
HAL Id: hal-03325101
https://hal.science/hal-03325101

Submitted on 24 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural Knowledge Base Repairs
Thomas Pellissier Tanon, Fabian M. Suchanek

To cite this version:
Thomas Pellissier Tanon, Fabian M. Suchanek. Neural Knowledge Base Repairs. European Seman-
tic Web Conference, Jun 2021, Hersonissos (virtual), Greece. pp.287-303, �10.1007/978-3-030-77385-
4_17�. �hal-03325101�

https://hal.science/hal-03325101
https://hal.archives-ouvertes.fr

Neural Knowledge Base Repairs

Thomas Pellissier Tanon (�) and Fabian Suchanek

Télécom Paris, Institut Polytechnique de Paris
thomas@pellissier-tanon.fr

Abstract. The curation of a knowledge base is a crucial but costly task.
In this work, we suggest to make use of the advances in neural network
research to improve the automated correction of constraint violations.
Our method is a deep learning refinement of [23], and similarly uses the
edits that solved some violations in the past to infer how to solve similar
violations in the present. Our system makes use of the graph content,
literal embeddings, and features extracted from Web pages to improve its
performance. The experimental evaluation on Wikidata shows significant
improvements over baselines.

1 Introduction

The past years have seen the rise of large knowledge bases, completed by a
crowd of contributors like Wikidata [28] or Freebase [8], or automatically filled
from extraction and conversion pipelines like Yago [27] or DBpedia [4]. Both
kind of knowledge bases often contain errors, originating from edge cases in the
conversion pipelines, good faith mistakes, or vandalism in the crowd-sourced
content. Often, knowledge bases contain a constraint system in order to fight
such problems, starting from the OWL distinction between object properties and
datatypes properties, and including, e.g., domain and range constraints or more
complex expressions such as cardinality constraints and conflict declarations.
These constraints are often violated in practice. For example, Wikidata has 1M
“domain” constraint violations and 4.4M “single value” constraint violations as
of March 20th, 2020. Thus, there is a need for tools to help the knowledge base
curators repair these violations in an automated or a semi-automated way.

Recent work [23] shows that, in the case of an actively curated knowledge
base like Wikidata, it is possible to use the repairs that have been done in the
past in order to learn the repairs for the current constraint violations. The work
provides both a formalism and a first algorithm based on rule learning to this
end. However, the experiments on Wikidata show that there is still room for
improvement: The approach was not able to provide anything meaningful when
RDF literals where involved, and the user study presents a low agreement score
(less than 50%) for a lot of constraint types.

Hence, we explore in this work a new approach to learn how to repair con-
straint violations using the edit history, building upon [23]. Our method takes
as input a KB with its edit history, a set of constraints, and the statements of

the KB that constitute violations of the constraints. It produces as output sug-
gestions of statements to add to the KB or to remove from the KB so that the
constraint violation disappears. Our new algorithm is based on deep learning,
and brings two key advantages over [23]: First, our embeddings take into ac-
count the data of the KB in a holistic fashion, as opposed to being limited to the
pieces of data captured by logical rules. Second, we are able to make use of data
that would be hard to integrate into rule learning approaches, including, e.g.,
the textual content in the knowledge base. We also keep the ability from [23] to
work at the scale of large knowledge bases. Our evaluation on Wikidata shows
significant improvements against the state of the art. We also conduct detailed
ablation studies to justify our architecture. Finally, we improve the Wikidata
evaluation dataset that was introduced by [23], and release it in an easy to use
format in the hope that it can be useful to evaluate such systems.

This paper is structured as follows: Section 2 discusses related work, and Sec-
tion 3 introduces preliminaries. Section 4 presents a baseline. Section 5 explains
our approach and Section 6 evaluates it, before Section 7 concludes.

2 Related work

Our work aims at repairing constraint violations in a collaboratively edited
knowledge base. It builds on, and improves upon, the approach presented in [23].
Several other approaches are related to this endeavor.

Knowledge base cleaning. Several approaches have been developed to repair
constraint violations in knowledge bases. Active integrity constraints [11] aim at
providing a set of possible repair actions to each constraint. An application to
description logic knowledge bases has been presented in [24]. These approaches
assume that the user provides a set of possible corrections. In our work, in
contrast, we want to learn these corrections automatically from the edit history.
Again other works are interactive, and ask the user questions to quickly find a
correction [6,7,3,2]. Our work, in contrast, learns the repair directly from the
edit history.

Again other approaches use the data in the KB itself in order to improve
it. [9] uses knowledge base embeddings, lexical distance, and constraint-based
refinements to predict corrections. Our work goes beyond the state of the current
KB and learns from the edit history instead.

[22] uses statistics to find errors in the knowledge base and to add new types.
[18] exploits the graph structure to find wrong type relations. [21] cleans sameAs
relations based on the shape of the existing identity and on differences in the
graph. [17] uses graph and text distances to look for values for a given subject
and predicate. [20] fixes the subject or object of existing relations based on type
relations and string matching. [1] uses crowdsourcing to detect quality issues.
[26] uses external datasources and statistical data to detect problems in the
knowledge base and fix them. Our work differs from all of these works in that
we use the past edits as ground truth, and so are able to easily generalize over a

large set of constraint types, instead of focusing on specific cases like sameAs or
a wrong subject or object. Some works in completely different domains also use
the idea of learning repairs from past corrections. For example, [5] learns how to
fix errors in source code based on previous error corrections.

Graph neural networks. Neural networks are often applied to knowledge
base related tasks [30]. However, there does not seem to be any work in the
literature that uses neural networks to predict repairs in knowledge bases. Some
works use neural networks to reason on top of knowledge bases [15]. Several
other works tackle the knowledge graph completion task by mining rules [13]
or by link prediction. Our approach takes inspiration from these methods, but
ultimately tackles a different problem: We do not want to predict links, but the
correction of the violation of a constraint. We refer to [30] for a detailed survey
about graph neural networks.

3 Preliminaries

Let us call T the set of all RDF terms (IRIs, blank nodes and literals). In our
work, we see a knowledge base (KB) K as a set of triples of elements of T .
These triples are written 〈s, p, o〉, where s is the subject of the triple (which
cannot be a literal), p the predicate (which has to be a IRI), and o the object.
We make the unique name assumption in what follows. If this assumption does
not hold, and if the KB allows OWL entailment, then a = b can be replaced by
〈a, owl:sameAs, b〉 in what follows without affecting the validity of our approach.

We define a conjunctive query (CQ) as a query of the form C(x) =
〈s1, p1, o1〉 ∧ · · · ∧ 〈sn, pn, on〉, where x is a sequence of variables, the pi are con-
stants, and the si and oi are variables over x or constants. We write K |= C(x)
iff there exists a binding for x such that 〈s1, p1, o1〉 ∈ K, . . . , 〈sn, pn, on〉 ∈ K.
We also define similarly a disjunctive query (DQ) as a query of the form
D(x) = 〈s1, p1, o1〉 ∨ · · · ∨ 〈sn, pn, on〉 and we write K |= D(x) iff there exists a
binding for x and an i such that 〈si, pi, oi〉 ∈ K. We also allow term equalities
like x = y and we write > (true) for the empty CQ and ⊥ (false) for the empty
DQ.

A KB can define constraints. Such constraints can enforce, e.g., that some
information must be present (e.g. every person should have a birth place), or that
some triple combinations may not occur (e.g. a person can have at most one birth
place). Following [23], we express these constraints as rules. Such a rule takes the
form Γ (x) : B(x)→ ∃y H(x,y) where x and y are sequences of variables, B is a
CQ and H a DQ. For example, the rule Γ1(x) : 〈x, rdf:type, schema:Person〉 →
∃y 〈x, schema:birthPlace, y〉 says that all people must have a birth place. The
rule Γ2(x, y1, y2) = 〈x, schema:birthPlace, y1〉∧〈x, schema:birthPlace, y2〉 →
y1 = y2 says that entities can have at most one birth place. It is clear that any
constraint with a combination of ∧, ∨ and ¬ in the body can be translated into
an equivalent conjunction of constraints in this formalism. In particular, the
formalism can express constraints such as the following:

– Domain constraints. The rule to enforce that the domain of a property p is
d is: Γ (s, o) = 〈s, p, o〉 → 〈s, rdf:type, d〉.

– Range constraints. The rule to enforce that the range of a property p is d is:
Γ (s, o) = 〈s, p, o〉 → 〈o, rdf:type, d〉.

– Functional relations. The rule to enforce the functionality of a property p is:
Γ (s, o1, o2) = 〈s, p, o1〉 ∧ 〈s, p, o2〉 → o1 = o2.

– Inverse functional relations. The rule to enforce the inverse functionality of
a property p is: Γ (s1, s2, o) = 〈s1, p, o〉 ∧ 〈s2, p, o〉 → s1 = s2.

– Symmetric relations. The rule to enforce that p is symmetric is: Γ (s, o) =
〈s, p, o〉 → 〈o, p, s〉.

– Conflicts between properties. The rule to enforce that p1 and p2 have disjoint
domains is: Γ (s, o1, o2) = 〈s, p1, o1〉 ∧ 〈s, p2, o2〉 → ⊥.

Given a constraint Γ (x) : B(x) → ∃yH(x,y), a violation in a KB K
is a binding for x such that (1) K |= B(x) and (2) there is no y
such that K |= H(x,y). For example, if the knowledge base is K =
{〈JohnDoe, rdf:type, schema:Person〉} then x = JohnDoe is a violation of
Γ1 in K because K |= 〈JohnDoe, rdf:type, schema:Person〉 and @y K |=
〈x, schema:birthPlace, y〉.

The violation triples of a violation are the instantiated triples of the body of
the constraint. In our previous example, the violation triples would be the single
triple 〈JohnDoe, rdf:type, schema:Person〉.

To repair a violation, we need an edit action. Following [23], we define an edit
action as a pair (M+,M−) of one triple to add and one triple to remove. At most
one of these triples can be absent, and we write ∅ for such a triple. The rationale
for this representation is that, due to the disjunctive nature of the head of the
constraint, the addition of a single triple can remove the violation, and due to the
conjunctive nature of the body of the constraint, the removal of a single triple
can also fix the constraint. Furthermore, a removal combined with an addition
corresponds to a replacement, which is a frequent edit action in KBs. The result
of an edit action (M+,M−) on a KB K is the KB K′ = (K ∪ {M+}) \ {M−}
(omitting either set if the triple is absent in the edit action). An edit action is a
repair of a violation of a constraint, if the violation no longer exists in the result
of the edit action.

For example, the two possible edits to repair a violation of Γ1 are
to remove the triple 〈x, rdf:type, schema:Person〉 or to add a triple
〈x, schema:birthPlace, y〉 with a correct instantiation for y.

We aim at learning “good” repair edits that make the KB closer to the real
world by adding “true” facts and removing “false” facts. Formally, a “good”
edit is an edit (M+,M−) such that M+ is absent or in Ki, and M− is absent
or not in Ki , where Ki is the “ideal” knowledge base representing the real
world [25]. The edit history of a KB K is the sequence of edit actions that have
been applied, starting from the empty KB, to yield K. In this paper, we aim at
building a predictor that takes as input the edit history of a KB and a set of
constraints, and that predicts good repair edits in the sense described above.

4 Baseline Approach

[23] presents a rule learning approach for our problem, called CorHist. We in-
troduce this system here briefly, before presenting our new system in the next
section. CorHist takes as input the edit history of a KB and constraints. It mines
correction rules of the form Γ (x)∧〈sm, pm, om〉∧〈sc, pc, oc〉 → (M+(x),M−(x)),
where Γ (x) is a constraint, sm and sc are variables in x, pm and pc are con-
stants, om is a constant or a variable in x, (M+(x),M−(x)) is the predicted
edit action, and oc is a constant, a variable in x or a new free variable. 〈sc, pc, oc〉
is optional. This correction rule means that if there exists a violation x of Γ in
K, and if 〈sm, pm, om〉(x) ∈ K and 〈sc, pc, oc〉(x) ∈ K, then (M+(x),M−(x))
is a good repair. For example, CorHist is able to mine correction rules such
as Γ1(x) ∧ 〈x, rdf:type, schema:Person〉 ∧ 〈x, rdf:type, schema:Place〉 →
(∅, 〈x, rdf:type, schema:Person〉). This rule repairs violations of the constraint
Γ1 presented in Section 3 by stating that “if x violates the constraint Γ1 and is
a schema:Place, then the schema:Person type should be removed”.

For this purpose, CorHist uses an adaptation of the AMIE algorithm [12].
It takes as input the past corrections dataset and the facts about the entities
mentioned in the violation triples. It assumes that there is only one violation
triple. It first generates simple rules by taking each past correction from the
dataset, and by replacing constants by variables in both the violation triple
and the associated correction. This leads to correction rules without context,
like Γ1(x) → (∅, 〈x, rdf:type, schema:Person〉). Then, CorHist refines these
correction rules by adding an extra triple to the rule body. For this, it looks for
an extra possible pattern in the facts about the entities that are already used in
the rule body, and adds this pattern to the rule body.

CorHist ranks the correction rules according to their confidence on the past
corrections, i.e. the number of times the rule predicts the correct edit divided
by how many times the rule predicts an edit. It also prunes the rules that have
too low a confidence, predict less than 10 edits on the training dataset, or have
extra triples in the body that do increase the confidence by at least 5%. When
CorHist has to predict an edit, it uses the matching correction rule with the
highest confidence. The minimal confidence threshold used for pruning is chosen
so as to optimize the F1-score on a cross-validation dataset.

CorHist can be improved easily as follows:

– We allow multiple violation triples in the rule by applying exactly the same
initialization step, but with multiple triples.

– We allow up to three additional triple patterns 〈sc, pc, oc〉. These patterns
must have a constant predicate and their subject must be a variable in x.
This allows more specialized rules than CorHist, which supports only one
additional triple pattern.

– We allow the system to take into account information from external Web
pages about the entities. This information can help the system choose, e.g.,
between two possible birth places, simply by checking if one of them appears
on the Web page.

This last point works as follows: For every URL s that appears in the vio-
lation triples, we add two new facts: one is 〈s, hist:pageStatusCode, XXXX〉,
where XXXX is the HTTP response code of that URL. The other is
〈s, hist:pageContainsLabel, o〉, where o is the object of a triple con-
necting o to s, and one of o’s labels (found with the rdfs:label re-
lation) appears in the HTML page of s. For example, if we consider
the triple 〈Douglas Adams, schema:sameAs, <http://viaf.org/113230702>〉
from Wikidata, we fetch the external URL from viaf.org, and we add
the triples 〈<http://viaf.org/113230702>, hist:pageStatusCode, 200〉 and
〈<http://viaf.org/113230702>, hist:pageContainsLabel, Douglas Adams〉,
because the label "Douglas Adams"@en of the entity Douglas Adams appears
on the page.

We call this improved system CorHist+. While we will see in our experiments
that CorHist+ improves over CorHist, both systems still suffer from a systematic
weakness: They can take into account only triples that explicitly appear in a
correction rule – and not shallow signals from the state of the knowledge base.
We will now see how to remedy this.

5 Approach

To overcome the limitation of the rule mining approach explored by CorHist, we
design a new neural network architecture to implement a correction predictor.
Our predictor takes as input the violated constraint, the violation triples, and
the facts about the entities that are mentioned in the violation triples. It predicts
as output a triple to add and/or a triple to delete. At training time, the input
and the outputs come from the edit history of the KB. At prediction time, the
input comes from the current state of the KB. In the following, we first present a
“conversion” of CorHist+ to a neural network called Bass-RL, before adding new
components to improve its performance, leading to our final Bass architecture1.

5.1 Bass-RL

The goal of Bass-RL is to build a neural network that mirrors exactly the func-
tioning of CorHist+. Figure 1 shows the basic architecture of our network. It is
composed of 3 input components, which all feed into the “edit prediction” com-
ponent. The dimensions of the internal layers are parametrized by a constant d,
which is a hyperparameter of the network. The inputs are:

– The constraint. We give to each constraint a unique integer id and then
we use a trained embedding matrix to create a d-dimensional vector from
the one-hot encoding of the constraint id. This vector is then fed into the
edit predictor. This vector gives to the network the information which type
of constraint we aim to fix.

1 The “Bass” name derives from “CorHist”, because a bass is a singer with a deep
voice, and “corhist” is an old English word for “singer”.

– The violation triples. For each of the k violation triples, we encode the
predicate and the object by help of the “term embedding” component. These
encodings are concatenated and fed into the edit prediction component. The
subject of the violation triple is not used, because it cannot be a constant.

– The facts about the entities that appear in the violation triples.
We encode only the predicates and the objects, because the subject is
already known to the network. For example, if we consider the vio-
lation triple 〈JohnDoe, schema:birthPlace, Paris〉, the two entities are
JohnDoe and Paris, and we embed their predicates and objects –
i.e., {(rdf:type, schema:Person), (schema:gender, schema:Male), . . .} for
JohnDoe and {(rdf:type, schema:Place), (schema:country, France), . . .}
for Paris. There are 2k mentioned entities, 2 for each of the k violation
triples. Each fact is embedded using the “entity fact embedding” component.
Then the output vectors are concatenated and fed into the edit prediction
component.

Let us now describe each component in detail.

dense + ReLu

dense + ReLu

dense + σ (x6)

predicted term to add or delete

embedding

object

embedding

predicate

k violation triples

max pooling

dense + ReLu

embedding embedding

predicates objects

2k ·m entity facts

embedding

constraint ID

d

1

k

k 1-hots

k · d

k

k 1-hots

k · d

2k ·m
2k ·m

2k ·m 1-hots 2k ·m 1-hots

2k ·m · d
2k ·m · d

2k ·m · d

2k · d

4d

4d

6 · (1 + 3k + ce/p)

term embedding

entity fact embedding

edit prediction

Fig. 1. Network architecture of Bass-RL. d is the vector dimension hyperparameter, k
is the max number of violation triples, and m is the max number of facts per entity.

Term embedding. We embed RDF terms as follows: predicates are one-hot
encoded and then embedded into a space of dimension d using an embedding

matrix P. We embed similarly the objects using an matrix E . These matrices E
and P are shared by all object and predicate embedding operations. They are
trained at the same time as the neural network. This embedding allows the edit
predictor to act on specific predicates and entities in the violation triples.

Entity fact embedding. Similarly to CorHist, we give the neural network
the facts about the 2k entities involved in the constraint violation. A classical
approach for this purpose would be to use entity embeddings, i.e., to embed
the entity itself. However, entity embeddings have two drawbacks: First, they
require expensive pre-training. Second, and more crucially, they do not work
with new entities. Therefore, we embed not the entity, but the facts that the
entity is involved in. While the objects of these facts will still be encoded using
learned embeddings (and thus cannot be entities that are unknown at training
time), the subjects can be entities that have never been seen at training time.
This allows the network to check constraints on newly added entities.

We encode the (predicate, object) facts of each entity mentioned in the vio-
lation triples as follows: we embed the predicates by reusing the same predicate
embedding matrix P described previously. We embed similarly the objects by
reusing the same entity embedding matrix E . Then we combine the predicate
and the object using a dense layer with a rectified linear unit (ReLU) non lin-
earity2. Then we merge the obtained embeddings for each (predicate, object)
using a max pooling layer to get a single vector for the entity. If the entity is a
URL to an external website, we add the URL triples that we have introduced
for CorHist+ (Section 4) to the set of (predicate, object) pairs.

Edit prediction. The edit prediction component takes as input the previous
components, i.e. the constraint id embedding, the embeddings of the k viola-
tion triple predicates and objects, and the embedding of the facts about the 2k
entities mentioned in the violation triples. This data is then fed into a multi-
layer perceptron. We use two hidden layers of dimensions 4d with the ReLU
non-linearity.

Our network outputs two triples – one to add and one to delete. Each triple
is given by its three components (subject, predicate, and object). Hence, our
network has 2 × 3 output components. Each output component could of course
just be the one-hot encoding of a predicate or entity. However, then the network
would have to learn each instantiation of a constraint individually (as in “If the
subject of the violation triple is Elvis, then the subject of the addition triple
should be Elvis”, “If the subject is Madonna, then...”). Therefore, we allow the
network to output a code, as in “The subject of the addition triple is the object
of the first constraint violation triple”. To permit nevertheless the output of
constants as well, we combine both approaches. With this, each of the 6 outputs
(2 × 3 triple components) works in the same way, classifying the output term
into one of the following options:

2 This function is defined as ReLU(x) = max(0, x)

– 1 class to state that the output is not existent (the triple should not be
returned), or unknown. We call it the class 0.

– 3k classes to state that the output term is the same as the subject/predicate
or object of one of the k violation triples. For example, the class 1 corresponds
to the subject of the first violation triple, the class 2 to its predicate, the
class 3 to its object, the class 4 to the subject of the second violation triple
etc.

– cp or ce classes to state that the output is one of the cp predicates (for the
predicate to add or delete outputs) or one of the ce entities (for the other
outputs) from a the list of predicates/entities found at least t times in the
expected outputs from the training data (where t is a hyperparameter).

This leads to 1 + 3k + ce possible classes (and so, output neurons) for each of
the four subject/object outputs and 1 + 3k + cp for the two predicate outputs.
Each of these outputs are implemented like regular classifiers using a dense layer
with a softmax non-linearity3. The outputs returns a 1 + 3k + ce/p dimensional
vector. The ith vector output is the predicted probability of ith class.

To retrieve the final edit, we consider the output for both the “delete” triple
and the “add” triple. If the three outputs for the subject, predicate and object
of the triple give known values (a known entity or predicate or a known violation
triple term given in the input) we build the triple to add or to delete from these
outputs. If the three outputs give the “not defined” class, we return no triple.
This means that the edit does not contain a triple to add, or a triple to delete,
respectively. If there is only one or two components returning “not defined”, we
assume that the network has not been able to predict a correction.

5.2 Bass

We now present our improved repair predictor, Bass. Figure 2 shows the archi-
tecture of our network. We designed two improvements over Bass-RL:

RDF literal embedding. We want our predictor to be able to act on RDF
literals. For example, if every book can have at most one ISBN number, and if
a given book has two ISBNs, 2-7654-1005-4 and abc, it is easy to decide that
abc should be abandoned, if we allow the network to access the literals.

For this purpose, we first remove the datatype IRI. This leads to strings like
"Elvis Presley"@en for a language tagged string or "42" for an integer. Then,
we tokenize the string with the BERT tokenizer [10] and apply an embedding
matrix on each token. We then apply a max pooling on the embedding sequence
to get another d-dimensional vector. We use the BERT tokenizer to provide a
better support for out-of-vocabulary words. It also allows to better handle com-
plex values like numbers and dates that a regular tokenizer based on a whitespace
and/or other characters split. It also allows keeping more significant elements
than a simple char based encoding. This input is not used when the objects are
IRIs or blank nodes.
3 σ(xi) = exi∑D

j=1 e
xj for all i ∈ 1, . . . , D if there are D possible classes.

dense + ReLu

dense + ReLu

dense + σ (x6)

predicted term to add or delete

max pooling

embedding

tokenizer

embedding

object

embedding

predicate

k violation triples

max pooling

dense + ReLu

embedding embedding

predicates objects

2k ·m entity facts + m constraint facts

k

k 1-hots

k · d

k

k 1-hots

k · d

k strings

k · t

k · t · d

k · d

(2k + 1) ·m

(2k + 1) ·m

(2k + 1) ·m 1-hots (2k + 1) ·m 1-hots

(2k + 1) ·m · d

(2k + 1) ·m · d

(2k + 1) ·m · d

(2k + 1) · d

4d

4d

6 · (1 + 3k + ce/p)

term embedding
entity fact embedding

edit prediction

Fig. 2. Bass network architecture when there is just one violation triple. d is the vector
dimension hyperparameter, k the max number of violation triples, m the max number
of facts per entity, and t the max number of string tokens. Additions compared to
Bass-RL are in red.

Constraint embedding. Bass-RL, like CorHist, encoded a constraint by an ID.
This does not allow the network to generalize over the constraints, to treat similar
constraints similarly, or to learn new constraints. To remedy this shortcoming,
we encode the constraint by a set of (predicate, object) pairs and we encode this
set using the entity fact embedding component introduced earlier.

To encode the constraint by a set of (predicate, object) pairs, we rely
on constraint shapes. The constraint shape of a constraint Γ is a constraint
Γ s where all constants in Γ have been replaced by fresh variables. For ex-
ample, the shape of the constraint Γ1(x) : 〈x, rdf:type, schema:Person〉 →
∃y 〈x, schema:birthPlace, y〉 is Γ s

1 (x) : 〈x, p1, o1〉 → ∃y 〈x, p2, y〉. Two con-
straint shapes are equivalent if they have the same components up to a renam-
ing of variables. With this definition, we encode a constraint Γ (x) : ϕ(x) →
∃y ϕ1(x,y) ∨ · · · ∨ ϕn(x,y) by the following set of property value pairs:

– (bass:constraintShape, i) where i is an identifier assigned to the equiva-
lence class of the constraint shape Γ s.

– (pi, oi) for each 〈si, pi, oi〉 in ϕ and ϕi where oi is a constant.

– (p̂i, si) for each 〈si, pi, oi〉 in ϕ and ϕi where si is a constant and p̂i is the
inverse property of pi.

4

These components give us our new Bass network.

6 Experiments

6.1 Dataset

We evaluated our algorithm on Wikidata [28]. We considered the same 10 kinds
of constraints as in [23]. The dataset provided by [23] contains, for each past
correction, the violated constraint and a single violation triple. Thus, running
CorHist required access to the Wikidata edit history, so as to extract the other
violation triple for “conflict with”, “single”, and “distinct” constraint types and
to retrieve the facts about the entities mentioned in the violation triple. To
simplify the re-use of our dataset, we added these items to the data, so that
CorHist and Bass can now be trained without having to access the edit history.
We also included the content of the external Web pages in the dataset, so that
CorHist+ and Bass (and future approaches) do not need to download the pages
again.

Different from [23], we limited the number of past corrections to 200k per
constraint type (except for “one of” constraints, which have only 23k extracted
past corrections in the full dataset). This limitation is made to facilitate the
use of the dataset (the previous one had a size of 36GB), and to allow fetching
all mentioned Web pages in a week. We split the dataset into 80% training set,
10% cross-validation set, and a 10% test set. This improved dataset is publicly
available on FigShare5.

6.2 Systems

Implementation. We implemented Bass with the Keras API of Tensorflow 2.
For the BERT tokenization, we use the HuggingFace “torkenizers” library [29].
Our implementation is publicly available on GitHub6. With E and P, we embed
only the entities and predicates with at least 100 occurrences. We do the same
for the output by setting t = 100. We choose to set all the embedding sizes to
d = 128. We use the constraint type identifier (“single value”, ”value type”...)
to identify the constraint shape, and we use the Wikidata statement that en-
codes the constraint to generate the (predicate, object) triples that describe the
constraint.

4 Using a new IRI if there is no inverse property of pi already in the KB.
5 https://doi.org/10.6084/m9.figshare.13338743
6 https://github.com/Tpt/bass-materials

https://doi.org/10.6084/m9.figshare.13338743
https://github.com/Tpt/bass-materials

Table 1. Evaluation of the correction rules mined by Bass, CorHist [23] and CorHist+
and comparison with the baselines. Best F scores in bold.

Micro average Macro average
Constraint type Prec. Rec. F Prec. Rec. F

Type add 0.53 0.17 0.26 0.28 0.10 0.14
delete 0.04 0.04 0.04 0.08 0.08 0.08

CorHist 0.88 0.62 0.73 0.96 0.28 0.43
CorHist+ 0.86 0.75 0.80 0.89 0.34 0.49

Bass 0.92 0.79 0.85 0.83 0.36 0.50
Value type add 0.20 0.07 0.10 0.35 0.11 0.16

delete 0.01 0.01 0.01 0.04 0.04 0.04
CorHist 0.70 0.62 0.66 0.86 0.35 0.50

CorHist+ 0.70 0.63 0.66 0.81 0.43 0.56
Bass 0.78 0.69 0.73 0.70 0.28 0.40

One-of delete 0.27 0.27 0.27 0.43 0.43 0.43
CorHist 0.84 0.72 0.78 0.84 0.34 0.48

CorHist+ 0.84 0.72 0.78 0.84 0.34 0.48
Bass 0.86 0.71 0.78 0.77 0.26 0.39

Item requires add 0.99 0.11 0.20 0.92 0.13 0.22
statement delete 0.02 0.02 0.02 0.07 0.07 0.07

CorHist 0.94 0.30 0.46 0.98 0.17 0.29
CorHist+ 0.85 0.36 0.51 0.94 0.19 0.32

Bass 0.89 0.35 0.50 0.76 0.17 0.28
Value requires add nan 0 nan nan 0 nan
statement delete 0.02 0.02 0.02 0.09 0.09 0.09

CorHist 0.96 0.64 0.77 0.95 0.33 0.49
CorHist+ 0.90 0.69 0.78 0.89 0.39 0.55

Bass 0.98 0.75 0.85 0.72 0.32 0.44
Conflict with delete 0.39 0.39 0.39 0.44 0.44 0.44

CorHist 0.93 0.47 0.63 0.91 0.36 0.51
CorHist+ 0.87 0.84 0.86 0.83 0.46 0.59

Bass 0.91 0.86 0.88 0.77 0.71 0.74
Inverse + add 0.91 0.91 0.91 0.82 0.82 0.82
Symmetric delete 0.07 0.07 0.07 0.11 0.11 0.11

CorHist 0.95 0.91 0.93 0.91 0.72 0.80
CorHist+ 0.94 0.92 0.93 0.90 0.73 0.81

Bass 0.97 0.94 0.95 0.87 0.58 0.69
Single value delete 0.45 0.45 0.45 0.42 0.42 0.42

CorHist 0.85 0.26 0.39 0.90 0.10 0.18
CorHist+ 0.55 0.50 0.53 0.74 0.23 0.36

Bass 0.74 0.64 0.69 0.60 0.52 0.56
Distinct values delete 0.55 0.55 0.55 0.45 0.45 0.45

CorHist 0.61 0.53 0.56 0.90 0.16 0.27
CorHist+ 0.58 0.57 0.57 0.80 0.26 0.39

Bass 0.59 0.56 0.57 0.48 0.43 0.46

Total add 0.46 0.14 0.22 0.33 0.11 0.16
delete 0.24 0.24 0.24 0.22 0.22 0.22

CorHist 0.83 0.53 0.65 0.94 0.23 0.37
CorHist+ 0.75 0.64 0.69 0.85 0.30 0.44
Bass-RL 0.77 0.65 0.70 0.64 0.34 0.44

Bass 0.80 0.68 0.73 0.69 0.39 0.49

Training. We trained Bass on the training set for all constraint types at the
same time, using the sum of categorical cross-entropy loss7 for the 6 classification
outputs and the Adam [16] optimizer. To ease the training we used the validation
set to keep the best epoch according to the loss against the cross-validation
dataset. We trained the model for 6 epochs on the full training dataset with a
mini-batch size of 256, the best model being found after the 3rd epoch. After
loading the dataset into memory, training took 18min using a laptop with an
Nvidia Quadro P3000 mobile GPU, an Intel Core i7-7700HQ CPU, and 32GB
of RAM. The rather large batch size was chosen so as to improve the training
stability. We experimented with larger batch sizes, but these do not improve the
performances.

Baselines. We compare our approach against CorHist and CorHist+ described
in Section 4, and the two baselines from [23]. For CorHist+, we use a minimal
support of 10 and a minimal confidence between 0.1 and 1.

The two baselines delete and add are basic ones without any learning: Delete
uses the fact that all Wikidata constraint violations have a “focus” on a sin-
gle existing triple whose removal would remove the violation. Our baseline just
removes this triple. Add tries to add a new triple to solve the constraint viola-
tion. For “inverse” and “symmetric” constraints, this baseline adds the missing
reverse triple and performs very well. For “item requires statement”, “value re-
quires statement”, “Type” and “Value type”, it adds a possibly missing triple
only if it is possible to know the expected value(s) from the constraint rule by
picking one of the expected values randomly.

6.3 Results

Table 1 compares the performances of Bass, CorHist+, CorHist and the two
baselines using our dataset test set. To counter the non-deterministic nature of
gradient descent based training, we ran Bass training multiple times. Its perfor-
mances were stable enough to not change the performance ranking. The other
approaches, CorHist(+) and the baselines, are deterministic.

As shown in the evaluations, Bass significantly outperforms CorHist+, which
itself significantly improves over CorHist. Indeed, we have conducted a Wilson
score test at confidence 95%, and confirm that the confidence interval is of size
0.2% for all approaches – an order of magnitude lower than the score gaps
between the different methods. The strongest improvements are seen for the
constraint types “Conflict with” and “Single value”, which both concern the
removal of one value between two choices. CorHist+ significantly improves over
CorHist (7% in macro average F-score) by allowing more complex rules, allowing
more relevant decisions and integrating metadata from Web pages. The simple
move from a rule learning algorithm (CorHist+) to a neural network (Bass-RL)
provides a small performance improvement of 1% in micro average F-score. We

7 The categorical crossentropy is defined as CE(x) =
∑n

i=0 tilog(pi) where ti is the
expected prediction for the class i, and pi is the predicted output.

believe that this improvement stems from the fact that, different from rules,
neural networks are able to draw holistic conclusions from the context facts.
The addition of textual data and of a structure representation of the constraint,
which are hard to take into account with a rule mining approach, allows Bass
to outperform Bass-RL by 5% in macro average F-score and by 3% in micro
average, suggesting that textual data and a structured representation of the
constraints help solving violations of under-represented constraints.

Bass takes around 18 minutes to train, whereas CorHist took 4 hours. Thus,
the increase F1 provided by Bass actually comes with a decrease of the training
time.

Table 2. Ablation study results.

Micro average Macro average
Approach Prec. Rec. F Prec. Rec. F

Bass 0.80 0.68 0.73 0.69 0.39 0.49
Bass-RL 0.77 0.65 0.70 0.64 0.34 0.44
Bass minimal 0.65 0.53 0.58 0.50 0.25 0.33
Bass without object literals 0.77 0.65 0.71 0.66 0.36 0.47
Bass without entity facts 0.70 0.59 0.64 0.54 0.31 0.39
Bass without constraint 0.77 0.65 0.71 0.60 0.35 0.44
Bass with one hidden layer edit predictor 0.79 0.67 0.72 0.69 0.38 0.49
Bass with constraint ids 0.80 0.68 0.73 0.66 0.37 0.47
Bass with BiLSTM literals 0.78 0.66 0.71 0.65 0.37 0.47
Bass with entity facts attention 0.76 0.65 0.70 0.63 0.36 0.46
CorHist+ 0.75 0.64 0.69 0.85 0.30 0.44
CorHist 0.83 0.53 0.65 0.94 0.23 0.37
Deletion baseline 0.24 0.24 0.24 0.22 0.22 0.22
Addition baseline 0.46 0.14 0.22 0.33 0.11 0.16

6.4 Ablation study

To understand the contribution of each component of our network, we remove
the components one by one, and measure the performance. We also added Bass-
RL and another variant, Bass minimal. This variant removes from Bass-RL the
constraint embedding and the entity fact embedding. This leads to a network
where the edit prediction component receives only the violation triple predicates
and objects, embedded with P and E .

Additionally to the ablation, we investigate some possible variants of our
network:

– Replace the constraint description input by the Bass-RL constraint ID en-
coding. This gives the exact constraint to the model, without the possibility
to generalize from the constraint description.

– Replace the max pooling layer in the literal embeddings by a bidirectional
long short-term memory network (BiLSTM) [14].

– Replace the max pooling layer that aggregates the embeddings of the (pred-
icate, object) tuples of the involved entities by an attention layer. We define

the attention following [19] as σ(q ·V >) ·V , where σ is the softmax function.
This attention layer uses for query q the constraint embedding.

Discussion. Using the description of the constraint instead of the constraint
ids does not change the micro average score, but increases the macro average
scores. This means that the change helps for constraints with only a few past
corrections, which have a weaker weight in the micro average. We thus observe
a better generalization with respect to the constraints. Embedding the object
literal values brings 2% of improvement on both F-scores, suggesting it brings
some value on the 13% of violations where one of the objects is a literal that is
not a date or a geographical coordinate. The addition of a bidirectional LSTM
and attention would actually be detrimental to the performances of our network.

Overall, our experiments show that our architecture is well-designed, and that
it is able to outperform the rule mining approach from [23] by a considerable
margin.

7 Conclusion

In this paper, we have presented an approach to automatically repair constraint
violations in Wikidata. Our experiments with various sets of constraint types
show that our new approach provides significant improvements over the rule-
based state of the art, by taking advantage of neural networks. This improvement
stems from two factors: First, we find that the neural network can better take
into account the shallow context of an entity. Second, the network can take
advantage of other input, such as textual values, which is hard to exploit in
traditional rule learning approaches.

For future work, we are considering to use the textual information contained
in the knowledge base (labels, descriptions) and in the related Web pages. We
also plan to update the user study done in [23] using Bass instead of CorHist. It
might also be interesting to investigate how well CorHist and Bass perform when
less training data is available, and to compare them with other static approaches
for KB repairs.

References

1. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Flöck, F., Lehmann, J.: De-
tecting linked data quality issues via crowdsourcing: A dbpedia study. Semantic
Web 9(3) (2018)

2. Arioua, A., Bonifati, A.: User-guided repairing of inconsistent knowledge bases. In:
EDBT (2018)

3. Assadi, A., Milo, T., Novgorodov, S.: Cleaning data with constraints and experts.
In: WebDB (2018)

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: Dbpedia:
A nucleus for a web of open data. In: ISWC (2007)

5. Bader, J., Scott, A., Pradel, M., Chandra, S.: Getafix: learning to fix bugs auto-
matically. PACMPL (2019)

6. Bergman, M., Milo, T., Novgorodov, S., Tan, W.: QOCO: A query oriented data
cleaning system with oracles. PVLDB 8(12) (2015)

7. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Query-driven repairing of inconsistent
dl-lite knowledge bases. In: IJCAI (2016)

8. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: SIGMOD
(2008)

9. Chen, J., Chen, X., Horrocks, I., Jiménez-Ruiz, E., Myklebust, E.B.: Correcting
knowledge base assertions (2020)

10. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL (2019)

11. Flesca, S., Greco, S., Zumpano, E.: Active integrity constraints. In: PPDP (2004)
12. Galarraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-

logical knowledge bases with AMIE+. vol. 24 (2015)
13. Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule

learning from knowledge graphs guided by embedding models. In: ISWC (2018)
14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation

9(8) (1997)
15. Hohenecker, P., Lukasiewicz, T.: Ontology reasoning with deep neural networks

(2018)
16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR

(2015)
17. Lertvittayakumjorn, P., Kertkeidkachorn, N., Ichise, R.: Correcting range violation

errors in dbpedia. In: ISWC (2017)
18. Liang, J., Xiao, Y., Zhang, Y., Hwang, S., Wang, H.: Graph-based wrong isa rela-

tion detection in a large-scale lexical taxonomy. In: AAAI (2017)
19. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-

ral machine translation. In: EMNLP (2015)
20. Melo, A., Paulheim, H.: An approach to correction of erroneous links in knowledge

graphs. In: K-CAP2017 (2017)
21. de Melo, G.: Not quite the same: Identity constraints for the web of linked data.

In: AAAI (2013)
22. Paulheim, H., Bizer, C.: Improving the quality of linked data using statistical

distributions. Int. J. Semantic Web Inf. Syst. 10(2) (2014)
23. Pellissier Tanon, T., Bourgaux, C., Suchanek, F.M.: Learning how to correct a

knowledge base from the edit history. In: WWW (2019)
24. Rantsoudis, C., Feuillade, G., Herzig, A.: Repairing aboxes through active integrity

constraints. In: DL (2017)
25. Razniewski, S., Suchanek, F.M., Nutt, W.: But What Do We Actually Know? . In:

AKBC workshop (2016)
26. Rekatsinas, T., Chu, X., Ilyas, I.F., Ré, C.: Holoclean: Holistic data repairs with

probabilistic inference. VLDB 10(11) (2017)
27. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:

WWW (2007)
28. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-

mun. ACM 57(10) (2014)
29. Wolf, T., et al.: Huggingface’s transformers: State-of-the-art natural language pro-

cessing (2019)
30. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey

on graph neural networks (2019)

	Neural Knowledge Base Repairs

