

Geochemical, biological and clumped isotopologue evidence for substantial microbial methane production under carbon limitation in serpentinites of the Samail Ophiolite, Oman

Daniel B Nothaft, Alexis S Templeton, Jeemin H Rhim, David T Wang, Jabrane Labidi, Hannah M Miller, Eric S Boyd, Juerg M Matter, Shuhei Ono, Edward D Young, et al.

▶ To cite this version:

Daniel B Nothaft, Alexis S Templeton, Jeemin H Rhim, David T Wang, Jabrane Labidi, et al.. Geochemical, biological and clumped isotopologue evidence for substantial microbial methane production under carbon limitation in serpentinites of the Samail Ophiolite, Oman. Journal of Geophysical Research: Biogeosciences, in Press, 10.1029/2020JG006025. hal-03325162

HAL Id: hal-03325162 https://hal.science/hal-03325162

Submitted on 24 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Geochemical, biological and clumped isotopologue evidence for substantial microbial methane production under carbon limitation in serpentinites of the Samail Ophiolite, Oman

1

2

3

4

5 6 7

17

Key Points:

Daniel B. Nothaft¹, Alexis S. Templeton¹, Jeemin H. Rhim², David T. Wang^{2*}
, Jabrane Labidi³, Hannah M. Miller^{1†}, Eric S. Boyd⁴, Juerg M. Matter⁵,
Shuhei Ono², Edward D. Young³, Sebastian H. Kopf¹, Peter B. Kelemen⁶,
Mark E. Conrad⁷, The Oman Drilling Project Science Team

9 10	¹ Department of Geological Sciences, University of Colorado, Boulder, CO, USA ² Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology,
11	Cambridge, Massachusetts, USA
12	³ Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA
13	⁴ Department of Microbiology & Immunology, Montana State University, Bozeman, MT
14	⁵ National Oceanography Centre, University of Southampton, Southampton, UK
15	⁶ Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
16	⁷ Lawrence Berkeley National Laboratory, Berkeley, CA, USA

18 19	•	16S rRNA gene sequences affiliated with methanogens and CH_4 clumped isotopologue compositions suggest substantial microbial CH_4 production.
20	•	A second CH_4 source, release of CH_4 from fluid inclusions, is indicated by $^{13}C_{-}$
21		enriched ethane and propane.
22	•	Scarcity of C substrates (CO ₂ and formate) may decrease the apparent C isotope
23		effect of microbial methanogenesis.

 $^{^{*}\}mbox{Current}$ address: Exxon
Mobil Upstream Research Company, Spring, TX 77389, USA

 $^{^{\}dagger}\mathrm{Current}$ address: Itasca Denver, Inc., 143 Union Blvd. Suite 525 Lakewood, CO 80228, USA

 $Corresponding \ author: \ Daniel \ B. \ Nothaft, \ \texttt{daniel.nothaft} \\ \texttt{colorado.edu}$

 $Corresponding \ author: \ Alexis \ S. \ Templeton, \verb"alexis.templeton@colorado.edu"$

24 Abstract

In hyperalkaline (pH > 10) fluids that have participated in low-temperature (< $150 \,^{\circ}$ C) 25 serpentinization reactions, the dominant form of C is often methane (CH_4) , but the ori-26 gin of this CH_4 is uncertain. To assess CH_4 origin in serpentinite aquifers within the Samail 27 Ophiolite, Oman, we determined fluid chemical compositions, analyzed taxonomic pro-28 files of fluid-hosted microbial communities, and measured isotopic compositions of hy-29 drocarbon gases. We found that 16S rRNA gene sequences affiliated with methanogens 30 were widespread in the aquifer. We measured clumped isotopologue $({}^{13}CH_3D$ and ${}^{12}CH_2D_2)$ 31 relative abundances less than equilibrium, consistent with substantial microbial CH_4 pro-32 duction. Further, we observed an inverse relationship between dissolved inorganic C con-33 centrations and $\delta^{13}C_{CH_4}$ across fluids bearing microbiological evidence of methanogenic 34 activity, suggesting that the apparent C isotope effect of microbial methanogenesis is mod-35 ulated by C availability. An additional source of CH_4 is evidenced by the presence of CH_4 -36 bearing fluid inclusions in the Samail Ophiolite and our measurement of high δ^{13} C val-37 ues of ethane and propane, which are similar to those reported in studies of CH_4 -rich 38 inclusions in rocks from the oceanic lithosphere. In addition, we observed 16S rRNA gene 39 sequences affiliated with aerobic methanotrophs and, in lower abundance, anaerobic methan-40 otrophs, indicating that microbial consumption of CH_4 in the ophiolite may further en-41 rich CH_4 in ¹³C. We conclude that substantial microbial CH_4 is produced under vary-42 ing degrees of C limitation and mixes with abiotic CH₄ released from fluid inclusions. 43 This study lends insight into the functioning of microbial ecosystems supported by wa-44 ter/rock reactions. 45

46 Plain Language Summary

Mantle rocks from beneath Earth's crust can be thrust to the surface, where they 47 are exposed to rain and air containing carbon dioxide (CO_2) . The groundwaters that be-48 come stored in these rocks often contain methane (CH₄, a major component of "natu-49 ral gas"), which can be formed from carbon dioxide in the subsurface. To investigate these 50 methane-forming processes, we sampled water, gas, and suspended particles from ground-51 waters using wells previously drilled into the rocks. The particles contained microbes with 52 the genetic ability to produce methane. We also precisely measured the amounts of com-53 binations of C and H atoms of different masses (isotopes) in the natural gas to deter-54 mine how it was formed. The results of these measurements suggest that microbes could 55 actively produce a considerable amount of the methane, which mixes with methane from 56 another source that was formed by non-biological processes, possibly long ago under dif-57 ferent conditions than today's. Rocks like those studied here are widespread in the So-58 lar System, so our finding that microbes live and produce methane in these rocks could 59 help guide the search for life beyond Earth. 60

61 **1** Introduction

At temperatures and pressures near the Earth's surface ($< 400 \,^{\circ}\text{C}, < 100 \,\text{MPa}$), 62 ultramafic rocks such as peridotite in contact with water are thermodynamically driven 63 to hydrate and oxidize, forming variable amounts of serpentine, magnetite, brucite, hy-64 drogen (H₂), and other phases (Evans, 1977; Frost, 1985; McCollom & Bach, 2009; Klein & Bach, 2009; Klein et al., 2009, 2019). This process, often called "serpentinization", 66 can produce H_2 at temperatures at least as low as 55 °C (Miller, Mayhew, et al., 2017). 67 The resultant H_2 can be thermodynamically favored to reduce carbon dioxide (CO₂) to 68 methane (CH₄) (Shock, 1992). The reduction of CO_2 by H_2 to form CH_4 can be catalyzed 69 on mineral surfaces as in the Sabatier reaction (Etiope & Ionescu, 2015; Klein et al., 2019), 70 or enzymatically through microbial methanogenesis (Whiticar, 1999). 71

In continental settings undergoing serpentinization, where fluid-rock reactions typically occur at low temperatures (< 150 °C), there is disagreement regarding the ori⁷⁴ gin of CH₄. Three key potential CH₄ sources have been identified in these environments. ⁷⁵ One potential source is the abiotic reduction of CO₂ to CH₄ at warmer-than-present tem-⁷⁶ peratures in fluid inclusions within crystals that can store CH₄ and subsequently release ⁷⁷ it. Another potential source is the abiotic, mineral-catalyzed reduction of CO₂ to CH₄ ⁷⁸ at the low temperatures that prevail in the present-day weathering environment. A third ⁷⁹ potential source is microbial methanogenesis.

Storage of CH₄ produced at temperatures of 270 °C to 800 °C in fluid inclusions
in minerals such as olivine and the release of this CH₄ through subsequent chemical/physical
alteration are the dominant processes contributing to CH₄ fluxes from sediment-poor seafloor
hydrothermal vents (Kelley, 1996; Kelley & Früh-Green, 1999; McDermott et al., 2015;
D. T. Wang et al., 2018; Labidi et al., 2020). In continental, low-temperature serpentinizing settings, however, debate continues as to whether fluid inclusions can sustain observed CH₄ fluxes (Etiope & Whiticar, 2019; Grozeva et al., 2020).

Abiotic reduction of CO_2 to CH_4 can occur at temperatures at least as low as 20 °C when catalyzed by the transition metal ruthenium (Ru) (Etiope & Ionescu, 2015). Ru is present in considerable abundance in chromitite bodies in ultramafic rock accumulations (Etiope et al., 2018), but it has only been shown to catalyze CO_2 hydrogenation under conditions where free gas phases exist (Etiope & Ionescu, 2015). The prevalence of this process, particularly in aquifers whose fluid compositions appear to be dominantly influenced by aqueous reactions with harzburgite, is another matter of ongoing debate (Etiope, 2017; Miller, Matter, et al., 2017).

Low-temperature CH_4 production can also be mediated by microbes called "methanogens". 95 Microbial CH_4 has traditionally been viewed as a minor/negligible source of CH_4 in ser-96 pentinizing settings. This is due in large part to the relatively ¹³C-enriched composition 97 of CH₄ in serpentinizing settings (δ^{13} C commonly -20 % VPDB to 5 % VPDB), which 98 contrasts with the more 13 C-depleted composition of CH₄ in sedimentary settings dom-99 inated by microbial methanogenesis (δ^{13} C commonly -90 % VPDB to -50 % VPDB) 100 (Etiope, 2017; Milkov & Etiope, 2018; Etiope & Whiticar, 2019). However, cultures of 101 methanogens can produce CH_4 with minimal C isotope fractionation in H₂-rich, CO_2 -102 poor fluids simulating serpentinizing systems (Miller et al., 2018). In these cultures, it 103 has been inferred that the net C isotope effect of methanogenesis was attenuated due to 104 microbial conversion of a large proportion of available CO_2 to CH_4 when CO_2 was the 105 limiting substrate. Such results illustrate that 13 C-enriched CH₄ in natural serpentiniz-106 ing settings does not necessarily derive from non-microbial sources. Still, the quantity 107 and isotopic composition of microbial CH_4 in serpentinizing settings remains uncertain. 108

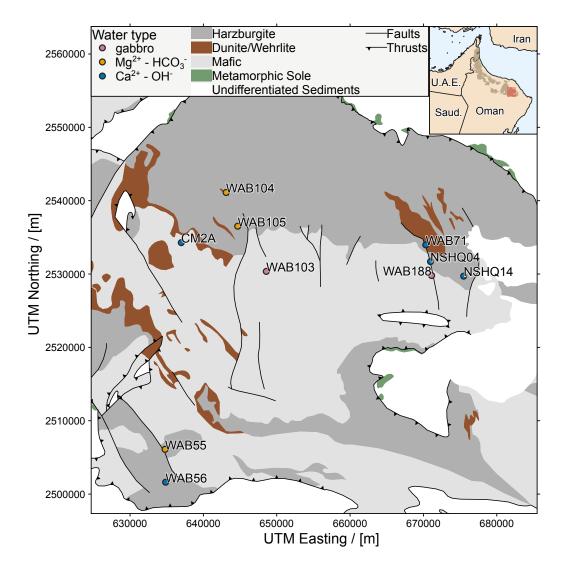
In this study, we assessed sources and sinks of CH_4 in the Samail Ophiolite of Oman, 109 a site of active, low-temperature serpentinization and carbonation. Fluids and partic-110 ulates in groundwaters accessed via wells in the Samail Ophiolite have been sampled for 111 biogeochemical studies annually from 2014 through 2018 from January to March. Mi-112 crobiological and geochemical data from sampling campaigns in 2014 through 2017 and 113 a limited number of C and H bulk stable isotope analyses of CH_4 sampled in 2014 have 114 been previously reported (Miller et al., 2016; Rempfert et al., 2017; Kraus et al., 2021; 115 Fones et al., 2019, 2020) Here, we present new geochemical and 16S rRNA gene ampli-116 con sequencing data from samples acquired in 2018. We also present new bulk stable iso-117 tope data on CH_4 , ethane (C_2H_6) , and propane (C_3H_8) from samples obtained from 2015 118 through 2018. Further, we report analyses of multiply-substituted "clumped" isotopo-119 logues of CH₄, ¹³CH₃D and ¹²CH₂D₂, for the first time on samples from this ophiolite. 120 Leveraging one of the largest longitudinal data sets on CH_4 biogeochemistry in an ophi-121 122 olite, we have identified robust trends across years and hydrogeologic settings. We observed a wide range of C isotopic compositions of CH_4 and short-chain alkanes, intramolec-123 ular isotopologue disequilibrium in CH₄, and widespread occurrence of gene sequences 124 affiliated with methanogens, which collectively indicate that substantial quantities of mi-125 crobial CH_4 are produced and mix with abiotic CH_4 released from fluid inclusions in the 126

Samail Ophiolite. Our finding that microbial methanogenesis proceeds even in hyperalkaline fluids lends insight into the functioning of microbial ecosystems that leverage
reactions between water and ultramafic rocks to power metabolic processes on Earth and
perhaps on other rocky bodies of the Solar System (Ménez, 2020; Glein & Zolotov, 2020).

¹³¹ 2 Geologic Setting

The Samail Ophiolite (Figure 1) consists of pelagic sedimentary rocks ($< 0.1 \,\mathrm{km}$), 132 volcanic rocks $(0.5 \,\mathrm{km} \text{ to } 2.0 \,\mathrm{km})$, sheeted dikes $(1 \,\mathrm{km} \text{ to } 1.5 \,\mathrm{km})$, gabbro and igneous peri-133 dotite $(0.5 \,\mathrm{km} \text{ to } 6.5 \,\mathrm{km})$, residual mantle peridotites, $(8 \,\mathrm{km} \text{ to } 12 \,\mathrm{km})$, and a metamor-134 phic sole of greenschist- to granulite-facies metamorphic rocks ($< 0.5 \,\mathrm{km}$) (Glennie et 135 al., 1973; Coleman & Hopson, 1981; Lippard et al., 1986; Nicolas, 1989; Nicolas et al., 136 2000). The ophiolite crust formed from 96.12 Ma to 95.50 Ma, and convergence began 137 at about the same time (Rioux et al., 2016), or up to 10 Myr earlier (Guilmette et al., 138 2018; Soret et al., 2020). Ophiolite emplacement continued until 78 Ma to 71 Ma (Rabu 139 et al., 1993). Part of the ophiolite was subaerially eroded in the Late Cretaceous, then 140 became covered in parts by Maastrictian to Eocene limestones due to subsidence and trans-141 gression (Nolan et al., 1990; Skelton et al., 1990). 142

The mantle section of the ophiolite is mainly composed of highly depleted, resid-143 ual mantle harzburgites, together with 5% to 15% dunite, which both contain a few per-144 cent chromian spinel (Godard et al., 2000; Hanghøj et al., 2010; Boudier & Coleman, 1981; 145 Collier, 2012). The extent of serpentinization is typically 30% to 60%, reaching 100%146 in some cases (Dewandel et al., 2003; Boudier et al., 2009; Miller et al., 2016; P. Kele-147 men et al., 2020). Chromitites are most often found in association with dunites near the 148 crust-mantle transition, possibly representing bases of cumulate piles, but are also found 149 dispersed throughout the mantle section (Rollinson, 2005). 150


Geologic reservoirs of C underlying the ophiolite include Mid Permian to Late Cre-151 taceous shallow marine carbonates, which host oil and gas fields in parts of northern Oman 152 and the United Arab Emirates (Terken, 1999; Alsharhan, 1989; Etiope et al., 2015). Maas-153 trictian to Eocene limestones that partially overly the ophiolite have been shown to trans-154 fer inorganic C to peridotites where they are in contact (de Obeso & Kelemen, 2018). 155 C is also stored within the ophiolite, primarily in the form of carbonate minerals (Neal 156 & Stanger, 1985; P. B. Kelemen & Matter, 2008; P. B. Kelemen et al., 2011; Noël et al., 157 2018). Hydration and carbonation of $> 20\,000\,\mathrm{km}^3$ of peridotite continue today in the 158 Samail Ophiolite, largely at $< 60 \,^{\circ}$ C (Neal & Stanger, 1983, 1985; P. B. Kelemen & Mat-159 ter, 2008; P. B. Kelemen et al., 2011; Streit et al., 2012; A. N. Paukert et al., 2012; Chav-160 agnac, Ceuleneer, et al., 2013; Chavagnac, Monnin, et al., 2013; Mervine et al., 2014; Falk 161 et al., 2016; Miller et al., 2016; Paukert Vankeuren et al., 2019). 162

$_{163}$ 3 Methods

164

3.1 Fluid sampling and field measurements

Wells were drilled into the Samail Ophiolite by the Ministry of Regional Munic-165 ipalities and Water Resources of the Sultanate of Oman prior to 2006 ("WAB" and "NSHQ" 166 wells in this study) and by the Oman Drilling Project in 2016 through 2018 ("CM") (Parsons 167 International & Co., 2005; P. Kelemen et al., 2013). Information on well location, con-168 struction, and water level are given in Table 1. In sampling campaigns in 2014 and 2015. 169 a 12 V submersible Typhoon (R) pump (Proactive Env. Products, Bradenton, FL, USA) 170 with typical flow rates of $5 \,\mathrm{L\cdot min^{-1}}$ was used. This pump was used in all years of sam-171 pling at well NSHQ04 due to partial obstruction of this well. In all other sampling from 172 2016 onwards, a larger submersible pump (Grundfos SQ 2-85) with typical flow rates of 173 $20 \,\mathrm{L\cdot min^{-1}}$ was used. The pumping depths are reported in Tables 1 and 2. For fluids sam-174 pled in 2018, temperature, conductivity, and pH were measured using a ColeParmer PC100 175

Figure 1. Study area in Samail Ophiolite, Sultanate of Oman. Geologic map data from Nicolas et al. (2000). Inset: overview of Samail Ophiolite (shaded in brown) with study area (larger map) indicated by the red shaded box. A topographic map of the study area is provided in Supporting Information Figure S1.

¹⁷⁶ Meter, while Eh was measured using a Mettler Toledo SG2 SevenGo meter. The ana-¹⁷⁷ lytical uncertainties for temperature, conductivity, pH, and Eh are 0.5 °C, 1.0 % of mea-¹⁷⁸ sured value, 0.01 μ S·cm⁻¹, and 1 mV, respectively. Each well was pumped for ≥ 20 min ¹⁷⁹ prior to sampling. Sampling commenced once fluid pH and conductivity measurements ¹⁸⁰ stabilized.

3.2 Chemical and isotopic analyses of fluids

181

¹⁸² To analyze aqueous concentrations (c) of non-carbonaceous chemical species, sam-¹⁸³ ples were collected by passing groundwater through a $0.2 \,\mu$ m filter into polypropylene ¹⁸⁴ conical tubes. Aqueous concentrations of $\sum Na$, $\sum Ca$, $\sum Mg$, $\sum Al$, $\sum Fe$, and $\sum Si$ ¹⁸⁵ were measured by inductively coupled plasma (ICP) atomic emission spectroscopy on ¹⁸⁶ a PerkinElmer Optima 5300 (repeatability as median relative standard deviation of 3 %). ¹⁸⁷ Aqueous concentrations of Cl⁻, Br⁻, F⁻, and SO₄²⁻ were measured on a Dionex IC25

	Well	UTM cc (WG	UTM coordinates (WGS-84)	Geologic description	Well depth /	Screen interval /	Water level /	$\begin{array}{c} {\rm Pump} \\ {\rm depth} \ / \end{array}$	Conductivity / $[_{S}^{-1}, cm^{-1}]$	Temperature /	Hq	Eh/ [mV]	$f_{ m O2}$ / [har]^b
GabbroIol $90-98$ 1570.141034.98.51167^aGabbro, near contact with78 $34.5-51$ 9.5 $50.$ 1120 35.6 8.16 214^a harzburgite120.4 $100.8-104$ $40.$ 85 548 33.7 8.79 133 Harzburgite120.5 $110-117$ 16.5 $60.$ 498 33.7 8.66 162 Harzburgite120.5 $110-117$ 16.5 $60.$ 498 33.7 8.66 162 Harzburgite with abundant 102 $8-97$ 7.5^3 $50.^a$ 1183^a 36.2^a 9.62^a 209^a Harzburgite with gabro 106 $7-27$ 7.6^2 $30.^a$ 30.3^a 35.6^a 10.61^a 20.2^a Harzburgite 106 $7-27$ 7.6^2 $30.^a$ 33.4 10.61^a 20.2^a Harzburgite 106 $7-27$ 7.6^2 $30.^a$ 33.6^a 10.61^a 20.2^a Harzburgite 106 $7-27$ 7.6^2 $30.^a$ 33.6^a 10.61^a 20.2^a Harzburgite 106 $7-27$ 7.62^a $30.^a$ 33.6^a 10.61^a 20.2^a Harzburgite 106 $7-27$ 7.62^a $30.^a$ 33.6^a 11.22 -229 With gabro 106 $7-28$ 13.4 70 1970 34.9 11.22 -229 Mostly durite with 400 $open > 23.7$ 13.4 75 2860 <		easting			[mbg1]	[mbct]	[mbct]	[mbct]				[• •••]	[1704L]
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	WAB103	648 577	2530362	Gabbro	101	90 - 98	15	70.	1410	34.9	8.51	167^{a}	$2.99\cdot 10^{-36}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AB188		2529798	Gabbro, near contact with harzburgite	78	34.5 - 51	9.5	50.	1120	35.6	8.16	214^{a}	$2.01\cdot 10^{-34}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AB104		2541124	Harzburgite	120.4	100.8 - 104	40.	85	548	33.7	8.79	133	$1.23\cdot10^{-37}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WAB105	644.678	2536524	Harzburgite	120.5	110 - 117	16.5	60.	498	33.7	8.66	162	$2.99 \cdot 10^{-36}$
carbonate veins, near contact with gabbro 106 $7-27$ 7.62^{a} $30.^{a}$ $930.^{a}$ 35.6^{a} 10.61^{a} 20.2^{a} Harzburgite 106 $7-27$ 7.62^{a} $30.^{a}$ $930.^{a}$ 35.6^{a} 10.61^{a} 20.2^{a} Harzburgite 304 $open > 5.8$ 4.7 8 3350 33.4 10.51^{a} -174 with gabbro 136.5 $128 - 131$ 8.3 70 . 1970 34.9 11.22 -229 harzburgite 136.5 $128 - 131$ 8.3 70 . 1970 34.9 11.22 -229 harzburgite 304 $open > 23.7$ 13.4 75 2860 33.6 11.32 $n.d.$ occasional gabbro and 400 . $open > 5.3$ 9.2 85 2670 36.7 11.39 -253^{a}	WAB55	$634\ 777$	2506101	Harzburgite with abundant	102	8 - 97	7.5ª	$50.^{a}$	1183^{a}	36.2^{a}	9.62^{a}	269^{a}	$7.17 \cdot 10^{-25}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				carbonate veins, near contact with gabbro									
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	AB56	634851	2501617	Harzburgite	106	7 - 27	7.62^{a}	30.ª	930.ª	35.6^{a}	10.61^{a}	20.2^{a}	$2.81\cdot10^{-37}$
with gabbroDunite, near fault with 136.5 $128 - 131$ 8.3 $70.$ 1970 34.9 11.22 -229 harzburgiteMostly dunite with $400.$ open > 23.7 13.4 75 2860 33.6 11.32 $n.d.$ Mostly dunite with $400.$ open > 23.7 13.4 75 2860 33.6 11.32 $n.d.$ narzburgite 304 open > 5.8 9.2 85 2670 36.7 11.39 -253^a	HQ04	670~971	2531699	Harzburgite, near fault	304	open > 5.8	4.7	×	3350	33.4	10.51^{a}	-174	$5.14\cdot10^{-51}$
	AB71	670.322		with gabbro Dunite, near fault with	136.5	128 - 131	8.3	20.	1970	34.9	11.22	-229	$2.52 \cdot 10^{-51}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				harzburgite								,	
harzburgite 304 open > 5.8 9.2 85 2670 36.7 11.39 -253^{a}	M2A	636988	2534284	Mostly dunite with occasional cabbro and	400.	open > 23.7	13.4	75	2860	33.6	11.32	n.d.	n.d.
Harzburgite 304 open > 5.8 9.2 85 2670 36.7 11.39 -253^{a}				harzburgite									
	HQ14	675495	2529716		304	open > 5.8	9.2	85	2670	36.7	11.39	-253^{a}	$1.19\cdot 10^{-51}$
	a]	n.d., n Vot detei	ot detern rmined d	nined; mbgl, meters below uring 2018 sampling, so n	v ground nost recei	level; mbct, r nt prior data	meters bel is reporte	ow casing $1 d (2015 to$	top. Casings ex 2017; (Rempfei	tend $\sim 1 \text{ m ab}$ rt et al., 2017;	bove grou Fones e	and leve $t al., 20$	1. 19)).
n.d., not determined; mbgl, meters below ground level; mbct, meters below casing top. Casings extend ~ 1 m above ground level. ^a Not determined during 2018 sampling, so most recent prior data is reported (2015 to 2017; (Rempfert et al., 2017; Fones et al., 2019)).	Calcu	lated fro	m tempe	rature, pH, and Eh . Whe	ere one oi	r more of the	se parame	ters were c	btained during	different sam	pling yea	ars, f_{O_2}	should be

Well	Sample year	Pump depth / [mbct]	laboratory	$\delta^{13} C_{CH_4}$	δD_{CH_4}	$\Delta^{13}\mathrm{CH}_3\mathrm{D}$	$\Delta^{12} \mathrm{CH}_2 \mathrm{D}_2$	$\delta^{13}C_{C_2H_6}$	$\delta^{13} \mathrm{C}_{\mathrm{C}_{3}\mathrm{H}_{8}}$
	2018	50.	CUB	-86.7	n.d.	n.d.	n.d.	n.d.	n.d.
WAB188	2017	78	CUB	-60.8	n.d.	n.d.	n.d.	n.d.	n.d.
	2015	20.	LBNL	-71.3	n.d.	n.d.	n.d.	n.d.	n.d.
WAB56	2015	12	LBNL	-83.2	n.d.	n.d.	n.d.	n.d.	n.d.
	2018	8	CUB UCLA	$4.7 \\ 4.177$	-229 -227.396	n.d. 0.229 ± 0.288	n.d. -24.502 ± 0.944	n.d. n.d.	n.d. n.d.
NSHQ04	2017	5.8	CUB MIT	$6.8 \\ 3.59$	$-225 \\ -229.67$	$\begin{array}{c} {\rm n.d.}\\ 0.12\pm0.17\end{array}$	n.d. n.d.	n.d. n.d.	n.d. n.d.
	2015	22	LBNL MIT	0.8 1.60	$-209 \\ -230.00$	$\begin{array}{c} {\rm n.d.}\\ 0.72\pm0.29\end{array}$	n.d. n.d.	n.d. n.d.	n.d. n.d.
	2014	18	LBNL	2.4	-205	n.d.	n.d.	n.d.	n.d.
	2018	70.	CUB	3.6	-307	n.d.	n.d.	n.d.	n.d.
WAB71	2017	50.	CUB	3.9	-313	n.d.	n.d.	n.d.	n.d.
	2016	50.	LBNL	3.0	n.d.	n.d.	n.d.	n.d.	n.d.
	2015	18	LBNL	2.9	n.d.	n.d.	n.d.	n.d.	n.d.
CM2A	2018	75	CUB MIT UCLA	-4.3 -3.83 -4.710	$-206 \\ -190.32 \\ -197.73$	$\begin{array}{c} {\rm n.d.} \\ 2.87 \pm 0.57 \\ 2.638 \pm 0.284 \end{array}$	n.d. n.d. -1.267 ± 0.886	n.d. n.d. n.d.	n.d. n.d. n.d.
	2018	85	CUB MIT UCLA	-2.3 -5.02 -3.352	$-314 \\ -311.73 \\ -293.58$	$\begin{array}{c} {\rm n.d.} \\ 0.77 \pm 0.44 \\ 2.074 \pm 0.298 \end{array}$	n.d. n.d. -0.204 ± 1.358	n.d. n.d. n.d.	n.d. n.d. n.d.
NSHQ14	2017	85	CUB MIT	$0.2 \\ -0.08$	$-271 \\ -268.82$	n.d. 0.69 ± 0.23	n.d. n.d.	-6.0 n.d.	+3.3 n.d.
	2016	70.	LBNL MIT	$1.8 \\ -6.89$	$-273 \\ -308.52$	n.d. 0.69 ± 0.17	n.d. n.d.	n.d. n.d.	n.d. n.d.
	2015	20.	LBNL	3.7	n.d.	n.d.	n.d.	n.d.	n.d.
	2014	260.	LBNL	3.0	-232	n.d.	n.d.	n.d.	n.d.

Table 2. Isotopic compositions of CH_4 , C_2H_6 , and C_3H_8 .

All isotopic values reported in % units. δ^{13} C and δ D reported in the VPDB and VSMOW reference frames, respectively. Data from 2014 previously reported by Miller et al. (2016). *Abbreviations:* n.d., not determined; mbct, meters below casing top.

¹⁸⁸ ion chromatograph with an AS9-HC IonPac column, with the exception of NO_3^- , which ¹⁸⁹ was measured on a Dionex 4500I ion chromatograph with an IonPac AS14 column us-¹⁹⁰ ing EPA method 300.0 (analytical uncertainty of 2%).

The concentration and δ^{13} C of dissolved inorganic C ($\sum CO_2$) were measured by 191 acidification of water samples and transfer of resultant $CO_2(g)$ via a Thermo Fisher Gas-192 Bench II to a Thermo Delta V Plus isotope ratio mass spectrometer. We optimized the 193 methods of Assayag et al. (2006) for the wide range of $c_{\sum CO_2}$ observed in ophiolite ground-194 waters. Complete methodological details are available in \mathbf{D} . B. Nothaft (2019b). Sam-195 ple δ^{13} C values were converted to the VPDB reference frame using measured δ^{13} C val-196 ues of international reference materials (Harding Iceland Spar and LSVEC). Isotopic ref-197 erence frame calculations were performed using the Isoverse suite of packages (Kopf et 198 al., 2021) for the statistical programming language, R (R Core Team, 2019). 199

Water δ^{18} O and δ D were measured on a Picarro L2120-i cavity ring down spectrometer. The instrument analyzed each sample six times, excluding the first three analyses to avoid memory effects. Reported precision is the standard deviation of the last three measurements. Reported accuracy is the mean difference between accepted values and measured values of standards. Mean precision in the run was 0.06 % for δ^{18} O and 0.23 % for δ D; mean accuracy was 0.04 % for δ^{18} O and 0.47 % for δ D.

Gases dissolved in pumped groundwaters were sampled by injecting water into N_2 206 purged vials for headspace gas analysis using methods described by Miller et al. (2016) 207 in field campaigns occurring from 2014 to 2017. In addition, the bubble strip method 208 (modified from (Kampbell et al., 1998)) was used from 2016 to 2018. Details on bub-209 ble strip gas sampling are available in D. B. Nothaft (2019a). The gas concentrations 210 reported in this study were determined from bubble strip samples. These concentrations 211 were measured on an SRI 8610C gas chromatograph (GC) with N_2 as the carrier gas. 212 H₂, CO, CH₄, and CO₂ were separated with a 2 mm by 1 mm ID micropacked ShinCar-213 bon ST column, whereas alkanes of 2 to 6 C atoms (" C_2-C_6 short-chain alkanes") were 214 separated with a PORAPAK Q 6 ft by 0.085 in ID column. Peak intensities were mea-215 sured concurrently using a thermal conductivity detector (TCD) and a flame ionization 216 detector (FID) and calibrated with standard gas mixes (Supelco Analytical, Bellefonte, 217 PA, USA; accuracy of $\pm 2\%$ of reported concentration). Measurement repeatability ex-218 pressed as relative standard deviation was 5% over most of the calibrated range. The 219 limit of quantitation was defined as the signal at which the relative standard deviation 220 increased to 20 %. In 2018, H_2 and CO were analyzed on a Peak Performer 1 gas chro-221 matograph equipped with a reducing compound photometer (RCP). Due to the high sen-222 sitivity of the RCP, the signal at limit of quantitation (S_{LQ}) for these analyses was de-223 fined as $S_{LQ} = S_b + 10 \cdot \sigma_b$, where S_{mb} is the mean signal of blanks prepared in field 224 and $\sigma_{\rm b}$ is the population standard deviation of these blanks, in accordance with Amer-225 ican Chemical Society guidelines (MacDougall et al., 1980). Gaseous concentrations were 226 converted to aqueous concentrations using gas solubilities (Sander, 2015) and corrected 227 for temperature and volume changes between sampling and analysis. 228

Prior to 2017, bulk stable isotope analyses of CH₄ were conducted at the Center for Isotope Geochemistry at the Lawrence Berkeley National Laboratory (LBNL) by gas chromatography/combustion/pyrolysis isotope-ratio mass spectrometry (GC/C/Pyr/IRMS) using methods described by Miller et al. (2016). The measurement repeatability expressed as 1 sample standard deviation (s) for these analyses is $\pm 0.2 \%$ for δ^{13} C and $\pm 5 \%$ for δ D.

From 2017 onwards, bulk stable isotope analyses of CH₄ and co-occurring alkane gases were conducted at the University of Colorado - Boulder (CUB) by GC/C/Pyr/IRMS using a Trace 1310 GC equipped with an Agilent J & W GS-CarbonPLOT column (30 m length, 0.32 mm ID, 3.0 μ m film) coupled to a Thermo Scientific MAT253 IRMS. CH₄ isotope standards purchased from Airgas (uncertainties of $\pm 0.3 \%$ for δ^{13} C and $\pm 5 \%$ for δD) were used for calibration. Over the range of peak amplitudes of analyses reported here, the repeatability expressed as 1 s on analyses of standards is $\pm 0.6 \%$ for $\delta^{13}C$ and $\pm 7 \%$ for δD . The analytical uncertainty (accuracy) expressed as 1 standard error on a 3-point calibration was < 0.3 % for $\delta^{13}C$ and < 9 % for δD (Supporting Information Section S1).

The relative abundances of CH_4 isotopologues, including the doubly-substituted 245 isotopologue, ${}^{13}CH_3D$, were measured at the Massachusetts Institute of Technology (MIT) 246 by tunable infrared laser direct absorption spectroscopy following the methods described 247 by Ono et al. (2014). Abundances of CH_4 isotopologues, including both ${}^{13}CH_3D$ and ${}^{12}CH_2D_2$, 248 were measured at the University of California, Los Angeles (UCLA) by high-mass-resolution 249 gas-source isotope ratio mass spectrometry following the procedure of E. D. Young et 250 al. (2016). The abundance of ${}^{13}CH_3D$ relative to a random (stochastic) distribution of 251 isotopes among the isotopologues in a CH₄ sample is described by its Δ^{13} CH₃D value, 252 which is defined as: Δ^{13} CH₃D = ln Q, where Q is the reaction quotient of the isotope 253 exchange reaction: 254

$$^{13}\mathrm{CH}_4 + ^{12}\mathrm{CH}_3\mathrm{D} \rightleftharpoons^{12}\mathrm{CH}_4 + ^{13}\mathrm{CH}_3\mathrm{D}.$$
 (1)

Analogous expressions can be written for doubly-deuterated CH_4 , $^{12}CH_2D_2$.

3.3 16S rRNA gene sequencing and analysis

256

Biomass for DNA extraction was concentrated by pumping 5 L to 20 L of ground-257 water through Millipore polycarbonate inline filters $(0.45 \,\mu \text{m} \text{ pore diameter}, 47 \,\text{mm fil-}$ 258 ter diameter). At well NSHQ04, a $0.22 \,\mu m$ pore diameter polyethersulfone Millipore Sterivex 259 filter was used instead due to the lower-flow pump used at this well (Section 3.1). Fil-260 ters were placed in cryovials, transported frozen in liquid N₂, and stored in a -70 °C freezer 261 until extraction. DNA was extracted from one quarter subsamples of each filter using 262 a Qiagen PowerSoil DNA extraction kit. The V4 hypervariable region of the 16S rRNA 263 gene was amplified by PCR in duplicate reactions using the 515 (Parada) - 806R (Apprill) primer pair modified to include Illumina adapters and the appropriate error-correcting 265 barcodes. Each $25-\mu L$ reaction mixture included $12.5 \,\mu L$ of Promega HotStart Master-266 mix, $10.5 \,\mu\text{L}$ of PCR-grade water, $1 \,\mu\text{L}$ of PCR primers (combined at $10 \,\mu\text{M}$), and $1 \,\mu\text{L}$ 267 of purified genomic DNA. PCR consisted of an initial step at 94 °C for 3 min followed 268 by 35 cycles of $94 \,^{\circ}$ C for $45 \,_{s}$, $50 \,^{\circ}$ C for $1 \,_{min}$, and $72 \,^{\circ}$ C for $1.5 \,_{min}$. PCR concluded with 269 a final elongation step at $72 \,^{\circ}$ C for 10 min. No-template controls and DNA extraction 270 controls were subjected to PCR to check for potential contamination in our PCR and 271 DNA extraction reagents, respectively. Amplification was evaluated via electrophoresis 272 in a 2% agar gel. Amplicons from duplicate reactions were pooled, cleaned, and their 273 concentrations normalized using a Thermo Fisher SequalPrep normalization plate kit. 274 Amplicons were sequenced on an Illumina MiSeq at the CUB Next-Generation Sequenc-275 ing Facility with 2-by-150 bp paired-end chemistry. 276

Sequences were demultiplexed with idemp (Wu, 2017). The resultant fastq files were 277 quality filtered using Figaro v1.1.1 (Weinstein, 2019) and the DADA2 v1.16 R package 278 (Callahan et al., 2016). Amplicon sequence variants were assigned taxonomy to the genus 279 level using the RDP classifier (Q. Wang et al., 2007) trained on the Silva SSU 138 ref-280 erence database (Quast et al., 2012) using the DADA2 assignTaxonomy function. Species 281 level assignments were based on exact matching between amplicon sequence variants and 282 sequenced reference strains using the DADA2 addSpecies function. Sequences assigned 283 to mitochondria, chloroplast, and Eukaryota, or not assigned at the domain level (col-284 lectively < 1% of sequences), were removed. After all of the above filtering, 24000 to 285 40,000 reads per sample remained for the samples presented here obtained in 2018. In 286 addition, 16S rRNA gene sequencing data from previous Oman sampling campaigns (2014 287 through 2017; (Miller et al., 2016; Rempfert et al., 2017; Kraus et al., 2021)) were re-288

processed in accordance with the methods outlined here to facilitate comparisons across
the data sets. The complete data processing pipeline for samples across all years, from
raw data provided by the sequencing facility through to taxonomic assignment, are available in D. B. Nothaft, Rempfert, and Kraus (2021). Additional analyses and plotting
can be found in D. B. Nothaft, Templeton, et al. (2021). For samples presented in this
study, demultiplexed fastq files (without additional processing) are also accessible on the
NCBI Short Read Archive under accession PRJNA655565.

3.4 Thermodynamic calculations

296

310

Oxidation-reduction potential, pH, and concentrations of major ions and $\sum CO_2$ 297 were used as inputs for the modeling software PHREEQC (Charlton & Parkhurst, 2011; 298 Parkhurst & Appelo, 2013), with which fluids were speciated using the LLNL database. 299 Activities of formate and acetate were separately calculated according to the Debye-Hückel 300 equation. Activities of the aqueous gases were assumed equivalent to their concentra-301 tions, which is reasonable for neutral species in low ionic strength solutions. Standard 302 Gibbs free energies (ΔG_r°) of the CH₄-forming reactions were calculated using the pro-303 gram SUPCRTBL (Johnson et al., 1992; Zimmer et al., 2016) using conditions of 1 bar 304 and 35 °C to approximate in situ conditions. Gibbs free energies were then calculated 305 as $\Delta G_r = \Delta G_r^{\circ} + RT \ln Q_r$, where R is the universal gas constant, T is temperature, 306 and Q_r is the reaction quotient. All of the above calculations and software inputs and 307 outputs can be found in D. B. Nothaft, Templeton, et al. (2021). 308

³⁰⁹ 4 Results and discussion

4.1 Controls on groundwater chemistry

To assess the source and reaction histories of Samail Ophiolite groundwaters, we 311 measured their stable isotopic compositions and solute concentrations. Groundwater δD 312 and δ^{18} O plotted near local and global meteoric water lines (Weyhenmeyer et al., 2002; 313 Terzer et al., 2013), indicating that the groundwaters derive from rain (Table 3; Support-314 ing Information Figure S2; (Matter et al., 2006; Miller et al., 2016; Paukert Vankeuren 315 et al., 2019)). The sampled groundwaters included oxidized and moderately alkaline Mg^{2+} -316 HCO_3^- waters, typical of reaction with peridotite in communication with the atmosphere, 317 and reduced and hyperalkaline $Ca^{2+}-OH^-$ waters, typical of extensive hydration and 318 oxidation of peridotite in closed-system conditions with respect to the atmosphere (Ta-319 ble 3; (Barnes et al., 1967; Barnes & O'Neil, 1969; Neal & Stanger, 1985; Bruni et al., 320 2002; Cipolli et al., 2004; P. B. Kelemen et al., 2011; A. N. Paukert et al., 2012)). Ca²⁺-321 OH⁻ waters had higher conductivities (930. μ S·cm⁻¹ to 3350 μ S·cm⁻¹) than Mg²⁺ – HCO₃⁻ waters (498 μ S·cm⁻¹ to 1183 μ S·cm⁻¹) (Table 1). The increase in conductivity from Mg²⁺-HCO₃⁻ waters to Ca²⁺-OH⁻ waters is driven by enrichments in Ca²⁺ 322 323 324 derived from dissolution of primary silicate minerals in addition to Na⁺ and Cl⁻ derived 325 from mineral dissolution, sea spray, and/or leaching of sea salts introduced during sub-326 seafloor alteration and/or ophiolite emplacement (Neal & Stanger, 1985; Stanger, 1986; 327 Murad & Krishnamurthy, 2004; A. N. Paukert et al., 2012; Rempfert et al., 2017). The increase in pH from Mg²⁺ – HCO₃⁻ waters (pH 8.66 to 9.62) to Ca²⁺ – OH⁻ waters (10.51 to 11.39) was accompanied by a shift to lower f_{O_2} and Eh (~ 10⁻⁵¹ bar and -174 mV to -253 mV, respectively, in most Ca²⁺ – OH⁻ waters) (Table 1), indicating reduced 328 329 330 331 conditions in $Ca^{2+} - OH^-$ waters. 332

³³³ Concentrations of $\sum CO_2$ were relatively high in Mg²⁺-HCO₃⁻ waters and gab-³³⁴ bro waters (up to 3490 μ mol · L⁻¹), but below the limit of quantitation (< 12 μ mol · ³³⁵ L⁻¹) in most Ca²⁺-OH⁻ waters (Table 3). This is consistent with water-harzburgite ³³⁶ reaction path modeling that terminates at chrysotile-brucite-diopside-calcite equilibrium, ³³⁷ corresponding to a $c_{\sum CO_2}$ of 8 μ mol · L⁻¹ at 25 °C and 1 bar (Leong & Shock, 2020).

samples.	
of water sa	
ical and isotopic composition of	
isotopic	
and	
Chemical and isoto	
Table 3.	

Well	$\delta D_{\rm H_2O}$	$\delta^{18} \mathrm{O}_{\mathrm{H}_{2}\mathrm{O}}$	$\sum CO_2$	$\delta D_{H_2O} \delta^{18} O_{H_2O} \sum CO_2 \delta^{13} C \sum_{CO_2}$	$\sum Na$	$\sum Ca$	$\sum Mg$	$\sum Fe$	\sum Si	NO_3^-	SO_4^{2-}	Cl-	Br^{-}
gabbro-hosted groundwaters	ted groun	idwaters											
WAB103	-0.5	0.34	$2.67 \cdot 10^3$	-13.54	$1.18\cdot 10^3$	$2.58\cdot 10^2$	$1.87\cdot 10^3$	7.35	$4.63 \cdot 10^2$	$4.72 \cdot 10^2$	$1.57\cdot 10^3$	$6.25\cdot 10^3$	$1.39 \cdot 10^2$
WAB188	-2.1	-0.71	$3.48\cdot 10^3$	-13.52	$4.06\cdot 10^3$	$1.41\cdot 10^3$	$1.82\cdot 10^3$	$2.90\cdot 10^1$	$4.77 \cdot 10^2$	$3.21\cdot 10^2$	$1.41\cdot 10^3$	$4.22\cdot 10^3$	$6.78\cdot 10^1$
$Mg^{2+} - H$	CO_3^- grov	$Mg^{2+} - HCO_3^-$ groundwaters											
WAB104	-0.5	-0.53	$3.62\cdot 10^3$	-13.88	$7.53 \cdot 10^2$	$1.96\cdot 10^2$	$2.30\cdot 10^3$	3.88	$4.15 \cdot 10^2$	$3.14\cdot 10^2$	$3.80\cdot 10^2$	$7.76 \cdot 10^2$	3.55
WAB105	0.4	0.50	$3.32\cdot 10^3$	-10.88	$1.18\cdot 10^3$	$2.58\cdot 10^2$	$1.87\cdot 10^3$	4.83	$2.83 \cdot 10^2$	$3.02\cdot 10^2$	$2.92 \cdot 10^2$	$8.54\cdot10^2$	8.60
WAB55	2.2	0.26	$2.40\cdot 10^3$	-12.63	$4.44 \cdot 10^3$	$5.06\cdot 10^1$	$3.34\cdot 10^3$	2.52	$3.58\cdot 10^1$	$3.02\cdot 10^2$	$8.03 \cdot 10^2$	$6.54\cdot10^3$	$1.12\cdot 10^2$
$Ca^{2+} - OH^-$ groundwaters	H ⁻ groun	dwaters											
WAB56	n.d.	n.d.	$1.3\cdot 10^{2a}$	n.d.	$3.56\cdot 10^{3a}$	$5.43\cdot10^{2\mathrm{a}}$	1.00^{a}	n.d.	$2.22 \cdot 10^2$	3.00^{a}	6.00^{a}	$1.33\cdot 10^{1a}$	$1.79\cdot 10^{-1a}$
NSHQ04	-15^{a}	-3.0^{a}	$1.8\cdot 10^1$	-29.7	$1.04\cdot 10^{4a}$	$7.79\cdot10^{3\mathrm{a}}$	$1.80\cdot 10^{1\mathrm{a}}$	$8.20\cdot10^{-1a}$	$3.60\cdot10^{1\mathrm{a}}$	3.00^{a}	$6.83 \cdot 10^{2a}$	$1.82\cdot 10^{4\mathrm{a}}$	1.25^{a}
WAB71	-3.0	-0.40	$< 1.2 \cdot 10^{1}$	n.d.	$6.25\cdot 10^3$	$4.14\cdot 10^3$	$< 2.06 \cdot 10^{-1}$	$8.48\cdot 10^1$	$2.35\cdot 10^1$	$1.84\cdot 10^2$	$6.08\cdot 10^1$	$1.17\cdot 10^4$	$1.50\cdot 10^2$
CM2A	1.7	0.67	$< 1.2 \cdot 10^{1}$	n.d.	$2.07\cdot 10^4$	$1.75\cdot 10^3$	9.49	$4.03\cdot 10^1$	$2.81\cdot 10^1$	$1.64\cdot 10^2$	$5.56\cdot 10^2$	$1.85\cdot 10^4$	$2.48 \cdot 10^2$
NSHQ14	0.2	0.43	$< 1.2 \cdot 10^{1}$	n.d.	$1.03\cdot 10^4$	$3.60\cdot 10^3$	6.23	$8.48\cdot 10^1$	$1.03\cdot 10^1$	$3.60\cdot 10^2$	$1.57\cdot 10^2$	$1.36\cdot 10^4$	$1.67\cdot 10^2$
Concent	rations l relativ	reported i re to VSM	n μ mol · L OW. δ^{13} C	$\frac{1}{1}$. \sum indic	cates the su elative to V	ım of all di 7PDB. Sam	Concentrations reported in μ mol · L ⁻¹ . \sum indicates the sum of all dissolved species of the element. All δ values reported in $\%_0$ units. δ^{18} O and δ D reported relative to VSMOW. δ^{13} C reported relative to VPDB. Samples obtained in February-March 2018, unless noted. <i>Abbreviations:</i> n.d., not	es of the eler in February	nent. All δ -March 20	values rel 18, unless	ported in $\%$ noted. Ab	$\phi_{00}^{(0)}$ units. δ^{18}	³ O and δD n.d., not
						de	determined.						

^aNot determined during 2018 sampling, so most recent prior data is reported (2015 to 2017; (Rempfert et al., 2017; Fones et al., 2019)).

Literature values for $c_{\sum CO_2}$ in ophiolitic $Ca^{2+}-OH^-$ waters are often higher than those 338 predicted by reaction path modeling, but the lower range of reported values approaches 339 $1\,\mu{\rm mol}\,\cdot\,{\rm L}^{-1}$ (Barnes et al., 1967; Barnes & O'Neil, 1969; Barnes et al., 1978; Neal & 340 Stanger, 1985; Bruni et al., 2002; Cipolli et al., 2004; A. N. Paukert et al., 2012; Falk et 341 al., 2016; Brazelton et al., 2017; Canovas III et al., 2017; Crespo-Medina et al., 2017; Rempfert 342 et al., 2017; Fones et al., 2019; Paukert Vankeuren et al., 2019). This spread in the data 343 could reflect groundwater mixing, atmospheric contamination during sampling, differ-344 ences in reaction temperature and progress, and/or kinetic inhibitions to carbonate min-345 eral precipitation. In $Mg^{2+}-HCO_3^-$ waters and waters from gabbroic aquifers, $\delta^{13}C_{\sum CO_2}$ 346 ranged from -13.54 % VPDB to -10.88 % VPDB (Table 3), which is comparable to $\delta^{13}C_{\sum CO_2}$ 347 of $Mg^{2+}-HCO_3^-$ waters elsewhere in the ophiolite (-15.56 % VPDB to -13.60 % VPDB; 348 (Matter et al., 2006; D. Nothaft et al., 2021)). 349

Variable concentrations of H₂ and CH₄ across wells suggest spatial heterogeneities 350 in sources and sinks of these gases in the ophiolite. In some $Ca^{2+} - OH^-$ waters, c_{H_2} 351 was high (up to $253 \,\mu$ mol·L⁻¹), but c_{H_2} was below limits of quantitation in other Ca² OH⁻ waters (Figure 2; Table 4). In Mg²⁺ – HCO₃⁻ waters and waters from gabbroic 352 353 aquifers, $c_{\rm H_2}$ was generally below limits of quantitation. However, up to $0.992\,\mu{\rm mol\cdot L^{-1}}$ 354 H_2 was measured in well WAB188, which is in gabbro near a faulted contact with peri-355 dotites that contain $Ca^{2+}-OH^-$ waters (Figure 1; Table 1). This suggests production 356 of H_2 within the gabbro host rock or migration of H_2 from peridotites into gabbros sur-357 rounding WAB188. In most $Ca^{2+}-OH^{-}$ waters, c_{CH_4} was high (up to $483 \,\mu \text{mol}\cdot\text{L}^{-1}$; 358 Figure 2, Table 4). However, wells with high c_{CH_4} did not always have high c_{H_2} (Fig-359 ure 2; Table 4). In Mg²⁺-HCO₃⁻ waters and gabbro waters, c_{CH_4} was typically lower ($\leq 0.1 \,\mu$ mol·L⁻¹), although c_{CH_4} reached $1.83 \,\mu$ mol·L⁻¹ in well WAB188, where c_{H_2} 360 361 was also quantitatable.

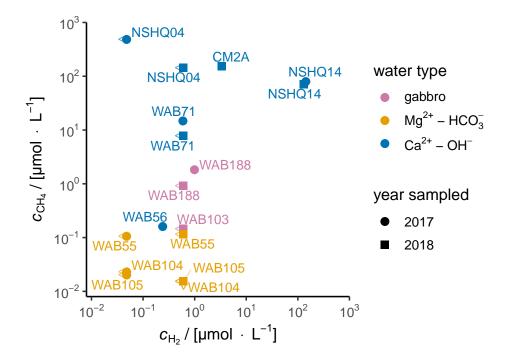


Figure 2. Aqueous concentrations of CH_4 and H_2 in Oman groundwater samples from 2017 and 2018. Left and down carrots denote "below limit of quantitation" for CH_4 and H_2 , respectively, with the adjacent point plotted at the limit of quantitation for that gas and year of analysis.

4.2 Origin of CH₄ and co-occurring short-chain alkanes in the Samail Ophiolite

We begin our examination of CH_4 origin in the Samail Ophiolite by calculating Gibbs 364 free energies (ΔG_r) of potential CH₄-forming reactions under relevant environmental con-365 ditions and discussing these results in light of recent microbiological studies on methano-366 genesis in the study area. Subsequent discussion focuses on fluid and particulate sam-367 ples from a subset of wells (NSHQ14, NSHQ04, and WAB188) that yielded particularly 368 rich data sets from which we infer key CH₄ cycle processes. Discussion of three additional 369 wells (WAB71, WAB56, and CM2A) in Supporting Information Text S1 illustrates that 370 the processes outlined below occur throughout the broader study area with some vari-371 ation due to local hydrogeologic factors. 372

373 374

4.2.1 Assessing which CH_4 -forming reactions might occur using thermodynamic and microbiological data

To assess which CH₄-forming aqueous reactions might occur within the Samail Ophiolite, ΔG_r 's were calculated for the following reactions:

$$CO_2(aq) + 4H_2(aq) = CH_4(aq) + 2H_2O(l)$$
 (hydrogenotrophic methanogenesis) (2)

$$CH_3COO^{-}(aq) + H^{+}(aq) = CH_4(aq) + CO_2(aq) \text{ (acetoclastic methanogenesis)}$$
(3)

 $4HCOO^{-}(aq)+4H^{+}(aq) = CH_{4}(aq)+3CO_{2}(aq)+2H_{2}O(l) \text{ (formatotrophic methanogenesis).}$ (4)

Gas-phase, abiotic reactions are also possible (Etiope & Ionescu, 2015; Etiope et al., 2018), 377 but measurements of partial pressures of relevant gases in unsaturated zones of the sub-378 surface in the study area are absent. Thus, ΔG_r 's of gas-phase reactions were not cal-379 culated. In addition to the common hydrogenotrophic and acetoclastic modes of methano-380 genesis, formatotrophic methanogenesis (Equation 4) was considered because formate 381 can be produced abiotically in serpentinizing settings (McCollom & Seewald, 2003; Mc-382 Dermott et al., 2015; Miller, Mayhew, et al., 2017) and has been suggested as an impor-383 tant substrate for microbial metabolism in these settings (Lang et al., 2018), including 384 for methanogenesis (Fones et al., 2020). 385

Rather than calculate ΔG_r 's of the above reactions for each individual groundwa-386 ter chemical analysis, we investigate a range of generalized cases to highlight the most 387 important factors controlling ΔG_r 's and to assess energetic states of the system that lay 388 beyond our analytical limits. For instance, $\sum CO_2$ was below the limit of quantitation 389 for the majority of the $Ca^{2+} - OH^-$ groundwaters sampled in 2018 (< 12 μ mol · L⁻¹; 390 Table 3). H_2 was also below the limit of quantitation for several $Ca^{2+}-OH^-$ and $Mg^{2+}-HCO_3^-$ groundwaters (< 0.048 nmol $\cdot L^{-1}$ in 2017 and < 0.598 nmol $\cdot L^{-1}$ in 2018; Ta-391 392 ble 4). Further, formate and acetate were not measured explicitly for this study, but were 393 measured on groundwaters from the studied wells sampled in 2015 (Rempfert et al., 2017) 394 Thus, while robust constraints on the above parameters are available for the study area, 395 complete sets of these parameters were generally not directly or simultaneously measured. 396

In light of this, we considered a representative $Mg^{2+} - HCO_3^-$ groundwater and a representative $Ca^{2+} - OH^-$ groundwater, made informed assumptions when direct con-

_·	
Ľ	
μ mol \cdot	
in	
reported	
concentrations,	
gas	
Aqueous g	
Table 4.	

Well	Sample year	${\rm H}_2$	CO	CH_4	C_2H_6	C_3H_8	i-C ₄ H ₁₀	n-C ₄ H ₁₀	i-C ₅ H ₁₂	n-C ₅ H ₁₂	$\mathrm{C_6H_{14}{}^a}$
WAB103	2018	$< 5.98 \cdot 10^{-1}$	$< 1.32 \cdot 10^{-1}$	$1.45 \cdot 10^{-1}$	$< 9.88 \cdot 10^{-4}$	$< 7.60 \cdot 10^{-4}$	$< 4.61 \cdot 10^{-4}$	$6.05\cdot 10^{-3}$	$< 3.43 \cdot 10^{-4}$	$8.73\cdot 10^{-4}$	$< 2.81 \cdot 10^{-4}$
WAB188	$\begin{array}{c} 2018 \\ 2017 \end{array}$	$< 5.98 \cdot 10^{-1}$ $9.92 \cdot 10^{-1}$	$< 1.32 \cdot 10^{-1}$ $< 2.79 \cdot 10^{-1}$	$\begin{array}{c} 9.17\cdot 10^{-1} \\ 1.83 \end{array}$	$< 9.88 \cdot 10^{-4}$ $< 1.01 \cdot 10^{-3}$	$< 7.60 \cdot 10^{-4}$ $< 7.79 \cdot 10^{-4}$	$< 4.61 \cdot 10^{-4}$ $< 4.72 \cdot 10^{-4}$	$< 5.78 \cdot 10^{-4}$ $< 6.01 \cdot 10^{-4}$	$< 3.43 \cdot 10^{-4}$ $< 3.50 \cdot 10^{-4}$	$< 3.81 \cdot 10^{-4}$ $< 3.91 \cdot 10^{-4}$	$< 2.81 \cdot 10^{-4}$ $< 2.88 \cdot 10^{-4}$
WAB104	$\begin{array}{c} 2018 \\ 2017 \end{array}$	$< 5.98 \cdot 10^{-1}$ $< 4.80 \cdot 10^{-2}$	$< 1.32 \cdot 10^{-1}$ $< 2.79 \cdot 10^{-1}$	$< 1.53 \cdot 10^{-2}$ $2.30 \cdot 10^{-2}$	$< 9.88 \cdot 10^{-4}$ $< 1.01 \cdot 10^{-3}$	$< 7.60 \cdot 10^{-4}$ $< 7.79 \cdot 10^{-4}$	$\begin{array}{l} 4.82\cdot 10^{-4} \\ < 4.72\cdot 10^{-4} \end{array}$	$< 5.78 \cdot 10^{-4}$ $< 6.01 \cdot 10^{-4}$	$7.56 \cdot 10^{-4} < 3.50 \cdot 10^{-4}$	$< 3.81 \cdot 10^{-4}$ $< 3.91 \cdot 10^{-4}$	$< 2.81 \cdot 10^{-4}$ $< 2.88 \cdot 10^{-4}$
WAB105	$\begin{array}{c} 2018 \\ 2017 \end{array}$	$< 5.98 \cdot 10^{-1}$ $< 4.80 \cdot 10^{-2}$	$< 1.32 \cdot 10^{-1}$ $< 2.79 \cdot 10^{-1}$	$< 1.53 \cdot 10^{-2}$ $2.01 \cdot 10^{-2}$	$< 9.88 \cdot 10^{-4}$ $< 1.01 \cdot 10^{-3}$	$< 7.60 \cdot 10^{-4}$ $< 7.79 \cdot 10^{-4}$	$\begin{array}{l} 3.70\cdot 10^{-2} \\ < 4.72\cdot 10^{-4} \end{array}$	$< 5.78 \cdot 10^{-4}$ $< 6.01 \cdot 10^{-4}$	$< 3.43 \cdot 10^{-4}$ $< 3.50 \cdot 10^{-4}$	$< 3.81 \cdot 10^{-4}$ $< 3.91 \cdot 10^{-4}$	$< 2.81 \cdot 10^{-4}$ $< 2.88 \cdot 10^{-4}$
WAB55	$\begin{array}{c} 2018 \\ 2017 \end{array}$	$< 5.98 \cdot 10^{-1}$ $< 4.80 \cdot 10^{-2}$	$< 1.32 \cdot 10^{-1}$ $< 2.79 \cdot 10^{-1}$	$\frac{1.15\cdot 10^{-1}}{1.06\cdot 10^{-1}}$	$\frac{1.55 \cdot 10^{-3}}{< 1.01 \cdot 10^{-3}}$	$< 7.60 \cdot 10^{-4}$ $< 7.79 \cdot 10^{-4}$	$\begin{array}{l} 2.25 \cdot 10^{-3} \\ < 4.72 \cdot 10^{-4} \end{array}$	$\begin{array}{l} 7.91\cdot 10^{-4} \\ < 6.01\cdot 10^{-4} \end{array}$	$\frac{1.60\cdot 10^{-3}}{< 3.50\cdot 10^{-4}}$	$< 3.81 \cdot 10^{-4}$ $< 3.91 \cdot 10^{-4}$	$\frac{5.52 \cdot 10^{-3}}{< 2.88 \cdot 10^{-4}}$
WAB56	2017	$2.40\cdot 10^{-1}$	$< 2.79\cdot 10^{-1}$	$1.60\cdot 10^{-1}$	$< 1.01\cdot 10^{-3}$	$< 7.79 \cdot 10^{-4}$	$<4.72\cdot10^{-4}$	$< 6.01\cdot 10^{-4}$	$< 3.50 \cdot 10^{-4}$	$< 3.91\cdot 10^{-4}$	$< 2.88 \cdot 10^{-4}$
NSHQ04	$2018 \\ 2017$	$< 5.98 \cdot 10^{-1}$ $< 4.80 \cdot 10^{-2}$	$< 1.32 \cdot 10^{-1}$ $< 2.79 \cdot 10^{-1}$	$\frac{1.44\cdot10^2}{4.83\cdot10^2}$	$\begin{array}{c} 2.45 \cdot 10^{-2} \\ < 1.01 \cdot 10^{-3} \ ^{\mathrm{b}} \end{array}$	$2.22 \cdot 10^{-3}$ $1.03 \cdot 10^{-3}$	$< 4.61 \cdot 10^{-4}$ $< 4.72 \cdot 10^{-4}$	$< 5.78 \cdot 10^{-4}$ $< 6.01 \cdot 10^{-4}$	$< 3.43 \cdot 10^{-4}$ $< 3.50 \cdot 10^{-4}$	$< 3.81 \cdot 10^{-4}$ $< 3.91 \cdot 10^{-4}$	$< 2.81 \cdot 10^{-4}$ $< 2.88 \cdot 10^{-4}$
WAB71	$\begin{array}{c} 2018 \\ 2017 \end{array}$	$< 5.98 \cdot 10^{-1}$ $5.92 \cdot 10^{-1}$	$< 1.32 \cdot 10^{-1}$ $< 2.79 \cdot 10^{-1}$	$\frac{7.76}{1.48\cdot10^1}$	$\frac{1.00 \cdot 10^{-3}}{< 1.01 \cdot 10^{-3}}$	$< 7.60 \cdot 10^{-4}$ $< 7.79 \cdot 10^{-4}$	$< 4.61 \cdot 10^{-4} < 4.72 \cdot 10^{-4}$	$< 5.78 \cdot 10^{-4}$ $1.94 \cdot 10^{-2}$	$< 3.43 \cdot 10^{-4}$ $< 3.50 \cdot 10^{-4}$	$< 3.81 \cdot 10^{-4}$ $4.79 \cdot 10^{-4}$	$< 2.81 \cdot 10^{-4}$ $< 2.88 \cdot 10^{-4}$
CM2A	2018	3.38	$<1.32\cdot10^{-1}$	$1.52\cdot 10^2$	$4.11 \cdot 10^{-2}$	$1.75\cdot 10^{-3}$	$<4.61\cdot10^{-4}$	$6.48\cdot 10^{-3}$	$< 3.43 \cdot 10^{-4}$	$< 3.81\cdot 10^{-4}$	$< 2.81 \cdot 10^{-4}$
NSHQ14	$2018 \\ 2017$	$\frac{1.31\cdot10^2}{2.53\cdot10^2}$	$< 1.32 \cdot 10^{-1}$ $< 2.79 \cdot 10^{-1}$	$\begin{array}{c} 7.12\cdot10^1\\ 1.06\cdot10^2\end{array}$	$7.32 \cdot 10^{-2}$ $7.98 \cdot 10^{-2}$	$7.64 \cdot 10^{-3}$ $9.00 \cdot 10^{-3}$	$2.26 \cdot 10^{-3}$ $1.53 \cdot 10^{-3}$	$2.88 \cdot 10^{-3} \\ 4.77 \cdot 10^{-3}$	$\frac{1.27\cdot 10^{-3}}{< 3.50\cdot 10^{-4}}$	$\begin{array}{l} 2.23\cdot 10^{-3} \\ < 3.91\cdot 10^{-4} \end{array}$	$\frac{1.12\cdot 10^{-3}}{9.70\cdot 10^{-4}}$
$^{\mathrm{b}}\mathrm{High}~\mathrm{C}_{\mathrm{1}}$	$/(C_{2} + C_{3})$	at NSHQ04	ⁱ ^b High $C_1/(C_2 + C_3)$ at NSHQ04 resulted in CH ₄ we		^a Hexane isomers not chromatographically resolved. I4 tailing into and preventing quantitation of the C_2H_6 peak in 2017. Chromatographic improvements were made between analyses of 2017 and 2018 samples.	romatographi ting quantita ¹ ses of 2017 an	cally resolved tion of the C _i dd 2018 samp	l. 2H ₆ peak in 2 les.	2017. Chrom	atographic ir	aprovements

Table 5. Gibbs free energies of potential CH_4 -forming reactions and log activities of relevant species. *Abbreviations*: H, hydrogenotrophic (Equation 2); A, acetoclastic (Equation 3); F, formatotrophic methanogenesis (Equation 4).

			log (activity)			ΔG_r	/ [kJ · m	nol^{-1}
water type	H^+	$\mathrm{CO}_2(\mathrm{aq})$	HCOO-	$\rm CH_3COO^-$	$\mathrm{CH}_4(\mathrm{aq})$	$H_2(aq)$	Η	A	F
$\mathrm{Ca}^{2+}-\mathrm{OH}^-$	-11.1	-11.6	-6.1	-6.1	-4.0	$-9.0 \\ -6.0 \\ -3.0$		$-115 \\ -115 \\ -115$	-90
$\mathrm{Mg}^{2+}-\mathrm{HCO}_{3}^{-}$	-8.7	-4.9	-6.0	-6.0	-7.0	$-9.0 \\ -6.0$			$-47 \\ -47$

centration measurements were lacking, and evaluated ΔG_r 's for a range of H₂ concen-399 trations. Measurements of major inorganic dissolved constituents, pH, and Eh from wells 400 WAB105 and NSHQ14 were used for the model Mg²⁺ – HCO₃⁻ and Ca²⁺ – OH⁻ flu-ids, respectively (Tables 1 and 3). Since measured $c_{\sum CO_2}$ was below the limit of quan-titation in the water sample from NSHQ14, 8 µmol·kg⁻¹ was taken as the $c_{\sum CO_2}$ of 401 402 403 the representative $Ca^{2+}-OH^{-}$ water, corresponding to the value at chrysotile-brucite-404 diopside-calcite equilibrium at $25 \,^{\circ}$ C and 1 bar obtained from water-harzburgite reaction 405 path modeling (Leong & Shock, 2020). Concentrations of formate and acetate were both 406 assumed to be $1 \,\mu \text{mol·kg}^{-1}$, which is consistent with their concentrations in earlier sam-407 ples from wells in Samail Ophiolite (Rempfert et al., 2017). Concentrations of CH_4 were 408 assumed to be $100 \,\mu\text{mol} \cdot \text{kg}^{-1}$ and $0.1 \,\mu\text{mol} \cdot \text{kg}^{-1}$ for the representative Ca²⁺ – OH⁻ 409 and $Mg^{2+}-HCO_3^-$ waters, respectively, reflecting typical concentrations for these flu-410 ids (Table 4, Figure 2). H_2 concentrations vary widely between and within fluid types 411 (Table 4, Figure 2), so calculations were performed for multiple H_2 concentrations (1 mmol·kg⁻¹, 412 $1 \,\mu$ mol·kg⁻¹, and $1 \,\text{nmol·kg}^{-1}$) encompassing the range of concentrations observed in Ca²⁺– OH⁻ fluids. The $1 \,\text{mmol·kg}^{-1} \,\text{H}_2$ case was omitted for the Mg²⁺–HCO₃⁻ fluid, where 413 414 such high H_2 concentrations are not observed. The log activities (a) of all relevant species 415 are tabulated in Table 5. 416

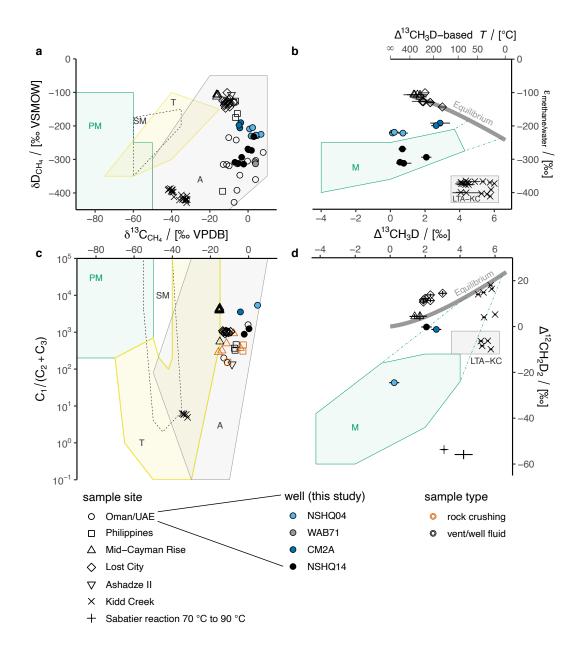
The calculated ΔG_r 's (Table 5) indicate that all of the CH₄-forming reactions con-417 sidered here can have sufficient chemical potential to sustain microbial life in certain states 418 of the system. That is, $\Delta G_r > \Delta G_{\min}$, where ΔG_{\min} (also known as the Biological En-419 ergy Quantum) is the minimum free energy that must be available to sustain life in a 420 given environment (thought to be around $-9 \text{ kJ} \cdot \text{mol}^{-1}$ to $-20 \text{ kJ} \cdot \text{mol}^{-1}$; (Schink, 1997; 421 Hoehler, 2004; Schink & Stams, 2006)). Acetoclastic methanogenesis had the most neg-422 ative ΔG_r in all conditions tested. formatotrophic methanogenesis had more negative 423 ΔG_r than hydrogenotrophic methanogenesis in all Ca²⁺-OH⁻ conditions tested, but 424 formatotrophic methanogenesis had less negative ΔG_r than hydrogenotrophic methano-genesis in the Mg²⁺-HCO₃⁻ case at 1 µmol·kg⁻¹ H₂. Hydrogenotrophic methanogen-425 426 esis had sufficient chemical potential to sustain microbial life only when $a_{\rm H_2}$ was high enough, with the threshold $a_{\rm H_2}$ being higher in Ca²⁺-OH⁻ waters, where $a_{\rm CO_2(aq)}$ is 427 428 lower. These calculations are generally consistent with those of Canovas III et al. (2017), 429 who found that hydrogenotrophic methanogenesis had modest potential energy yields 430 in waters from surface seeps in the Samail Ophiolite at pH ranging from 8 to 12. 431

⁴³² Several additional factors should be considered when interpreting the ΔG_r results. ⁴³³ First, reactions proceeding in environmental systems are often drawn towards equilib-⁴³⁴ rium, and thus a large negative ΔG_r of a given reaction may indicate that that reaction ⁴³⁵ is not actively occuring, but only has the potential to occur. Second, substrate trans-⁴³⁶ port into the cell is not addressed in our calculations. A more complete model would ac-⁴³⁷ count for rates of CO₂ diffusion across the cell membrane and/or energy expended to

transport charged species such as formate and acetate into the cell (Hoehler, 2004). Third, 438 mixing is not explicitly accounted for in our calculations. Mixing has been suggested as 439 a key factor controlling energetic favorability of various reactions in the Samail Ophi-440 olite. This is especially pertinent to hydrogenotrophic methanogenesis because $c_{\rm CO_2}$ is so much lower in endmember hyperalkaline fluids than in near-surface, atmosphere-influenced 442 fluids (Canovas III et al., 2017; Leong & Shock, 2020). The $c_{\rm CO_2}$ used for the example 443 $Ca^{2+}-OH^{-}$ fluid in our calculations is representative of a minimum value for the sys-444 tem (Leong & Shock, 2020). Mixing would tend to inject CO₂ into the fluids and increase 445 the energetic favorability of hydrogenotrophic methanogenesis. 446

In addition to energetic considerations, microbiological approaches can help elu-447 cidate which CH_4 -forming reactions occur. Kraus et al. (2021) found higher transcript 448 abundances of carbonic anhydrase and formate dehydrogenase relative to acetate kinase 449 and phosphate acetyltransferase in hyperalkaline groundwaters from wells in the Samail 450 Ophiolite, suggesting that CO_2/HCO_3^- and formate are more actively used substrates 451 for methanogenesis than acetate in these conditions. Further, Fones et al. (2020) iden-452 tified two lineages of *Methanobacterium* in Samail Ophiolite groundwaters that were shown 453 by genomic and microcosm-based radiotracer approaches to use different methanogenic 454 pathways. Methanobacterium Type I lineage predominated in circumneutral waters and 455 is capable of using either CO_2 or formate for methanogenesis. Methanobacterium Type 456 II lineage, which was more abundant in hyperalkaline waters and which branched from 457 the Type I lineage, was exclusively capable of formatotrophic methanogenesis. It was pos-458 tulated that gene loss and acquisition in Type II lineage allowed it to be specially suited 459 to the high-pH and low- $\sum CO_2$ conditions resulting from extensive serpentinization. Thus, 460 microbiological data suggest that hydrogenotrophic or formatotrophic methanogenesis 461 are the most likely pathways for methanogenesis in the Samail Ophiolite and that the 462 relative contributions of each of these pathways to microbial CH_4 production at a given 463 site may depend on local geochemical factors such as $a_{CO_2(aq)}$. This notion is generally 464 supported by our calculations in that formatotrophic methanogenesis had more nega-465 tive ΔG_r than hydrogenotrophic methanogenesis in all Ca²⁺-OH⁻ conditions tested, whereas the reverse was true for the Mg²⁺ - HCO₃⁻ case at 1 μ mol · kg⁻¹ H₂. 466 467

Remarkably, although acetoclastic methanogenesis had the most negative ΔG_r of 468 the investigated CH₄-forming reactions (Table 5), it has the least microbiological evi-469 dence of being a major methanogenic pathway in the Samail Ophiolite. Conversion of 470 isotopically labeled acetate $({}^{13}CH_{3}OO^{-})$ to ${}^{13}CH_{4}$, has, however, been documented in 471 cultures from serpentinite springs in the Voltri Massif, Italy (Brazelton et al., 2017), in-472 dicating that acetoclastic methanogenesis can operate in some serpentinizing settings. 473 In the aquifers sampled via wells in the Samail Ophiolite, methanogens may be out-competed 474 for acquisition of acetate by other groups of microbes, such as sulfate reducers. Indeed, 475 geochemical evidence of microbial acetate oxidation coupled to sulfate reduction has been 476 reported in alkaline, H₂-rich, crystalline rock aquifers inhabited by microbial communi-477 ties dominated by sulfate reducing bacteria and methanogens (Moser et al., 2005). 478


4.2.2 Abiotic, ${}^{13}C$ -enriched CH_4 , C_2H_6 , and C_3H_8 mixed with microbial CH_4 produced under C-limited conditions in the $Ca^{2+}-OH^$ waters of well NSHQ14

479

480

481

Well NSHQ14 is situated in a catchment dominated by partially serpentinized harzbur-482 gite with meter-scale partially serpentinized dunite bands (Figure 1; Supporting Infor-483 mation Figure S1; Table 1). The well is cased to 5.8 meters below ground level (mbgl) 484 and drilled to 304 mbgl (Table 1). Groundwaters accessed via NSHQ14 had the highest 485 pH (11.39), and lowest Eh (-253 mV) and f_{O_2} (1.19 \cdot 10⁻⁵¹ bar) among the wells in-486 vestigated (Table 1), indicating that fluids sampled from NSHQ14 have extensively par-487 ticipated in serpentinization. This is also reflected in the $c_{\rm H_2}$ of groundwaters sampled 488 at NSHQ14, which was the highest among the studied wells $(253 \,\mu \text{mol} \cdot \text{L}^{-1} \text{ and } 131 \,\mu \text{mol} \cdot \text{L}^{-1}$ 489

⁴⁹⁰ L^{-1} in 2017 and 2018, respectively; Table 4; Figure 2). NSHQ14 waters also had high ⁴⁹¹ c_{CH_4} (106 μ mol \cdot L^{-1} and 71.2 μ mol \cdot L^{-1} in 2017 and 2018, respectively).

CH₄ has ranged in δ^{13} C from -6.89 % VPDB to +3.7 % VPDB in fluid samples 492 from NSHQ14, with a mean weighted by sample year of -0.8 % VPDB (Figure 3a; Ta-493 ble 2). These δ^{13} C values are generally higher than those of CH₄ emanating from sediment-494 poor seafloor hydrothermal vents, where a dominantly abiotic origin has been proposed 495 ((Welhan & Craig, 1983; Merlivat et al., 1987; J. L. Charlou et al., 1996; J. Charlou et 496 al., 2000, 2002; Proskurowski et al., 2008; Kumagai et al., 2008; McDermott et al., 2015; 497 D. T. Wang et al., 2018); represented by Mid-Cayman Rise, Lost City, and Ashadze II 498 in Figure 3a), higher than typical mantle values (Deines, 2002), and similar to marine 499 carbonate (Schidlowski, 2001). CH₄ δ^{13} C at NSHQ14 is generally higher than δ^{13} C of 500 carbonate veins in NSHQ14 (-7.05 % VPDB to -4.69 % VPDB; (Miller et al., 2016)),501 which is opposite to that which would be expected at equilibrium (Bottinga, 1969), in-502 dicating that CH₄ is not in isotopic equilibrium with co-existing carbonate minerals. 503

Figure 3. Molecular and isotopic compositions of natural gases. (a) Plot of δD_{CH_4} vs. $\delta^{13}C_{CH_4}$. Shaded fields of typical gas origin after Milkov and Etiope (2018). Abbreviations: PM, primary microbial; SM, secondary microbial; T, thermogenic; A, abiotic. (c) Plot of ratio of methane (C₁) to the sum of ethane (C₂) and propane (C₃) vs. $\delta^{13}C_{CH_4}$. Only analyses for which C_2 was above limit of quantitation are plotted. If C_3 was below limit of quantitation, its contribution to $C_1/(C_2 + C_3)$ was assumed to be negligible, and therefore C_1/C_2 is plotted. Fields and abbreviations same as in (a). In (a) and (c), uncertainties are smaller than plotted symbols. (b) Plot of $\varepsilon_{\text{methane/water}}$ vs. Δ^{13} CH₃D. X and Y axes are swapped with respect to original publication of this type of plot (D. T. Wang et al., 2015) so that (b) is comparable against (d). The data from (b) are plotted in the D. T. Wang et al. (2015) orientation in Supporting Information Figure S4. Equilibrium line from Horibe and Craig (1995) and E. Young et al. (2017). Abbreviations: LTA-KC, low-temperature abiotic (Kidd Creek-type); M, microbial. Green dot-dashed lines in (b) and (d) indicate a range of CH₄ isotopic compositions that have been attributed to either low cell-specific rates of methanogenesis or anaerobic oxidation of methane; that is, they start at isotopic compositions produced by methanogen cultures and end at isotopic equilibrium between 5 $^{\circ}$ C and 70 $^{\circ}$ C, which is the range of temperatures over which anaerobic oxidation of methane has been documented (D. T. Wang et al., 2015; D. Stolper et al., 2015; E. Young et al., 2017; Ash & Egger, 2019; Giunta et al., 2019). (d) Plot of Δ^{13} CH₃D vs. Δ^{12} CH₂D₂, after E. Young et al. (2017). Fields, abbreviations, and temperature axis same as in (b). In (b) and (d), error bars represent 95% confidence interval for analyses performed at MIT, and 1 standard error for analyses performed at UCLA. Contextual data from ophiolites: Oman/UAE (Fritz et al., 1992; Etiope et al., 2015; Boulart et al., 2013; Miller et al., 2016; Vacquand et al., 2018), the Philippines (Abrajano et al., 1990; Grozeva et al., 2020); sediment-poor seafloor hydrothermal vents: Mid-Cayman Rise (McDermott et al., 2015; D. T. Wang et al., 2018; Grozeva et al., 2020), Lost City (Proskurowski et al., 2008; D. T. Wang et al., 2018; Labidi et al., 2020), Ashadze II (J. L. Charlou et al., 2010); Precambrian Shield: Kidd Creek, Canada (Sherwood Lollar et al., 2008; E. Young et al., 2017); and laboratory Sabatier reaction catalyzed by Ru (E. Young et al., 2017).

 CH_4 is accompanied by C_2-C_6 alkanes in fluids from NSHQ14 (Table 4). These 504 alkanes had $C_1/(C_2 + C_3)$ ratios of 1240 in 2017 and 881 in 2018, which are similar to 505 fluid samples and rock crushings from other ophiolites and sediment-poor seafloor hy-506 drothermal vents (Abrajano et al., 1990; J. L. Charlou et al., 2010; McDermott et al., 507 2015; Grozeva et al., 2020), but 10^2 times higher than those of Kidd Creek mine, Canada, 508 for which a low-temperature, abiotic origin of alkanes has been proposed (Sherwood Lol-509 lar et al., 2002, 2008; E. Young et al., 2017) (Figure 3c). Thus, $C_1/(C_2+C_3)$ ratios could 510 reflect differences in alkane formation mechanisms or extents of reaction in Precambrian 511 shield sites like Kidd Creek versus ophiolites and sediment-poor seafloor hydrothermal 512 vents. 513

 C_2H_6 and C_3H_8 at NSHQ14 are strongly ¹³C-enriched ($\delta^{13}C$ of -6.0 % VPDB and 514 +3.3 % VPDB, respectively; Table 2; Figure 4). The observed δ^{13} C values are ~ 15 % 515 higher than those in the most mature (and therefore most ¹³C-enriched) thermogenic 516 C₂H₆ and C₃H₈ samples from confined systems (Milkov & Etiope, 2018; Fiebig et al., 517 2019). Increases in $\delta^{13}C_{C_3}$ of ~ 15 ‰ have been attributed to microbial oxidation of short-518 chain alkanes, which enriches the residual in ¹³C (Martini et al., 2003). However, short-519 chain alkane oxidizing microbial species (Shennan, 2006; Singh et al., 2017; Laso-Pérez 520 et al., 2019) were not detected in 16S rRNA gene sequences of DNA obtained from NSHQ14. 521 Thus, there is not strong evidence to suggest that $\delta^{13}C_{C_2}$ and $\delta^{13}C_{C_3}$ at NSHQ14 re-522

⁵²³ sult from post-genetic microbial alteration. Rather, $\delta^{13}C_{C_2}$ and $\delta^{13}C_{C_3}$ should reflect ⁵²⁴ formation conditions and C source(s).

 $C_{2}H_{6}$ and $C_{3}H_{8}$ at NSHQ14 are not likely to derive from nearby organic matter. 525 Hydrocarbon-rich sedimentary formations in northern Oman not only lack a clear struc-526 tural connection to the ophiolite aquifer, but also yield oils with δ^{13} C values (Terken, 527 1999) at least 20 % lower than those of C₂H₆ and C₃H₈ at NSHQ14. Furthermore, to-528 tal organic C in peridotites exposed to alteration at the seafloor, a proxy for organic C 529 endogenous to the Samail Ophiolite, is also relatively 13 C-depleted (approximately $-25\pm$ 530 5 % VPDB; (Alt et al., 2013; Alt, Garrido, et al., 2012; Alt, Shanks, et al., 2012; Dela-531 cour et al., 2008)). Closed-system thermal cracking of these organic matter sources is 532 unlikely to have produced the comparatively ${}^{13}C$ -enriched C_2H_6 and C_3H_8 at NSHQ14 533 and previously reported elsewhere in the ophiolite (Figure 4; (Fritz et al., 1992)). 534

Thermal cracking of organic matter and open-system degassing can enrich late-produced 535 short-chain alkanes in ¹³C due to kinetic isotope effects associated with the cleavage of 536 precursor sites in the parent organic matter and the resultant Rayleigh distillation of these 537 sites (Rooney et al., 1995; Fiebig et al., 2019). Thermogenic gas production can proceed 538 slowly at temperatures as low as 60 °C, but substantial thermogenic gas production typ-539 ically occurs at reservoir temperatures above 120 °C (Burnham, 1989; Hunt, 1996; D. A. Stolper 540 et al., 2018; Cumming et al., 2019; Fiebig et al., 2019). These temperatures are higher 541 than temperatures along groundwater flow paths intersecting the wells in this study. Mea-542 sured groundwater temperatures in the study area are $\sim 35 \,^{\circ}\text{C}$ (Table 1), and H₂-H₂O 543 isotope thermometry and C–O clumped isotope thermometry on carbonate veins with 544 significant 14 C contents in Samail Ophiolite peridotites both indicate equilibrium $< 60 \,^{\circ}$ C 545 (P. B. Kelemen & Matter, 2008; P. B. Kelemen et al., 2011; Mervine et al., 2014; Miller 546 et al., 2016). Geothermal gradients derived from geophysical logs of NSHQ14 are $25\,^{\circ}\text{C}$. 547 km⁻¹ (A. Paukert, 2014; Matter et al., 2017), which is typical of near-surface, continen-548 tal settings (Lowell et al., 2014). At the low temperatures and ordinary geothermal gra-549 dients within the active alteration zone of the Samail Ophiolite, thermal cracking of or-550 ganic matter is unlikely to proceed at sufficient rates to attain the high extents of reac-551 tion progress necessary to explain the observed ¹³C enrichments in short-chain alkanes 552 at NSHQ14 over relevant timescales. 553

Alternatively, short-chain alkanes in NSHQ14 fluids may have an abiotic source. 554 Several studies have demonstrated storage of large quantities of CH_4 and associated short-555 chain alkanes in fluid inclusions in ophiolites (Sachan et al., 2007; Klein et al., 2019; Grozeva 556 et al., 2020). However, the findings of these studies disagree with those of Etiope et al. 557 (2018), who measured relatively low concentrations of CH_4 stored in serpentinized peri-558 dotites from Greek ophiolites. Since the rocks analyzed by Etiope et al. (2018) were sam-559 pled from outcrops, it is possible that chemical or physical processes associated with sur-560 face exposure resulted in loss of CH_4 once stored in peridotite-hosted fluid inclusions prior 561 to analysis. Although further study of the quantity and spatial distribution of CH_4 stor-562 age in ophiolitic rocks is warranted, the presence of CH_4+H_2 inclusions in olivine and 563 $CH_4\pm graphite$ inclusions in orthopyroxene in Samail Ophiolite harzburgites (Miura et 564 al., 2011) requires that fluid inclusions be considered as a potential source for abiotic CH_4 565 and associated short-chain alkanes at NSHQ14 and elsewhere in the ophiolite. 566

A fluid inclusion source of CH₄ and short-chain alkanes is compatible with C sta-567 ble isotopic compositions of these compounds in groundwaters pumped from NSHQ14. 568 CH_4 , C_2H_6 , and $C_3H_8 \delta^{13}C$ values at NSHQ14 (-6.89 % VPDB to +3.7 % VPDB; Ta-569 ble 2) overlap with CH₄ and C₂H₆ δ^{13} C values measured by Grozeva et al. (2020) in rock 570 crushing experiments on CH₄-rich fluid inclusion-bearing peridotites and dunites sam-571 pled from the Zambales ophiolite in the Philippines (-12.4 % VPDB to -0.9 % VPDB;572 Figure 4), which, in turn, overlap with δ^{13} C values of CH₄ from nearby gas seeps at Los 573 Fuegos Eternos and Nagsasa in the Philippines (-7.4% VPDB to -5.6% VPDB; Fig-574 ure 3a; (Abrajano et al., 1990; Vacquand et al., 2018)). Grozeva et al. (2020) also crushed 575

CH₄-rich fluid inclusion-bearing rocks from the Mid-Cayman Rise. Of the Mid-Cayman 576 Rise samples that yielded sufficient CH_4 and C_2H_6 for precise C isotopic analysis, which 577 were all mafic intrusive rocks, δ^{13} C values ranged from -14.0 % VPDB to +0.7 % VPDB. 578 The lower end of Mid-Cayman Rise rock crushing short-chain alkane δ^{13} C values are sim-579 ilar to those measured in Mid-Cayman Rise hydrothermal vent fluids (-15.8% VPDB)580 to -9.7 % VPDB; (McDermott et al., 2015)), whereas the higher end are similar to those 581 of NSHQ14 (Figure 4). Furthermore, C_2H_6 and C_3H_8 $\delta^{13}C$ values of NSHQ14 fluids re-582 semble those of fluids discharging from the sediment-poor hydrothermal vents at Ashadze 583 II, Mid-Atlantic Ridge (Figure 4; (J. L. Charlou et al., 2010)). The similarities in short-584 chain alkane δ^{13} C values between circulating fluids and rock-hosted fluid inclusions in 585 ophiolites and present-day oceanic lithospheric sites suggest that circulating fluids in both 586 environments derive much of their CH_4 and short-chain alkanes from fluid inclusions. 587

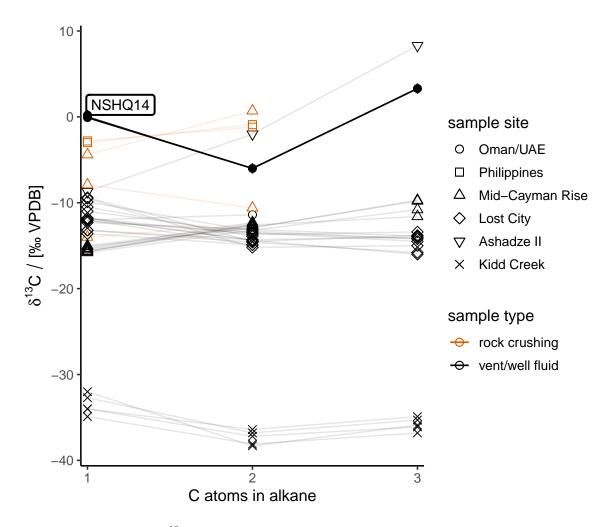
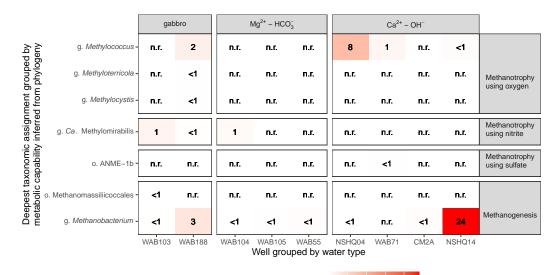


Figure 4. Plot of δ^{13} C of CH₄ and co-occurring *n*-alkanes vs. the number of C atoms per molecule. Error bars represent uncertainties on δ^{13} C analyses performed at CUB. Only samples for which $\delta^{13}C_{C_2}$ was determined are plotted. Contextual data from ophiolites: Oman/UAE (Fritz et al., 1992), the Philippines (Grozeva et al., 2020); sediment-poor seafloor hydrothermal vents: Mid-Cayman Rise (McDermott et al., 2015; Grozeva et al., 2020), Lost City (Proskurowski et al., 2008), Ashadze II (J. L. Charlou et al., 2010); and Precambrian Shield: Kidd Creek, Canada (Sherwood Lollar et al., 2008).

Sources of CH_4 can also be assessed by measuring H isotopic compositions and clumped 588 isotopologue relative abundances of CH_4 and comparing these isotopic compositions to 589 temperature-dependent equilibria. These isotopic equilibria are represented by thick gray 590 lines in Figure 3b and d. Intra- CH_4 equilibrium is governed by the increasing relative 591 stability of bonds between two heavy isotopes (more "clumping") at lower temperatures, 592 which is reflected in higher Δ^{13} CH₃D and Δ^{12} CH₂D₂ values. However, isotopic equi-593 librium will only be expressed if kinetics allow it. In the first study to publish clumped 594 isotopologue ($\Delta^{13}CH_3D$) data on CH₄- and H₂- rich gases from sediment-poor seafloor 595 hydrothermal vents, D. T. Wang et al. (2018) found that these gases yielded apparent 596 CH_4-H_2O H isotopic and $\Delta^{13}CH_3D$ equilibrium temperatures of 270 °C to 360 °C, de-597 spite having a range of effluent fluid temperatures from $96 \,^{\circ}\text{C}$ to $370 \,^{\circ}\text{C}$. This was in-598 terpreted as evidence for a closure temperature of $270 \,^{\circ}\text{C}$ for H isotope exchange in the 599 CH_4-H_2O and CH_4-H_2 systems in seafloor hydrothermal settings (e.g. Mid-Cayman 600 Rise in Figure 3b and d). However, in a subsequent study that re-analyzed some of the 601 same samples, plus a greater number of samples from low-temperature vents at Lost City 602 (96 °C to 64 °C), and contributed the first Δ^{12} CH₂D₂ values from these settings, Labidi 603 et al. (2020) found evidence for re-equilibration of clumped isotopologue and CH_4-H_2O 604 H isotopic systems at lower temperatures. Of these isotopic systems, that of ${}^{12}CH_2D_2$ 605 had the fastest apparent re-equilibration kinetics (approximately twice as fast as ${}^{13}CH_3D$), 606 which was explained by differences in symmetry numbers among the isotopologues. The 607 12 CH₂D₂-based temperatures of the Lost City samples, which were as low as 69^{+4}_{-4} °C, 608 closely matched their end member vent fluid temperatures. As a result of the apparent 609 faster re-equilibration of ${}^{12}CH_2D_2$, the Lost City data plot above the ${}^{13}CH_3D - {}^{12}CH_2D_2$ 610 equilibrium line (towards higher $\Delta^{12}CH_2D_2$) in Figure 3d. Therefore, isotopic compo-611 sitions of CH₄ formed in fluid inclusions in the oceanic lithosphere and stored for mil-612 lions of years at low temperatures may be expected to fall somewhere along a contin-613 uum from Δ^{13} CH₃D, Δ^{12} CH₂D₂, and CH₄-H₂O isotopic equilibrium at ~ 330 °C to 614 compositions approaching lower temperature (~ 70 °C or perhaps even lower) equilib-615 rium, with ¹²CH₃D, ¹³CH₃D, CH₄-H₂O isotopic re-equilibration proceeding at vary-616 ing rates. This is not the case for Samail Ophiolite samples, as detailed below. 617


Across five years of samples from NSHQ14, δD_{CH_4} has ranged from -232 % VSMOW 618 to -311.73 % VSMOW, with a mean weighted by sample year of -275 % VSMOW (Fig-619 ure 3a; Table 2). This CH₄ is D-enriched with respect to coexisting H₂ ($\delta D_{H_2} = -685 \%$ VSMOW; 620 (Miller et al., 2016)) and D-depleted with respect to coexisting water ($\delta D_{H_2O} = +0.2 \%$ VSMOW 621 in 2018; Table 3). Although H_2 and water reflect H isotopic equilibrium at ~ 50 °C (Miller 622 et al., 2016), both H_2 and water are in H isotopic disequilibrium with CH_4 (Figure 3b). 623 Moreover, NSHQ14 fluids exhibit intra-CH₄ disequilibrium, as indicated by Δ^{13} CH₃D 624 and $\Delta^{12}CH_2D_2$ values (Table 2) plotting below the equilibrium line in Figure 3d. These 625 non-equilibrium isotopic compositions indicate that post-genetic alteration of CH_4 must 626 have occurred or that fluid inclusions are not the only source of CH_4 at NSHQ14. 627

One potential post-genetic alteration mechanism is diffusion. However, CH_4 at NSHQ14 628 cannot be the diffusion residual of CH_4 that was originally at intramolecular equilibrium 629 (or with $\Delta^{12}CH_2D_2$ above the apparent $\Delta^{13}CH_3D$ equilibrium temperature) because the 630 diffusion slope (change in $\Delta^{12}CH_2D_2$ over change in $\Delta^{13}CH_3D$) is shallower than the equi-631 librium line slope over the relevant temperature range (E. Young et al., 2017). Another 632 potential alteration mechanism is microbial CH_4 oxidation. Two types of microbial CH_4 633 oxidation have been studied for their effects on CH_4 clumped isotopologue relative abun-634 dances: anaerobic methane oxidation of the ANME type and aerobic CH₄ oxidation. ANME-635 type anaerobic methane oxidation is suggested to be a highly reversible metabolic path-636 way (Knittel & Boetius, 2009; Timmers et al., 2017). This reversibility has been proposed 637 to bring Δ^{13} CH₃D and Δ^{12} CH₂D₂ towards equilibrium at low temperatures (70 °C to 638 $30 \,^{\circ}\text{C}$) through continuous breaking and reforming of bonds in the CH₄ molecule (E. Young 639 et al., 2017; Ash & Egger, 2019; Giunta et al., 2019). Thus, the comparatively low Δ^{13} CH₃D 640 and $\Delta^{12}CH_2D_2$ values observed in samples from NSHQ14 and other wells in this study 641

(Figure 3b and d) do not support a major role for anaerobic methane oxidation in the 642 study area. Aerobic CH_4 oxidation is less reversible than ANME-type anaerobic methane 643 oxidation due to differences in the enzymes and electron acceptors used for those respec-644 tive processes. For this reason, aerobic CH_4 oxidation does not bring CH_4 into isotopic 645 equilibrium, but rather imparts a normal, classical kinetic isotope effect during CH_4 con-646 sumption. In a study of the effect of aerobic CH₄ oxidation on Δ^{13} CH₃D, D. T. Wang 647 et al. (2016) found that the fractionation factor for ${}^{13}CH_3D$ was closely approximated 648 by the product of the fractionation factors for ${}^{13}CH_4$ and ${}^{12}CH_3D$. Although it has not 649 yet been demonstrated experimentally, it is hypothesized that the fractionation factor 650 for ${}^{12}CH_2D_2$ during aerobic CH₄ oxidation may likewise be approximated by the square 651 of the fractionation factor for ${}^{12}CH_{3}D$ (E. D. Young, 2020). This "product rule" for iso-652 topic fractionation during aerobic CH_4 oxidation results in decreases in $\Delta^{13}CH_3D$ and 653 Δ^{12} CH₂D₂ with concomitant increases in δ^{13} C and δ D in residual CH₄ (D. T. Wang et 654 al., 2016; E. D. Young, 2020). Thus, aerobic CH₄ oxidation could draw Δ^{13} CH₃D and 655 Δ^{12} CH₂D₂ values originally near equilibrium down below the equilibrium line in Fig-656 ure 3d. However, if CH_4 samples from NSHQ14 were originally near H isotope equilib-657 rium with water of SMOW-like isotopic composition, aerobic methane oxidation would 658 push the residual CH₄ towards higher δD (and $\varepsilon_{methane/water}$) values (above the equi-659 librium line in Figure 3b), which is inconsistent with the comparatively low δD_{CH_4} ob-660 served at NSHQ14. 661

For the reasons outlined above, post-genetic alteration of CH_4 near $CH_4 - H_2O$ 662 and intramolecular isotopic equilibrium does not explain the observed isotopic compo-663 sitions of CH_4 sampled from NSHQ14. Therefore, the release of CH_4 stored in fluid in-664 clusions cannot account for all of the CH_4 at NSHQ14. Alternative processes that do pro-665 duce CH₄ with Δ^{13} CH₃D and Δ^{12} CH₂D₂ values lower than equilibrium include micro-666 bial methanogenesis and low-temperature (≤ 90 °C) abiotic reduction of CO₂ or CO through 667 Sabatier or Fischer-Tropsch-type reactions. In Figure 3b and d, microbial methanogen-668 esis is represented by samples from cultures (green shaded areas; (D. T. Wang et al., 2015; 669 D. Stolper et al., 2015; E. Young et al., 2017; Gruen et al., 2018; E. D. Young, 2020)), 670 and low-temperature Sabatier or Fischer-Tropsch-type reactions are represented by field 671 samples from Kidd Creek (gray shaded areas; (E. Young et al., 2017; Sherwood Lollar 672 et al., 2002, 2008)) and laboratory experiments with synthetic Ru catalysts (E. Young 673 et al., 2017; Etiope & Ionescu, 2015). 674

To independently assess the potential influences of microbial processes on CH₄ con-675 centration and isotopic composition, DNA was extracted from biomass in pumped ground-676 waters and subjected to amplification and sequencing of 16S rRNA genes. 16S rRNA gene 677 sequences of biomass collected in 2018 were searched for matches to known CH₄-cycling 678 taxa, as compiled previously by Crespo-Medina et al. (2017). Sequences closely affiliated 679 with both methanogenic and methanotrophic taxa were found to be widespread in the 680 aquifer (Figure 5). Based on phylogenetic inference, the dominant methanogenic taxon 681 was related to the genus *Methanobacterium*, whose members can produce CH_4 from H_2 682 and CO_2 , CO, or formate (Balch et al., 1979). Methanobacterium comprised a high pro-683 portion (24%) of 16S rRNA gene sequences at NSHQ14 in 2018. Relative abundances 684 of Methanobacterium 16S rRNA gene reads were similarly high in 2017 (12%) and 2016 685 (28%), but lower (< 1%) in 2015 and 2014 (Miller et al., 2016; Rempfert et al., 2017; 686 Kraus et al., 2021). The increase in the relative abundance of 16S rRNA genes affiliated 687 with Methanobacterium in samples collected in 2016 and onwards versus those collected 688 in 2014 and 2015 coincided with a change in sampling methods from smaller, lower-flow 689 pumps (maximum depth 20 m) prior to 2016 to larger, higher-flow pumps (maximum depth 690 90 m). The obligate anaerobic nature of this methanogen genus (Boone, 2015) is con-691 sistent with its higher relative gene abundances in fluids sampled from greater depths, 692 which presumably receive less input of atmospheric O_2 than do shallower fluids. 693

Read relative abundance / [%]

20

Figure 5. 16S rRNA gene read relative abundances of DNA extracted from Samail Ophiolite groundwaters sampled in 2018 affiliated with CH_4 -cycling taxa. Read relative abundances are reported as percentages rounded to the ones place. Cases when a taxon was detected in a sample and was < 1% read relative abundance after rounding are labeled "< 1". Cases when no reads of a taxon were detected in a sample are labeled "n.r." Data shown are from unique field samples. Previous 16S rRNA gene sequencing studies that obtained field samples in triplicate from Samail Ophiolite groundwaters through similar methods to those used here have found typical standard deviations of relative abundances less than or equal to 25% of the mean relative abundance (Kraus et al., 2021).

Consortia capable of anaerobic oxidation of CH_4 coupled to SO_4^{2-} reduction, in-694 cluding ANME, were not detected by 16S rRNA gene sequencing of samples obtained 695 from NSHQ14 in 2018 (Figure 5), 2016, or 2014 (Miller et al., 2016; Rempfert et al., 2017), 696 although sequences affiliated with order ANME-1b were detected in low abundance (<697 1% of reads) in samples obtained from NSHQ14 in 2017 and 2015 (Rempfert et al., 2017; 698 Kraus et al., 2021). This scarcity of ANME may result from metabolic inhibition by high 699 $c_{\rm H_2}$ in groundwaters at NSHQ14 and elsewhere in the Samail Ophiolite. It has been pro-700 posed that the thermodynamics of "reverse methanogenesis" require low $c_{\rm H_2}$ (e.g. $\leq 1 \, \rm nM$ 701 in a marine cold seep environment (Boetius et al., 2000)). Indeed, the bioenergetics of 702 SO_4^{2-} -driven oxidation of CH₄ are less favorable than SO_4^{2-} -driven oxidation of H₂ or 703 $non-CH_4$ organics, or other metabolisms such as methanogenesis or acetogenesis in the 704 Samail Ophiolite (Canovas III et al., 2017) and in deep continental settings where ra-705 diolytic H₂ accumulates (Kieft et al., 2005; Moser et al., 2005; Kieft, 2016). 706

While 16S rRNA gene sequences affiliated with anaerobic CH_4 oxidizing microbes 707 have only occasionally been detected at NSHQ14, 16S rRNA gene sequences affiliated 708 with the genus *Methylococcus*, which contains aerobic methanotrophs (Hanson & Han-709 son, 1996), have been detected in all samples from NSHQ14, ranging from 1% to < 1%710 of reads in samples obtained from 2014 to 2018 (Figure 5; (Miller et al., 2016; Rempfert 711 et al., 2017; Kraus et al., 2021)). Since the aerobic lifestyle of *Methylococcus* is at odds 712 with that of the obligate anaerobe, *Methanobacterium*, it seems most likely that these 713 two taxa are spatially separated in the aquifer, and that waters containing each of them 714

were mixed during open borehole pumping. Still, the > 10 times higher abundances of *Methanobacterium*-related 16S rRNA genes relative to those of *Methylococcus* at NSHQ14 in samples from 2016 to 2018 suggest that the microbial CH_4 cycle at this well is dominated by CH_4 production, rather than consumption.

16S rRNA gene sequencing of subsurface biomass from NSHQ14 is complemented 719 by other observations that suggest that methanogens are not only prevalent, but active. 720 Genes involved in methanogenesis are enriched (Fones et al., 2019) and actively tran-721 scribed in waters sampled from NSHQ14 (Kraus et al., 2021). Transformation of both 722 ¹⁴C-labeled HCO_3^- and ¹⁴C-labeled formate to CH_4 have been shown to occur in water 723 samples from NSHQ14 at significantly higher rates than in killed controls, with forma-724 totrophic methanogenesis greatly outpacing hydrogenotrophic methanogenesis (Fones 725 et al., 2019, 2020). Taken together with a cell abundance of $1.15 \cdot 10^5$ cells $\cdot \text{ mL}^{-1}$ in 726 groundwater at NSHQ14 (Fones et al., 2019), these data suggest that aquifer regions ac-727 cessed by NSHQ14 host abundant active methanogenic cells (thousands per mL, assum-728 ing $\sim 24\%$ of cells are methanogens based on 16S rRNA gene data). These active cells 729 could influence CH₄ concentration and isotopic composition. 730

The genomic and cultivation data of Fones et al. (2020) indicate that formate is 731 the dominant substrate for methanogenesis at NSHQ14. Formate concentrations are $1 \,\mu$ mol· 732 L^{-1} to $2 \mu \text{mol} \cdot L^{-1}$ in the studied wells (Rempfert et al., 2017), which are roughly two 733 orders of magnitude lower than formate concentrations at unsedimented seafloor hydrother-734 mal vents impacted by serpentinization at warmer conditions than present in the Samail 735 Ophiolite (McDermott et al., 2015; Lang et al., 2018). These relatively low formate con-736 centrations in the ophiolite suggest that formate might be the primary limiting substrates 737 for methanogenesis in $Ca^{2+}-OH^-$ waters, such as at NSHQ14. Coexisting hydrogenotrophic 738 methanogens may produce CH_4 through direct uptake of $\sum CO_2$ in H_2 -rich $Ca^{2+}-OH$ 739 water, where kinetic inhibitions to abiotic $\sum CO_2$ reduction to CH_4 allow for a modest 740 energy yield for hydrogenotrophic methanogens (Section 5; (Leong & Shock, 2020)). Methanogens 741 using $\sum CO_2$ could benefit from greater chemical disequilibrium if they inhabit zones 742 where deeply-sourced, H₂-rich Ca²⁺ – OH⁻ water mixes with shallow, Mg²⁺ – HCO₃⁻ water (Zwicker et al., 2018; Leong & Shock, 2020). In addition to direct uptake of $\sum CO_2$, 743 744 carbonate minerals may serve as a C source for methanogenesis in carbonated peridotites 745 (Miller et al., 2018). Another potential C source is carbon monoxide (CO). CO has al-746 ways been below limits of quantitation in Oman wells ($< 132 \text{ nmol} \cdot \text{L}^{-1}$ in 2018; Ta-747 ble 4), but it is unclear whether this indicates minimal CO production or rapid CO turnover. 748

The microbiological data from NSHQ14 fluids are compatible with δD_{CH_4} , $\Delta^{13}CH_3D$, 749 and $\Delta^{12}CH_2D_2$ values that collectively indicate a substantial addition of microbial CH_4 750 to an otherwise abiotic pool of CH_4 . Although the data presented here do not enable 751 us to precisely determine the mole fractions and isotopic compositions of the microbial 752 and abiotic components of CH₄ at NSHQ14, the δD_{CH_4} data alone suggest that perhaps 753 the majority of CH₄ at NSHQ14 formed through non-equilibrium processes, which in-754 clude microbial methanogenesis. Thus, the high δ^{13} C of CH₄ at NSHQ14 suggests that 755 the microbial component is more 13 C-enriched than microbial CH₄ formed in sedimen-756 tary environments, which typically ranges from -90 % VPDB to -50 % VPDB ((Milkov 757 & Etiope, 2018); Figure 3a). In cultures of a hydrogenotorophic strain of Methanobac-758 terium provided CaCO₃ (s) as a C source at pH ~ 9, Miller et al. (2018) observed sup-759 pressed apparent isotope effects during methanogenesis ($\alpha_{\rm CO_2/CH_4} = 1.028$). The au-760 thors attributed this to the slow kinetics of carbonate dissolution at high pH and the near-761 total conversion of the resultant CO_2 (aq) to CH_4 by Methanobacterium. If the primary 762 mode of methanogenesis at NSHQ14 is in fact formatotrophic methanogenesis and abi-763 otic formate production is the rate-limiting step in the overall process through which $\sum CO_2$ 764 is converted to CH₄, similar isotopic bottlenecks could apply. Cellular formate uptake 765 and enzymatic conversion processes whose isotope effects remain unknown could be im-766 portant drivers of the isotopic composition of CH_4 in hyperalkaline, serpentinizing set-767

tings. In such settings, the suppression of C isotope fractionation during methanogenesis is supported by observations of high δ^{13} C values (up to +14 % VPDB) of lipid biomarkers thought to be produced by methanogens at Chimaera, Turkey (Zwicker et al., 2018) and at Lost City (Bradley et al., 2009). Evaluation of these hypotheses will require further physiological studies of methanogens aimed at understanding substrate selection and limitation systematics in hyperalkaline, low-C conditions and the isotopic implications of these factors.

While the data support substantial microbial CH₄ and abiotic, fluid inclusion-derived 775 CH₄ in NSHQ14 fluids, we find less evidence for abiotic CH₄ production at the low tem-776 peratures that pervade the modern weathering horizon in the ophiolite. Below 100 °C, 777 access of gas-phase H_2 and CO_2 or CO to the catalytic metals Ru or Rh is required for 778 CH_4 to form at appreciable rates (Thampi et al., 1987; Jacquemin et al., 2010; Etiope 779 & Ionescu, 2015; McCollom, 2016). It has been proposed that the spatial concentration 780 of potentially-catalytic Ru-rich chromites in chromitites is important for catalysis of low-781 temperature CO_2 reduction to CH_4 in ophiolites (Etiope & Ionescu, 2015; Etiope et al., 782 2018). While peridotites in Oman ubiquitously contain a few percent distributed chromite 783 (Hanghøj et al., 2010), massive chromitites were not reported in lithologic descriptions 784 of cores or drill cuttings from NSHQ14 or any of the six additional wells ranging from 785 300 m to 400 m depth that have been drilled in the same catchment by the Oman Drilling 786 Project (P. Kelemen et al., 2020). Nor are chromitites notably abundant in outcrop within 787 this catchment. Further, although some flow paths of meteoric water through the ophi-788 olite may result in saturation in H₂ and separation of a free gas phase (Canovas III et 789 al., 2017), the depth to water is $< 20 \,\mathrm{m}$ in all wells in the catchment of NSHQ14, sug-790 gesting water-saturated conditions in the subsurface. Moreover, if free $H_2(g)$ were gen-791 erated at high extents of reaction progress, co-existing $CO_2(g)$ would be extremely scarce 792 due to precipitation of carbonate minerals and high pH (Etiope & Ionescu, 2015; Leong 793 & Shock, 2020). It has been proposed that CH_4 in ophiolites can form through reduc-794 tion of $CO_2(g)$ from non-atmospheric sources such as magma, the mantle, or sedimen-795 tary carbonate formations (Etiope & Ionescu, 2015). A magmatic/mantle CO_2 source 796 is not supported at NSHQ14 because excess He above air saturation in groundwaters from 797 this well has a dominantly radiogenic isotopic composition that is distinct from mantle-798 derived He (Paukert Vankeuren et al., 2019). Further, although sedimentary carbonates 799 are present in the vicinity of NSHQ14 and elsewhere in the ophiolite (Boudier & Cole-800 man, 1981; de Obeso & Kelemen, 2018), there is no clear mechanism to liberate $CO_2(g)$ 801 from mineral carbonates and transfer that $CO_2(g)$ to catalytic sites of reaction on chromites 802 where $H_2(g)$ is also present. Thus, the apparent lack of massive chromites and free gaseous 803 potential reactants suggest that the subsurface surrounding NSHQ14 is not conducive 804 to low-temperature abiotic CH_4 production. While substantial low-temperature CH_4 pro-805 duction in the catchment of NSHQ14 seems unlikely, NSHQ14 groundwaters could be mere carriers of CH₄ that was produced elsewhere in the ophiolite under gaseous con-807 ditions and that has subsequently migrated into the aquifer. Some studies of CH_4 ori-808 gin in other peridotite bodies have favored such a hypothesis (Etiope et al., 2016; Mar-809 ques et al., 2018). However, it is not clear how this hypothesis could be tested in the case 810 of the NSHQ14, nor how it addresses the issue of CO₂ source. 811

In summary, isotopic and microbiological data lead us to conclude that the high 812 concentrations of CH_4 (10² μ mol·L⁻¹) in groundwaters accessed by NSHQ14 primarily 813 result from microbial methanogenesis and the release of abiotic CH₄ from fluid inclusions. 814 The known presence of CH₄-bearing fluid inclusions in the Samail Ophiolite and our find-815 ing of high δ^{13} C values of CH₄, C₂H₆, and C₃H₈ that overlap with values reported from 816 seafloor hydrothermal vents where CH_4 formed at > 270 °C in fluid inclusions predom-817 inates suggest a similar source in the ophiolite. However, deficits in ¹²CH₃D, ¹³CH₃D, 818 and ${}^{12}CH_2D_2$ relative to equilibrium indicate the production of additional CH_4 at low 819 temperatures. The ${}^{13}CH_3D$ deficit in particular is more compatible with a microbial ori-820 gin than a low-temperature abiotic origin. Moreover, genomic, transcriptomic, and phys-821

⁸²² iological data show that methanogens are abundant and active in aquifers accessed via ⁸²³ NSHQ14. Organic geochemical and cultivation data from the literature suggest that C ⁸²⁴ isotope effects of methanogenesis may be suppressed under C-limited conditions in ser-⁸²⁵ pentinizing settings. That genes associated with methanogens coexist with a smaller abun-⁸²⁶ dance of genes associated with methanotrophs (particularly aerobes) in NSHQ14 ground-⁸²⁷ waters suggests that some of the CH₄ has undergone microbial oxidation, which would ⁸²⁸ further help explain the high δ^{13} C values of CH₄ at this well.

- 829 830
- 830 831

4.2.3 Abundant microbial CH_4 produced under C-limited conditions and substantial microbial CH_4 oxidation in the $Ca^{2+} - OH^-$ waters of well NSHQ04

NSHQ04 is situated in partially serpentinized harzburgite 10 m away from a faulted
contact with crustal gabbros (Figure 1; Supporting Information Figure S1). Surface rock
exposures surrounding NSHQ04 are dominated by serpentinized harzburgites, with lesser
dunites, gabbro lenses, and pyroxenite dikes. NSHQ04 is cased to 5.8 mbgl and drilled
to 304 m depth (Table 1). As of 2017, the well is obstructed at 8 m below the casing top,
precluding deeper sampling (Section 3.1; Table 1).

Primary differences in fluid composition between NSHQ04 and NSHQ14 include 838 lower pH by ~ 1 and higher $c_{\sum Ca}$ and $c_{\sum Si}$ at NSHQ04 (Tables 1 and 3; (Miller et al., 2016; Rempfert et al., 2017; Paukert Vankeuren et al., 2019; Fones et al., 2019)). These 839 840 differences could be related to the scarcity of fresh, near-surface olivine at NSHQ04, which 841 may result in a greater influence of pyroxene serpentinization at NSHQ04 (Miller et al., 842 2016). Low-temperature pyroxene serpentinization generally continues after olivine is 843 exhausted, and leads to higher $c_{\sum \text{Si}}$ and, depending on pyroxene chemical composition, can also lead to higher $c_{\sum \text{Ca}}$ and lower pH (Bach et al., 2006; Leong & Shock, 2020). 844 845 The relatively low pH and high $c_{\sum Si}$ could also stem from mixing of Ca²⁺-OH⁻ wa-846 ters with gabbro- or atmosphere-influenced fluids. 847

Compared to NSHQ14, NSHQ04 has generally had lower $c_{\rm H_2}$ (detected in 2014, but 848 not in 2018, 2017, 2015, or 2012; Table 4; Figure 2; (Miller et al., 2016; Rempfert et al., 849 2017; Paukert Vankeuren et al., 2019)). The relatively low $c_{\rm H_2}$ measured in waters pumped 850 from NSHQ04 is probably due at least in part to microbial H_2 oxidation. Although there 851 are multiple enzymes with which which a diversity of microbes oxidize H_2 (Peters et al., 852 2015), aerobic H_2 oxidation by bacteria of the genus *Hydrogenophaga* has been identi-853 fied as a particularly prevalent process in serpentinizing settings, including the Samail 854 Ophiolite (Suzuki et al., 2014; Rempfert et al., 2017; Marques et al., 2018). Sequences 855 affiliated with Hydrogenophaga accounted for 20% of 16S rRNA gene reads in DNA ex-856 tracted from biomass in waters pumped from NSHQ04 in 2018, which is similar to pre-857 vious years of sampling at NSHQ04 (6% to 18% in 2014, 2015, and 2017; inter-annual 858 mean of 12%) and higher than all other studied wells (Supporting Information Figure 859 S3; (Rempfert et al., 2017; Miller et al., 2016; Kraus et al., 2021)). 860

While H_2 has only been transiently detected at NSHQ04, c_{CH_4} at this well has con-861 sistently been the highest among our sample sites $(144 \,\mu \text{mol}\cdot\text{L}^{-1} \text{ in } 2018 \text{ and } 483 \,\mu \text{mol}\cdot\text{L}^{-1})$ 862 L^{-1} in 2017. In comparison to NSHQ14, CH₄ at NSHQ04 is more ¹³C- and D-enriched 863 (mean weighted by sample year $\delta^{13}C = +3.3 \%$ VPDB, s = 1.8 %; $\delta D = -220 \%$ VSMOW, 864 s = 11 %; n = 4; Table 2; Figure 3a). Fluids sampled from NSHQ04 are in CH₄ – 865 H₂O H isotopic disequilibrium and intra-CH₄ disequilibrium (Figure 3b and d), which 866 is also true of fluids from NSHQ14. However, CH₄ sampled from NSHQ04 has distinctly 867 negative Δ^{12} CH₂D₂ (-24.502 ‰) and low Δ^{13} CH₃D (mean weighted by sample year of 868 0.36 %, s = 0.32 %, n = 3; Table 2). As such, CH₄ from NSHQ04 plots squarely among 869 methanogen culture samples in $\Delta^{13}CH_3D/\Delta^{12}CH_2D_2$ space (Figure 3d), suggesting that 870 CH₄ is dominantly microbial at NSHQ04. Moreover, alkane gases dissolved in waters pumped 871 from NSHQ04 exhibited a $C_1/(C_2 + C_3)$ ratio of 5.4.10³ in 2018, which is higher than 872

other wells in this study (Table 4; Figure 3c), further supporting a major component of microbial CH₄ at NSHQ04.

Microbial CH₄ production at NSHQ04 is also indicated by microbiological data. 875 16S rRNA gene sequences affiliated with Methanobacterium have been detected in DNA 876 extracted from biomass filtered from waters pumped from NSHQ04, albeit in low rel-877 ative abundance (< 1 % of reads in 2018; Figure 5; also detected in < 1 % of reads in 878 2014, but not detected in 2015 and 2017; (Rempfert et al., 2017; Miller et al., 2016; Kraus 879 et al., 2021). The apparent low relative abundance of *Methanobacterium* at NSHQ04 880 could have resulted from the relatively shallow depth from which samples were collected 881 at NSHQ04 due to well obstruction and the consequential sampling of groundwaters that 882 may have experienced atmospheric O₂ infiltration. High relative read abundances of se-883 quences affiliated with aerobes and transient H₂ across years of sampling NSHQ04 sug-884 gest that zones of the aquifer that are not always anoxic were accessed. These conditions 885 may restrict methanogen abundance to greater depths than were sampled, but not con-886 strain the upward diffusion of the product of their metabolism, CH_4 . Nevertheless, flu-887 ids obtained from NSHQ04 have yielded robust cultures of Methanobacterium (Miller 888 et al., 2018). In addition, high relative abundances of 16S rRNA gene reads of DNA ex-889 tracted from biomass in waters sampled from NSHQ04 were related to an aerobic methan-890 otroph of the genus *Methylococcus* (8% of reads in 2018; inter-annual mean of 11%; Fig-891 ure 5; (Miller et al., 2016; Rempfert et al., 2017; Kraus et al., 2021)). Greater aerobic 892 methanotrophy at NSHQ04 relative to NSHQ14 may have contributed in part to the lower 893 Δ^{13} CH₃D and Δ^{12} CH₂D₂ and higher δ^{13} C and δ D of CH₄ sampled from NSHQ04. 894

Methanotrophic activity at NSHQ04 is consistent with the observed ¹³C-depletion 895 in $\sum CO_2$ at NSHQ04 (-29.7 % VPDB $\delta^{13}C$; Table 2) relative to the other studied wells 896 because environments of active methanotrophy often have ¹³C-depleted $\sum CO_2$ (Barker & Fritz, 1981; Michaelis et al., 2002). Indeed, $\delta^{13}C_{\sum CO_2}$ at NSHQ04 is compatible with 897 898 aerobic oxidation of CH₄ of ~ 0 % VPDB δ^{13} C (Barker & Fritz, 1981; Feisthauer et al., 899 2011). Alternatively, ¹³C-depletion in $\sum CO_2$ could be explained by kinetic isotope frac-900 tionation during hydroxylation of atmospheric CO_2 upon contact with $Ca^{2+}-OH^-$ wa-901 ter, which has been interpreted as the cause of δ^{13} C as low as -27.21 % VPDB in Ca-902 rich carbonates from hyperalkaline seeps in the Samail Ophiolite (Clark et al., 1992; P. B. Kele-903 men et al., 2011; Falk et al., 2016). Considering the relatively shallow sampling depth 904 at NSHQ04 in 2018 (Table 1), it is plausible that the sampled groundwaters continuously 905 interact with atmospheric CO_2 . Although the relative influences of methanotrophy and 906 atmospheric CO₂ hydroxylation cannot be determined based on the available data, both 907 processes could affect $\delta^{13}C_{\sum CO_2}$ at NSHQ04. 908

⁹⁰⁹ In summary, low Δ^{13} CH₃D and Δ^{12} CH₂D₂, high C₁/(C₂ + C₃), the presence of ⁹¹⁰ *Methanobacterium* that were readily cultured, and high 16S rRNA gene relative abun-⁹¹¹ dances of *Methylococcus* lead us to conclude that microbial production and consump-⁹¹² tion of CH₄ are the dominant factors controlling CH₄ concentration and isotopic com-⁹¹³ position at NSHQ04.

914 915

4.2.4 H_2 -limited microbial methanogenesis with classic C isotope effect expressed at well WAB188

WAB188 is situated 2 km down-gradient from NSHQ04 and is set in gabbro on the 916 opposite side of a fault from NSHQ04 (Figure 1; Supporting Information Figure S1; Ta-917 ble 1). Fluids pumped from WAB188 have had variable pH (8.72 to 5.75) and oxidation-918 reduction potential (f_{O_2} of 10^{-61} bar to 10^{-34} bar and Eh of -220 mV to +214 mV) across 919 four years of sampling (Table 1; (Rempfert et al., 2017; Fones et al., 2019)). WAB188 920 has consistently had major ion compositions similar to the gabbro-hosted well WAB103, 921 except that WAB188 has had higher $c_{\sum Ca}$ (Table 3; (Rempfert et al., 2017; Fones et 922 al., 2019)). H₂ has occasionally been detected in fluids pumped from WAB188 ($c_{\rm H_2} =$ 923

 $0.992 \,\mu \text{mol} \cdot \text{L}^{-1}$ in 2017), and CH₄ has consistently been detected at moderate concen-924 trations ($c_{\text{CH}_4} = 1.83 \,\mu\text{mol}\cdot\text{L}^{-1}$ in 2017 and 0.917 $\mu\text{mol}\cdot\text{L}^{-1}$ in 2018) (Table 4; (Rempfert 925 et al., 2017; Fones et al., 2019)). The high $c_{\sum Ca}$ and moderate but variable pH, Eh, and 926 $c_{\rm H_2}$ in fluids sampled from WAB188 suggest that fluid chemical composition at WAB188 927 is dominantly controlled by water-rock reaction with gabbro (McCollom, 1999; Hoehler, 928 2004), but may also be affected by inputs of fresh rainwater and/or H₂-bearing Ca^{2+} -929 OH⁻ water flowing from the peridotite aquifer into the gabbro aquifer across a fault at 930 depth. Flows of water from higher-head, lower-permeability peridotite aquifers into gab-931 bro aquifers in the Samail Ophiolite have been proposed on the basis of physical hydro-932 logic data (Dewandel et al., 2005). Instead or in addition, serpentinization of olivine and 933 pyroxene entirely within gabbro might have produced H_2 observed in water samples from 934 WAB188. 935

Microbial methanogenesis at WAB188 is indicated by high relative abundances of 936 16S rRNA gene reads affiliated with methanogens in pumped groundwaters. Sequences 937 affiliated with *Methanobacterium* accounted for 3% of 16S rRNA gene reads of DNA ex-938 tracted from subsurface fluids sampled from WAB188 in 2018, which was second only 939 to NSHQ14 among our sampling sites, and consistent with prior years of sampling at WAB188 940 (mean 2015 to 2018 of 4%; Figure 5; (Rempfert et al., 2017; Kraus et al., 2021)). There 941 was also evidence for methanotrophy. 2% of 16S rRNA gene reads from WAB188 were 942 affiliated with *Methylococcus* in 2018, which was second only to NSHQ04 among our sam-943 pling sites, and consistent with prior years of sampling (Figure 5; (Rempfert et al., 2017; 944 Kraus et al., 2021)). Further, 16S rRNA gene sequences affiliated with genus Candidatus Methylomirabilis, which includes species that mediate anaerobic methane oxidation 946 coupled to nitrite reduction (Ettwig et al., 2010; Luesken et al., 2012; Welte et al., 2016), 947 were detected in samples from WAB188 in 2018 albeit at low relative gene abundance 948 (< 1%). As a whole, the 16S rRNA gene sequencing data from WAB188 fluids are con-949 sistent with microbial production of CH_4 and, secondarily, methanotrophy using O_2 and/or 950 NO_2^- . The 16S rRNA data are bolstered by genomic and cultivation data that demon-951 strate that Methanobacterium at WAB188 can produce CH_4 from CO_2 and/or formate 952 (Fones et al., 2020) and that genes involved in methanogenesis are transcribed in ground-953 water samples obtained from WAB188 (Kraus et al., 2021). 954

While subsurface fluids sampled at WAB188, NSHQ14, and NSHQ04 all bear ev-955 idence of methanogenic activity, the conditions under which methanogenesis proceeds 956 at WAB188 are fundamentally distinct. In contrast to the $Ca^{2+}-OH^{-}$ fluids from NSHQ14 957 and NSHQ04, the circumneutral fluids from WAB188 have $\sim 10^2$ to $\sim 10^3$ times higher 958 $c_{\sum CO_2}$ (inter-annual mean of 2910 μ mol·L⁻¹, $s = 620 \mu$ mol·L⁻¹, n = 3; Table 3) and 959 $\sim 75\%$ lower $\delta^{13}C_{CH_4}$ (inter-annual mean $\delta^{13}C = -73\%$ VPDB, s = 13%, n = 3; 960 Table 2; Figure S5). Since WAB188 fluids contain relatively 13 C-depleted CH₄ that is 961 not associated with substantial concentrations of C_2-C_6 alkanes (Table 4), a standard 962 interpretation (Bernard et al., 1977; Milkov & Etiope, 2018) would be that the source 963 of CH_4 at WAB188 is dominantly microbial. Such an interpretation is largely based on 964 data from sedimentary settings, where H_2 is typically more scarce than CO_2 . In this re-965 gard, conditions in sedimentary settings are analogous to those at WAB188. Evidence 966 that considerable methanogenesis proceeds through a hydrogenotrophic pathway under 967 H₂-limited conditions at WAB188 include microbiological data confirming the capacity 968 of *Methanobacterium* to perform hydrogenotrophic methanogenesis at WAB188 and ther-969 modynamic calculations showing that hydrogenotrophic methanogenesis (with H_2 as lim-970 iting substrate) was more energetically favorable than formatotrophic methanogenesis 971 for a fluid with $c_{\sum CO_2}$ and c_{H_2} similar to WAB188 in 2017 (Section 4.2.1; Table 5). Fur-972 ther, the apparent $\alpha_{\rm CO_2/CH_4}$ at WAB188 (based on measured $\delta^{13}C_{\sum CO_2}$ of -13.52 % VPDB; 973 Table 3) is compatible with that of Methanobacterium cultures grown hydrogenotroph-974 ically with excess HCO₃⁻ (aq), which was greater than the $\alpha_{\rm CO_2/CH_4}$ observed for par-975 allel cultures under CO₂-poor conditions (Miller et al., 2018). In sum, the conditions at 976

- $_{977}$ WAB188 contrast starkly with those that prevail in $Ca^{2+} OH^{-}$ fluids, where C sub-
- strates for methanogenesis are often more scarce than H₂. These differences may be re-
- flected in the inverse relationship between $c_{\sum CO_2}$ and $\delta^{13}C_{CH_4}$ across fluids from wells
- WAB188, NSHQ14, and NSHQ04 (Figure S5), which is consistent with an effect of C avail-
- ability on the apparent C isotope effect of microbial methanogenesis.

Rain: pH ~5.5 further ¹³C enrichment of CH₄ via Springs generation Gahh abiotic formate production microbial methane: depleted in HCO₃⁻+H₂=HCOO⁻+H₂O ¹²CH₃D, ¹³CH₃D, formatotrophic methanogenesis ¹²CH₂D₂ vs. eq 4HCOO⁻+4H⁺=CH₄+3CO₂+2H₂O hydrogenotrophic methanogenesis CO₂+4H₂=CH₄+2H₂O entrainment of old, abiotic CH₄ from fluid inclusions ~near CH₄-H₂O and ¹³CH₃D/¹²CH₂D₂ eq. 370-35°C [minimal] active low-*T* FTT synthesis?

982 5 Conclusions

Figure 6. Conceptual model of CH_4 dynamics in Samail Ophiolite. Cross section after Neal and Stanger (1985), Dewandel et al. (2005), and Rempfert et al. (2017). Groundwater flow is depicted with blue arrows. Cross-hatching illustrates fissured zone of aquifer, extending to ~ 50 m depth. A deep tectonic fracture hosting upward groundwater flow is shown as a black line. Yellow dashed line indicates proposed transition between conditions where methanogenesis is limited by H₂ versus C availability. Isotopic systematics are written in black text. *Abbreviations:* eq., equilibrium; *T*, temperature; FTT, Fischer-Tropsch-type.

Through integration of isotopic, microbiological, and hydrogeochemical data, we 983 conclude that substantial microbial CH_4 is produced under varying degrees of C or H_2 984 limitation in subsurface waters of the Samail Ophiolite and mixes with abiotic CH_4 re-985 leased from fluid inclusions (Figure 6). Across subsurface fluids ranging in pH from cir-986 cumneutral to 11.39, microbial CH_4 production is evidenced by 16S rRNA gene sequenc-987 ing and other microbiological data indicating that methanogens are widespread and ac-988 tive in groundwaters in the ophiolite. We propose that CH_4 produced by these microbes 989 constitutes a substantial portion of the total CH_4 pool, which is consistent with our find-990 ing of ${}^{13}CH_3D$ and ${}^{12}CH_2D_2$ relative abundances significantly less than equilibrium. Us-991 ing a simple thermodynamic model, we find that formatotrophic methanogenesis may 992 become more energetically favorable than hydrogenotrophic methanogenesis as Mg^{2+} -003 HCO_3^- waters transition to $Ca^{2+}-OH^-$ waters where $CO_2(aq)$ is extremely scarce, de-994 spite relatively low formate concentrations of ~ $1 \,\mu \text{mol} \cdot \text{L}^{-1}$ across fluid types (Rempfert 995 et al., 2017). This lends geochemical support to recent microbiological findings that in-996 dependently indicate that the activity of formatotrophic methanogens increases relative 997

to hydrogenotrophic methanogens as groundwater pH increases in the ophiolite (Fones et al., 2020).

In addition, an abiotic, fluid inclusion-derived source of CH_4 , C_2H_6 , and C_3H_8 is 1000 inferred from the widespread occurrence of CH₄ in fluid inclusions in peridotites, includ-1001 ing those in Oman, and is supported by the relatively 13 C-enriched compositions of CH₄, 1002 C_2H_6 , and C_3H_8 measured in gases exsolved from peridotite-hosted groundwaters in this 1003 study. The measured δ^{13} C values overlap with those of CH₄, C₂H₆ and C₃H₈ from seafloor 1004 hydrothermal vents where fluid inclusions are the dominant source of these alkanes, sug-1005 gesting similar CH_4 sources across these environments. In contrast, abiotic, low-temperature 1006 reduction of CO_2 to CH_4 appears less likely to contribute substantially to the CH_4 pool 1007 in the study area due to a scarcity of conditions favorable to catalysis, namely, access 1008 of gas-phase H_2 and CO_2/CO to Ru-bearing chromites. 1009

Further, we note an inverse relationship between $c_{\sum CO_2}$ and $\delta^{13}C_{CH_4}$ across ground-1010 waters bearing microbiological evidence of methanogenic activity. This finding supports 1011 the hypothesis that the apparent C isotope fractionation between the C substrate used 1012 by methanogens and the CH_4 they produce is suppressed when the C substrate is lim-1013 iting. Thus, our finding that $\delta^{13}C_{CH_4}$ varies by 90 \% in the Samail Ophiolite suggests 1014 that, in some settings, $\delta^{13}C_{CH_4}$ may be a powerful indicator of transitions from H₂-limited 1015 to C-limited conditions for microbial methanogenesis, rather than a discriminant between 1016 microbial versus abiotic CH_4 . The 16S rRNA gene sequencing data also indicate the pres-1017 ence of microbes capable of CH_4 oxidation, particularly those that can use O_2 as an ox-1018 idant. This oxidation may also contribute in part to the ${}^{13}C$ -enriched composition of CH_4 1019 in the ophiolite, which is considered unusual for CH_4 with a substantial microbial com-1020 ponent. 1021

This study supports the premise that H₂ produced from water/rock reaction can 1022 fuel microbial life, even under challenging conditions of high pH and low oxidant avail-1023 ability. By identifying where and how microbial methanogenesis can reasonably be ex-1024 pected to occur in H_2 -rich, subsurface environments, this work complements theoreti-1025 cal models in guiding the search for rock-hosted life, including extraterrestrial life. For 1026 example, our findings substantiate predictions that microbial methanogenesis could oc-1027 cur in the reduced, alkaline ocean of Saturn's moon, Enceladus (McKay et al., 2008; Glein 1028 et al., 2015; Waite et al., 2017) and in the Martian subsurface (Kral et al., 2014). 1029

1030 Open Research

Data (in Excel format) and source code (in R Markdown format) used to produce the figures, data tables and analyses for this paper (as well as additional data on analytical uncertainties and trace element concentrations) are available online in D. B. Nothaft, Templeton, et al. (2021). Additional DNA sequence data processing codes are available in D. B. Nothaft, Rempfert, and Kraus (2021). The sequences are accessible on the NCBI Short Read Archive under accession PRJNA655565.

1037 Acknowledgments

This research was directly supported by the Rock-Powered Life NASA Astrobiol-1038 ogy Institute (NNA15BB02A). This research also used samples and/or data provided by 1039 the Oman Drilling Project. The Oman Drilling Project (OmanDP) has been possible 1040 through co-mingled funds from the International Continental Scientific Drilling Project 1041 (ICDP), the Sloan Foundation – Deep Carbon Observatory (Grant 2014-3-01, Kelemen 1042 PI), the National Science Foundation (NSF-EAR-1516300, Kelemen PI), the NASA As-1043 trobiology Institute (NNA15BB02A), the German Research Foundation (DFG), the Japanese 1044 Society for the Promotion of Science (JSPS), the European Research Council, the Swiss 1045 National Science Foundation, JAMSTEC, the TAMU-JR Science operator, and contri-1046

¹⁰⁴⁷ butions from the Sultanate of Oman Ministry of Regional Municipalities and Water Re ¹⁰⁴⁸ sources, the Oman Public Authority of Mining, Sultan Qaboos University, CRNS-Univ.
 ¹⁰⁴⁹ Montpellier II, Columbia University, and the University of Southampton. Work at LBNL
 ¹⁰⁵⁰ was supported by the U.S. Department of Energy, Office of Science, Office of Basic En ¹⁰⁵¹ ergy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under Award
 ¹⁰⁵² Number DE-AC02-05CH11231.

We thank the Ministry of Regional Municipalities and Water Resources in the Sul-1053 tanate of Oman (particularly Said Al Habsi, Rashid Al Abri, Salim Al Khanbashi, and 1054 Haider Ahmed Mohammed Alajmi) for allowing access to wells and logistical support, 1055 Zaher Al Sulaimani and Mazin Al Sulaimani from the Oman Water Centre and AZD En-1056 gineering for their technical and logistical support, Jude Coggon for coordinating Oman 1057 Drilling Project activities, Benoît Ildefonse for sharing geologic map data, Eric Ellison 1058 and Kaitlin Rempfert for their assistance in the field and laboratory, Elizabeth Fones 1059 for sharing biomass samples, Emily Kraus for critical discussion of Oman CH₄ cycle pro-1060 cesses, and Noah Fierer, Jen Reeves, Corinne Walsh, Matthew Gebert, and Angela Oliv-1061 erio for assisting with DNA sequencing and interpretation. 1062

1063 **References**

1070

1071

1072

1073

- 1064Abrajano, T., Sturchio, N., Kennedy, B., Lyon, G., Muehlenbachs, K., & Bohlke, J.1065(1990). Geochemistry of reduced gas related to serpentinization of the Zam-1066bales ophiolite, Philippines. Appl. Geochem., 5(5), 625 630. Retrieved from1067http://www.sciencedirect.com/science/article/pii/08832927909006011068(Water-Rock Interactions Special Memorial Issue Ivan Barnes (1931–1989))1069doi: 10.1016/0883-2927(90)90060-I
 - Alsharhan, A. S. (1989). PETROLEUM GEOLOGY OF THE UNITED ARAB EMIRATES. J. Pet. Geol., 12(3), 253-288. Retrieved from https:// onlinelibrary.wiley.com/doi/abs/10.1111/j.1747-5457.1989.tb00197.x doi: 10.1111/j.1747-5457.1989.tb00197.x
- Alt, J. C., Garrido, C. J., Shanks, W., Turchyn, A., Padrón-Navarta, J. A., Sánchez-1074 Vizcaíno, V. L., ... Marchesi, C. (2012).Recycling of water, carbon, and 1075 sulfur during subduction of serpentinites: A stable isotope study of Cerro del 1076 Almirez, Spain. Earth Planet. Sci. Lett., 327-328, 50 - 60. Retrieved from 1077 http://www.sciencedirect.com/science/article/pii/S0012821X12000568 1078 doi: 10.1016/j.epsl.2012.01.029 1079
- 1080Alt, J. C., Schwarzenbach, E. M., Früh-Green, G. L., Shanks, W. C., Bernasconi,1081S. M., Garrido, C. J., ... Marchesi, C. (2013). The role of serpentinites in cy-1082cling of carbon and sulfur: Seafloor serpentinization and subduction metamor-1083phism. Lithos, 178, 40 54. Retrieved from http://www.sciencedirect.com/1084science/article/pii/S00244937120049751085ridges to subduction) doi: 10.1016/j.lithos.2012.12.006
- Alt, J. C., Shanks, W., Crispini, L., Gaggero, L., Schwarzenbach, E. M., Früh-1086 Green, G. L., & Bernasconi, S. M. (2012).Uptake of carbon and sulfur 1087 during seafloor serpentinization and the effects of subduction metamorphism 1088 Chem. Geol., 322-323, 268 - 277. in Ligurian peridotites. Retrieved from 1089 http://www.sciencedirect.com/science/article/pii/S0009254112003154 1090 doi: 10.1016/j.chemgeo.2012.07.009 1091
- 1092Ash, J. L., & Egger, M.(2019, Jun).Exchange catalysis during anaer-1093obic methanotrophy revealed by 12 CH2D2 and 13 CH3D in methane.1094Geochem. Perspect. Lett., 10, 26–30.Retrieved from https://www1095.geochemicalperspectivesletters.org/article1910doi: 10.7185/1096geochemlet.1910doi: 10.7185/
- Assayag, N., Rivé, K., Ader, M., Jézéquel, D., & Agrinier, P. (2006). Improved
 method for isotopic and quantitative analysis of dissolved inorganic carbon in

1099	natural water samples. Rapid Commun. Mass Spectrom., 20(15), 2243–2251.
1100	doi: 10.1002/rcm.2585
1101	Bach, W., Paulick, H., Garrido, C. J., Ildefonse, B., Meurer, W. P., & Humphris,
1102	S. E. (2006). Unraveling the sequence of serpentinization reactions: pet-
1103	rography, mineral chemistry, and petrophysics of serpentinites from MAR
1104	$15 \circ N$ (ODP Leg 209, Site 1274). Geophys. Res. Lett., $33(13)$. Retrieved
1105	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
1106	2006GL025681 doi: 10.1029/2006GL025681
1107	Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., & Wolfe, R. S. (1979, Jun).
1108	Methanogens: reevaluation of a unique biological group. Microbiol. Rev.,
1109	43(2), 260. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/
1110	PMC281474
1111	Barker, J. F., & Fritz, P. (1981, Sep). Carbon isotope fractionation during microbial
1112	methane oxidation. <i>Nature</i> , 293(5830), 289–291. doi: 10.1038/293289a0
1113	Barnes, I., LaMarche, j. V., & Himmelberg, G. (1967). Geochemical evidence of
1114	present-day serpentinization. Science, $156(3776)$, $830-832$. doi: $10.1126/$
1115	science.156.3776.830
1116	Barnes, I., O'Neil, J., & Trescases, J. (1978). Present day serpentinization in New
1117	Caledonia, Oman and Yugoslavia. Geochim. Cosmochim. Acta, 42(1), 144 -
1118	145. Retrieved from http://www.sciencedirect.com/science/article/pii/ 0016703778902259 doi: 10.1016/0016-7037(78)90225-9
1119	Barnes, I., & O'Neil, J. R. (1969). The relationship between fluids in some
1120	fresh alpine-type ultramafics and possible modern serpentinization, west-
1121 1122	ern United States. Geol. Soc. Am. Bull., 80(10), 1947–1960. doi: 10.1130/
1122	0016-7606(1969)80[1947:TRBFIS]2.0.CO;2
1123	Bernard, B., Brooks, J. M., Sackett, W. M., et al. (1977). A geochemical model for
1125	characterization of hydrocarbon gas sources in marine sediments. In <i>Offshore</i>
1126	technology conference (p. $435-438$). doi: $10.4043/2934-MS$
1127	Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A.,
1127 1128	Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Pfannkuche, O. (2000). A marine microbial consortium apparently medi-
1127 1128 1129	Pfannkuche, O. (2000). A marine microbial consortium apparently medi-
1128	
1128 1129	Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. <i>Nature</i> , $407(6804)$, 623–626. Retrieved
1128 1129 1130	Pfannkuche, O. (2000). A marine microbial consortium apparently medi- ating anaerobic oxidation of methane. <i>Nature</i> , 407(6804), 623–626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572
1128 1129 1130 1131	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of system-
1128 1129 1130 1131 1132	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Re-
1128 1129 1130 1131 1132 1133	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/
1128 1129 1130 1131 1132 1133 1134	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495
1128 1129 1130 1131 1132 1133 1134 1135	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen
1128 1129 1130 1131 1132 1133 1134 1135 1136	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. J. Petrol., 51(1-2), 495-512.
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. J. Petrol., 51(1-2), 495-512. doi: 10.1093/petrology/egp049
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. J. Petrol., 51(1-2), 495-512. doi: 10.1093/petrology/egp049 Boudier, F., & Coleman, R. G. (1981). Cross section through the peri-
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. J. Petrol., 51(1-2), 495-512. doi: 10.1093/petrology/egp049 Boudier, F., & Coleman, R. G. (1981). Cross section through the peridotite in the Samail Ophiolite, southeastern Oman Mountains. J. Geo-
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. J. Petrol., 51(1-2), 495-512. doi: 10.1093/petrology/egp049 Boudier, F., & Coleman, R. G. (1981). Cross section through the peridotite in the Samail Ophiolite, southeastern Oman Mountains. J. Geophys. Res.: Solid Earth, 86(B4), 2573-2592. Retrieved from https://
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. J. Petrol., 51(1-2), 495-512. doi: 10.1093/petrology/egp049 Boudier, F., & Coleman, R. G. (1981). Cross section through the peridotite in the Samail Ophiolite, southeastern Oman Mountains. J. Geophys. Res.: Solid Earth, 86(B4), 2573-2592. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB086iB04p02573
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. J. Petrol., 51(1-2), 495-512. doi: 10.1093/petrology/egp049 Boudier, F., & Coleman, R. G. (1981). Cross section through the peridotite in the Samail Ophiolite, southeastern Oman Mountains. J. Geophys. Res.: Solid Earth, 86 (B4), 2573-2592. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB086iB04p02573
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1144 1145 1146 1147 1148	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. J. Petrol., 51(1-2), 495-512. doi: 10.1093/petrology/egp049 Boudier, F., & Coleman, R. G. (1981). Cross section through the peridotite in the Samail Ophiolite, southeastern Oman Mountains. J. Geophys. Res.: Solid Earth, 86(B4), 2573-2592. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB086iB04p02573 Boulart, C., Chavagnac, V., Monnin, C., Delacour, A., Ceuleneer, G., & Hoareau,
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. J. Petrol., 51(1-2), 495-512. doi: 10.1093/petrology/egp049 Boudier, F., & Coleman, R. G. (1981). Cross section through the peridotite in the Samail Ophiolite, southeastern Oman Mountains. J. Geophys. Res.: Solid Earth, 86(B4), 2573-2592. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB086iB04p02573 Boulart, C., Chavagnac, V., Monnin, C., Delacour, A., Ceuleneer, G., & Hoareau, G. (2013). Differences in gas venting from ultramafic-hosted warm springs:
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1144 1145 1146 1147 1148 1149 1150	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 doi: 10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. J. Petrol., 51(1-2), 495-512. doi: 10.1093/petrology/egp049 Boudier, F., & Coleman, R. G. (1981). Cross section through the peridotite in the Samail Ophiolite, southeastern Oman Mountains. J. Geophys. Res.: Solid Earth, 86(B4), 2573-2592. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB086iB04p02573 doi: 10.1029/JB086iB04p02573 Boulart, C., Chavagnac, V., Monnin, C., Delacour, A., Ceuleneer, G., & Hoareau, G. (2013). Differences in gas venting from ultramafic-hosted warm springs: the example of Oman and Voltri ophiolites. Ofioliti, 38(2), 142-156. doi:
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150	 Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Retrieved from https://doi.org/10.1038/35036572 doi: 10.1038/35036572 Boone, D. R. (2015). Methanobacterium. In Bergey's manual of systematics of archaea and bacteria (p. 1-8). American Cancer Society. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.gbm00495 Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33(1), 49 - 64. Retrieved from http://www.sciencedirect.com/science/article/pii/0016703769900921 doi: 10.1016/0016-7037(69)90092-1 Boudier, F., Baronnet, A., & Mainprice, D. (2009, Aug). Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. J. Petrol., 51(1-2), 495-512. doi: 10.1093/petrology/egp049 Boudier, F., & Coleman, R. G. (1981). Cross section through the peridotite in the Samail Ophiolite, southeastern Oman Mountains. J. Geophys. Res.: Solid Earth, 86(B4), 2573-2592. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB086iB04p02573 Boulart, C., Chavagnac, V., Monnin, C., Delacour, A., Ceuleneer, G., & Hoareau, G. (2013). Differences in gas venting from ultramafic-hosted warm springs:

1154	richment of diether lipids at the Lost City Hydrothermal Field indicates a
1155	carbon-limited ecosystem. Geochim. Cosmochim. Acta, 73(1), 102–118. doi:
1156	10.1016/j.gca.2008.10.005
1157	Brazelton, W. J., Thornton, C. N., Hyer, A., Twing, K. I., Longino, A. A., Lang,
1158	S. Q., Schrenk, M. O. (2017). Metagenomic identification of active
1159	methanogens and methanotrophs in serpentinite springs of the Voltri Mas-
1160	sif, Italy. PeerJ, 5, e2945. doi: 10.7717/peerj.2945
1161	Bruni, J., Canepa, M., Chiodini, G., Cioni, R., Cipolli, F., Longinelli, A., Zuc-
1162	colini, M. V. (2002). Irreversible water–rock mass transfer accompanying
1163	the generation of the neutral, Mg–HCO3 and high-pH, Ca–OH spring wa-
1164	ters of the Genova province, Italy. Appl. Geochem., 17(4), 455–474. doi:
1165	10.1016/S0883-2927(01)00113-5
1166	Burnham, A. K. (1989, 3). A simple kinetic model of petroleum formation and
1167	cracking (Tech. Rep. No. UCID-21665). Lawrence Livermore National Lab.,
1168	CA (USA). Retrieved from https://www.osti.gov/biblio/6189092
1169	Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., &
1170	Holmes, S. P. (2016, May). DADA2: High-resolution sample inference from
1171	Illumina amplicon data. Nat. Methods, 13(7), 581. doi: 10.1038/nmeth.3869
1172	Canovas III, P. A., Hoehler, T., & Shock, E. L. (2017). Geochemical bioenergetics
1173	during low-temperature serpentinization: An example from the Samail ophio-
1174	lite, Sultanate of Oman. J. Geophys. Res.: Biogeosci., 122(7), 1821–1847. doi:
1175	$10.1002/2017 \mathrm{JG}003825$
1176	Charlou, J., Donval, J., Douville, E., Jean-Baptiste, P., Radford-Knoery, J.,
1177	Fouquet, Y., Stievenard, M. (2000). Compared geochemical sig-
1178	natures and the evolution of Menez Gwen $(37^{\circ}50'N)$ and Lucky Strike
1179	$(37^{\circ}17'N)$ hydrothermal fluids, south of the Azores Triple Junction on
1180	the Mid-Atlantic Ridge. Chem. Geol., $171(1)$, $49 - 75$. Retrieved from
1181	http://www.sciencedirect.com/science/article/pii/S0009254100002448
1182	doi: 10.1016/S0009-2541(00)00244-8
1183	Charlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P., & Holm, N. (2002). Geo-
1184	chemistry of high H_2 and CH_4 vent fluids issuing from ultramatic rocks at the
1185	Rainbow hydrothermal field (36° 14' N, MAR). Chem. Geol., 191(4), 345–359.
1186	doi: 10.1016/S0009-2541(02)00134-1
1187	Charlou, J. L., Donval, J. P., Konn, C., Ondréas, H., Fouquet, Y., Jean-Baptiste, P.,
1188	& Fourré, E. (2010). High production and fluxes of H_2 and CH_4 and evidence
1189	of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hy-
1190	drothermal systems on the Mid-Atlantic Ridge. In <i>Diversity of hydrothermal</i>
1191	systems on slow spreading ocean ridges (p. 265-296). American Geophysical Union (AGU). Retrieved from https://agupubs.onlinelibrary.wiley.com/
1192	doi/abs/10.1029/2008GM000752 doi: 10.1029/2008GM000752
1193	Charlou, J. L., Fouquet, Y., Donval, J. P., Auzende, J. M., Jean-Baptiste, P., Stieve-
1194	nard, M., & Michel, S. (1996). Mineral and gas chemistry of hydrothermal
1195	fluids on an ultrafast spreading ridge: East Pacific Rise, 17° to 19° S (Naudur
1196 1197	cruise, 1993) phase separation processes controlled by volcanic and tectonic
1197	activity. J. Geophys. Res.: Solid Earth, 101(B7), 15899-15919. Retrieved from
1190	https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96JB00880
1200	doi: 10.1029/96JB00880
1201	Charlton, S. R., & Parkhurst, D. L. (2011). Modules based on the geochemical
1201	model PHREEQC for use in scripting and programming languages. Comput.
1202	<i>Geosci.</i> , 37(1653-1663). doi: 10.1016/j.cageo.2011.02.005
1203	Chavagnac, V., Ceuleneer, G., Monnin, C., Lansac, B., Hoareau, G., & Boulart,
1204	C. (2013). Mineralogical assemblages forming at hyperalkaline warm
1205	springs hosted on ultramafic rocks: A case study of Oman and Ligurian ophi-
1207	olites. Geochem., Geophys., Geosyst., 14(7), 2474-2495. Retrieved from
1208	https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ggge.20146

1209	doi: 10.1002/ggge.20146
1210	Chavagnac, V., Monnin, C., Ceuleneer, G., Boulart, C., & Hoareau, G. (2013).
1210	Characterization of hyperalkaline fluids produced by low-temperature ser-
1212	pentinization of mantle peridotites in the Oman and Ligurian ophiolites.
1213	Geochem., Geophys., Geosyst., 14(7), 2496–2522. doi: 10.1002/ggge.20147
	Cipolli, F., Gambardella, B., Marini, L., Ottonello, G., & Zuccolini, M. V. (2004).
1214	Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri
1215	· · · · · · · · · · · · · · · · · · ·
1216	(Genova, Italy) and reaction path modeling of CO_2 sequestration in ser-
1217	pentinite aquifers. Appl. Geochem., 19(5), 787 - 802. Retrieved from
1218	http://www.sciencedirect.com/science/article/pii/S0883292703002105
1219	doi: 10.1016/j.apgeochem.2003.10.007
1220	Clark, I. D., Fontes, JC., & Fritz, P. (1992). Stable isotope disequilibria in traver-
1221	tine from high pH waters: Laboratory investigations and field observations
1222	from Oman. Geochim. Cosmochim. Acta, 56(5), 2041 - 2050. Retrieved from
1223	http://www.sciencedirect.com/science/article/pii/001670379290328G
1224	doi: $10.1016/0016-7037(92)90328$ -G
1225	Coleman, R. G., & Hopson, C. A. (1981). Introduction to the Oman Ophiolite
1226	Special Issue. J. Geophys. Res.: Solid Earth, 86(B4), 2495-2496. Retrieved
1227	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
1228	JB086iB04p02495 doi: 10.1029/JB086iB04p02495
1229	Collier, M. L. (2012). Spatial-Statistical Properties of Geochemical Variability as
1230	Constraints on Magma Transport and Evolution Processes at Ocean Ridges
1231	(Doctoral dissertation, Columbia University). doi: 10.7916/D82V2P43
1232	Crespo-Medina, M., Twing, K. I., Sánchez-Murillo, R., Brazelton, W. J., McCol-
1233	lom, T. M., & Schrenk, M. O. (2017, May). Methane Dynamics in a Tropical
1234	Serpentinizing Environment: The Santa Elena Ophiolite, Costa Rica. Front.
1235	Microb., 8. Retrieved from http://dx.doi.org/10.3389/fmicb.2017.00916
1236	doi: 10.3389/fmicb.2017.00916
1237	Cumming, E. A., Rietze, A., Morrissey, L. S., Cook, M. C., Rhim, J. H., Ono,
1238	S., & Morrill, P. L. (2019). Potential sources of dissolved methane at
1230	the Tablelands, Gros Morne National Park, NL, CAN: A terrestrial site
1239	of serpentinization. <i>Chem. Geol.</i> , 514, 42 - 53. Retrieved from http://
1240	www.sciencedirect.com/science/article/pii/S0009254119301299 doi:
1241	10.1016/j.chemgeo.2019.03.019
	de Obeso, J. C., & Kelemen, P. B. (2018). Fluid rock interactions on residual man-
1243	tle peridotites overlain by shallow oceanic limestones: Insights from Wadi
1244	
1245	Fins, Sultanate of Oman. Chem. Geol., 498, 139 - 149. Retrieved from
1246	http://www.sciencedirect.com/science/article/pii/S0009254118304625 doi: 10.1016/j.chemgeo.2018.09.022
1247	
1248	Deines, P. (2002). The carbon isotope geochemistry of mantle xenoliths. <i>Earth-Sci.</i> $R_{\rm HV} = 58(2) \cdot 247 = 272$
1249	<i>Rev.</i> , 58(3), 247 - 278. Retrieved from http://www.sciencedirect.com/
1250	science/article/pii/S0012825202000648 doi: 10.1016/S0012-8252(02)
1251	
1252	Delacour, A., Früh-Green, G. L., Bernasconi, S. M., Schaeffer, P., & Kelley, D. S.
1253	(2008). Carbon geochemistry of serpentinites in the Lost City Hydrother-
1254	mal System (30 °N, MAR). Geochim. Cosmochim. Acta, $72(15)$, 3681 - 3702.
1255	Retrieved from http://www.sciencedirect.com/science/article/pii/
1256	S0016703708002585 doi: 10.1016/j.gca.2008.04.039
1257	Dewandel, B., Boudier, F., Kern, H., Warsi, W., & Mainprice, D. (2003). Seis-
1258	mic wave velocity and anisotropy of serpentinized peridotite in the Oman
1259	ophiolite. $Tectonophysics, 370(1), 77 - 94.$ Retrieved from http://
1260	www.sciencedirect.com/science/article/pii/S0040195103001781 $(Phys-$
1261	ical Properties of Rocks and other Geomaterials, a Special Volume to honour
1262	Professor H. Kern) doi: $10.1016/S0040-1951(03)00178-1$
1263	Dewandel, B., Lachassagne, P., Boudier, F., Al-Hattali, S., Ladouche, B., Pinault, J

1264	L., & Al-Suleimani, Z. (2005, 5). A conceptual hydrogeological model of ophi-
1265	olite hard-rock aquifers in Oman based on a multiscale and a multidisciplinary
1266	approach. Hydrogeol. J., $13(5-6)$, 708–726. doi: $10.1007/s10040-005-0449-2$
1267	Etiope, G. (2017). Methane origin in the Samail ophiolite: Comment on "Modern
1268	water/rock reactions in Oman hyperalkaline peridotite aquifers and impli-
1269	cations for microbial habitability" [Geochim. Cosmochim. Acta 179 (2016)
1270	217–241]. Geochim. Cosmochim. Acta, 197, 467 - 470. Retrieved from
1271	http://www.sciencedirect.com/science/article/pii/S0016703716304379
1272	doi: 10.1016/j.gca.2016.08.001
1273	Etiope, G., Ifandi, E., Nazzari, M., Procesi, M., Tsikouras, B., Ventura, G., Szat-
1274	mari, P. (2018, Jun). Widespread abiotic methane in chromitites. Sci. Rep.,
1275	8(1). Retrieved from http://dx.doi.org/10.1038/s41598-018-27082-0
1276	doi: 10.1038/s41598-018-27082-0
1277	Etiope, G., & Ionescu, A. (2015). Low-temperature catalytic CO ₂ hydrogena-
1278	tion with geological quantities of ruthenium: a possible abiotic CH_4 source
1279	in chromitite-rich serpentinized rocks. $Geofluids, 15(3), 438-452.$ doi:
1280	10.1111/gfl.12106
1281	Etiope, G., Judas, J., & Whiticar, M. (2015). Occurrence of abiotic methane in
1282	the eastern United Arab Emirates ophiolite aquifer. Arabian J. Geosci., 8(12),
1283	11345–11348. doi: 10.1007/s12517-015-1975-4
1284	Etiope, G., Vadillo, I., Whiticar, M., Marques, J., Carreira, P., Tiago, I., Ur-
1285	resti, B. (2016). Abiotic methane seepage in the Ronda peridotite mas-
1286	sif, southern Spain. Appl. Geochem., 66, 101–113. doi: doi.org/10.1016/
1287	j.apgeochem.2015.12.001
1288	Etiope, G., & Whiticar, M. (2019). Abiotic methane in continental ultramafic
1289	rock systems: Towards a genetic model. Appl. Geochem., 102, 139 - 152.
1290	Retrieved from http://www.sciencedirect.com/science/article/pii/
1291	S0883292719300204 doi: 10.1016/j.apgeochem.2019.01.012
1291 1292	S0883292719300204 doi: 10.1016/j.apgeochem.2019.01.012 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers,
	 S0883292719300204 doi: 10.1016/j.apgeochem.2019.01.012 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane
1292	Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane
1292 1293	Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers,
1292 1293 1294	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/
1292 1293 1294 1295	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883
1292 1293 1294 1295 1296	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti-
1292 1293 1294 1295 1296 1297	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from
1292 1293 1294 1295 1296 1297 1298	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/
1292 1293 1294 1295 1296 1297 1298 1299	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145
1292 1293 1294 1295 1296 1297 1298 1299 1300	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016).
1292 1293 1294 1295 1296 1297 1298 1299 1300	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cos-
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cos- mochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cos- mochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/ science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cos- mochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/ science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., &
1292 1293 1294 1295 1296 1297 1308 1300 1301 1302 1303 1304 1305 1306	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cos- mochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/ science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., & Richnow, HH. (2011). Different types of methane monooxygenases produce
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cos- mochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/ science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., & Richnow, HH. (2011). Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane
1292 1293 1294 1295 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cos- mochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/ science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., & Richnow, HH. (2011). Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim. Acta, 75(5), 1173 - 1184. Retrieved from
1292 1293 1294 1295 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1308	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cos- mochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/ science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., & Richnow, HH. (2011). Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim. Cosmochim. Acta, 75(5), 1173 - 1184. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703710006691
1292 1293 1294 1295 1296 1297 1298 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cos- mochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/ science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., & Richnow, HH. (2011). Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim. Cosmochim. Acta, 75(5), 1173 - 1184. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703710006691 doi: 10.1016/j.gca.2010.12.006 Fiebig, J., Stefánsson, A., Ricci, A., Tassi, F., Viveiros, F., Silva, C., Mountain, B. W. (2019). Abiogenesis not required to explain the origin of volcanic-
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cos- mochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/ science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., & Richnow, HH. (2011). Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim. Cosmochim. Acta, 75(5), 1173 - 1184. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703710006691 doi: 10.1016/j.gca.2010.12.006 Fiebig, J., Stefánsson, A., Ricci, A., Tassi, F., Viveiros, F., Silva, C., Mountain,
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/ nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpenti- nite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/ annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cos- mochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/ science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., & Richnow, HH. (2011). Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim. Cosmochim. Acta, 75(5), 1173 - 1184. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703710006691 doi: 10.1016/j.gca.2010.12.006 Fiebig, J., Stefánsson, A., Ricci, A., Tassi, F., Viveiros, F., Silva, C., Mountain, B. W. (2019). Abiogenesis not required to explain the origin of volcanic-
1292 1293 1294 1295 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpentinite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cosmochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., & Richnow, HH. (2011). Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim. Cosmochim. Acta, 75(5), 1173 - 1184. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703710006691 doi: 10.1016/j.gca.2010.12.006 Fiebig, J., Stefánsson, A., Ricci, A., Tassi, F., Viveiros, F., Silva, C., Mountain, B. W. (2019). Abiogenesis not required to explain the origin of volcanic-hydrothermal hydrocarbons. Geochem. Perspect. Lett., 11, 23-27. Retrieved
1292 1293 1294 1295 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpentinite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cosmochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., & Richnow, HH. (2011). Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim. Cosmochim. Acta, 75(5), 1173 - 1184. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703710006691 doi: 10.1016/j.gca.2010.12.006 Fiebig, J., Stefánsson, A., Ricci, A., Tassi, F., Viveiros, F., Silva, C., Mountain, B. W. (2019). Abiogenesis not required to explain the origin of volcanic-hydrothermal hydrocarbons. Geochem. Perspect. Lett., 11, 23-27. Retrieved from http://www.geochemicalperspectivesletters.org/article1920 doi:
1292 1293 1294 1295 1296 1297 1298 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpentinite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cosmochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., & Richnow, HH. (2011). Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim. Acta, 75(5), 1173 - 1184. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703710006691 doi: 10.1016/j.gca.2010.12.006 Fiebig, J., Stefánsson, A., Ricci, A., Tassi, F., Viveiros, F., Silva, C., Mountain, B. W. (2019). Abiogenesis not required to explain the origin of volcanic-hydrothermal hydrocarbons. Geochem. Perspect. Lett., 11, 23-27. Retrieved from http://www.geochemicalperspectivesletters.org/article1920 doi: 10.7185/geochemlet.1920
1292 1293 1294 1295 1296 1297 1298 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314	 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Strous, M. (2010, Mar). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 (7288), 543. doi: 10.1038/nature08883 Evans, B. W. (1977). Metamorphism of alpine peridotite and serpentinite. Annu. Rev. Earth Planet. Sci., 5(1), 397-447. Retrieved from https://doi.org/10.1146/annurev.ea.05.050177.002145 doi: 10.1146/annurev.ea.05.050177.002145 Falk, E., Guo, W., Paukert, A., Matter, J., Mervine, E., & Kelemen, P. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochim. Cosmochim. Acta, 192, 1 - 28. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703716303568 doi: 10.1016/j.gca.2016.06.026 Feisthauer, S., Vogt, C., Modrzynski, J., Szlenkier, M., Krüger, M., Siegert, M., & Richnow, HH. (2011). Different types of methane monoxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim. Cosmochim. Acta, 75(5), 1173 - 1184. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703710006691 doi: 10.1016/j.gca.2010.12.006 Fiebig, J., Stefánsson, A., Ricci, A., Tassi, F., Viveiros, F., Silva, C., Mountain, B. W. (2019). Abiogenesis not required to explain the origin of volcanic-hydrothermal hydrocarbons. Geochem. Perspect. Lett., 11, 23-27. Retrieved from http://www.seochemicalperspectivesletters.org/article1920 doi: 10.7185/geochemlet.1920 Fones, E. M., Colman, D. R., Kraus, E. A., Nothaft, D. B., Poudel, S., Rempfert,

1319	Fones, E. M., Colman, D. R., Kraus, E. A., Stepanauskas, R., Templeton, A. S.,
1320	Spear, J. R., & Boyd, E. S. (2020). Diversification of methanogens into
1321	hyperalkaline serpentinizing environments through adaptations to minimize
1322	oxidant limitation. ISME J Retrieved from https://doi.org/10.1038/
1323	s41396-020-00838-1 doi: 10.1038/s41396-020-00838-1
1324	Fritz, P., Clark, I., Fontes, JC., Whiticar, M., & Faber, E. (1992). Deuterium and
1325	^{13}C evidence for low temperature production of hydrogen and methane in a
1326	highly alkaline groundwater environment in Oman. In International symposium
1327	on water-rock interaction (Vol. 1, pp. 793–796). AA Balkema Rotterdam.
1328	Frost, B. R. (1985, Feb). On the Stability of Sulfides, Oxides, and Native Metals in
1329	Serpentinite. J. Petrol., 26(1), 31–63. doi: 10.1093/petrology/26.1.31
1330	Giunta, T., Young, E. D., Warr, O., Kohl, I., Ash, J. L., Martini, A., Lol-
1331	lar, B. S. (2019). Methane sources and sinks in continental sedimentary
1332	systems: New insights from paired clumped isotopologues ¹ 3CH ₃ D and
1333	¹ 2 CH ₂ D ² . Geochim. Cosmochim. Acta, 245, 327 - 351. Retrieved from
1334	http://www.sciencedirect.com/science/article/pii/S0016703718306161
1335	doi: 10.1016/j.gca.2018.10.030
	Glein, C. R., Baross, J. A., & Waite Jr, J. H. (2015). The pH of Enceladus' ocean.
1336	Geochim. Cosmochim. Acta, 162, 202–219. doi: 10.1016/j.gca.2015.04.017
1337	Glein, C. R., & Zolotov, M. Y. (2020, 02). Hydrogen, Hydrocarbons, and Habitabil-
1338	ity Across the Solar System. <i>Elements</i> , 16(1), 47-52. Retrieved from https://
1339	doi.org/10.2138/gselements.16.1.47 doi: 10.2138/gselements.16.1.47
1340	, -
1341	Glennie, K., Boeuf, M., Clarke, M. H., Moody-Stuart, M., Pilaar, W., & Reinhardt,
1342	B. (1973). Late Cretaceous nappes in Oman Mountains and their geologic
1343	evolution. AAPG Bull., 57(1), 5–27. doi: 10.1306/819A4240-16C5-11D7
1344	-8645000102C1865D
1345	Godard, M., Jousselin, D., & Bodinier, JL. (2000). Relationships between geo-
1346	chemistry and structure beneath a palaeo-spreading centre: a study of the
1347	mantle section in the Oman ophiolite. Earth Planet. Sci. Lett., 180(1), 133 -
1348	148. Retrieved from http://www.sciencedirect.com/science/article/pii/
1349	S0012821X00001497 doi: 10.1016/S0012-821X(00)00149-7
1350	Grozeva, N. G., Klein, F., Seewald, J. S., & Sylva, S. P. (2020, FEB 21).
1351	Chemical and isotopic analyses of hydrocarbon-bearing fluid inclusions in
1352	olivine-rich rocks [Article]. Philos. Trans. R. Soc., A, 378 (2165, SI). doi:
1353	10.1098/rsta.2018.0431
1354	Gruen, D. S., Wang, D. T., Könneke, M., Topçuoğlu, B. D., Stewart, L. C., Gold-
1355	hammer, T., Ono, S. (2018). Experimental investigation on the con-
1356	trols of clumped isotopologue and hydrogen isotope ratios in microbial
1357	methane. Geochim. Cosmochim. Acta, 237, 339 - 356. Retrieved from
1358	http://www.sciencedirect.com/science/article/pii/S0016703718303442
1359	doi: 10.1016/j.gca.2018.06.029
1360	Guilmette, C., Smit, M. A., van Hinsbergen, D. J. J., Gürer, D., Corfu, F., Charette,
1361	B., Savard, D. (2018). Forced subduction initiation recorded in the
1362	sole and crust of the Semail Ophiolite of Oman. Nat. Geosci., 11(9), 688–
1363	695. Retrieved from https://doi.org/10.1038/s41561-018-0209-2 doi:
1364	10.1038/s41561-018-0209-2
1365	Hanghøj, K., Kelemen, P. B., Hassler, D., & Godard, M. (2010, Jan). Com-
1366	position and Genesis of Depleted Mantle Peridotites from the Wadi Tayin
1367	Massif, Oman Ophiolite; Major and Trace Element Geochemistry, and
1368	Os Isotope and PGE Systematics. J. Petrol., 51(1-2), 201–227. doi:
1369	10.1093/petrology/egp077
1370	Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiol. Mol.
1371	Biol. Rev., 60(2), 439-471. Retrieved from https://mmbr.asm.org/content/
1372	60/2/439
	Honny E A Devenue P Malti I S Cilmour C C Wassa C P Man

1373 Henry, E. A., Devereux, R., Maki, J. S., Gilmour, C. C., Woese, C. R., Man-

1374	delco, L., Mitchell, R. (1994). Characterization of a new thermophilic
1375	sulfate-reducing bacterium. Arch. Microbiol., 161(1), 62–69. Retrieved from
1376	https://doi.org/10.1007/BF00248894 doi: 10.1007/BF00248894
1377	Hoehler, T. M. (2004). Biological energy requirements as quantitative bound-
1378	ary conditions for life in the subsurface. Geobiology, $2(4)$, 205-215. Re-
1379	trieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/
1380	j.1472-4677.2004.00033.x doi: 10.1111/j.1472-4677.2004.00033.x
1381	Horibe, Y., & Craig, H. (1995). DH fractionation in the system methane-hydrogen-
1382	water. Geochim. Cosmochim. Acta, $59(24)$, $5209-5217$. doi: $10.1016/0016$
1383	-7037(95)00391-6
1384	Hunt, J. M. (1996). Petroleum geochemistry and geology. New York: W.H. Freeman.
1385	Jacquemin, M., Beuls, A., & Ruiz, P. (2010). Catalytic production of methane from
1386	CO_2 and H_2 at low temperature: Insight on the reaction mechanism. <i>Catal.</i>
1387	Today, 157(1-4), 462–466. doi: 10.1016/j.cattod.2010.06.016
1388	Johnson, J. W., Oelkers, E. H., & Helgeson, H. C. (1992). SUPCRT92: A
1389	software package for calculating the standard molal thermodynamic prop-
1390	erties of minerals, gases, aqueous species, and reactions from 1 to 5000
1391	bar and 0 to 1000°C. Comput. Geosci., 18(7), 899-947. Retrieved from
1392	https://www.sciencedirect.com/science/article/pii/009830049290029Q
1393	doi: 10.1016/0098-3004(92)90029-Q
1394	Kampbell, D., Wilson, J., & McInnes, D. (1998). DETERMINING DISSOLVED
1395	HYDROGEN, METHANE, AND VINYL CHLORIDE CONCENTRATIONS
1396	IN AQUEOUS SOLUTION ON A NANOMOLAR SCALE WITH THE BUB-
1397	BLE STRIP METHOD. In Proceedings of the 1998 conference on hazardous
1398	<i>waste research</i> (p. 176-190).
1399	Kelemen, P., Al Rajhi, A., Godard, M., Ildefonse, B., Köpke, J., MacLeod, C.,
1400	Teagle, D. (2013). Scientific drilling and related research in the samail ophio-
1401	lite, sultanate of Oman. Scientific Drilling 2013 (2013), Nr. 15, $2013(15), 64-$
1402	71. Retrieved from https://www.repo.uni-hannover.de/handle/123456789/
1403	1086
1404	Kelemen, P., Matter, J., Teagle, D., Coggon, J., & the Oman Drilling Project Sci-
1405	ence Team. (2020). Proceedings of the oman drilling project. In Proceed-
1406	ings of the oman drilling project (p. All pages.). College Station, TX. doi:
1407	10.14379/OmanDP.proc.2020
1408	Kelemen, P. B., & Matter, J. (2008). In situ carbonation of peridotite for CO_2 stor-
1409	age. Proc. Natl. Acad. Sci. U. S. A., 105(45), 17295–17300. doi: 10.1073/pnas
1410	.0805794105
1411	Kelemen, P. B., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., & Blusz-
1412	tajn, J. (2011). Rates and mechanisms of mineral carbonation in peri-
1413	dotite: natural processes and recipes for enhanced, in situ CO_2 capture
1414	and storage. Annu. Rev. Earth Planet. Sci., 39, 545–576. doi: 10.1146/
1415	annurev-earth-092010-152509
1416	Kelley, D. S. (1996). Methane-rich fluids in the oceanic crust. J. Geophys. Res.:
1417	Solid Earth, 101 (B2), 2943–2962. doi: 10.1029/95JB02252
1418	Kelley, D. S., & Früh-Green, G. L. (1999). Abiogenic methane in deep-seated mid-
1419	ocean ridge environments: Insights from stable isotope analyses. J. Geophys.
1420	<i>Res.: Solid Earth</i> , <i>104</i> (B5), 10439–10460. doi: 10.1029/1999JB900058
1421	Kieft, T. L. (2016). Microbiology of the Deep Continental Biosphere. In <i>Their</i>
1422	world: A diversity of microbial environments (pp. 225–249). Cham: Springer
1423	International Publishing. Retrieved from https://doi.org/10.1007/978-3
1424	-319-28071-4_6 doi: 10.1007/978-3-319-28071-4_6
1425	Kieft, T. L., McCuddy, S. M., Onstott, T. C., Davidson, M., Lin, LH., Mislowack,
1426	B., van Heerden, A. (2005). Geochemically Generated, Energy-Rich
1427	Substrates and Indigenous Microorganisms in Deep, Ancient Groundwater.
1428	Geomicrobiol. J., 22(6), 325-335. Retrieved from https://doi.org/10.1080/

1429	01490450500184876 doi: 10.1080/01490450500184876
1430	Klein, F., & Bach, W. (2009, 02). Fe–Ni–Co–O–S Phase Relations in Peridotite–
1431	Seawater Interactions. J. Petrol., 50(1), 37-59. Retrieved from https://doi
1432	.org/10.1093/petrology/egn071 doi: 10.1093/petrology/egn071
1433	Klein, F., Bach, W., Jöns, N., McCollom, T., Moskowitz, B., & Berquó, T. (2009).
1434	Iron partitioning and hydrogen generation during serpentinization of abyssal
1435	peridotites from 15 °N on the Mid-Atlantic Ridge. Geochim. Cosmochim.
1436	Acta, 73(22), 6868 - 6893. Retrieved from http://www.sciencedirect.com/
1437	science/article/pii/S0016703709005353 doi: 10.1016/j.gca.2009.08.021
1438	Klein, F., Grozeva, N. G., & Seewald, J. S. (2019). Abiotic methane synthesis and
1439	serpentinization in olivine-hosted fluid inclusions. Proc. Natl. Acad. Sci. U. S.
1440	A., 116(36), 17666-17672. Retrieved from https://www.pnas.org/content/
1441	116/36/17666 doi: 10.1073/pnas.1907871116
1442	Knittel, K., & Boetius, A. (2009). Anaerobic Oxidation of Methane: Progress with
1443	an Unknown Process. Annu. Rev. Microbiol., 63(1), 311-334. Retrieved from
1444	https://doi.org/10.1146/annurev.micro.61.080706.093130 (PMID:
1445	19575572) doi: 10.1146/annurev.micro.61.080706.093130
1446	Kopf, S., Davidheiser-Kroll, B., & Kocken, I. (2021). Isoreader: An R package to
1447	read stable isotope data files for reproducible research. J. Open Source Soft-
1448	ware, $6(61)$, 2878. Retrieved from https://doi.org/10.21105/joss.02878
1449	doi: 10.21105/joss.02878
1450	Kral, T. A., Birch, W., Lavender, L. E., & Virden, B. T. (2014). Potential use
1451	of highly insoluble carbonates as carbon sources by methanogens in the
1452	subsurface of Mars. <i>Planet. Space Sci.</i> , 101, 181 - 185. Retrieved from
1453	http://www.sciencedirect.com/science/article/pii/S0032063314002049
1454	doi: 10.1016/j.pss.2014.07.008
1455	Kraus, E. A., Nothaft, D., Stamps, B. W., Rempfert, K. R., Ellison, E. T., Mat-
1455	ter, J. M., Spear, J. R. (2021). Molecular Evidence for an Active
1457	Microbial Methane Cycle in Subsurface Serpentinite-Hosted Groundwa-
1458	ters in the Samail Ophiolite, Oman. Appl. Environ. Microbiol., 87(2).
1459	Retrieved from https://aem.asm.org/content/87/2/e02068-20 doi:
1460	10.1128/AEM.02068-20
1461	Kumagai, H., Nakamura, K., Toki, T., Morishita, T., Okino, K., Ishibashi, Ji.,
1462	Takai, K. (2008, nov). Geological background of the Kairei and Ed-
1463	mond hydrothermal fields along the Central Indian Ridge : Implications
1464	for the distinct chemistry between their vent fluids. <i>Geofluids</i> , 8(4), 239-
1465	251. Retrieved from https://ci.nii.ac.jp/naid/120006389526/en/ doi:
1466	10.1111/j.1468-8123.2008.00223.x
1467	Labidi, J., Young, E., Giunta, T., Kohl, I., Seewald, J., Tang, H., Früh-Green,
1468	G. (2020). Methane thermometry in deep-sea hydrothermal systems:
1469	Evidence for re-ordering of doubly-substituted isotopologues during fluid
1470	cooling. Geochim. Cosmochim. Acta, 288, 248 - 261. Retrieved from
1471	http://www.sciencedirect.com/science/article/pii/S0016703720305068
1472	doi: 10.1016/j.gca.2020.08.013
1473	Lang, S. Q., Früh-Green, G. L., Bernasconi, S. M., Brazelton, W. J., Schrenk, M. O.,
1474	& McGonigle, J. M. (2018, Jan). Deeply-sourced formate fuels sulfate reducers
1475	but not methanogens at Lost City hydrothermal field. Sci. Rep., $8(1)$, 755.
1476	doi: 10.1038/s41598-017-19002-5
1477	Laso-Pérez, R., Hahn, C., van Vliet, D. M., Tegetmeyer, H. E., Schubotz, F., Smit,
1478	N. T., Wegener, G. (2019). Anaerobic Degradation of Non-Methane
1470	
	Alkanes by "Candidatus Methanoliparia" in Hydrocarbon Seeps of the Gulf of
1480	Alkanes by "Candidatus Methanoliparia" in Hydrocarbon Seeps of the Gulf of Mexico. $mBio$, $10(4)$. Retrieved from https://mbio.asm.org/content/10/4/
1480 1481	Mexico. mBio, $10(4)$. Retrieved from https://mbio.asm.org/content/10/4/
1481	Mexico. <i>mBio</i> , 10(4). Retrieved from https://mbio.asm.org/content/10/4/e01814-19 doi: 10.1128/mBio.01814-19
	Mexico. mBio, $10(4)$. Retrieved from https://mbio.asm.org/content/10/4/

1484	Am. J. Sci., $320(3)$, 185–235. doi: $10.2475/03.2020.01$
1485	Lippard, S., Shelton, A., & Gass, I. (1986). The Ophiolite of Northern Oman
1486	(Vol. 11). Geological Society of London. Retrieved from https://
1487	mem.lyellcollection.org/content/11/1/39 doi: 10.1144/GSL.MEM
1488	.1986.011.01.03
1489	Lowell, R., Kolandaivelu, K., & Rona, P. (2014). Hydrothermal Activity. In
1490	Reference module in earth systems and environmental sciences. Elsevier.
1491	Retrieved from http://www.sciencedirect.com/science/article/pii/
1492	B9780124095489091326 doi: 10.1016/B978-0-12-409548-9.09132-6
1493	Luesken, F. A., Wu, M. L., Op den Camp, H. J. M., Keltjens, J. T., Stunnen-
1494	berg, H., Francoijs, KJ., Jetten, M. S. M. (2012). Effect of oxygen
1495	on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': ki-
1496	netic and transcriptional analysis. Environ. Microbiol., 14(4), 1024-1034.
1497	Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/
1498	j.1462-2920.2011.02682.x doi: 10.1111/j.1462-2920.2011.02682.x
1499	MacDougall, D., Crummett, W. B., et al. (1980). Guidelines for data acquisition
1500	and data quality evaluation in environmental chemistry. Anal. Chem., 52(14),
1501	2242-2249.
1502	Marques, J., Etiope, G., Neves, M., Carreira, P., Rocha, C., Vance, S.,
1503	Suzuki, S. (2018). Linking serpentinization, hyperalkaline mineral wa-
1504	ters and abiotic methane production in continental peridotites: an inte-
1505	grated hydrogeological-bio-geochemical model from the Cabeço de Vide
1506	CH ₄ -rich aquifer (Portugal). Appl. Geochem., 96, 287 - 301. Retrieved from
1507	http://www.sciencedirect.com/science/article/pii/S0883292718301987
1508	doi: 10.1016/j.apgeochem.2018.07.011
1509	Martini, A. M., Walter, L. M., Ku, T. C. W., Budai, J. M., McIntosh, J. C., &
1510	Schoell, M. (2003, 08). Microbial production and modification of gases
1511	in sedimentary basins: A geochemical case study from a Devonian shale
1512	gas play, Michigan basin. AAPG Bull., 87(8), 1355-1375. Retrieved from
1513	https://doi.org/10.1306/031903200184 doi: 10.1306/031903200184
1514	Matter, J. M., Pezard, P. A., Henry, G., Brun, L., Célérier, B., Lods, G., Al
1515	Qassabi, A. (2017, December). Oman Drilling Project Phase I Borehole
1516	Geophysical Survey. AGU Fall Meeting Abstracts.
1517	Matter, J. M., Waber, H., Loew, S., & Matter, A. (2006). Recharge ar-
1518	eas and geochemical evolution of groundwater in an alluvial aquifer sys-
1519	tem in the Sultanate of Oman. $Hydrogeol. J., 14(1-2), 203-224.$ doi:
1520	10.1007/s10040-004-0425-2
1521	McCollom, T. M. (1999). Methanogenesis as a potential source of chemical energy
1522	for primary biomass production by autotrophic organisms in hydrothermal
1523	systems on Europa. Journal of Geophysical Research: Planets, 104(E12),
1524	30729 - 30742. doi: $10.1029 / 1999 JE001126$
1525	McCollom, T. M. (2016). Abiotic methane formation during experimental serpen-
1526	tinization of olivine. <i>Proc. Natl. Acad. Sci. U. S. A.</i> , 113(49), 13965–13970.
1527	doi: 10.1073/pnas.1611843113
1528	McCollom, T. M., & Bach, W. (2009). Thermodynamic constraints on hydrogen
1529	generation during serpentinization of ultramafic rocks. Geochim. Cosmochim.
1530	Acta, 73(3), 856-875. doi: 10.1016/j.gca.2008.10.032
1531	McCollom, T. M., & Seewald, J. S. (2003). Experimental constraints on the hy-
1532	drothermal reactivity of organic acids and acid anions: I. Formic acid and
1533	formate. Geochim. Cosmochim. Acta, 67(19), 3625 - 3644. Retrieved from
1534	http://www.sciencedirect.com/science/article/pii/S0016703703001364
1535	doi: 10.1016/S0016-7037(03)00136-4
1536	McDermott, J. M., Seewald, J. S., German, C. R., & Sylva, S. P. (2015). Pathways
1537	for abiotic organic synthesis at submarine hydrothermal fields. Proc. Natl.
1538	Acad. Sci. U. S. A., 112(25), 7668–7672. doi: 10.1073/pnas.1506295112

1539	McKay, C. P., Porco, C. C., Altheide, T., Davis, W. L., & Kral, T. A. (2008).
1540	The Possible Origin and Persistence of Life on Enceladus and Detection of
1541	Biomarkers in the Plume. Astrobiology, $8(5)$, 909-919. Retrieved from
1542	https://doi.org/10.1089/ast.2008.0265 (PMID: 18950287) doi:
1543	10.1089/ast.2008.0265
1544	Ménez, B. (2020, 02). Abiotic Hydrogen and Methane: Fuels for Life. <i>Elements</i> ,
1545	16(1), 39-46. Retrieved from https://doi.org/10.2138/gselements.16.1
1546	.39 doi: 10.2138/gselements.16.1.39
1547	Merlivat, L., Pineau, F., & Javoy, M. (1987). Hydrothermal vent waters at
1548	13 °N on the East Pacific Rise: isotopic composition and gas concentra-
1549	tion. Earth Planet. Sci. Lett., 84(1), 100 - 108. Retrieved from http://
1550	www.sciencedirect.com/science/article/pii/0012821X87901804 doi:
1551	10.1016/0012-821X(87)90180-4
1552	Mervine, E. M., Humphris, S. E., Sims, K. W., Kelemen, P. B., & Jenkins,
1553	W. J. (2014). Carbonation rates of peridotite in the Samail Ophio-
1554	lite, Sultanate of Oman, constrained through ¹⁴ C dating and stable iso-
1555	topes. Geochim. Cosmochim. Acta, 126, 371 - 397. Retrieved from
1556	http://www.sciencedirect.com/science/article/pii/S0016703713006467
1557	doi: 10.1016/j.gca.2013.11.007
1558	Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M.,
1559	Gulin, M. B. (2002). Microbial Reefs in the Black Sea Fueled by Anaer-
1560	obic Oxidation of Methane. Science, 297(5583), 1013–1015. Retrieved
1561	from https://science.sciencemag.org/content/297/5583/1013 doi:
1562	10.1126/science.1072502
1563	Milkov, A. V., & Etiope, G. (2018). Revised genetic diagrams for natural gases
1564	based on a global dataset of $j20,000$ samples. Org. Geochem., 125, 109–120.
1565	doi: 10.1016/j.orggeochem.2018.09.002
1566	Miller, H. M., Chaudhry, N., Conrad, M. E., Bill, M., Kopf, S. H., & Templeton,
1567	A. S. (2018). Large carbon isotope variability during methanogenesis under
1568	alkaline conditions. Geochim. Cosmochim. Acta, 237, 18 - 31. Retrieved from
1569	http://www.sciencedirect.com/science/article/pii/S0016703718303223
1570	doi: 10.1016/j.gca.2018.06.007
1571	Miller, H. M., Matter, J. M., Kelemen, P., Ellison, E. T., Conrad, M., Fierer, N.,
1572	Templeton, A. S. (2017). Reply to "Methane origin in the Samail ophi-
1573	olite: Comment on 'Modern water/rock reactions in Oman hyperalkaline
1574	peridotite aquifers and implications for microbial habitability", [Geochim. Cos-
1575	mochim. Acta 179 (2016) 217–241]. Geochim. Cosmochim. Acta, 197, 471 -
1576	473. Retrieved from http://www.sciencedirect.com/science/article/pii/
1577	S0016703716306482 doi: 10.1016/j.gca.2016.11.011
1578	Miller, H. M., Matter, J. M., Kelemen, P., Ellison, E. T., Conrad, M. E., Fierer,
1579	N., Templeton, A. S. (2016). Modern water/rock reactions in Oman
1580	hyperalkaline peridotite aquifers and implications for microbial habit-
1581	ability. Geochim. Cosmochim. Acta, 179, 217 - 241. Retrieved from
1582	http://www.sciencedirect.com/science/article/pii/S0016703716300205
1583	doi: 10.1016/j.gca.2016.01.033
1584	Miller, H. M., Mayhew, L. E., Ellison, E. T., Kelemen, P., Kubo, M., & Templeton,
1585	A. S. (2017). Low temperature hydrogen production during experimental hy-
1586	dration of partially-serpentinized dunite. Geochim. Cosmochim. Acta, 209, 161
1587	- 183. Retrieved from http://www.sciencedirect.com/science/article/
1588	pii/S0016703717302454 doi: 10.1016/j.gca.2017.04.022
1589	Miura, M., Arai, S., & Mizukami, T. (2011). Raman spectroscopy of hydrous in-
1590	clusions in olivine and orthopyroxene in ophiolitic harzburgite: Implications
1591	for elementary processes in serpentinization. J. Mineral. Petrol. Sci., advpub,
1592	1103030170-1103030170. doi: 10.2465/jmps.101021d
1593	Moser, D. P., Gihring, T. M., Brockman, F. J., Fredrickson, J. K., Balkwill,

1594 1595 1596	D. L., Dollhopf, M. E., Onstott, T. C. (2005). Desulfotomaculum and Methanobacterium spp. Dominate a 4- to 5-Kilometer-Deep Fault. <i>Appl. En-</i> <i>viron. Microbiol.</i> , 71(12), 8773–8783. Retrieved from https://aem.asm.org/
1597	content/71/12/8773 doi: 10.1128/AEM.71.12.8773-8783.2005
1598	Murad, A. A., & Krishnamurthy, R. (2004). Factors controlling ground-
1599	water quality in Eastern United Arab Emirates: a chemical and iso-
1600	topic approach. J. Hydro., 286(1), 227 - 235. Retrieved from http://
1601	www.sciencedirect.com/science/article/pii/S0022169403003949 doi:
1602	10.1016/j.jhydrol.2003.09.020
1603	Neal, C., & Stanger, G. (1983). Hydrogen generation from mantle source rocks
1604	in Oman. Earth Planet. Sci. Lett., 66, 315 - 320. Retrieved from http://
	www.sciencedirect.com/science/article/pii/0012821X83901449 doi: 10
1605	-
1606	.1016/0012-821X(83)90144-9
1607	Neal, C., & Stanger, G. (1985). Past and present serpentinisation of ultramafic
1608	rocks; an example from the Semail Ophiolite Nappe of Northern Oman. In The
1609	chemistry of weathering (pp. 249–275). Springer. doi: 10.1007/978-94-009-5333
1610	-8_15
1611	Nicolas, A. (1989). Structures of Ophiolites and Dynamics of Oceanic Lithosphere
1612	SpringerLink. Springer, Dordrecht. doi: 10.1007/978-94-009-2374-4
1613	Nicolas, A., Boudier, F., Ildefonse, B., & Ball, E. (2000). Accretion of Oman and
	United Arab Emirates ophiolite–discussion of a new structural map. Marine
1614	
1615	Geophysical Researches, 21(3-4), 147–180. doi: 10.1023/A:1026769727917
1616	Noël, J., Godard, M., Oliot, E., Martinez, I., Williams, M., Boudier, F.,
1617	Gouze, P. (2018). Evidence of polygenetic carbon trapping in the Oman
1618	Ophiolite: Petro-structural, geochemical, and carbon and oxygen iso-
1619	tope study of the Wadi Dima harzburgite-hosted carbonates (Wadi Tayin
1620	massif, Sultanate of Oman). <i>Lithos</i> , 323, 218 - 237. Retrieved from
1621	http://www.sciencedirect.com/science/article/pii/S0024493718302998
1622	(ABYSS) doi: 10.1016/j.lithos.2018.08.020
1623	Nolan, S. C., Skelton, P. W., Clissold, B. P., & Smewing, J. D. (1990). Maas-
1624	trichtian to early Tertiary stratigraphy and palaeogeography of the Central
	and Northern Oman Mountains. Geological Society, London, Special Publica-
1625	tions, $49(1)$, $495-519$. Retrieved from https://sp.lyellcollection.org/
1626	
1627	content/49/1/495 doi: 10.1144/GSL.SP.1992.049.01.31
1628	Nothaft, D., Templeton, A. S., Boyd, E., Matter, J., Stute, M., & Pauk-
1629	ert Vankeuren, A. N. (2021). Aqueous geochemical and microbial variation
1630	across discrete depth intervals in a peridotite aquifer assessed using a packer
1631	system in the samail ophiolite, oman. Earth and Space Science Open Archive,
1632	34. Retrieved from https://doi.org/10.1002/essoar.10506402.2 doi:
1633	10.1002/essoar.10506402.2
1634	Nothaft, D. B. (2019a, May). Bubble strip aqueous gas sampling. Retrieved 2021-
1635	05-17, from https://www.protocols.io/view/bubble-strip-aqueous-gas
1636	-sampling-2x5gfq6 doi: 10.17504/protocols.io.2x5gfq6
	Nothaft, D. B. (2019b). Dissolved inorganic carbon concentration and
1637	$^{13}C/^{12}C.$ Retrieved 2021-05-17, from https://www.protocols.io/view/
1638	, · · · ·
1639	dissolved-inorganic-carbon-concentration-and-13c-1-zduf26w doi:
1640	10.17504/protocols.io.zduf26w
1641	Nothaft, D. B., Rempfert, K. R., & Kraus, E. A. (2021, May). dan-
1642	ote/Samail_16S_compilation: First release of Samail 16S data processing repos-
1643	itory. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.4768396
1644	doi: 10.5281/zenodo.4768396
1645	Nothaft, D. B., Templeton, A. S., Rhim, J. H., Wang, D. T., Labidi, J.,
1646	Miller, H. M., Team, T. O. D. P. S. (2021, May). dan-
1647	ote/Oman_CH4_stable_isotopes: First release of Oman_CH4_stable_isotopes.
1648	Zenodo. Retrieved from https://doi.org/10.5281/zenodo.4768548 doi:

1649	10.5281/zenodo.4768548
1650	Ono, S., Wang, D. T., Gruen, D. S., Sherwood Lollar, B., Zahniser, M. S., Mc-
1651	Manus, B. J., & Nelson, D. D. (2014). Measurement of a Doubly Sub-
1652	stituted Methane Isotopologue, ${}^{13}CH_3D$, by Tunable Infrared Laser Direct
1653	Absorption Spectroscopy. Anal. Chem., $86(13)$, $6487-6494$. Retrieved
1654	from https://doi.org/10.1021/ac5010579 (PMID: 24895840) doi:
1655	10.1021/ac5010579
1656	Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples
1657	for PHREEQC version 3–A computer program for speciation, batch-reaction,
1658	one-dimensional transport, and inverse geochemical calculations (6th ed.)
1659	[Computer software manual].
1660	Parsons International & Co., L. (2005, December). Report on Findings of Explo-
1661	ration Program of Deep Groundwater in Northern Sharqiyah (Tech. Rep.). PO
1662	Box 162, Postal Code 117, Wadi Al Kabir, Sultanate of Oman: Ministry of
1663	Regional Municipalities, Environment and Water Resources.
	Paukert, A. (2014). Mineral Carbonation in Mantle Peridotite of the Samail
1664	Ophiolite, Oman: Implications for permanent geological carbon dioxide
1665	<i>capture and storage</i> (Doctoral dissertation, Columbia University). doi:
1666	10.7916/D85M63WZ
1667	,
1668	Paukert, A. N., Matter, J. M., Kelemen, P. B., Shock, E. L., & Havig, J. R. (2012). Reaction path modeling of enhanced in situ CO ₂ mineralization for carbon
1669	
1670	sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman.
1671	Chem. Geol., 330, 86–100. doi: 10.1016/j.chemgeo.2012.08.013
1672	Paukert Vankeuren, A. N., Matter, J. M., Stute, M., & Kelemen, P. B. (2019).
1673	Multitracer determination of apparent groundwater ages in peridotite aquifers
1674	within the Samail ophiolite, Sultanate of Oman. Earth Planet. Sci. Lett., 516,
1675	37–48. doi: 10.1016/j.epsl.2019.03.007
1676	Peters, J. W., Schut, G. J., Boyd, E. S., Mulder, D. W., Shepard, E. M., Broder-
1677	ick, J. B., Adams, M. W. (2015). [FeFe]- and [NiFe]-hydrogenase diver-
1678	sity, mechanism, and maturation. Biochim. Biophys. Acta, Mol. Cell Res.,
1679	1853(6), 1350 - 1369. Retrieved from http://www.sciencedirect.com/
1680	science/article/pii/S0167488914004194 (SI: Fe/S proteins) doi:
1681	10.1016/j.bbamcr.2014.11.021
1682	Proskurowski, G., Lilley, M. D., Seewald, J. S., Früh-Green, G. L., Olson, E. J.,
1683	Lupton, J. E., Kelley, D. S. (2008). Abiogenic hydrocarbon produc-
1684	tion at Lost City hydrothermal field. Science, $319(5863)$, $604-607$. doi:
1685	10.1126/science.1151194
1686	Quast, C., Pruesse, E., Gerken, J., Peplies, J., Yarza, P., Yilmaz, P., Glöckner,
1687	F. O. (2012, Nov). The SILVA ribosomal RNA gene database project: im-
1688	proved data processing and web-based tools. Nucleic Acids Res., 41(D1),
1689	D590–D596. doi: 10.1093/nar/gks1219
1690	R Core Team. (2019). R: A Language and Environment for Statistical Computing.
1691	Vienna, Austria. Retrieved from https://www.R-project.org/
1692	Rabu, D., Nehlig, P., & Roger, J. (1993). Stratigraphy and structure of the Oman
1693	Mountains. Documents- B. R. G. M.
1694	Rempfert, K. R., Miller, H. M., Bompard, N., Nothaft, D., Matter, J. M., Kelemen,
1695	P., Templeton, A. S. (2017, February). Geological and geochemical controls
1696	on subsurface microbial life in the Samail Ophiolite, Oman. Front. Microb.,
1697	8(56), 1-21. doi: 10.3389/fmicb.2017.00056
1697 1698	8(56), 1-21. doi: 10.3389/fmicb.2017.00056 Rioux, M., Garber, J., Bauer, A., Bowring, S., Searle, M., Kelemen, P., & Hacker, B.
	 8(56), 1-21. doi: 10.3389/fmicb.2017.00056 Rioux, M., Garber, J., Bauer, A., Bowring, S., Searle, M., Kelemen, P., & Hacker, B. (2016). Synchronous formation of the metamorphic sole and igneous crust of
1698	 8(56), 1-21. doi: 10.3389/fmicb.2017.00056 Rioux, M., Garber, J., Bauer, A., Bowring, S., Searle, M., Kelemen, P., & Hacker, B. (2016). Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: New constraints on the tectonic evolution during ophio-
1698 1699	 8(56), 1-21. doi: 10.3389/fmicb.2017.00056 Rioux, M., Garber, J., Bauer, A., Bowring, S., Searle, M., Kelemen, P., & Hacker, B. (2016). Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: New constraints on the tectonic evolution during ophiolite formation from high-precision U–Pb zircon geochronology. Earth Planet.
1698 1699 1700	 8(56), 1-21. doi: 10.3389/fmicb.2017.00056 Rioux, M., Garber, J., Bauer, A., Bowring, S., Searle, M., Kelemen, P., & Hacker, B. (2016). Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: New constraints on the tectonic evolution during ophio-

1704	Rollinson, H. (2005). Chromite in the mantle section of the Oman ophiolite: A
1704 1705	new genetic model. Island Arc, 14(4), 542-550. Retrieved from https://
1705	onlinelibrary.wiley.com/doi/abs/10.1111/j.1440-1738.2005.00482.x
1700	doi: 10.1111/j.1440-1738.2005.00482.x
1708	Rooney, M. A., Claypool, G. E., & Moses Chung, H. (1995). Modeling thermogenic
1709	gas generation using carbon isotope ratios of natural gas hydrocarbons. <i>Chem.</i>
1710	Geol., 126(3), 219-232. Retrieved from https://www.sciencedirect.com/
1710	science/article/pii/0009254195001190 (Processes of Natural Gas Forma-
1712	tion) doi: 10.1016/0009-2541(95)00119-0
1713	Sachan, H. K., Mukherjee, B. K., & Bodnar, R. J. (2007). Preservation of
1714	methane generated during serpentinization of upper mantle rocks: Ev-
1715	idence from fluid inclusions in the Nidar ophiolite, Indus Suture Zone,
1716	Ladakh (India). Earth Planet. Sci. Lett., 257(1), 47 - 59. Retrieved from
1717	http://www.sciencedirect.com/science/article/pii/S0012821X07000969
1718	doi: 10.1016/j.epsl.2007.02.023
1719	Sander, R. (2015). Compilation of Henry's law constants (version 4.0) for water as
1720	solvent. Atmos. Chem. Phys., 15(8). doi: 10.5194/ACP-15-4399-2015
1721	Schidlowski, M. (2001). Carbon isotopes as biogeochemical recorders of life over 3.8
1722	Ga of Earth history: evolution of a concept. Precambrian Res., 106(1), 117 -
1723	134. Retrieved from http://www.sciencedirect.com/science/article/pii/
1724	S0301926800001285 doi: 10.1016/S0301-9268(00)00128-5
1725	Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degrada-
1726	tion. Microbiol. Mol. Biol. Rev., 61(2), 262-280. Retrieved from https://mmbr
1727	.asm.org/content/61/2/262
1728	Schink, B., & Stams, A. J. M. (2006). Syntrophism among Prokaryotes [Arti-
1729	cle; Book Chapter]. In Dworkin, M and Falkow, S and Rosenberg, E and
1730	Schleifer, KH and Stackebrandt, E (Ed.), <i>PROKARYOTES: A HAND</i> -
1731	BOOK ON THE BIOLOGY OF BACTERIA, VOL 2, THIRD EDITION: ECOPHYSIOLOGY AND BIOCHEMISTRY (p. 309-335). 233 SPRING
1732	<i>ECOPHYSIOLOGY AND BIOCHEMISTRY</i> (p. 309-335). 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES: SPRINGER. doi:
1733 1734	{10.1007/0-387-30742-7_11}
1735	Sekiguchi, Y., Muramatsu, M., Imachi, H., Narihiro, T., Ohashi, A., Harada,
1736	H., Kamagata, Y. (2008). Thermodesulfovibrio aggregans sp. nov.
1737	and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic,
1738	sulfate-reducing bacteria isolated from thermophilic methanogenic sludge,
1739	and emended description of the genus Thermodesulfovibrio [Journal Ar-
1740	ticle]. Int. J. Syst. Evol. Microbiol., 58(11), 2541-2548. Retrieved from
1741	https://www.microbiologyresearch.org/content/journal/ijsem/
1742	10.1099/ijs.0.2008/000893-0 doi: 10.1099/ijs.0.2008/000893-0
1743	Shennan, J. L. (2006). Utilisation of C2–C4 gaseous hydrocarbons and isoprene by
1744	microorganisms. J. Appl. Chem. Biotechnol., 81(3), 237-256. Retrieved from
1745	https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.1388 doi: 10
1746	.1002/jctb.1388
1747	Sherwood Lollar, B., Lacrampe-Couloume, G., Voglesonger, K., Onstott, T., Pratt,
1748	L., & Slater, G. (2008). Isotopic signatures of CH_4 and higher hydrocar-
1749	bon gases from Precambrian Shield sites: A model for abiogenic polymer- institute of hydrogenhame C_{control} in C_{control} $A_{\text{control}} = 4705$
1750	ization of hydrocarbons. Geochim. Cosmochim. Acta, 72(19), 4778 - 4795.
1751	Retrieved from http://www.sciencedirect.com/science/article/pii/ S0016703708004250 doi: 10.1016/j.gca.2008.07.004
1752	Sherwood Lollar, B., Westgate, T. D., Ward, J. A., Slater, G. F., & Lacrampe-
1753 1754	Couloume, G. (2002, Apr). Abiogenic formation of alkanes in the Earth's
1754	crust as a minor source for global hydrocarbon reservoirs. <i>Nature</i> , 416 (6880),
1756	522-524. doi: $10.1038/416522a$
1757	Shock, E. L. (1992). Chemical Environments of Submarine Hydrothermal Sys-
1758	tems. In Marine Hydrothermal Systems and the Origin of Life (pp. 67–107).

1759	Springer, Dordrecht. doi: 10.1007/978-94-011-2741-7_5
1760	Singh, R., Guzman, M. S., & Bose, A. (2017). Anaerobic Oxidation of Ethane,
1761	Propane, and Butane by Marine Microbes: A Mini Review. Front. Microb.,
1762	8, 2056. Retrieved from https://www.frontiersin.org/article/10.3389/
1763	fmicb.2017.02056 doi: 10.3389/fmicb.2017.02056
1764	Skelton, P. W., Nolan, S. C., & Scott, R. W. (1990). The Maastrichtian transgres-
1765	sion onto the northwestern flank of the Proto-Oman Mountains: sequences of
1766	rudist-bearing beach to open shelf facies. Geological Society, London, Special
1767	Publications, 49(1), 521-547. Retrieved from https://sp.lyellcollection
1768	.org/content/49/1/521 doi: 10.1144/GSL.SP.1992.049.01.32
1769	Soret, M., Bonnet, G., Larson, K., Agard, P., Cottle, J., Dubacq, B., & Button, M.
1770	(2020, January). Slow subduction initiation forces fast ophiolite formation
1771	Soret. In International conference on ophiolites and the oceanic lithosphere:
1772	Results of the oman drilling project and related research (p. 232).
1773	Stanger, G. (1986). The hydrogeology of the Oman Mountains (Doctoral disserta-
1774	tion, Open University). doi: 10.21954/ou.ro.0000deb3
1775	Stolper, D., Martini, A., Clog, M., Douglas, P., Shusta, S., Valentine, D., Eiler,
1776	J. (2015). Distinguishing and understanding thermogenic and biogenic sources
1777	of methane using multiply substituted isotopologues. Geochim. Cosmochim.
1778	Acta, 161, 219 - 247. Retrieved from http://www.sciencedirect.com/
1779	science/article/pii/S0016703715002082 doi: 10.1016/j.gca.2015.04.015
1780	Stolper, D. A., Lawson, M., Formolo, M. J., Davis, C. L., Douglas, P. M. J., &
1781	Eiler, J. M. (2018). The utility of methane clumped isotopes to constrain
1782	the origins of methane in natural gas accumulations. <i>Geological Society</i> ,
1783	London, Special Publications, 468(1), 23–52. Retrieved from https://
1784	sp.lyellcollection.org/content/468/1/23 doi: 10.1144/SP468.3
1785	Streit, E., Kelemen, P., & Eiler, J. (2012, Nov 01). Coexisting serpentine and quartz
1786	from carbonate-bearing serpentinized peridotite in the Samail Ophiolite,
1787	Oman. Contrib. Mineral. Petrol., 164(5), 821-837. Retrieved from https://
1788	doi.org/10.1007/s00410-012-0775-z doi: 10.1007/s00410-012-0775-z
1789	Suzuki, S., Kuenen, J. G., Schipper, K., van der Velde, S., Ishii, S., Wu, A.,
1790	Nealson, K. H. (2014, May). Physiological and genomic features of highly alka-
1791	liphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing
1792	site. Nat. Commun., 5, 3900. doi: 10.1038/ncomms4900
1793	Terken, J. M. J. (1999, Apr). The Natih Petroleum System of North Oman. GeoAra-
1794	bia, 4(2), 157-180. Retrieved from https://pubs.geoscienceworld.org/
1795	geoarabia/article/4/2/157/566618
1796	Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., & Aggarwal, P. K. (2013).
1797	Global isoscapes for δ^{18} O and δ^{2} H in precipitation: improved prediction using
1798	regionalized climatic regression models. Hydrol. Earth Syst. Sci., 17(11), 4713-
1799	4728. Retrieved from https://www.hydrol-earth-syst-sci.net/17/4713/
1800	2013 / doi: 10.5194/hess-17-4713-2013
1801	Thampi, K. R., Kiwi, J., & Graetzel, M. (1987). Methanation and photo-
1802	methanation of carbon dioxide at room temperature and atmospheric pressure.
1803	$Nature, \ 327(6122), \ 506.$
1804	Timmers, P. H., Welte, C. U., Koehorst, J. J., Plugge, C. M., Jetten, M. S., &
1805	Stams, A. J. (2017). Reverse methanogenesis and respiration in methan-
1806	otrophic archaea. Archaea, 2017. doi: 10.1155/2017/1654237
1807	USGS. (2010). Digital Elevation - Global Multi-resolution Terrain Elevation Data
1808	2010 (GMTED2010). doi: /10.5066/F7J38R2N
1809	Vacquand, C., Deville, E., Beaumont, V., Guyot, F., Sissmann, O., Pillot, D.,
1810	Prinzhofer, A. (2018). Reduced gas seepages in ophiolitic complexes: evidences
1811	for multiple origins of the H_2 -CH ₄ -N ₂ gas mixtures. Geochim. Cosmochim.
1812	Acta, 223, 437-461.doi: 10.1016/j.gca.2017.12.018
1813	Waite, J. H., Glein, C. R., Perryman, R. S., Teolis, B. D., Magee, B. A., Miller, G.,

1814	Bolton, S. J. (2017). Cassini finds molecular hydrogen in the Enceladus
1815	plume: Evidence for hydrothermal processes. Science, $356(6334)$, $155-159$.
1816	Retrieved from https://science.sciencemag.org/content/356/6334/155
1817	doi: 10.1126/science.aai8703
1818	Wang, D. T., Gruen, D. S., Lollar, B. S., Hinrichs, KU., Stewart, L. C., Holden,
1819	J. F., others (2015). Nonequilibrium clumped isotope signals in microbial
1820	methane. Science, $348(6233)$, $428-431$. doi: 10.1126/science.aaa 4326
	Wang, D. T., Reeves, E. P., McDermott, J. M., Seewald, J. S., & Ono, S. (2018).
1821	
1822	Clumped isotopologue constraints on the origin of methane at seafloor
1823	hot springs. Geochim. Cosmochim. Acta, 223, 141–158. doi: 10.1016/
1824	j.gca.2017.11.030
1825	Wang, D. T., Welander, P. V., & Ono, S. (2016). Fractionation of the methane iso-
1826	topologues ${}^{13}CH_4$, ${}^{12}CH_3D$, and ${}^{13}CH_3D$ during aerobic oxidation of methane
1827	by Methylococcus capsulatus (Bath). Geochim. Cosmochim. Acta, 192, 186–
1828	202. doi: 10.1016/j.gca.2016.07.031
1829	Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian
1830	Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial
1831	Taxonomy. Appl. Environ. Microbiol., 73(16), 5261–5267. Retrieved from
1832	https://aem.asm.org/content/73/16/5261 doi: 10.1128/AEM.00062-07
1833	Weinstein, M. (2019). Zymo-Research/figaro. Zymo Research. Retrieved 2021-05-
1834	17, from https://github.com/Zymo-Research/figaro (original-date: 2019-
1835	04-11T21:27:26Z)
1836	Welhan, J. A., & Craig, H. (1983). Methane, Hydrogen and Helium in Hydrothermal
1837	Fluids at 21 °N on the East Pacific Rise. In Hydrothermal processes at seafloor
	spreading centers (pp. 391–409). Boston, MA: Springer US. Retrieved from
1838	https://doi.org/10.1007/978-1-4899-0402-7_17 doi: 10.1007/978-1-4899
1839	-0402-7_17
1840	
1841	Welte, C. U., Rasigraf, O., Vaksmaa, A., Versantvoort, W., Arshad, A., Op den
1842	Camp, H. J., Reimann, J. (2016). Nitrate- and nitrite-dependent anaerobic
1843	oxidation of methane. <i>Environ. Microbiol. Rep.</i> , 8(6), 941-955. Retrieved from
1844	https://onlinelibrary.wiley.com/doi/abs/10.1111/1758-2229.12487
1845	doi: 10.1111/1758-2229.12487
1846	Weyhenmeyer, C. E., Burns, S. J., Waber, H. N., Macumber, P. G., & Matter, A.
1847	(2002). Isotope study of moisture sources, recharge areas, and groundwater
1848	flow paths within the eastern Batinah coastal plain, Sultanate of Oman. Water
1849	Resources Research, $38(10)$. doi: $10.1029/2000$ WR000149
1850	Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial forma-
1851	tion and oxidation of methane. Chem. Geol., $161(1)$, 291 - 314. Retrieved from
1852	http://www.sciencedirect.com/science/article/pii/S0009254199000923
1853	doi: 10.1016/S0009-2541(99)00092-3
1854	Wu, Y. (2017, January). yhwu/idemp. Retrieved 2021-05-17, from https://github
1855	.com/yhwu/idemp (original-date: 2014-11-24T02:52:59Z)
1856	Young, E., Kohl, I., Lollar, B. S., Etiope, G., Rumble Iii, D., Li, S., others
1857	(2017). The relative abundances of resolved ${}^{12}CH_2D_2$ and ${}^{13}CH_3D$ and mech-
1858	anisms controlling isotopic bond ordering in abiotic and biotic methane gases.
1859	Geochim. Cosmochim. Acta, 203, 235–264. doi: 10.1016/j.gca.2016.12.041
1860	Young, E. D. (2020). A Two-Dimensional Perspective on CH_4 Isotope Clumping :
	Distinguishing Process from Source. In Deep carbon : Past to present (p. 388-
1861	414). Cambridge University Press. Retrieved from https://www.cambridge
1862	.org/us/academic/subjects/earth-and-environmental-science/
1863	geochemistry-and-environmental-chemistry/deep-carbon-past-present
1864	?format=HB&isbn=9781108477499#resources doi: 10.1017/9781108677950
1865	
1866	Young, E. D., Rumble, D., Freedman, P., & Mills, M. (2016). A large-radius high-
1867	mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of non-isotopelarus of $O_{\rm ev}$ N $_{\rm ev}$ CIL and other mass $_{\rm ev}$ L $_{\rm ev}$ L Mass Creation
1868	of rare isotopologues of O_2 , N_2 , CH_4 and other gases. Int. J. Mass Spectrom.,

1869	401, 1 - 10. Retrieved from http://www.sciencedirect.com/science/
1870	article/pii/S138738061600035X doi: $10.1016/j.ijms.2016.01.006$
1871	Zimmer, K., Zhang, Y., Lu, P., Chen, Y., Zhang, G., Dalkilic, M., & Zhu, C. (2016).
1872	SUPCRTBL: A revised and extended thermodynamic dataset and software
1873	package of SUPCRT92. Comput. Geosci., 90, 97-111. Retrieved from https://
1874	www.sciencedirect.com/science/article/pii/S0098300416300371 doi:
1875	10.1016/j.cageo.2016.02.013
1876	Zwicker, J., Birgel, D., Bach, W., Richoz, S., Smrzka, D., Grasemann, B., oth-
1877	ers (2018) . Evidence for archaeal methanogenesis within veins at the onshore
1878	serpentinite-hosted Chimaera seeps, Turkey. Chem. Geol., 483, 567–580. doi:
1879	10.1016/j.chemgeo.2018.03.027

Figure 1.

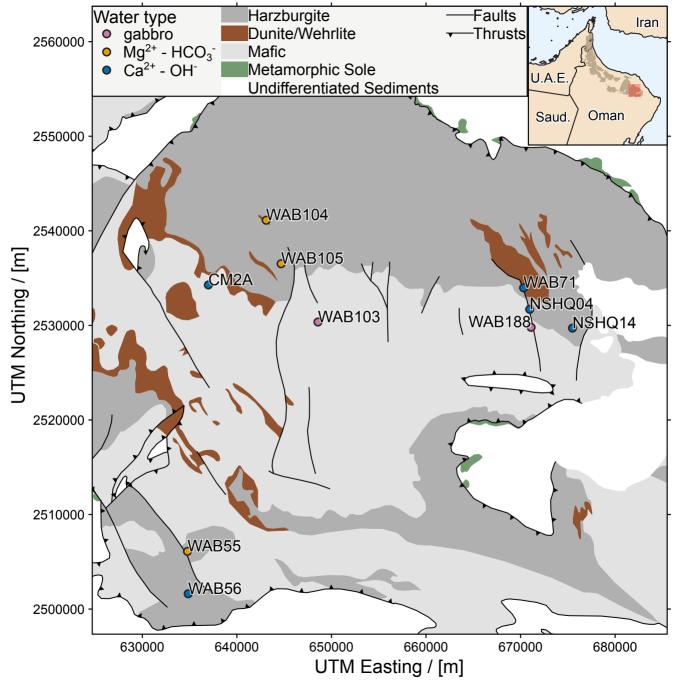


Figure 2.

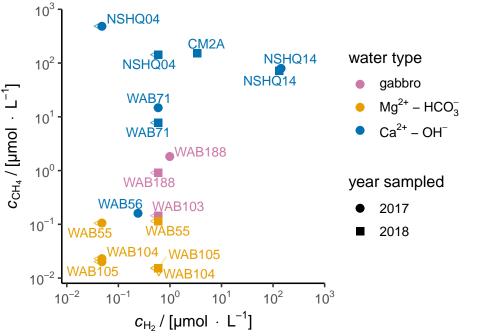
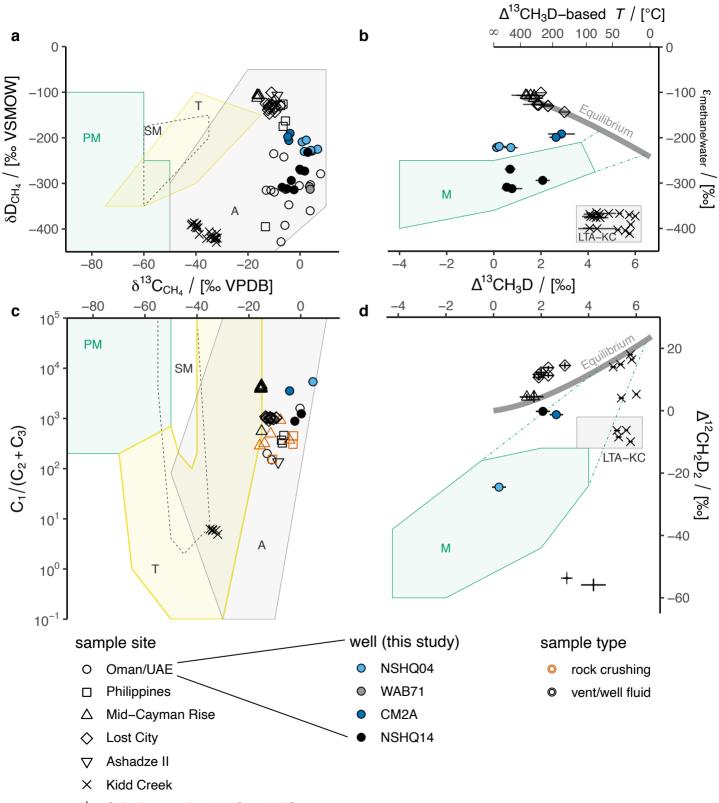



Figure 3.

+ Sabatier reaction 70 °C to 90 °C

Figure 4.

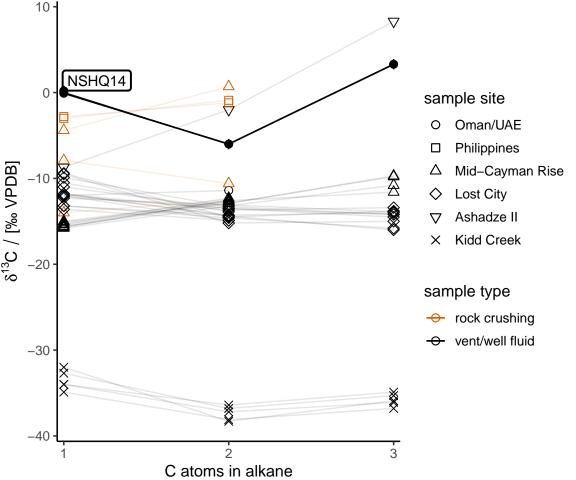
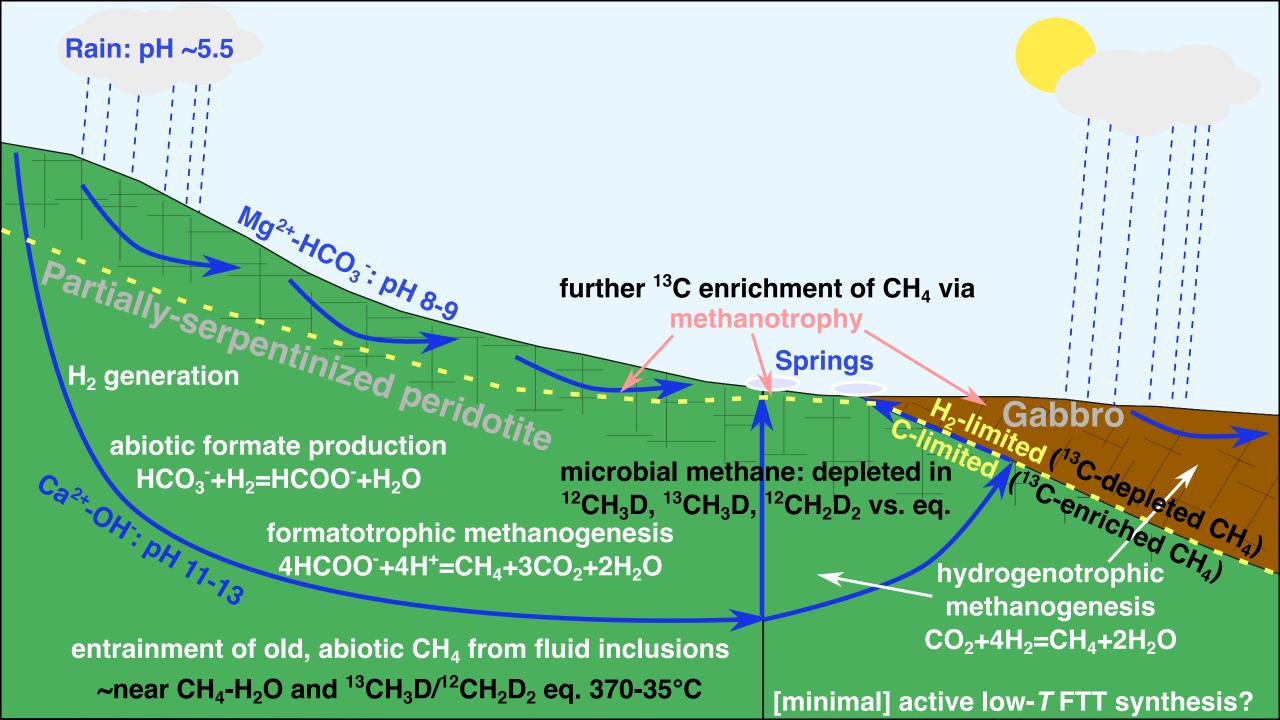



Figure 5.

	gabbro		$Mg^{2+} - HCO_3^-$			Ca ²⁺ – OH⁻					
l by eny	g. Methylococcus -	n.r.	2	n.r.	n.r.	n.r.	8	1	n.r.	<1	
grouped phylog	g. Methyloterricola -	n.r.	<1	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	Methanotrophy using oxygen
Deepest taxonomic assignment grouped by metabolic capability inferred from phylogeny	g. <i>Methylocystis</i> -	n.r.	<1	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	
	g. <i>Ca</i> . Methylomirabilis -	1	<1	1	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	Methanotrophy using nitrite
xonomic apability	o. ANME–1b -	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	<1	n.r.	n.r.	Methanotrophy using sulfate
Deepest taxonomic metabolic capability	o. Methanomassiliicoccales -	<1	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	
Dee	g. Methanobacterium -	<1	3	<1	<1	<1	<1	n.r.	<1	24	Methanogenesis
	L	WAB103	WAB188	WAB104	WAB105 Well grou	WAB55	NSHQ04		CM2A	NSHQ14	
Read relative abundance / [%]											

Figure 6.

