophiolites: Oman/UAE

(Fritz et al., 1992), the Philippines (Grozeva et al., 2020); sediment-poor seafloor hydrothermal

vents: Mid-Cayman Rise (McDermott et al., 2015; Grozeva et al., 2020), Lost City (Proskurowski

et al., 2008), Ashadze II (J. L. Charlou et al., 2010); and Precambrian Shield: Kidd Creek,

Canada (Sherwood Lollar et al., 2008).
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Sources of CH4 can also be assessed by measuring H isotopic compositions and clumped588

isotopologue relative abundances of CH4 and comparing these isotopic compositions to589

temperature-dependent equilibria. These isotopic equilibria are represented by thick gray590

lines in Figure 3b and d. Intra-CH4 equilibrium is governed by the increasing relative591

stability of bonds between two heavy isotopes (more “clumping”) at lower temperatures,592

which is reflected in higher ∆13CH3D and ∆12CH2D2 values. However, isotopic equi-593

librium will only be expressed if kinetics allow it. In the first study to publish clumped594

isotopologue (∆13CH3D) data on CH4- and H2- rich gases from sediment-poor seafloor595

hydrothermal vents, D. T. Wang et al. (2018) found that these gases yielded apparent596

CH4−H2O H isotopic and ∆13CH3D equilibrium temperatures of 270 ◦C to 360 ◦C, de-597

spite having a range of effluent fluid temperatures from 96 ◦C to 370 ◦C. This was in-598

terpreted as evidence for a closure temperature of 270 ◦C for H isotope exchange in the599

CH4−H2O and CH4−H2 systems in seafloor hydrothermal settings (e.g. Mid-Cayman600

Rise in Figure 3b and d). However, in a subsequent study that re-analyzed some of the601

same samples, plus a greater number of samples from low-temperature vents at Lost City602

(96 ◦C to 64 ◦C), and contributed the first ∆12CH2D2 values from these settings, Labidi603

et al. (2020) found evidence for re-equilibration of clumped isotopologue and CH4−H2O604

H isotopic systems at lower temperatures. Of these isotopic systems, that of 12CH2D2605

had the fastest apparent re-equilibration kinetics (approximately twice as fast as 13CH3D),606

which was explained by differences in symmetry numbers among the isotopologues. The607

12CH2D2-based temperatures of the Lost City samples, which were as low as 69+4
−4
◦C,608

closely matched their end member vent fluid temperatures. As a result of the apparent609

faster re-equilibration of 12CH2D2, the Lost City data plot above the 13CH3D−12CH2D2610

equilibrium line (towards higher ∆12CH2D2) in Figure 3d. Therefore, isotopic compo-611

sitions of CH4 formed in fluid inclusions in the oceanic lithosphere and stored for mil-612

lions of years at low temperatures may be expected to fall somewhere along a contin-613

uum from ∆13CH3D, ∆12CH2D2, and CH4−H2O isotopic equilibrium at ∼ 330 ◦C to614

compositions approaching lower temperature (∼ 70 ◦C or perhaps even lower) equilib-615

rium, with 12CH3D, 13CH3D, CH4−H2O isotopic re-equilibration proceeding at vary-616

ing rates. This is not the case for Samail Ophiolite samples, as detailed below.617

Across five years of samples from NSHQ14, δDCH4 has ranged from −232 h VSMOW618

to −311.73 h VSMOW, with a mean weighted by sample year of −275 h VSMOW (Fig-619

ure 3a; Table 2). This CH4 is D-enriched with respect to coexisting H2 (δDH2
= −685 h VSMOW;620

(Miller et al., 2016)) and D-depleted with respect to coexisting water (δDH2O = +0.2 h VSMOW621

in 2018; Table 3). Although H2 and water reflect H isotopic equilibrium at ∼ 50 ◦C (Miller622

et al., 2016), both H2 and water are in H isotopic disequilibrium with CH4 (Figure 3b).623

Moreover, NSHQ14 fluids exhibit intra-CH4 disequilibrium, as indicated by ∆13CH3D624

and ∆12CH2D2 values (Table 2) plotting below the equilibrium line in Figure 3d. These625

non-equilibrium isotopic compositions indicate that post-genetic alteration of CH4 must626

have occurred or that fluid inclusions are not the only source of CH4 at NSHQ14.627

One potential post-genetic alteration mechanism is diffusion. However, CH4 at NSHQ14628

cannot be the diffusion residual of CH4 that was originally at intramolecular equilibrium629

(or with ∆12CH2D2 above the apparent ∆13CH3D equilibrium temperature) because the630

diffusion slope (change in ∆12CH2D2 over change in ∆13CH3D) is shallower than the equi-631

librium line slope over the relevant temperature range (E. Young et al., 2017). Another632

potential alteration mechanism is microbial CH4 oxidation. Two types of microbial CH4633

oxidation have been studied for their effects on CH4 clumped isotopologue relative abun-634

dances: anaerobic methane oxidation of the ANME type and aerobic CH4 oxidation. ANME-635

type anaerobic methane oxidation is suggested to be a highly reversible metabolic path-636

way (Knittel & Boetius, 2009; Timmers et al., 2017). This reversibility has been proposed637

to bring ∆13CH3D and ∆12CH2D2 towards equilibrium at low temperatures (70 ◦C to638

30 ◦C) through continuous breaking and reforming of bonds in the CH4 molecule (E. Young639

et al., 2017; Ash & Egger, 2019; Giunta et al., 2019). Thus, the comparatively low ∆13CH3D640

and ∆12CH2D2 values observed in samples from NSHQ14 and other wells in this study641
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(Figure 3b and d) do not support a major role for anaerobic methane oxidation in the642

study area. Aerobic CH4 oxidation is less reversible than ANME-type anaerobic methane643

oxidation due to differences in the enzymes and electron acceptors used for those respec-644

tive processes. For this reason, aerobic CH4 oxidation does not bring CH4 into isotopic645

equilibrium, but rather imparts a normal, classical kinetic isotope effect during CH4 con-646

sumption. In a study of the effect of aerobic CH4 oxidation on ∆13CH3D, D. T. Wang647

et al. (2016) found that the fractionation factor for 13CH3D was closely approximated648

by the product of the fractionation factors for 13CH4 and 12CH3D. Although it has not649

yet been demonstrated experimentally, it is hypothesized that the fractionation factor650

for 12CH2D2 during aerobic CH4 oxidation may likewise be approximated by the square651

of the fractionation factor for 12CH3D (E. D. Young, 2020). This “product rule” for iso-652

topic fractionation during aerobic CH4 oxidation results in decreases in ∆13CH3D and653

∆12CH2D2 with concomitant increases in δ13C and δD in residual CH4 (D. T. Wang et654

al., 2016; E. D. Young, 2020). Thus, aerobic CH4 oxidation could draw ∆13CH3D and655

∆12CH2D2 values originally near equilibrium down below the equilibrium line in Fig-656

ure 3d. However, if CH4 samples from NSHQ14 were originally near H isotope equilib-657

rium with water of SMOW-like isotopic composition, aerobic methane oxidation would658

push the residual CH4 towards higher δD (and εmethane/water) values (above the equi-659

librium line in Figure 3b), which is inconsistent with the comparatively low δDCH4 ob-660

served at NSHQ14.661

For the reasons outlined above, post-genetic alteration of CH4 near CH4 − H2O662

and intramolecular isotopic equilibrium does not explain the observed isotopic compo-663

sitions of CH4 sampled from NSHQ14. Therefore, the release of CH4 stored in fluid in-664

clusions cannot account for all of the CH4 at NSHQ14. Alternative processes that do pro-665

duce CH4 with ∆13CH3D and ∆12CH2D2 values lower than equilibrium include micro-666

bial methanogenesis and low-temperature (≤ 90 ◦C) abiotic reduction of CO2 or CO through667

Sabatier or Fischer-Tropsch-type reactions. In Figure 3b and d, microbial methanogen-668

esis is represented by samples from cultures (green shaded areas; (D. T. Wang et al., 2015;669

D. Stolper et al., 2015; E. Young et al., 2017; Gruen et al., 2018; E. D. Young, 2020)),670

and low-temperature Sabatier or Fischer-Tropsch-type reactions are represented by field671

samples from Kidd Creek (gray shaded areas; (E. Young et al., 2017; Sherwood Lollar672

et al., 2002, 2008)) and laboratory experiments with synthetic Ru catalysts (E. Young673

et al., 2017; Etiope & Ionescu, 2015).674

To independently assess the potential influences of microbial processes on CH4 con-675

centration and isotopic composition, DNA was extracted from biomass in pumped ground-676

waters and subjected to amplification and sequencing of 16S rRNA genes. 16S rRNA gene677

sequences of biomass collected in 2018 were searched for matches to known CH4-cycling678

taxa, as compiled previously by Crespo-Medina et al. (2017). Sequences closely affiliated679

with both methanogenic and methanotrophic taxa were found to be widespread in the680

aquifer (Figure 5). Based on phylogenetic inference, the dominant methanogenic taxon681

was related to the genus Methanobacterium, whose members can produce CH4 from H2682

and CO2, CO, or formate (Balch et al., 1979). Methanobacterium comprised a high pro-683

portion (24 %) of 16S rRNA gene sequences at NSHQ14 in 2018. Relative abundances684

of Methanobacterium 16S rRNA gene reads were similarly high in 2017 (12 %) and 2016685

(28 %), but lower (< 1 %) in 2015 and 2014 (Miller et al., 2016; Rempfert et al., 2017;686

Kraus et al., 2021). The increase in the relative abundance of 16S rRNA genes affiliated687

with Methanobacterium in samples collected in 2016 and onwards versus those collected688

in 2014 and 2015 coincided with a change in sampling methods from smaller, lower-flow689

pumps (maximum depth 20 m) prior to 2016 to larger, higher-flow pumps (maximum depth690

90 m). The obligate anaerobic nature of this methanogen genus (Boone, 2015) is con-691

sistent with its higher relative gene abundances in fluids sampled from greater depths,692

which presumably receive less input of atmospheric O2 than do shallower fluids.693
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Figure 5. 16S rRNA gene read relative abundances of DNA extracted from Samail Ophiolite

groundwaters sampled in 2018 affiliated with CH4-cycling taxa. Read relative abundances are

reported as percentages rounded to the ones place. Cases when a taxon was detected in a sample

and was < 1 % read relative abundance after rounding are labeled “< 1”. Cases when no reads of

a taxon were detected in a sample are labeled “n.r.” Data shown are from unique field samples.

Previous 16S rRNA gene sequencing studies that obtained field samples in triplicate from Samail

Ophiolite groundwaters through similar methods to those used here have found typical stan-

dard deviations of relative abundances less than or equal to 25 % of the mean relative abundance

(Kraus et al., 2021).

Consortia capable of anaerobic oxidation of CH4 coupled to SO2−
4 reduction, in-694

cluding ANME, were not detected by 16S rRNA gene sequencing of samples obtained695

from NSHQ14 in 2018 (Figure 5), 2016, or 2014 (Miller et al., 2016; Rempfert et al., 2017),696

although sequences affiliated with order ANME-1b were detected in low abundance (<697

1 % of reads) in samples obtained from NSHQ14 in 2017 and 2015 (Rempfert et al., 2017;698

Kraus et al., 2021). This scarcity of ANME may result from metabolic inhibition by high699

cH2 in groundwaters at NSHQ14 and elsewhere in the Samail Ophiolite. It has been pro-700

posed that the thermodynamics of “reverse methanogenesis” require low cH2 (e.g. ≤ 1 nM701

in a marine cold seep environment (Boetius et al., 2000)). Indeed, the bioenergetics of702

SO2−
4 -driven oxidation of CH4 are less favorable than SO2−

4 -driven oxidation of H2 or703

non-CH4 organics, or other metabolisms such as methanogenesis or acetogenesis in the704

Samail Ophiolite (Canovas III et al., 2017) and in deep continental settings where ra-705

diolytic H2 accumulates (Kieft et al., 2005; Moser et al., 2005; Kieft, 2016).706

While 16S rRNA gene sequences affiliated with anaerobic CH4 oxidizing microbes707

have only occasionally been detected at NSHQ14, 16S rRNA gene sequences affiliated708

with the genus Methylococcus, which contains aerobic methanotrophs (Hanson & Han-709

son, 1996), have been detected in all samples from NSHQ14, ranging from 1 % to < 1 %710

of reads in samples obtained from 2014 to 2018 (Figure 5; (Miller et al., 2016; Rempfert711

et al., 2017; Kraus et al., 2021)). Since the aerobic lifestyle of Methylococcus is at odds712

with that of the obligate anaerobe, Methanobacterium, it seems most likely that these713

two taxa are spatially separated in the aquifer, and that waters containing each of them714
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were mixed during open borehole pumping. Still, the > 10 times higher abundances of715

Methanobacterium-related 16S rRNA genes relative to those of Methylococcus at NSHQ14716

in samples from 2016 to 2018 suggest that the microbial CH4 cycle at this well is dom-717

inated by CH4 production, rather than consumption.718

16S rRNA gene sequencing of subsurface biomass from NSHQ14 is complemented719

by other observations that suggest that methanogens are not only prevalent, but active.720

Genes involved in methanogenesis are enriched (Fones et al., 2019) and actively tran-721

scribed in waters sampled from NSHQ14 (Kraus et al., 2021). Transformation of both722

14C-labeled HCO−3 and 14C-labeled formate to CH4 have been shown to occur in water723

samples from NSHQ14 at significantly higher rates than in killed controls, with forma-724

totrophic methanogenesis greatly outpacing hydrogenotrophic methanogenesis (Fones725

et al., 2019, 2020). Taken together with a cell abundance of 1.15 · 105 cells · mL−1 in726

groundwater at NSHQ14 (Fones et al., 2019), these data suggest that aquifer regions ac-727

cessed by NSHQ14 host abundant active methanogenic cells (thousands per mL, assum-728

ing ∼ 24 % of cells are methanogens based on 16S rRNA gene data). These active cells729

could influence CH4 concentration and isotopic composition.730

The genomic and cultivation data of Fones et al. (2020) indicate that formate is731

the dominant substrate for methanogenesis at NSHQ14. Formate concentrations are 1µmol·732

L−1 to 2µmol·L−1 in the studied wells (Rempfert et al., 2017), which are roughly two733

orders of magnitude lower than formate concentrations at unsedimented seafloor hydrother-734

mal vents impacted by serpentinization at warmer conditions than present in the Samail735

Ophiolite (McDermott et al., 2015; Lang et al., 2018). These relatively low formate con-736

centrations in the ophiolite suggest that formate might be the primary limiting substrates737

for methanogenesis in Ca2+−OH− waters, such as at NSHQ14. Coexisting hydrogenotrophic738

methanogens may produce CH4 through direct uptake of
∑

CO2 in H2-rich Ca2+−OH−739

water, where kinetic inhibitions to abiotic
∑

CO2 reduction to CH4 allow for a modest740

energy yield for hydrogenotrophic methanogens (Section 5; (Leong & Shock, 2020)). Methanogens741

using
∑

CO2 could benefit from greater chemical disequilibrium if they inhabit zones742

where deeply-sourced, H2-rich Ca2+−OH− water mixes with shallow, Mg2+−HCO−3743

water (Zwicker et al., 2018; Leong & Shock, 2020). In addition to direct uptake of
∑

CO2,744

carbonate minerals may serve as a C source for methanogenesis in carbonated peridotites745

(Miller et al., 2018). Another potential C source is carbon monoxide (CO). CO has al-746

ways been below limits of quantitation in Oman wells (< 132 nmol · L−1 in 2018; Ta-747

ble 4), but it is unclear whether this indicates minimal CO production or rapid CO turnover.748

The microbiological data from NSHQ14 fluids are compatible with δDCH4
, ∆13CH3D,749

and ∆12CH2D2 values that collectively indicate a substantial addition of microbial CH4750

to an otherwise abiotic pool of CH4. Although the data presented here do not enable751

us to precisely determine the mole fractions and isotopic compositions of the microbial752

and abiotic components of CH4 at NSHQ14, the δDCH4 data alone suggest that perhaps753

the majority of CH4 at NSHQ14 formed through non-equilibrium processes, which in-754

clude microbial methanogenesis. Thus, the high δ13C of CH4 at NSHQ14 suggests that755

the microbial component is more 13C-enriched than microbial CH4 formed in sedimen-756

tary environments, which typically ranges from −90 h VPDB to −50 h VPDB ((Milkov757

& Etiope, 2018); Figure 3a). In cultures of a hydrogenotorophic strain of Methanobac-758

terium provided CaCO3 (s) as a C source at pH ∼ 9, Miller et al. (2018) observed sup-759

pressed apparent isotope effects during methanogenesis (αCO2/CH4
= 1.028). The au-760

thors attributed this to the slow kinetics of carbonate dissolution at high pH and the near-761

total conversion of the resultant CO2 (aq) to CH4 by Methanobacterium. If the primary762

mode of methanogenesis at NSHQ14 is in fact formatotrophic methanogenesis and abi-763

otic formate production is the rate-limiting step in the overall process through which
∑

CO2764

is converted to CH4, similar isotopic bottlenecks could apply. Cellular formate uptake765

and enzymatic conversion processes whose isotope effects remain unknown could be im-766

portant drivers of the isotopic composition of CH4 in hyperalkaline, serpentinizing set-767
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tings. In such settings, the suppression of C isotope fractionation during methanogen-768

esis is supported by observations of high δ13C values (up to +14 h VPDB) of lipid biomark-769

ers thought to be produced by methanogens at Chimaera, Turkey (Zwicker et al., 2018)770

and at Lost City (Bradley et al., 2009). Evaluation of these hypotheses will require fur-771

ther physiological studies of methanogens aimed at understanding substrate selection and772

limitation systematics in hyperalkaline, low-C conditions and the isotopic implications773

of these factors.774

While the data support substantial microbial CH4 and abiotic, fluid inclusion-derived775

CH4 in NSHQ14 fluids, we find less evidence for abiotic CH4 production at the low tem-776

peratures that pervade the modern weathering horizon in the ophiolite. Below 100 ◦C,777

access of gas-phase H2 and CO2 or CO to the catalytic metals Ru or Rh is required for778

CH4 to form at appreciable rates (Thampi et al., 1987; Jacquemin et al., 2010; Etiope779

& Ionescu, 2015; McCollom, 2016). It has been proposed that the spatial concentration780

of potentially-catalytic Ru-rich chromites in chromitites is important for catalysis of low-781

temperature CO2 reduction to CH4 in ophiolites (Etiope & Ionescu, 2015; Etiope et al.,782

2018). While peridotites in Oman ubiquitously contain a few percent distributed chromite783

(Hanghøj et al., 2010), massive chromitites were not reported in lithologic descriptions784

of cores or drill cuttings from NSHQ14 or any of the six additional wells ranging from785

300 m to 400 m depth that have been drilled in the same catchment by the Oman Drilling786

Project (P. Kelemen et al., 2020). Nor are chromitites notably abundant in outcrop within787

this catchment. Further, although some flow paths of meteoric water through the ophi-788

olite may result in saturation in H2 and separation of a free gas phase (Canovas III et789

al., 2017), the depth to water is < 20 m in all wells in the catchment of NSHQ14, sug-790

gesting water-saturated conditions in the subsurface. Moreover, if free H2 (g) were gen-791

erated at high extents of reaction progress, co-existing CO2(g) would be extremely scarce792

due to precipitation of carbonate minerals and high pH (Etiope & Ionescu, 2015; Leong793

& Shock, 2020). It has been proposed that CH4 in ophiolites can form through reduc-794

tion of CO2(g) from non-atmospheric sources such as magma, the mantle, or sedimen-795

tary carbonate formations (Etiope & Ionescu, 2015). A magmatic/mantle CO2 source796

is not supported at NSHQ14 because excess He above air saturation in groundwaters from797

this well has a dominantly radiogenic isotopic composition that is distinct from mantle-798

derived He (Paukert Vankeuren et al., 2019). Further, although sedimentary carbonates799

are present in the vicinity of NSHQ14 and elsewhere in the ophiolite (Boudier & Cole-800

man, 1981; de Obeso & Kelemen, 2018), there is no clear mechanism to liberate CO2(g)801

from mineral carbonates and transfer that CO2(g) to catalytic sites of reaction on chromites802

where H2 (g) is also present. Thus, the apparent lack of massive chromites and free gaseous803

potential reactants suggest that the subsurface surrounding NSHQ14 is not conducive804

to low-temperature abiotic CH4 production. While substantial low-temperature CH4 pro-805

duction in the catchment of NSHQ14 seems unlikely, NSHQ14 groundwaters could be806

mere carriers of CH4 that was produced elsewhere in the ophiolite under gaseous con-807

ditions and that has subsequently migrated into the aquifer. Some studies of CH4 ori-808

gin in other peridotite bodies have favored such a hypothesis (Etiope et al., 2016; Mar-809

ques et al., 2018). However, it is not clear how this hypothesis could be tested in the case810

of the NSHQ14, nor how it addresses the issue of CO2 source.811

In summary, isotopic and microbiological data lead us to conclude that the high812

concentrations of CH4 (102 µmol·L−1) in groundwaters accessed by NSHQ14 primarily813

result from microbial methanogenesis and the release of abiotic CH4 from fluid inclusions.814

The known presence of CH4-bearing fluid inclusions in the Samail Ophiolite and our find-815

ing of high δ13C values of CH4, C2H6, and C3H8 that overlap with values reported from816

seafloor hydrothermal vents where CH4 formed at > 270 ◦C in fluid inclusions predom-817

inates suggest a similar source in the ophiolite. However, deficits in 12CH3D, 13CH3D,818

and 12CH2D2 relative to equilibrium indicate the production of additional CH4 at low819

temperatures. The 13CH3D deficit in particular is more compatible with a microbial ori-820

gin than a low-temperature abiotic origin. Moreover, genomic, transcriptomic, and phys-821
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iological data show that methanogens are abundant and active in aquifers accessed via822

NSHQ14. Organic geochemical and cultivation data from the literature suggest that C823

isotope effects of methanogenesis may be suppressed under C-limited conditions in ser-824

pentinizing settings. That genes associated with methanogens coexist with a smaller abun-825

dance of genes associated with methanotrophs (particularly aerobes) in NSHQ14 ground-826

waters suggests that some of the CH4 has undergone microbial oxidation, which would827

further help explain the high δ13C values of CH4 at this well.828

4.2.3 Abundant microbial CH4 produced under C-limited conditions and829

substantial microbial CH4 oxidation in the Ca2+ −OH− waters830

of well NSHQ04831

NSHQ04 is situated in partially serpentinized harzburgite 10 m away from a faulted832

contact with crustal gabbros (Figure 1; Supporting Information Figure S1). Surface rock833

exposures surrounding NSHQ04 are dominated by serpentinized harzburgites, with lesser834

dunites, gabbro lenses, and pyroxenite dikes. NSHQ04 is cased to 5.8 mbgl and drilled835

to 304 m depth (Table 1). As of 2017, the well is obstructed at 8 m below the casing top,836

precluding deeper sampling (Section 3.1; Table 1).837

Primary differences in fluid composition between NSHQ04 and NSHQ14 include838

lower pH by ∼ 1 and higher c∑Ca and c∑ Si at NSHQ04 (Tables 1 and 3; (Miller et839

al., 2016; Rempfert et al., 2017; Paukert Vankeuren et al., 2019; Fones et al., 2019)). These840

differences could be related to the scarcity of fresh, near-surface olivine at NSHQ04, which841

may result in a greater influence of pyroxene serpentinization at NSHQ04 (Miller et al.,842

2016). Low-temperature pyroxene serpentinization generally continues after olivine is843

exhausted, and leads to higher c∑ Si and, depending on pyroxene chemical composition,844

can also lead to higher c∑Ca and lower pH (Bach et al., 2006; Leong & Shock, 2020).845

The relatively low pH and high c∑ Si could also stem from mixing of Ca2+−OH− wa-846

ters with gabbro- or atmosphere-influenced fluids.847

Compared to NSHQ14, NSHQ04 has generally had lower cH2
(detected in 2014, but848

not in 2018, 2017, 2015, or 2012; Table 4; Figure 2; (Miller et al., 2016; Rempfert et al.,849

2017; Paukert Vankeuren et al., 2019)). The relatively low cH2 measured in waters pumped850

from NSHQ04 is probably due at least in part to microbial H2 oxidation. Although there851

are multiple enzymes with which which a diversity of microbes oxidize H2 (Peters et al.,852

2015), aerobic H2 oxidation by bacteria of the genus Hydrogenophaga has been identi-853

fied as a particularly prevalent process in serpentinizing settings, including the Samail854

Ophiolite (Suzuki et al., 2014; Rempfert et al., 2017; Marques et al., 2018). Sequences855

affiliated with Hydrogenophaga accounted for 20 % of 16S rRNA gene reads in DNA ex-856

tracted from biomass in waters pumped from NSHQ04 in 2018, which is similar to pre-857

vious years of sampling at NSHQ04 (6 % to 18 % in 2014, 2015, and 2017; inter-annual858

mean of 12 %) and higher than all other studied wells (Supporting Information Figure859

S3; (Rempfert et al., 2017; Miller et al., 2016; Kraus et al., 2021)).860

While H2 has only been transiently detected at NSHQ04, cCH4 at this well has con-861

sistently been the highest among our sample sites (144µmol·L−1 in 2018 and 483µmol·862

L−1 in 2017. In comparison to NSHQ14, CH4 at NSHQ04 is more 13C- and D-enriched863

(mean weighted by sample year δ13C = +3.3 h VPDB, s = 1.8 h; δD = −220 h VSMOW,864

s = 11 h; n = 4; Table 2; Figure 3a). Fluids sampled from NSHQ04 are in CH4 −865

H2O H isotopic disequilibrium and intra-CH4 disequilibrium (Figure 3b and d), which866

is also true of fluids from NSHQ14. However, CH4 sampled from NSHQ04 has distinctly867

negative ∆12CH2D2 (−24.502 h) and low ∆13CH3D (mean weighted by sample year of868

0.36 h, s = 0.32 h, n = 3; Table 2). As such, CH4 from NSHQ04 plots squarely among869

methanogen culture samples in ∆13CH3D/∆12CH2D2 space (Figure 3d), suggesting that870

CH4 is dominantly microbial at NSHQ04. Moreover, alkane gases dissolved in waters pumped871

from NSHQ04 exhibited a C1/ (C2 + C3) ratio of 5.4·103 in 2018, which is higher than872
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other wells in this study (Table 4; Figure 3c), further supporting a major component of873

microbial CH4 at NSHQ04.874

Microbial CH4 production at NSHQ04 is also indicated by microbiological data.875

16S rRNA gene sequences affiliated with Methanobacterium have been detected in DNA876

extracted from biomass filtered from waters pumped from NSHQ04, albeit in low rel-877

ative abundance (< 1 % of reads in 2018; Figure 5; also detected in < 1 % of reads in878

2014, but not detected in 2015 and 2017; (Rempfert et al., 2017; Miller et al., 2016; Kraus879

et al., 2021)). The apparent low relative abundance of Methanobacterium at NSHQ04880

could have resulted from the relatively shallow depth from which samples were collected881

at NSHQ04 due to well obstruction and the consequential sampling of groundwaters that882

may have experienced atmospheric O2 infiltration. High relative read abundances of se-883

quences affiliated with aerobes and transient H2 across years of sampling NSHQ04 sug-884

gest that zones of the aquifer that are not always anoxic were accessed. These conditions885

may restrict methanogen abundance to greater depths than were sampled, but not con-886

strain the upward diffusion of the product of their metabolism, CH4. Nevertheless, flu-887

ids obtained from NSHQ04 have yielded robust cultures of Methanobacterium (Miller888

et al., 2018). In addition, high relative abundances of 16S rRNA gene reads of DNA ex-889

tracted from biomass in waters sampled from NSHQ04 were related to an aerobic methan-890

otroph of the genus Methylococcus (8 % of reads in 2018; inter-annual mean of 11 %; Fig-891

ure 5; (Miller et al., 2016; Rempfert et al., 2017; Kraus et al., 2021)). Greater aerobic892

methanotrophy at NSHQ04 relative to NSHQ14 may have contributed in part to the lower893

∆13CH3D and ∆12CH2D2 and higher δ13C and δD of CH4 sampled from NSHQ04.894

Methanotrophic activity at NSHQ04 is consistent with the observed 13C-depletion895

in
∑

CO2 at NSHQ04 (−29.7 h VPDB δ13C; Table 2) relative to the other studied wells896

because environments of active methanotrophy often have 13C-depleted
∑

CO2 (Barker897

& Fritz, 1981; Michaelis et al., 2002). Indeed, δ13C∑CO2
at NSHQ04 is compatible with898

aerobic oxidation of CH4 of ∼ 0 h VPDB δ13C (Barker & Fritz, 1981; Feisthauer et al.,899

2011). Alternatively, 13C-depletion in
∑

CO2 could be explained by kinetic isotope frac-900

tionation during hydroxylation of atmospheric CO2 upon contact with Ca2+−OH− wa-901

ter, which has been interpreted as the cause of δ13C as low as −27.21 h VPDB in Ca-902

rich carbonates from hyperalkaline seeps in the Samail Ophiolite (Clark et al., 1992; P. B. Kele-903

men et al., 2011; Falk et al., 2016). Considering the relatively shallow sampling depth904

at NSHQ04 in 2018 (Table 1), it is plausible that the sampled groundwaters continuously905

interact with atmospheric CO2. Although the relative influences of methanotrophy and906

atmospheric CO2 hydroxylation cannot be determined based on the available data, both907

processes could affect δ13C∑CO2
at NSHQ04.908

In summary, low ∆13CH3D and ∆12CH2D2, high C1/ (C2 + C3), the presence of909

Methanobacterium that were readily cultured, and high 16S rRNA gene relative abun-910

dances of Methylococcus lead us to conclude that microbial production and consump-911

tion of CH4 are the dominant factors controlling CH4 concentration and isotopic com-912

position at NSHQ04.913

4.2.4 H2-limited microbial methanogenesis with classic C isotope effect914

expressed at well WAB188915

WAB188 is situated 2 km down-gradient from NSHQ04 and is set in gabbro on the916

opposite side of a fault from NSHQ04 (Figure 1; Supporting Information Figure S1; Ta-917

ble 1). Fluids pumped from WAB188 have had variable pH (8.72 to 5.75) and oxidation-918

reduction potential (fO2
of 10−61 bar to 10−34 bar and Eh of −220 mV to +214 mV) across919

four years of sampling (Table 1; (Rempfert et al., 2017; Fones et al., 2019)). WAB188920

has consistently had major ion compositions similar to the gabbro-hosted well WAB103,921

except that WAB188 has had higher c∑Ca (Table 3; (Rempfert et al., 2017; Fones et922

al., 2019)). H2 has occasionally been detected in fluids pumped from WAB188 (cH2
=923
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0.992µmol·L−1 in 2017), and CH4 has consistently been detected at moderate concen-924

trations (cCH4 = 1.83µmol·L−1 in 2017 and 0.917µmol·L−1 in 2018) (Table 4; (Rempfert925

et al., 2017; Fones et al., 2019)). The high c∑Ca and moderate but variable pH, Eh, and926

cH2 in fluids sampled from WAB188 suggest that fluid chemical composition at WAB188927

is dominantly controlled by water-rock reaction with gabbro (McCollom, 1999; Hoehler,928

2004), but may also be affected by inputs of fresh rainwater and/or H2-bearing Ca2+−929

OH− water flowing from the peridotite aquifer into the gabbro aquifer across a fault at930

depth. Flows of water from higher-head, lower-permeability peridotite aquifers into gab-931

bro aquifers in the Samail Ophiolite have been proposed on the basis of physical hydro-932

logic data (Dewandel et al., 2005). Instead or in addition, serpentinization of olivine and933

pyroxene entirely within gabbro might have produced H2 observed in water samples from934

WAB188.935

Microbial methanogenesis at WAB188 is indicated by high relative abundances of936

16S rRNA gene reads affiliated with methanogens in pumped groundwaters. Sequences937

affiliated with Methanobacterium accounted for 3 % of 16S rRNA gene reads of DNA ex-938

tracted from subsurface fluids sampled from WAB188 in 2018, which was second only939

to NSHQ14 among our sampling sites, and consistent with prior years of sampling at WAB188940

(mean 2015 to 2018 of 4 %; Figure 5; (Rempfert et al., 2017; Kraus et al., 2021)). There941

was also evidence for methanotrophy. 2 % of 16S rRNA gene reads from WAB188 were942

affiliated with Methylococcus in 2018, which was second only to NSHQ04 among our sam-943

pling sites, and consistent with prior years of sampling (Figure 5; (Rempfert et al., 2017;944

Kraus et al., 2021)). Further, 16S rRNA gene sequences affiliated with genus Candida-945

tus Methylomirabilis, which includes species that mediate anaerobic methane oxidation946

coupled to nitrite reduction (Ettwig et al., 2010; Luesken et al., 2012; Welte et al., 2016),947

were detected in samples from WAB188 in 2018 albeit at low relative gene abundance948

(< 1 %). As a whole, the 16S rRNA gene sequencing data from WAB188 fluids are con-949

sistent with microbial production of CH4 and, secondarily, methanotrophy using O2 and/or950

NO−2 . The 16S rRNA data are bolstered by genomic and cultivation data that demon-951

strate that Methanobacterium at WAB188 can produce CH4 from CO2 and/or formate952

(Fones et al., 2020) and that genes involved in methanogenesis are transcribed in ground-953

water samples obtained from WAB188 (Kraus et al., 2021).954

While subsurface fluids sampled at WAB188, NSHQ14, and NSHQ04 all bear ev-955

idence of methanogenic activity, the conditions under which methanogenesis proceeds956

at WAB188 are fundamentally distinct. In contrast to the Ca2+−OH− fluids from NSHQ14957

and NSHQ04, the circumneutral fluids from WAB188 have ∼ 102 to ∼ 103 times higher958

c∑CO2
(inter-annual mean of 2910µmol·L−1, s = 620µmol·L−1, n = 3; Table 3) and959

∼ 75 h lower δ13CCH4
(inter-annual mean δ13C = −73 h VPDB, s = 13 h, n = 3;960

Table 2; Figure S5). Since WAB188 fluids contain relatively 13C-depleted CH4 that is961

not associated with substantial concentrations of C2−C6 alkanes (Table 4), a standard962

interpretation (Bernard et al., 1977; Milkov & Etiope, 2018) would be that the source963

of CH4 at WAB188 is dominantly microbial. Such an interpretation is largely based on964

data from sedimentary settings, where H2 is typically more scarce than CO2. In this re-965

gard, conditions in sedimentary settings are analogous to those at WAB188. Evidence966

that considerable methanogenesis proceeds through a hydrogenotrophic pathway under967

H2-limited conditions at WAB188 include microbiological data confirming the capacity968

of Methanobacterium to perform hydrogenotrophic methanogenesis at WAB188 and ther-969

modynamic calculations showing that hydrogenotrophic methanogenesis (with H2 as lim-970

iting substrate) was more energetically favorable than formatotrophic methanogenesis971

for a fluid with c∑CO2
and cH2

similar to WAB188 in 2017 (Section 4.2.1; Table 5). Fur-972

ther, the apparent αCO2/CH4
at WAB188 (based on measured δ13C∑CO2

of −13.52 h VPDB;973

Table 3) is compatible with that of Methanobacterium cultures grown hydrogenotroph-974

ically with excess HCO−3 (aq), which was greater than the αCO2/CH4
observed for par-975

allel cultures under CO2-poor conditions (Miller et al., 2018). In sum, the conditions at976
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WAB188 contrast starkly with those that prevail in Ca2+−OH− fluids, where C sub-977

strates for methanogenesis are often more scarce than H2. These differences may be re-978

flected in the inverse relationship between c∑CO2
and δ13CCH4

across fluids from wells979

WAB188, NSHQ14, and NSHQ04 (Figure S5), which is consistent with an effect of C avail-980

ability on the apparent C isotope effect of microbial methanogenesis.981

5 Conclusions982

formatotrophic methanogenesis

4HCOO-+4H+=CH4+3CO2+2H2O

[minimal] active low-T FTT synthesis?

Partially-serpentinized peridotite
Gabbro

Mg 2+
-HCO

3
-: pH 8-9

Ca 2+
-OH -: pH 11-13

Springs

H
2-limited

C-limited
abiotic formate production

HCO3
-+H2=HCOO-+H2O

hydrogenotrophic

methanogenesis

CO2+4H2=CH4+2H2O

H2 generation

methanotrophy

entrainment of old, abiotic CH4 from fluid inclusions

microbial methane: depleted in
12CH3D, 13CH3D, 12CH2D2 vs. eq.

further 13C enrichment of CH4 via

( 13
C-enriched CH

4)

( 13
C-depleted CH

4)

Rain: pH ~5.5

~near CH4-H2O and 13CH3D/12CH2D2 eq. 370-35°C

Figure 6. Conceptual model of CH4 dynamics in Samail Ophiolite. Cross section after Neal

and Stanger (1985), Dewandel et al. (2005), and Rempfert et al. (2017). Groundwater flow is de-

picted with blue arrows. Cross-hatching illustrates fissured zone of aquifer, extending to ∼ 50 m

depth. A deep tectonic fracture hosting upward groundwater flow is shown as a black line. Yel-

low dashed line indicates proposed transition between conditions where methanogenesis is limited

by H2 versus C availability. Isotopic systematics are written in black text. Abbreviations: eq.,

equilibrium; T , temperature; FTT, Fischer-Tropsch-type.

Through integration of isotopic, microbiological, and hydrogeochemical data, we983

conclude that substantial microbial CH4 is produced under varying degrees of C or H2984

limitation in subsurface waters of the Samail Ophiolite and mixes with abiotic CH4 re-985

leased from fluid inclusions (Figure 6). Across subsurface fluids ranging in pH from cir-986

cumneutral to 11.39, microbial CH4 production is evidenced by 16S rRNA gene sequenc-987

ing and other microbiological data indicating that methanogens are widespread and ac-988

tive in groundwaters in the ophiolite. We propose that CH4 produced by these microbes989

constitutes a substantial portion of the total CH4 pool, which is consistent with our find-990

ing of 13CH3D and 12CH2D2 relative abundances significantly less than equilibrium. Us-991

ing a simple thermodynamic model, we find that formatotrophic methanogenesis may992

become more energetically favorable than hydrogenotrophic methanogenesis as Mg2+−993

HCO−3 waters transition to Ca2+−OH− waters where CO2(aq) is extremely scarce, de-994

spite relatively low formate concentrations of ∼ 1µmol·L−1 across fluid types (Rempfert995

et al., 2017). This lends geochemical support to recent microbiological findings that in-996

dependently indicate that the activity of formatotrophic methanogens increases relative997
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to hydrogenotrophic methanogens as groundwater pH increases in the ophiolite (Fones998

et al., 2020).999

In addition, an abiotic, fluid inclusion-derived source of CH4, C2H6, and C3H8 is1000

inferred from the widespread occurrence of CH4 in fluid inclusions in peridotites, includ-1001

ing those in Oman, and is supported by the relatively 13C-enriched compositions of CH4,1002

C2H6, and C3H8 measured in gases exsolved from peridotite-hosted groundwaters in this1003

study. The measured δ13C values overlap with those of CH4, C2H6 and C3H8 from seafloor1004

hydrothermal vents where fluid inclusions are the dominant source of these alkanes, sug-1005

gesting similar CH4 sources across these environments. In contrast, abiotic, low-temperature1006

reduction of CO2 to CH4 appears less likely to contribute substantially to the CH4 pool1007

in the study area due to a scarcity of conditions favorable to catalysis, namely, access1008

of gas-phase H2 and CO2/CO to Ru-bearing chromites.1009

Further, we note an inverse relationship between c∑CO2
and δ13CCH4

across ground-1010

waters bearing microbiological evidence of methanogenic activity. This finding supports1011

the hypothesis that the apparent C isotope fractionation between the C substrate used1012

by methanogens and the CH4 they produce is suppressed when the C substrate is lim-1013

iting. Thus, our finding that δ13CCH4
varies by 90 h in the Samail Ophiolite suggests1014

that, in some settings, δ13CCH4
may be a powerful indicator of transitions from H2-limited1015

to C-limited conditions for microbial methanogenesis, rather than a discriminant between1016

microbial versus abiotic CH4. The 16S rRNA gene sequencing data also indicate the pres-1017

ence of microbes capable of CH4 oxidation, particularly those that can use O2 as an ox-1018

idant. This oxidation may also contribute in part to the 13C-enriched composition of CH41019

in the ophiolite, which is considered unusual for CH4 with a substantial microbial com-1020

ponent.1021

This study supports the premise that H2 produced from water/rock reaction can1022

fuel microbial life, even under challenging conditions of high pH and low oxidant avail-1023

ability. By identifying where and how microbial methanogenesis can reasonably be ex-1024

pected to occur in H2-rich, subsurface environments, this work complements theoreti-1025

cal models in guiding the search for rock-hosted life, including extraterrestrial life. For1026

example, our findings substantiate predictions that microbial methanogenesis could oc-1027

cur in the reduced, alkaline ocean of Saturn’s moon, Enceladus (McKay et al., 2008; Glein1028

et al., 2015; Waite et al., 2017) and in the Martian subsurface (Kral et al., 2014).1029
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