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STABILITY ESTIMATES IN INVERSE PROBLEMS FOR THE
SCHRODINGER AND WAVE EQUATIONS WITH TRAPPING

VICTOR ARNAIZ AND COLIN GUILLARMOU

Dedicated to the memory of Slava Kurylev

ABSTRACT. For a class of Riemannian manifolds with boundary that includes all nega-
tively curved manifolds with strictly convex boundary, we establish Holder type stability
estimates in the geometric inverse problem of determining the electric potential or the
conformal factor from the Dirichlet-to-Neumann map associated with the Schrodinger
equation and the wave equation. The novelty in this result lies in the fact that we allow
some geodesics to be trapped inside the manifold and have infinite length.

1. INTRODUCTION

In this article we study a geometric inverse problem associated with the anisotropic
Schrodinger equation and the wave equation on a compact Riemannian manifold (M, g)
with boundary 0M.

Let A, be the non-negative Laplace-Beltrami operator associated with the metric g, we
consider two initial-value-problems. First, we consider the Schrodinger equation for finite
time of propagation and with Dirichlet conditions:

(10, — Ay +q(x))u(t,z) =0, in (t,x) €l x M,
u(0,-) =0, in reM, (1.1)
u(t,x) = f(t,x), on (t,x) €l x oM,

where I = (0,7 for T' > 0 fixed. Secondly, we consider the wave equation for infinite time
of propagation and with Dirichlet conditions:

(0 + Ay + q(x)ut,z) =0, in (t,z) € I x M,
u(0,-) =0, du(0,-) =0, in xe M, (1.2)
u(t,z) = f(t,x), on (t,z) €l xIM,

where I = (0,7) and T can be equal to +oo.

We aim at studying the problem of the stable recovery of the potential ¢, or alternatively
conformal factor in a conformal class of a metric g, from the Dirichlet-to-Neumann map
associated with (1.1) and (1.2). The Dirichlet-to-Neumann map (DN map in short) is the
operator defined for each T' < oo

Aiq : Hy([0,T) x M) — L*((0,T) x OM), A;q,qf = —anusf(o,T)xaMa

A?/,q : Hy([0,T) x M) — L*((0,T) x M), AZV,qf 1= —0uu" |(0,1) <01,
1
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where u” solves (1.1) and u" solves (1.2), and 9, is the unit inward normal derivative at
OM. Here H}([0,T) x OM) denotes the closed subspace of functions in H*([0,T) x OM)
vanishing at t = 0. For the wave equation, we shall need to consider the case T' = oo, and
we will show that there is 1y > 0 depending only on ||¢|[z~ so that for all v > 1

AYL e Hy(Ry x OM) — " L*(Ry. x OM)

is bounded.

By a stability estimate, we mean that there is a constant C' > 0, possibly depending on
some a priori bound on ||g; || gs(a) for some s > 0 such that an estimate of the following
form holds

g1 — Q2||L2(M) < CF(HAS/W AS/W||*,Z/>7

9,491 9,92
where the used norm for the Schrédinger/wave DN map are respectively

|- 1l = I - lerrxonny—sz2axonsys |- Ml = | Nevt mr (1 xons)—evt 2(rxonny

and F' is a continuous function satisfying F'(0) = 0; we shall write simply || - ||« for the wave
case when [ = [0,7] with 7" < oo, and v = 0. We say that the stability is of Holder type
if F(z) = a” for some 3 > 0, it is said of log-type if F(z) = log(1/x)~" for some 3 > 0.
More generally, one can ask if there is a stability for the problem of recovering the metric,
ie.

g1 — " gall2cany < CE(IASTY = A1)

91,0 92,0
for some diffeomorphism ¢ (depending on gy, go). Here we have used the L? norm on M
to measure q; — g2, but one could also ask the same question for Sobolev or Holder norms.
Assuming a priori bounds on ¢ in some large enough Sobolev spaces H*°(M) allows to de-
duce (by interpolation) bounds on ||g; — ¢2||g= for s < s¢ if one has bounds on ||¢; — ¢2|| 12
(and similalry for g; — go).

The problem of determination of the metric g or the potential ¢ from AW was solved in
general by Belishev-Kurylev [BK92| (see also [KKLO1]) but the stability estnnates in the
general setting appeared only recently in the work of Burago-Ivanov-Lassas-Lu [BILIL20]
and are of loglog type (i.e. F(x) = |log|logz||~?) for the case with no potential. When
g = Jeua 18 the Euclidean metric on a domain M C R", a Holder type stability was proved
by Sun [Sun90] and Alessandrini-Sun-Sylvester [AZS90] for the determination of the po-
tential ¢ from AW 1q- In the case of non-Euclidean metrics, but close to the Euclidean
metric on a ball in ]R” Stefanov-Uhlmann [SU98] obtained Hélder estimates for the metric
recovery (with no potential involved), and they extended this result in [SUO5] to Rie-
mannian metrics close to a simple metric gy with injective X-ray transform on symmetric
2-tensors. Such simple metrics are dense among simple metrics. We recall that simple
metrics are Riemannian metrics with no conjugate points on a ball B in R™ with strictly
convex boundary, in particular all geodesics in B for such a metric have finite length with
endpoints on the boundary 0B. If gy is a fixed simple metric, Bellassoued and Dos San-
tos Ferreira [BDSE10, BDSF11] proved Hélder stability of the inverse problem for both

IAY 0 — A Nl and JAY = AW ll.. When g is close to a fixed simple metric go with
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injective X-ray transform on 2-tensors, Montalto [Mon14] extended the previous result to
the recovery of the pair (g, ¢) (and a magnetic potential term in addition) in a Holder stable
way. For non-simple metrics, we are aware of only two results showing strong stability: the
first by Bao-Zhang [BZ14] who prove for a non-trapping metric ¢ = ¢()%geua, conformal
to the Euclidean metric, and satisfying certain assumptions on their conjugate points, that
if HA?{geud — A?{geud ||« is small enough then the conformal factors agree ¢ = ¢; the second by
Stefanov-Uhlmann-Vasy [SUV16] is of the same kind but under the assumption that geye
is replaced by a metric gy so that the manifold (M, gy) can be foliated by strictly convex
hypersurfaces. In all these results, the time interval I = (0,7) can be taken with 7" > 0
finite but large enough for the wave case (depending on the diameter of the domain), while
for the Schrodinger case it can be taken finite and small using infinite speed of propagation.

All these mentionned results where Holder stability results hold assume no trapped ge-
odesic rays for the Riemannian manifold (M, g), i.e. geodesics staying inside the interior
M° of M for infinite time. This means that some regions of the phase space are not
accessible from the boundary by geodesic rays, and some waves can possibly stay (microlo-
cally) trapped for a long time near these trapped rays, so that a part of the information
can not be read off microlocally from the DN map at the boundary. It is thus an open
question to understand how stable is the recovery of the coefficients of the wave equation
or the Schrodinger equation when the metric is not simple. The difficulty to obtain such
Holder estimates lies in the fact that one usually reduces the inverse problem for the DN
map to some X-ray tomography problem using wave packets or WKB solutions of the
wave/Schrodinger equations that concentrate near single geodesics going from a point of
the boundary to another point. It is likely that under general assumptions, no Holder
stability estimates hold but log stability estimates do; we mention the recent work of
Koch-Riiland-Salo [KRS] about this question. Our purpose in this work is to address this
stability question in a family of cases where the trapped set is sufficiently filamentary, the
typical example being that of a non-simply connected Riemannian metric with negative
curvature and strictly convex boundary.

Our main geometric assumptions are the hyperbolicity of the trapped set for the geodesic
flow and the absence of conjugate points. We notice that these two assumptions are satisfied
if (M, g) is negatively curved. Let us recall the precise definition of hyperbolic trapped set.
Let ¢, : SM — SM be the geodesic flow for t € R, where SM = {(z,v) € TM : |v|g@) =
1} is the unit tangent bundle. We call, for every z = (z,v) € SM, the escape time of SM
in positive (+) and negative (—) times,

7.(2) :=sup{t > 0| Vs < t,ps(2) € SM°} € [0, 400],
7_(z) :=inf{t <0|Vs >t,ps(z) € SM°} € [—00,0].
The incoming (—) and outgoing (+) tails in SM are defined by
Iy ={z€ SM|1.(z) = £o0},

and the trapped set for the flow on SM is the set K :=1", NT'_. If M is strictly convex
for (M, g) (i.e. the second fundamental form of OM is positive), the trapped set K is a
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compact flow-invariant subset of the interior SM° of SM. We say that the trapped set
K C SM is a hyperbolic set if there exists C' > 0 and v > 0 so that, there is a continuous
flow-invariant splitting over K

Tk(SM)=RX @ E, ® E, (1.3)

where F, and FE, are vector subspaces satisfying for all z € K
|doi(2)w]| < Ce ™ |w|, Vt>0, Ywe Eyz), (1.4)
|dor(2)w]| < Ce ™ |w|, Vt<0, VYwée E,(2), (1.5)

with respect to any fixed metric on SM. The notion of conjugate points can be defined
as follows. If mg : SM — M is the projection and V := kerdmy C T(SM) is the vertical
bundle of the fibration, we say that there is no conjugate point if dy,(V) NV = {0} for all
t # 0, where {0} denotes the 0-section of T'(SM).

1.1. The case of the Schrédinger equation. The DN map associated with (1.1) is
continuous [BDSF10, Thm. 1] as an operator from H*((0,7T) x OM) to L*((0,T) x OM).
Our first goal is to a obtain a Holder stability estimate of the form

||Q1 - qZ||L2(M) < C||Ag7q1 - Agﬂz”fa (1-6)

for some 5 > 0 for the Schrédinger equation on a bounded time interval (0,7"). Here we
assume that ¢; and g¢» belong to the family of admissible electrical potentials

Q(No) := {qg € WH(M) | llgllwrar) < No}, (1.7)

with Ny > 0 fixed, and that ¢; and ¢y coincide on the boundary 0M. It is known that the

estimate (1.6) holds on simple manifolds [BDSF10] with § = 1/8. Our aim is to extend this

result to the case of hyperbolic trapped set of the geodesic flow and no conjugate points.
Our first result gives the stable determination of the potential ¢ from the DN map.

Theorem 1. Let (M,g) be a compact Riemannian manifold of dimension d > 2 with
strictly convex boundary. Let T, Ny > 0 fized. Assume that the trapped set K is hyperbolic
and there are no conjugate points. Then, there exists a constant C = C(M, g, T, Ny) > 0
such that, for any qi,q2 € Q(Ny) with ¢ = g2 on OM,

lor = a2llzzqany < ClIAG,, — A7, 117, (1.8)

for some B > 0 depending only on (M, g).

We notice from our proof that the constant 5 can be expressed in terms of the volume
entropy and dynamical quantities on the geodesic flow of (M, g), more precisely the pressure
of the unstable jacobian of the geodesic flow on the trapped set and the maximal expansion
rate of the flow.

In order to obtain a stability estimate for the conformal factor of the metric, we consider
the family of admissible conformal factors given by

G (Noyk,e) i={c e C*(M)[c>0in M, |1—cllon <€ lelleran < Not. (1.9)

Our second result gives the stable determination of the conformal factor.
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Theorem 2. Let (M, g) be a compact Riemannian manifold of dimension d > 2 with
strictly convex boundary, hyperbolic trapped set K and no conjugate points. Let T, Ng > 0
be fized. Then, there exist k > 1 depending only on dim(M), € > 0 depending on (M, g, Ny)
and a constant C' = C(M, g,T, Ny) > 0 such that, for any ¢ € € (Ny, k,€) with ¢ =1 near
oM,

11— ellzzany < ClIATo — Al

[l (1.10)
for some 8 > 0 depending only on (M, g).

As far as we know, these two results are the first Holder stability results for the Schrodinger
equation when the principal symbol of the operator has trapped bicharacteristic rays.

1.2. The case of the wave equation. The DN map associated with (1.2) with I = (0, 7))
is bounded as an operator from H}((0,T)x M) to L*((0,T)x OM) (see [LM72a, LMT72D]).
In the case I = (0,00), it is necessary to introduce a exponential weight in the time as
T — +oo to obtain boundedness of the DN map. For our result, due to the fact that
some geodesics have infinite length (those that are trapped), we need to consider the wave
equation for all positive time.

For k, (¢ € Ny, let v > 0. We define the weighted Sobolev space e"* H(I; H*(M)) as the
space of functions f € H*(I; H*(M)), with finite norm

k

o0 2
I flleve mrecrsmrecanyy i= Z (/0 e 8] f(t, ')H%N(M)dt>

J=0

In particular, we denote e’ H*(I x M) := e"*H*(I; H*(M)). Similarly we define the
weighted Sobolev spaces e"! H*(I; HY(OM)) on the boundary OM, and denote e** H*(I x
OM) = "' H*(I; H*(OM)).

The DN map associated with (1.2) is continuous from e”*HJ (I x OM) to e’*L*(I x OM)
for every v > 1y: this follows from [CP82, Thm 6.10 and Thm. 7.1} and can be checked
that vy > 0 depends only on ||¢||r=, as we show in Lemma 4.3 and the comment that
follows. We denote:

HAZE/QH*,V = ”AmHL(e”tHé(IX@M);thLQ(IxaM))‘ (111)

We next state our main result on the stable determination of the electric potential from
the DN map.

Theorem 3. Let (M,g) be a compact Riemannian manifold of dimension n > 2 with
strictly convex boundary, hyperbolic trapped set and no conjugate points. Let Ny > 0 be
fized. There is vy depending only on Ny such that for every v > vy, there exists C' > 0 such
that, for any qi,q2 € Q(Ny) with ¢ = g2 on OM,

lar — @ellzon < CIIAY, — A N2, (1.12)
for some 8 > 0 depending only on (M, g) and v.

We finally state our main result on the stable recovery of the conformal factor.
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Theorem 4. Let (M, g) be a compact Riemannian manifold of dimension d > 2 with
strictly convexr boundary, hyperbolic trapped set and no conjugate points. Let Ny > 0 be
fixed. Then, there exist vy > 0, k > 1 depending only on d, and ¢ > 0 depending on
(M, g, Ny), such that for all v > vy, there is C depending on (M, g, Ny,v) so that, for any
¢ € €(No, k,€) with c =1 near OM,

11— el < CIAY, - (1.13)

chH*w

for some B > 0 depending only on (M, g) and v.

1.3. Method of proof. To obtain the stability results, we use the general method of
[SU05, BDSE'10, BDSF11] of reducing the problem to some estimate on X-ray transform
of g1 — ¢o. We however need to perform several important modifications due to trapping.
Ultimately we rely on some results of the second author [Guil7] on the injectivity and
stability estimates of the X-ray transform for the class of manifold under study, but it is
not a simple reduction to that problem, as we now explain. We first follow the well known
route of constructing WKB solutions w of the Schrédinger/wave equation concentrating
on each geodesic v of length less or equal to T > 0 with endpoints on the boundary. We
use the universal covering of M to construct u since M is not assumed simply connected.
We can then bound the integral of ¢; — ¢» along these geodesics by a constant times
HA%?/ — gs/q?/H* ». The non-simple metric assumption complicates that step compared to
the simple metric case, due to the fact that geodesics self intersect. In the Schrodinger
equation, using the inﬁnite speed of propagation, we can take Tj as large as we want by
taking WKB solutions with frequencies A > Ty /T, while for the wave we need to know
the DN map on time [0, 00) to be able to let Tj be arbitrarily large. We then use some
estimate on the volume of the set of geodesics staying in M° for time < Tj: this volume
decays exponentially in 7. We deduce that the transform I 1o(q1 — g2) of ¢ :== ¢1 — ¢2 can
be controled in L? by

CeOATY — A1 gl + Cem P llal| (1.14)

9,91 9,92
for some Cy > 0,C > 0,¢ > 0 independent of Ty. Here Iy : L®(M) — L% _(0SM \T_) is

loc
the X-ray transform defined by

74 (2)
Iog(z) := / a(mo(pn(2)))dt,

that extends continuously to L®(M) — L*(OSM) by [Guil7]; here o : SM — M is the
projection on the base. For simple metrics, it is well-known (see [PUO05]) that the normal
operator Ily := [l is an elliptic pseudo-differential operator of order —1 thus satisfy-
ing ||Ilof||ms > Cs||f|lgs— for all s > 0 and Cs > 0 depending on s. In [Guil7], using
anisotropic Sobolev spaces an Fredholm theory for vector fields generating Axiom A flows
[DG16], it is shown that the same properties hold on Iy for metrics with no conjugate
points and hyperbolic trapping. We can then bound the norm of ||¢; — ¢2|| by a constant
times some norm ||TI(q; — g2)||, which in turn is bounded by (1.14). Taking T large enough

(depending on || A5 — f{f ||«.») and using interpolation estimates, we can then show that
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the second term of (1.14) can be absorbed into the first term, and we obtain the desired
stability bound. The case of the recovery of the conformal factor is using a similar type of
arguments.

Acknowledgements. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 725967). The second author acknowledges fruitful and
enlightning discussions with Slava Kurylev and Lauri Oksanen few years ago on that prob-
lem. We would like to dedicate this work to the memory of Slava Kurylev, who showed
particular enthousiasm on that problem.

Notations: In what follows, we shall use the notational convention of writing C' > 0 for
constants appearing in upper/lower bounds , where this constant may change from line to
line, and we shall indicate its dependence on the parameters of our problem when this is
important.

2. GEOMETRIC SETTING AND DYNAMICAL PROPERTIES OF THE GEODESIC FLOW

In this section we recall, for (M, g) a Riemannan manifold with strictly convex bound-
ary, some notions about the geometry of the unit tangent bundle SM = {(z,v) €
TM|g.(v,v) =1} and the dynamics of the geodesic flow on SM. Let

o SM — M, m(z,v) ==,

be the natural projection on the base. We will denote by X the geodesic vector field
on SM defined by X f(z,v) = Ouf (Vaw)(t); Y@0)(t))t=0 Where vz (t) is the unit speed
geodesic with initial condition (Y(z,)(0), ¥(z,:)(0)) = (x,v). We will denote by ¢;(z,v) =
(V@) (t); V(@0) (1)) the geodesic flow, which in turn is the flow of the vector field X.

The incoming (—) and outgoing (+) boundaries of the unit tangent bundle of M are
defined by

0+SM = {(z,v) € SM |z € OM, Fg,(v,n) > 0},
where n is the inward pointing unit normal vector field to OM. For any (z,v) € SM, define
the forward and backward escaping time

T (2, v) = sup{t > 0| ¢s(x,v) € OSM or Vs € (0,t), ps(x,v) € SM°} € [0, 400,
77(337’0) = —T+(I, _U) € [_0070]7

which satisfies X7, = —1in SM with 7, |5, sps = 0. For (x,v) € 9_SM, the geodesic vz
with initial point x and tangent vector v either has infinite length (i.e. 74 (x,v) = 4+00) or
it intersects OM at a boundary point ' € 9M with tangent vector v’ with (z/,v") € 0, SM.
The incoming (—) and outgoing (+) tails in SM are defined by

I'r ={z€ SM|1.(z) = £oo},
and the trapped set for the flow on SM is the set
K:=TI,nNnT_.
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It is a compact subset of SM® that is flow invariant ([Guil7]). We define the subset
T.(t) € SM given by the points (z,v) € SM for which the orbit of the geodesic flow
issued from (z,v) remains in SM after time ¢:

Ti(t) == {(z,v) € SM |7y (z,v) > t}.
We define the non-escaping mass function V (t) as
V(#) := Vol(T: (),
where Vol is the volume with respect to the Liouville measure o on SM. Let us also denote
OT,(t) :=TL(t)NO_SM. (2.1)

The escape rate Q < 0 measures the exponential rate of decay of V(¢). It is given by:

1

Q :=limsup - log V'(t). (2.2)
t—4o00 t

By [Guil7, Prop. 2.4], if the trapped set K is hyperbolic, then @@ = Pr(—J,) is the

topological pressure of (minus) the unstable Jacobian 0, det(dy:|g,)|i=0 of the geodesic

flow on the trapped set K, and it satisfies

Q = Pr(J,) <0.
Let du, be the measure on 9SM defined by

dpim (2, 0) = [ gz (v, m)[e*|dp(z, v)],

where |dp| is the Liouville density, and ¢ : 0SM — SM is the inclusion map. When
Vol(I'_ UT,) = 0, then Volgsy(I'y N 0LSM) = 0 and one can use Santalo’s formula
([Guil7, Section 2.5]) to integrate functions in SM: for all f € L*(SM):

T+(I7'U)
fin=[ [ fopevitduo). (2.3)
SM a_sm\r_ Jo

It is convenient to view (M, g) as a strictly convex region of a larger smooth manifold
(M., g.) with strictly convex boundary so that each geodesic in M, \ M has finite length
with endpoints on M, U OM. The existence of such extension is proved in [Guil7, Sect.
2.1 and Lemma 2.3]. Moreover, if (M, g) has hyperbolic trapped set and no conjugate
points, one can choose (M., g.) with the same properties as (M, g), as is shown in [Guil7,
Lemma 2.3]. The vector field X and the flow ¢; are extended in SM, and we define the
function 7§ on SM, just as we did for 7, on SM. The trapped set of the flow in SM, is still
K C SM°, the incoming tail I'L on SM, is 'Y = Ui () NSMe and T'C. N SM =T

3. THE X-RAY TRANSFORM

In this section we recall from [Guil7] the main properties of the X-ray transform act-
ing on functions in our geometric setting. Let (M, g) be a smooth compact Riemannian
manifold with strictly convex boundary and M, a small extension with the same property.
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The X-ray transform [ is defined as the map:
+(3}7’U)
I:C(SM\('-uly)) =Cr(0-SM\T.), If(z,v):= / fow(z,v)dt.
0

The X-ray transform can be extended to more general spaces. If Vol(K') = 0, then Santalo’s
formula implies that the operator I extends as a bounded operator
I:LYSM) — LY0_SM;dpuy,).
When moreover the escape rate @ of (2.2) satisfies @ < 0 then, by [Guil7, Lemma 5.1],
one has that
Vp>2, I:LP(SM)— L*(0_SM,du,). (3.1)

For our purposes to extend the results of [BDSF10], it is more convenient to deal with the
X-ray transform acting on functions in C*°(M). The projection my : SM, — M, on the
base induces a pullback map

my 2 Coo(M7) = C<(SM),  mof := fomo,
and a pushforward map . defined by duality:

Tou : DI(SMZ) = DM, (mowu, f) = (u, 73 f).

When acting on L! functions, the pushforward 7, acts as

o f(2) 1= f(z,v)dw, (v).

Sz M

where dw, is the measure on S, M induced by g. The pullback by m, gives a bounded
operator g : LP(M) — LP(SM) for all p € (1,00). We define the X-ray transform on
functions by

I() = IWS
If @ < 0 then I extends as a bounded operator
Iy = I} LP(M) — L*(0_SM,dpu,), (3.2)

for any p > 2. The adjoint I} : L>(0_SM, du,) — L¥ (M) is bounded for 1/p' + 1/p = 1,
and it is given precisely by Ij = my.I*. The operator II; is defined as the bounded self-
adjoint operator

Mo : IjIo = mo "Iy« LP(M) — LF(M), ~+—=1, p>2.
p P
Similarly, we define the extended X-ray transform I associated with M., and
/ 1 1
g =I5"15 : LP(M) — LP (M), —+—==1, p>2. (3.3)
p p

Lemma 3.1. [Guil7, Prop. 5.7] Assume that (M,g) has strictly convex boundary, no
conjugate points and hyperbolic trapped set and let (M., g.) be an extension with the same
properties. The operator 11y, resp. 115, is an injective elliptic pseudo-differential operator of
order —1 in M°, resp. M¢, with principal symbol o (I1§)(x, &) = Cyl€|;* for some constant
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Cyq > 0 depending only on d = dim M. For each k € Z and each compact subset 2 C M?
with smooth boundary, there exists Cy,Cy > 0 such that for all f € C(Q)

Cullf vy < ITGF [wer ey < Coll 1l are)- (3.4)
Moreover, a direct calculation yields for z ¢ I'C. UT'®

7 (2)

T+(2)

i flo )t T(of)(z) = / T

and thus if f € LP(M,) satisfies supp f C M, we have [°*(I§f) = I*(Iof) on SM\ (I'y UI'_).
In particular this implies that

EHE) = [

7€ (2)

(II5./) ar = o f. (3.5)

Since pseudo-differential operators of order —1 map Wik (M?) continuously to W EP (o)

for all (s,p) € R x (1,00) (see [Tay91l, Thm. 0.11.A]), (3.5) implies that
feWws?(M) = Ilof € WP (M), feWgP(M,) = If € WP(M.)  (3.6)

where W*P(M) denotes the Sobolev space (with s derivatives in L?) on the manifold with
boundary M, WP (M) is the closure of C2°(M?) for the W*P(M) topology, and similarly
on M.,.

4. GEOMETRICAL OPTICS SOLUTIONS

We will assume along this section that (M, ¢) is a smooth compact Riemannian manifold
with boundary such that

e The boundary 0M is strictly convex,
e The metric g has no pairs of conjugate points,
e The trapped set K is hyperbolic.

We shall take (M., g.) an extension of (M, g) with the same properties and for notational
simplicity we will write g instead of g, for the extended metric on M,.

4.1. Geometrical optics for the Schrodinger equation. In this section we generalize
the geometrical optics solutions given in [BDSF10, Sect. 4] for simple manifolds to our
geometric setting. Since the map exp, (M) — M, with x € M, is no longer a diffeomor-
phism, but the exponential map behaves well on the universal cover of M, we then make
the construction in the universal cover of M, periodize it with respect to the fundamental
group (M), and then project it down to M.

We first recall the following:

Lemma 4.1. [BDSF10, Lemma 3.2 and eq (3.5)] Let T' > 0 and ¢ € L>®(M). If F €
W0, T); L*(M)) such that F(0,-) =0, then the unique solution v to

(10 — Ay + q(x))v(t,x) = F(t,xz) in (0,T) x M,
v(0,2) =0 in M,
v(t,z) =0 on (0,T) x OM,
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satisfies

v € CH([0,T]; L*(M)) N C([0, T); H*(M) N Hy(M)).
In addition, there is a C' > 0 depending on (M,g),T and ||q||p~ such that for any n > 0
small and t € [0, T

T
lo(t, Mz < C / 1P (s, 2o (4.1)

lo(t, Mz < CONOF | qoriezany + 0 N F o qoriz2ary) - (4.2)

Let us consider extensions M &€ M, € M,, of the manifold M and extend the metric g
smoothly in a way that (M., g.) has the same properties as (M, g). The potentials g1, go
may also be extended to M., and their W°°(M) norms may be bounded by Ny. Since ¢
and ¢o concide on the boundary, their extension outside M can be taken so that ¢ = ¢
in M.\ M.

We first recall the construction, following [BDSF10, Sect. 4], of a geometric optics
solution for simple manifolds and we will explain how to extend it to our setting. If (M, g)
is a simple manifold, a geometric optics solution u € C'([0,T]; L*(M)) N C([0, T|; H*(M))
for the Schrodinger equation

(i0y — Ay + q(x))u=0, in (0,7) x M,

u(0,2) =0, (4.3)
can be constructed in terms of a function ¢ € C*(M) satisfying the eikonal equation
\VIY(x)|, =1, Yae M,
and a function a € H'(R; H?(M)) solving the transport equation
da 1
ga 9) — = (A - R M
Y + da(V7) 2( Wy)a=0, VteR, xe€lM, (4.4)

with a(t,z) =0, VYxe M, andt <0, ort>Tp,

for some T} sufficiently large (which in the simple case is taken to satisfy Ty > 1+Diam(M,)
where Diam(M,) is the g-diameter of M,). More precisely if OM, is chosen close enough
to OM so that (M., g) is a simple manifold, one can define, for any fixed y € M.,

() = hy(x) = dy(y,x), @€ M.
Using geodesic polar coordinates we can write each x € M, as
z = expy(r(z)v(z)), r(r)=dy(y,x), v(r)e M

where exp,, : T'M, — M. denotes the exponential map at y for the metric g. One defines
a solution to the transport equation a € H'(R; H?(M)) in polar coordinates as

a(t,x) = a M (r(z), v(x))p(t — r(2))b(y, v(z)),
where a = «(r,v) = |det(g;;(r,v))| denotes the square of the volume element in ge-

odesic polar coordinates, ¢ € C°(R) satisfies supp¢ C (0,&9) for g > 0 small, and
b€ H*(O_SM,) is a fixed initial data.



12 VICTOR ARNAIZ AND COLIN GUILLARMOU

A geometrical optics solution u € C'([0,T]; L*(M)) N C([0, T]; H*(M)) for (4.3) is then
defined by u(t,z) = GA(t,z) + va(t, x), where

Gi(t, ) := a(2\t, x)eAWv@) =)
and the remainder vy satisfies ([BDSF10, Lemma 4.1]):
up(t,x) =0, V(t,z)e (0,T) x OM,
vx(0, ) = 0.
Moreover, there exists C' > 0 such that, for all A > T;/2T,

loa(t, lseary < CNHallm oz ary, k=0, 1.
The constant C' depends only on T and (M,g). One can also construct a geometrical
optics solution u(t, x) if the initial condition u(0,z) = 0 is replaced by the final condition
u(T, z) = 0 provided A\ > Ty/2T; in this case v, satisfies vy (T, x) = 0.

In our setting, that is, assuming that the trapped set K is hyperbolic and that g has
no conjugate points, the construction is a bit more subtle, since the exponential map
exp, : exp, (M) — M is no longer a diffeomorphism. We work on the universal cover M
of M, which is a non-compact manifold with boundary (the boundary has infinitely many
connected components), whose interior is diffeomorphic to a ball. One has

M = M /m (M),
where the fundamental group (M) is identified with the group of deck transformations
on M that is, the set of homeomorphisms f : M — M such that 7 o f = m, with the

composition, where 7 : M — M is the covering map. The metric g lifts to a smooth metric

g on M satisfying v*g = g for all v € m(M). More generally, we denote by ~ the lifted
objects to the universal cover. If (M, g) is assumed to have no pair of conjugate points, g

does not have pairs of conjugate points. Thus, for each y € M the exponential map

exp, : U, C TM — M
is a dlffeomorphlsm for some simply connected set U,. Similarly, we define the universal
cover M, of M., and note that m (M) = m (M. ) so that each deck transformation ~ of M

extends naturally as a deck transformation on M,. Let us fix y € 9M, and we lift this point
to § € OM,.. We can choose a fundamental domain F C M, so that M = F/m (M) via
identification of the points of the boundary of F by the action of the elements of 7 (M).
Note that F has two types of boundary components, the boundary components 9;F in the
interior M° of M which are identified by elements of 711 (M), and the boundary components
FNr~(OM). Similarly, we choose a fundamental domain F, for m(M,) ~ 71 (M) in M,
extending F and denote by 0;F. the interior boundary of F.. We can freely assume that
y € F. does not belong to the closure of 0;F.. Recall the definition of the volume entropy
of M

h(M,g) := lim sup RlogVol (By(9; R)) (4.5)

R—o0
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where By(y; R) C M, is the g-geodesic ball centered at g of radius R. Since M is compact,
one has h(M, g) < oo (for instance by Bishop-Gromov comparison theorem) and h(M, g)
is not depending on the choice of g.

We define on M the solution to the “lifted” eikonal equation |V = 1 given by

by() = dy(,7), &€ M,

where dj denotes the distance associated to the lifted metric g on M. Notice that Yy is

well defined and smooth outside & = ¢ since § has no conjugate points (for any Z € M
there is a unique geodesic joining ¢ with Z and realizing d;(7y, Z)). Let

0_S;M, = {v € S;M., | (v, v(7)) > 0}.
Using geodesic polar coordinates on M we can write each x € ]\Z

x = expy(r(z)v(z)), r(r)=1(z), v(z) € SQJ\Z.
Fix Ty > 1+ Diam(M,). For any given b € H?*(9_SM,) with b|o7, () = 0 (recall definition

(2.1)), we denote by b its lift to d_SF,. Let ¢ € C5°(R) with supp ¢ C (0, &), €0 > 0 small,
we define

a(t, ) = oV (r(w), 0(2))p(t — r(2))b(G, v(x)), (4.6)

where a(r,v) = | det(g;;(r,v))| denotes the square of the volume element of M, in geodesic
polar coordinates. We introduce the norm |lal|. on functions on [0, 7] x M given by

lalls = llall o,z
For any A > 0, we set
Gi(t,x) Z a(2Mt, y(2)) @M@ e (0T, x e M,, (4.7)
yeTL (M)

where (z) denotes the lift of the point 7(z) € M, to the fundamental domain (F.). Notice

that, since supp(a(2At,-)) is contained in a fixed compact set of M, for t € [0, 7], the sum
in v € m (M) is locally finite. Moreover, as G (t,yz) = G\(t, z), the function G, descends
to M, (and will also be denoted G downstair), and satisfies Gy € H'([0,T]; H*(M,)).

Lemma 4.2. Let g € L®(M). For Ty > 0 and T > 0, the Schrédinger equation
(10, — Ay + q(x))u=0, in (0,7) x M,
u(0,) =0, in M,
has a solution of the form
u(t,x) = Ga(t, z) + ua(t, z),
with Gy given by (4.7), such that

w e CH([0,T); L*(M)) N C(0,T); H*(M)),
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where vy(t, ) satisfies, for X > 22 75
un(t,x) =0, V(t,z) € (0,T)x OM,
ux(0,2) =0, x€ M.

Furthermore, for each € > 0 there exz'sts C > 0 depending only on (e, M, g, ||q||e,T") but
not on Ty, y, such that, for any A > + the following estimate holds true:

lox(t, s any < Ce™ TN al,, k= 0,1, (4.8)

where h = h(M, g) denotes the volume entropy of (M,g). The result remains valid after
replacing the initial condition u(0,-) = 0 by the final condition u(T,-) = 0.

Proof. We prove the Lemma with initial condition u(0,-) = 0, the proof for u(T,-) = 0
being analogous. As in [BDSF10, Proof of Lemma 4.1], we consider for x € M,

k(ta)=— Y (i — A + ) (a(2)t,7(2))eXH70E0)
yETL(M)

where T € Me is a lift of x. Let vy be the solution, given by Lemma 4.1, to the homogeneous
boundary value problem

(10, — Ay + q)ua(t, ) = k(t,z) in (0,T) x M,
vx(0,2) = 0, in M,
up(t,x) =0 on (0,7) x OM.

We shall show that vy satisfies the estimate (4.8). A computation gives

—k(to)= Y eAUOEITO(AG + G(4(2)))a(2ME, 1(2))

yem (M)
y B B . a N
£20 Y OO (9 4 da(Toy) — Az ) (20(@))
yem (M)
FAT Y a2, y(2)eN I (1 9Ty )2).
yem (M)

Using that a solves the transport equation, that 1y solves the eikonal equation and that
Az commute with v* (since 7 are isometries of §), we obtain

—k(t,x) = ) ePUOET(_Aga + Ga) (20, (i)
yemL (M)
—. Z AU O@)=A o ONE 4()).
yem (M)
Notice that ko € Hy([0,T]; L*(M)) for X > Ty/2T and ko(s,-)|;7 = 0 for s > Tp. Then,
using Lemma 4.1 we get

vx € CH([0,T; L*(M)) N C([0, T]; H* (M) N Hy (M)



STABILITY ESTIMATES FOR WAVE AND SCHRODINGER 15

Moreover, using (4.1), there exists C' > 0 depending on (M, g),T > 0, and ||g||z~ such
that

To
loatt Mzan <€ 3 / IKo(2At, e < 5 3 / ko5, )l 2o

’YEﬂ'l(M 'y€7r1
— )\ a * 9

where N(Tp) denotes the number of fundamental domains which intersects the geodesic
ball B(g,Ty) of center § and radius Ty in M, that is:

N(To) =# {7 € (M) |3z € F, dy(3(x),§) < Ty}
<#{y € m(M)| max dy(1(2),5) < To + Diam(M)}.

Clearly, N(Tp) Vol(M) < Vol(B(y,To + Diam(M))), and therefore for each € > 0, there is
C > 0 (depending on Diam(M) and Vol(M)) such that for all T > 0 large enough

N(Tp) < Cel T,

where h = h(M,g) is the volume entropy of (M, g) defined in (4.5). We notice that the
constants C' > (0 above can be chosen independently of y and that A is in fact not depending
on y.

Finally, by Lemma 4.1, there is C' > 0 (depending on (M, g,T,||q||z=)) such that for
eachn >0

IV90r (8, Mn < Cn - 3 / (A ko(@XE, )22, + MBrko(@L, )22y dt

’Y€7T1
_1 Z / ||]{,‘O 2)\t ||L2 ’Y(]:)
~vem (M)

Choosing n = A1, for each € > 0 there is C' > 0 such that for all A > T, /2T

To
IV90r(t, Mz2an <C ) (/ [[ko(s, )l L2y f)ds+/ ||3tk0(87')||L2(w(f>>d3>

’YETI'l
< Celhte T°||a||*. O

4.2. Geometrical optics for the wave equation. In this section we give the construc-
tion of geometric optics solutions for the wave equation with hyperbolic trapped set. First
we use the following

Lemma 4.3. Let ¢ € L™(M). There are constants C > 0 depending only on (M, g, ||q|| 1<)
and vy > 0 depending only on ||q||pe~, such that for all0 <t < T, and all F € L*((0,T) x
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M), there is a unique solution v to
(0} + Ay + q(x)v(t,z) = F(t,z) in[0,T] x M,
v(0,2) =0, Jw(0,2)=0 in M, (4.9)
v(t,z) =0 on [0,T] x OM,

in C1([0,T); L*(M)) N C°([0, T); HY(M)) satisfying for each v > vyq

t

[o(t, 720y + 100 20y + IV00(E 2000 < C/O "I F (s, WMz ands,

le™ 2 Buvll 2oy xonry < Clle™ 2 F || 2 (o.ryx ).

(4.10)

where C' depends only on ||q||p~ and v.
There is C' > 0 as above such that for each f € H ([0, T]x OM) with f(0,-) = 0,f(0,-) =
0, there is a unique solution u € C*([0,T]; L*(M)) N C°([0,T]; H}(M)) such that
(02 4+ Ay +q(x)u(t,z) =0 n [0,T] x M,
w(0,2) =0, OQu(0,z) =0 1in M, (4.11)
u(t,z) = f(t,x) on [0, T] x OM,
and u satisfies,
lle™" 200l 2o.ryxonry < Clle™ 2 fll i o, r1x00)-
As a consequence, the operator A} : e"PHI (R, x OM) — e’/2LA(R, x OM) is bounded
with norm depending only on (M, g), ||q||L~ and v.

Proof. The uniqueness and existence is done in [LM72a, Chapter 3, Section 8 and 9] and
based on energy estimates. Here we want a uniform estimate in time involving the exponent
o, in particular for what concerns its dependence in ¢. Let v be a solution to (4.9), then,
for any v > 0, v,(t, ) = e **/?v(t, ) satisfies the damped-wave equation

(02 + Ay + 2 + g(z) + vd)v,(t,x) = F,(t,z) in [0,T] x M,
v,(0,2) =0, 0w, (0,2) =0 in M, (4.12)
v, (t,z) =0 on [0,T] x OM,

where F,(t,z) = e "/2F(t,x). Similarly, let u be the solution to (4.11), then u,(t,z) =
e "*?u(t, r) solves the boundary-value problem:

(07 + Ay + %+ q(x) +v0,)u,(t,x) =0 in [0,T] x M,
u,(0,2) =0, O, (0,2) =0 in M, (4.13)
u,(t,x) = f,(t, v) on [0,T] x OM,

where f,(t,2) = e /2 f(t, ). First, multiply equation (4.12) by ©, and integrate in [0, ¢] x
M to get

t t t 2
—/ / \asvy|2dvgds+/ / |ng,,|2dvgds+//(VZ+Q)|UV|2dvgd$
0 JM 0o JMm 0 Jm
t t
:—/ 8tv,,@,,dvg—1// / 8311,,17,,dvgd3+/ / F,v,dvyds.
M 0o JMm 0 JMm
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/ / |ngu| dngS + — / / |U,/| dngS
1 , 1 ° i

< — | 0w, ()" dvy+ = [ |v.(t)]*dv, + |c9 v, > + v, [?)dv,ds
+ (lgll o= + q//mmww%//uwmw

and we get, for C, = % — 5= llallz~ — 35,

Then:

t t 1 1
Anwmwmww+alnmwms < 10 Olaay + 51 (D)

+2 [ Wodiean + 5 [ NFA) s
0

(4.14)
We next multiply equation (4.12) by 0,u,, take the real part and integrate by parts to
obtain

1/2

L e Oy + 19600y + 19200 s,
t t
S?AmﬂbmmmﬂdwﬁhmmM&HMMwOH%@N%WﬂS
t
+NmeﬂOAH&%@Mémﬂs

t t t
s/ﬁm@mwwwwwm/wmwmmw+uﬂmm—w/nwwwamw

0 0 0

Defining ®,, (t) := [|0,(8)]|32 + [[v,(O)]|32 + || V90, (t)||3., using (4.14) and taking v > 2
large enough depending only on ||¢|| .=, we obtain:

w05 [ UM+ el = Co) [ o) ans
0 lllm =) [ 100 anyds [ 199006 s
0 0

Take v large enough so that C,, — ||¢||z~ > 1 and v > 2 + ||q|| L=, we then get

t t
By, (1) + / By, (s)ds < 3 / 1E(3)12 . (4.15)
0 0

Since ®,, (t) > VQile_”tH@vH%Q(M) + %e‘”tHv(t)H%Q(M), this shows in particular the first

estimate of (4.10). Next, let N be smooth vector field equal to n the inward normal vector
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field on OM. Multiplying the equation by (N, ) = dv,(N), one has:

/ | Bt ao(¥yavyds

t 2
/ / 020, d0, (N )dv,ds + / A,v,dv, (N)dv,ds + / / (Vz—l—q)vyd@y(]\f)dvgds
M 0 M

+u/ / 050, dv, (N)dv,ds

:[1+[2+13+[4.

Using integration by parts in s

¢
2Re (1) + 14) =2Re((Osvy, dv, (N)) 2(ary) — / (N, (V9)050,]2)) 12 (aryds
0

t
+ uRe( / (01, v, (V) 2y
0

which gives, after integrating by parts in € M the second term, using dsv = 0 on (0, ) X
OM and the estimates (4.15) (for some C,, |4/, > 0 depending only on (M, g),v, ||q| L)

2Re(Iy + L) < Cujgioe | Fl 720, xar)-
For the I, term, one gets by integration by parts

t t
2Re(1,) = 2/ / |0uv, |2 dvansds + QRe/ (V90,, VI(dv,(N))) L2(anyds
0o Jom

0
and

(V90,,V9(dv,(N))) 2y = / (VIN(V9v,,V9,) + div(|VI0,|*N) — |V, |*div(N))dv,
M
= / (VIN(Vv,,V%,) — V902 div(N))dv, — / V90, |2dvan
M oM
thus, using |V9v,|? = |0,v,|* (since v, = 0 on M), we obtain, by (4.15),

et = [ [ v Pavauds| < Cupat ol am

Finally, (4.15) directly gives |I3| < Oy jjq||. || F ||L2 (0.)xn) and we conclude that

l[éwwwwmwsammwwammmw (4.16)

The same results apply for solutions of the equation (4.12) on [0, 7] x M with v replaced
by —v and with boundary condition v_,(T") = dyv_,(T) = 0.
Notice that if u, solves (4.13) then for any F_, € L*((0,T) x M), one has

T
/ / w,(t, ) F_,(t, z)dv,dt = / fu(t,x)Ohv_,(t, x)dvapdt,
o Jom
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where v_, is the solution to (4.12) with v replaced by —v and with boundary condition
v_,(T) = Ow_,(T) = 0 rather than v,(0) = dwv,(0) = 0. By (4.16), there is C' > 0
depending only on (M, g) so that
[CCF-)| < Cllfull 2oy xonny | F=u |l L2 0.7y xan) -
Therefore
1w || 20,1y < Cll foll 20,1y x0m)-

Moreover, if f, € H'((0,T) x M), then w, = dyu, solves the equation

(07 + Ay + Zq+vd)w,(t,x) =0, in[0,T]x M

w, (0, z) = Qaw, (0,z) = 0, in M

w,(z,t) =9, f,(t, x), on M.
This implies that w, = dyu, € L*((0,T) x M) by the uniqueness result [LM72a, Chapter
3, Section 8 and 9] and with bound ku||L2((0,T)><M)) S C||atfy||L2((07T)><3M). Note that
Opw, = Ou, = —(Ag + % + g+ vd)u, € L*((0,T); H2(M)) and

1w || 20,y 52 (a1)) < Cfayoe [ foll 1 o,r1x001)
for some constant C,4,- depending only on ||g||z~,v and (M, g). On the other hand,
Otw, = —(A, + VIQ +q+vo)w, € L*((0,T); H%(M)) with norm
10wy || 20,1y, 15-2(ar)) < Cujiglpee | foll 51 0,71x 000

for some constant as above, thus by interpolation with w, € L?((0,T); L*(M)), we also
have dyw, € L*((0,T); H-*(M)) ([LM72a, Proposition 2.2]) with bound

|0sw, || L2 0.7y, 11 (1)) < Cuiglzoe | ol 1 0,71x000) -
In particular, we obtain:

|| 20,1y x01y + 18sun || L2 0,1y %0y + 107w || 20,711 (1) < Coalioe 1ol 1 07y 000 -

We next observe that

Agu, = —0%u, — (é + q)u, — voyu, =: ¢, in M,
u, = f,, on OM.

Then, by elliptic regularity and since d?u,,dyu, € L?((0,T); H-*(M)), there is C > 0
depending only on (M, g) so that

() ary < C (1ot ) oany + 1900t ) -1 0)) -

Therefore:

v || L2 0.7y %) + 10t | 20,7y < a0y + [Vl L2 0.7y %2y < Cojigoe | foll 107y %000 (4:17)
Next, multiplying equation (4.13) by (N, u,) = da(N) and applying the same reasoning
as we did above for v, and equation (4.12), it is direct to obtain the bound

T
/0 /a 10ut P dvanrdt < Copgte |l 01100m (4.18)

This concludes the proof. [l
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Given T > 0, let b € H*(0SM) with blo7, (r) = 0. Let a(t, Z) be a solution to the lifted
transport equation defined by (4.6). We extend a to Ry x M by zero and denote

lalls = Ha|’eutW171(R+;H2(1\7)) + ”aneutw3,1(R+;L2(1\7))- (4.19)

For y € OM,, we use the function 1y = dy(7,-) on Me defined above and define, for any
A >0,
Galt,x) ==Y alt,y(x))e?Ws0EDN=, (4.20)

yem1 (M)

The sum is locally finite and this function is 7y (M) invariant, and thus descends to M..

Lemma 4.4. Let ¢ € L®(M) and vy > 0 be defined in Lemma 4.3. For any A\ > 0 and
T > 0 the equation

(07 + Ay +q(x))u=0, inRyx M,
u(0,2) = u(0,2) =0, x€ M,

has a solution of the form
u(t,z) = Ga(t, z) + va(t, x),
such that, for every v > vy,
u€ e H' (Ry; LH(M)) N e L2(Ry; H' (M),

and where vy(t,x) satisfies

ua(t,z) =0, V(t,z) € Ry x IM,

ux(0,2) =0, Owx(0,2) =0, x€ M,
and for all € > 0, there is C' > 0 depending only on M, g, ||q||r~, v, € so that
W Mall.,  (4.21)

where h = h(M,g) denotes the volume entropy. The result remains valid if one replaces
the initial condition u(0,z) = dwu(0,2) = 0 by the final condition u(t,x) = wu(t,z) = 0
fort > T. In this case, vy satisfies

ua(t,z) =0, Owi(t,z)=0, t>T, x€ M.

)\HU)\‘|e”tL2(R+><M) + ’|atU,\HeWL2(R+xM) + |’VgUAHthL2(R+><M) <Ce

Proof. We prove the Lemma with initial condition «(0,-) = du(0,-) = 0. The proof for
u(T,-) = 0wu(T,-) = 0 is analogous. As in [BDSF11, Proof of Lemma 4.1], we consider

K(ta) == Y (07 +8g+ ) (alt,y(x)er W OE0)
yETL(M)
Let vy be the solution, given by Lemma 4.3, to the boundary value problem
(0 + Ay + a)oa(t, @) = k(t,2) in Ry x M,

(0, ) = Oy (0,2) =0, in M, (4.22)
ux(t,z) =0 on R, x OM.



STABILITY ESTIMATES FOR WAVE AND SCHRODINGER 21

To prove the claim it is sufficient to show that v, satisfies the estimate (4.21). A compu-
tation yields

= ) OEI(E + Ay + Qa)(t,y(2))

’)/€7r1 )

—2i0 YD PO (g0 + da(VIuy) — SAuy ) (1,9(0))
’YEWl )

=X DT alt (@)D (1 - [Ty [2).
yem (M)

Using that a solves the transport equation and v; solves the eikonal equation, we obtain

—k(tx)= )y eAOETO(E; 4 Ag+ §)a)(t, v(2))

~vyem (M)

—- Z ANs @D ko (4 4 (2)).

yem (M)
Notice that ko € HL([0,T); L2(M)). Extending ko to I by zero, we obtain
||k0||thL1([;L2(M)) + ||atk0||€’/tL1(I;L2(M)) S CHCL“*
Moreover, the function

wy(t, x) == /Ot ux(s, x)ds

solves the mixed hyperbolic problem (4.22) with right-hand side k;(t,z) = f(f k(s,z)ds.
For t > T, this is equal to

1 t ,
ki(t,z) = — ko(s, ()8, (e =) g

1 / Dok, 7 ()N TOE)=9) 5.

~vye™L (M)

Then, by Lemma 4.3, we obtain for vy defined in Lemma 4.3

t
[ox(, )l z2ar) = |0wa(E, )\|L2<M><C/O "Nk (s, )l z2anyds

_c

X Z / ts/ 10vko (7, )| L2 (y(ryy drdss
w1 (M

C (T)

)
/ ”0“5/ 18, ko (r, ) 12 7y drds.
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Therefore, using that N(7T') < Ce"*97 and the Minkowski integral inequality, we obtain
for v > 1

Ce(the
oallevt 2 (rxary < ———— (/ (/ / (=r0)t o108 ko (1, )HL2 drds) dt)
(h+e)T 9] ) %) %
< 06 / / (/ 672(1/71/0)(7%5)6721/3Hark0< )HLQ(M t) dsdr

Ce(h+€
S e b i

Ce(h+6 —vr

<S5 [ ot s
Ce(the)T

< Z " all

for some constants C' independent of (7', \) (but depending on v —14). On the other hand,
using again Lemma 4.3 for vy, we obtain

oot o + 19206 i < € 3 [l o

yE™T] M)
t
< Ce(h—i—e)T/ &Ko (5, ) | i ds-
0
Repeating the previous argument, we get:

|0wallevt L2y xary + (| VIOA(E, ) |levt L2y xary < Ce" 97 all.. a

5. STABLE DETERMINATION OF THE ELETRICAL POTENTIAL FOR THE SCHRODINGER
EQUATION

In this section we prove Theorem 1 about the stability estimate for the Schrodinger
equation. The main idea relies in taking geometric optics solutions with initial data
b € H*(0_SM.) with blsr, (1) = 0 where T, > 0 is taken large. These solutions are
concentrating on geodesics with endpoints on the boundary and with length at most T;
when Tj — oo, these geodesics will cover a set of full measure in M. Using these solutions,
one can control the L? to norm of TI{g by the difference of the DN maps for ¢; and g,
with a remainder term coming from L2 estimates of the X-ray transform of ¢ and IIfq
on T, (Ty); here 11§ = I§*I§ is the normal operator associated to the X-ray transform on
M, introduced in (3.3) As we shall see, using the estimate (3.4), this is enough to obtain
our stability estimate since, due to hyperbolicity of the trapped set, the volume of T, (Tp)
decays exponentially as Ty — oo and this remainder term can be absorbed in the stability
estimate for T sufficiently large.
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5.1. Preliminary estimates. We first reformulate Lemmas 5.1 and 5.2 from [BDSF10]
in our setting. Let ¢ = ¢; — ¢2 extended to M, by ¢ = 0 in M, \ M. Recall that A;q is the
Dirichlet-to-Neumann map associated with the Schrédinger equation (1.1).

Lemma 5.1. Let qi,qo € WY (M) with qilon = q2loar and set q := q1 — qo. There emists
C > 0 depending only on (M, g, ||q|lwi.~) and Cy > 0 depending only on (M, g) such that
for any Ty > 0, any ay,as € H*(R; H2(M)) satisfying the transport equation (4.4) on M,
with condition a;|, o377 = 7*b; for by, by € H*(O_SM) satisfying bi|or, (1)) = b2lo7 (1) = 0,
the following estimate holds true:

‘/OT/Mq(x)al(QAt,x)mdvg(x)dt‘

< Ce (A2 1 |A5, — A5 11 la . llaa .

9,91 9,92
for any A > g—%, where ¢ = m*q € Wl’oo(ﬁ) is the lift of q.

Proof. By Lemma 4.2, one can construct as, 15, such that for A > 7, /2T and G\ defined
as in (4.7), the solution

Ug(t, .7}) = GQ’)\(t7 .I) + U27>\(t, (L’)
to the Schrodinger equation corresponding to the potential ¢,

{ (i0; — Ay + g2(z))ult,x) =0, in (0,T) x M,

u(0,-) =0, in M,
satisfies vg (¢, ) = 0 for all (¢,z) € (0,T) x OM, and
Moo a(t 2 + Vo2t )z < Ce®™ 9T a|l.. (5.1)

Moreover, us € C*([0,T]; L*(M)) N C([0, T); H*(M)). We next denote by fy the restriction
of Gy on (0,7] x OM

At z) = Gant,x) = > as(2Mt,y(w))e?POEN=A,
’7671’1(M)

Let v be the solution to the non-homogeneous boundary value problem

(10 — Ay +q)v(t,z) =0, (t,x) € (0,T) x M,

v(0,z) =0, x e M,

ot z) = us(t,2) = f(t,z), (L,2) € (0,T) x OM,
and denote w = v — us. Notice that w solves the following homogeneous boundary value
problem for the Schrodinger equation:

(10 — Ay + qw(t, z) = q(z)us(t,x), (t,x) € (0,T) x M,
w(0,z) =0, x €M,
w(t,z) =0, (t,x) € (0,T) x OM.

Since q(x)uy € WHL([0, T]; L*(M)) with u(0,-) = 0, by Lemma 4.1 we obtain that
w € CH([0, T]; L*(M)) N C([0, T H*(M) N Hy (M)).
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On the other hand, we construct a special solution u; € C*([0,T]; L*(M))NC([0,T]; H*(M))
to the backward Schrodinger equation

{ (10, — Ay +q(2)us(t,xz) =0, (t,z)e (0,T)x M,
w (T, x) =0, z€M,

having the special form

us (t, ) Z ay(2Xt, y(x)) eV ED =M gy (¢ ),
’YEﬂ'l(M

which corresponds to the electric potential ¢, where vy satisfies vy \(7,-) = 0 and
vt € [0,7], Alloialt, lzzan + IVt Mzan < Ce™ Pa.. (5.2)

By integration by parts and Green’s formula, we obtain

T T T
/ / (10, — Ay + q1)wuy dv, dt = / / quatty dvy dt = —/ Ohwiy dvy),,, dt.
o Jum 0 JM 0o Jom

We then obtain

T
/ quatiy dvg dt = / / g — A‘f(p)(f,\)(t7 r)gy(t, ) dvg,,, (x)dt,
0 oM
where the boundary data g, is given by
a(tx) = D ar(20,4(2))e IO (1 x) € (0,T) x OM.

yem1 (M)

Using the definition of u; and s, we get

> / ] a)aa(27 240 B e DD )

71,72€m1 (M
/ / gr(A g o Ag,rn)f/\ dvg|yy, dt — / / qua N1 dvy dit
oM 0o JM

T
_/ / qfavixdvy dt_/ / qua \gx dv, dt.
0 M 0 M

By (5.1) and (5.2), there is C' > 0 depending on ||q||r~, 7 and € > 0 so that

[ apmadvyat] < lali~ ) / Jas (208, Vg2 ol s an

yem(
< Ce2htaTo )~ 2||a2!|*||@1\|*-

where || - |l = || - | ;11 0.1y, mr2 (37 @s before. With the same argument,

T T
)/ / qua Gy dvy dt’ + ‘/ / qua U1 ) dvg dt’ < CeQ(thG)TO)\*QHazH*HalH*-
0o JM o Jum
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Finally, using the trace theorem, we get

AD g = Ao ) T AV, dt| < CIAD = AD Ll Al o0y <000 192l 22 (0.1 <o)

aM

< Oy | as[ |AS,, — AS ..

The diagonal term gives, using that v;, v, are isometries of g and preserve dvy,

2. / [ @)t @) N ) dvg (o)

’Yeﬂ'l

/ / ) ag(20t, 2)ar (20, z) dvy(2)dt.

The last point consists in bounding the off-diagonal terms

Z / / x)ag (20, 1 (x ))a1(2)\t Ya(x))e XYy (1 () =y (r2(2))) dv;,(m)dt‘

71¢W2EW1 (M)

= Z / / T)ag(20t, ) ay (20, y(x) ) e Ve @ v (v(@)) dVg(l‘)dt’,

77£Id67r1(M

(5.3)

We will apply non stationary phase: to that aim, we need to bound below the norm
[VO(5() = bg(v())] = [Vdg (-, §) — (d7) "' V7ds(-,5) 0 9]

This correspond to bounding below the distance between two vectors v; = drV94¢;(x) and

vy = dr(dy)"H(V9Yy)(y(x)) € T, M, tangent to two geodesics a; and ay of length < T,

in M., starting at y € OM, and with endpoints © € M., and a;, as being in two different

homotopy classes. On the other hand, if injrad(M,., g) is the injectivity radius of (M, g),

then for 0 < § < injrad(M.,., g) and any C* curves ; : [0,1] — M, and ay : [0,1] — M, so
that

Oél(O) = Oég(()), 041(1) = OZQ(].), 062([0, 1]) C {Z € Me | dg(Z,(){l([O, 1])) < 5}

then there is a homotopy A : [0, 1] x M, — M, so that h(0,a1(t)) = ay(t) and h(1, as(t)) =
as(t). However by a standard estimate on flows of smooth vector fields, there is Cy > 0
independent of y,z € M, (Cy depends on the C*' norm of the geodesic vector field X,)
such that

dy ([0, 1), 1 ([0,1])) < [y — vl .
We then deduce that |v; — va|z > de~“T0 and therefore we can apply one integration by
parts in the second line of (5.3) and the usual change of coordinates t = s/ to obtain

/ / 2)as(20, 7)ar (2, 7 ()o@ 50D dy ()t

7€7r (M)\1d

< AT2CBMH R gy |,y

where C' > 0 now depends on the ||¢|lw1.0(ary norm instead of ||g|| . O
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Notice that Cy > 0 above depends only the maximal expansion rate of the flow defined
as the smallest constant 6§ > 0 such that for each € > 0 there is C' > 0 such that for all ¢
large enough

ldg < Celo+a, (5.4)

Next, we show the following Lemma which is key to relate the X-ray transform of ¢ to
the DN map of the Schrodinger equation.

Lemma 5.2. Let q1,q2 € WH®(M) with qiloar = q2loar and set q := q1 — qo. There is
Co > 0 depending only on (M, g) and C' > 0 depending on (M, g, ||q1||wr.=, ||g2|lwie) such
that for any Ty > 0 and any b € H*(O_SM.) such that blor 1,y = 0, the following estimate

T+ y,’U)
/ / a(exp, (50))b(y, v)puly, v)ds duw, (v)
a_S,M. Jo

< CeCoTo”qul . A5q2||1/2||b(y, .)”Hz(a_SyMg)7

holds uniformly for any y € OM,, where pu(y,v) = g(n,,v), with n, the inward unit normal
of OM, at y.

Proof. We take two solutions a1, as to the transport equation on the universal cover J\A/[/e
defined as before by

ai(t,x) = a ot —r(2))b(g,v(x)),  as(t,x) = a1t —r(x)) (G, v(@))xr, (75 (y, v(2)))
where r(z) = d(r,7), exp;(r(r)v(r)) = x, X1, € C°(Ry) is supported in [0, Ty + 1] and
equal to 1 in [0, Tp] and [, b are lifts of u,b to SM, as before. Here we have used the
natural identification Sgﬁe ~ S, M. to define 7¢(y,v(x)). We write using geodesic polar
coordinates ¥ = exp;(rv) with v € G_SQJ\Z

/ / x)ar(2At, x)az (20, z) dv,(z)dt
7$ (y,v)
2/ / ~/ G(r, v)ay (20, 7, v)ag (22, r, v) a2 drdwy (v)dt
0o Jo_s;M.
T 7$ (y,v) )
— / / / q(expy(rv))¢ (2At — 7)b(y, v)p(y, v)drdw,(v)dt
0_ Sy M.

22T y'u)
- I A e R e

By Lemma 5.1, we obtain the bound (using that r» < Ty < 2AT by our assumption)
00 75 (y,0) )
LL o[ aten, o)t e = bty vty vy do ()
o Jo_s,Mm.Jo

< O (XN AT, = A ) 16l ey 166, s -
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Moreover, using the properties of the function ¢, we also have

/0°° /a S,M. /OT+<W q(exp, (rv))¢*(t — r)b(y, v)u(y, v)dr dw,(v)dt

([ owa) [ . 0 e, (r)bla vy, v} d ()

Finally, to prove the Lemma it suffices to take

1/2
y o Lo 26(No)
2T |AS, — A I, ’

9,91 9,92

where 0(Ng) := sup,cony) |A; ,|l+ is finite by [BDSF10, Thm. 1J. O

5.2. Proof of the stability estimate. Using Lemma 5.2 we have, for any y € dM, and
b e H?*(0_SM.) such that blsr, (1) = 0,

75 (y,v)
/ / a(exp, (50))ds b(y, v)uly, v) dioy(v)
8_ S, M.

< CeC’oTOHqul . A§q2H1/2Hb(y, .)||H2(3_SyM5)7

where C, Cy are uniform in y, Ty. Now we take bump function xr € C(R) supported in
the interval [0, Ty + 1) and equal to 1 on [0, Tp], and set

b(y, v) := X, (75 (y, ) 5 (115) (y, v)- (5.5)

Since II§ is a pseudo-differential operator of order —1 on M, ([Guil7, Prop. 5.7]) and ¢ =0
in M, \]\/[ [gq € W2P(M,) for all p < oo. Integrating with respect to y € 9M, and using
Santalo’s formula (2.3), we obtain

‘ / IE(q) (y, v) I(T5q) (y, v)dpn (v, v)
O_SM.

(5.6)
< CEOA, = A bl snao +] [ el o 50 (o) )]
T+ (To)
Moreover, we can write
T+(y v) .
I§(I§q) (y, v) = / 75 (1Gq) o pi(y, v)dt, (y,v) € O_SM.\T'_. (5.7)
0

By Cauchy-Schwarz inequality,

/ ISQ(y,9)IS(HSQ)(y,9)dun(y,9)'
0T+ (Tv)

1/2 1/2
< ( [ ot o)y e>) ( / |15<H5q><y,e>|2dun<y,e>) .
AT+ (To) 0T+ (To)
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Since ¢ € Wh°(M) c H'(M), then by [Guil7, Prop. 5.7, Il§q € H*(M). By Sobolev
embedding theorem, we also have that

mia, millg € L/(SM),

for some p > 2. Let us now give an estimate on the L?-norm of the X-ray transform of an
LP-function in 07T (Tp):

Lemma 5.3. Let QQ < 0 be the escape rate defined by (2.2). Let p € (2,00], then there
exists C' = C(Q,p,dim M) > 0 such that for all f € LP(M) and Ty > 1 large

e Q
[ 0Pl ) < CeET R,
0T+ (o)

Proof. We follow the argument in [Guil7, Lemma 5.1]. Using Hoélder inequality, with
% + ﬁ =1land J = ,% > 1 and Santalo’s formula we have:

Tj_(y,l}) 2
16 fll 227 (1)) = / / Wéf(sot(y,v))dt’ dyiy
0

0T+ (To)

) 2/ y
<[ (7 mstdnori) e du,
T+ (To) 0

< </ /Ti(y,v) | *f( ( ))|pdtd 2/p|| ||2/p'
- T SOt y7 v Mn) 7_6 r/p!
o7 (13) Jo ’ W peerv o_sanors (o)

< C1f 1By ( / ti‘lwt)dt)

To
< C N fl7oanye®™”

and C only depends on (@, p, dim M). O
Notice that as p — +o0o we have r — 1 and C(Q, p,dim M) can be taken uniform in p.
Lemma 5.4. There is C > 0 and 6 > 0 such that for all b € H*(0_SM,) given by (5.5),

18]l 2(0_sry < Ce™ [lallwr.oo ary

Proof. First, by the implicit function theorem, 7§ : 0_SM, \ 07, (Tp) — R, is a smooth
function. We shall compute its C?-norm. Let p be a boundary defining function of M, so
that |dp|, = 1 near M, and d(7p)(X) = —g(v,n) at 04SM,. The function 7¢ is defined
by the implicit equation

ng((tpﬁ(x,v)(xav)) = 0.
Therefore, denoting S(z,v) := @re (s,0) (¥, v) one has on I_SM, \ I'-

A(75P) 8 (w,0)-APr¢ (2,0)
g(S(z,v),n)

dri(z,v) =



STABILITY ESTIMATES FOR WAVE AND SCHRODINGER 29

From standard estimates on flows of autonomous C?-vector fields, there is C,0 > 0 de-
pending on || X||c2 such that for all ¢ € R for which the flow is defined,

sup ||dr(z,0)| + sup [|d*py(z, )| < CeM.
(z,w)eSM (z,v)eSM

Using this, the fact that g(S(x,v),n) > ¢y > 0 for some ¢ if 7, (z,v) > 1, we see from the
expression (5.8) and its derivative that there is C' > 0,6 > 0 independent of Tj such that

sup V7 (@, )| + V27 (2, 0) ]| < Ce*™, (5.9)
(2,0)€0T+(To),75 (z,0)>1

where V is any fixed Riemannian connection on 9SM, (for example that given by Sasaki
metric). First, by (3.2) and Lemma 3.1, for each p > 2 we have (using Sobolev embedding)

16/ L20_ sy < CIHGq| e ary < Cllgll 2 ary- (5.10)

Next we compute db. Let f := II§q. Since supp(q) C M, one can use (3.6) to deduce
that f € W2P(M,) for all p < co and that f € C*°(M, \ M). For z € 9_SM,

7% (2)

d(my f)-dipy(2)adt

and therefore by (5.9) and (3.2), there is C' > 0,6 > 0 independent of Tj, ¢ such that
||db|| 2 < CTO@GTOHqHWI,oo(M). (5.11)

db(z) = dr{ (2)x7, (75(2)) (L6 ) (2) + X7, (74(2)) (dTi(Z)Wé‘f(S(Z)H/

0

Finally, we compute another derivative of b, and write
V2b(2) =VPr () (P ()T ) () + (drs @ drs) ()i (75 () (L5 )(2)
+ 2 (A (9) © (dr (Imi£(S () + [ " i )l
X (P () (P () (S(2)) + 2475 (2) @ (d(m3 £).45(2)))
(o) | Y Sy

Since 7; f is smooth near _SM, and since the bounds (5.9) hold and I§f € L?, we obtain
that there is C' > 0,6 > 0 independent of T}, ¢ such that
V2B 2 < CToe®™ |\ ql[wroo (ar)- (5.12)

Combining (5.12), (5.11) and (5.10), we get the desired result. O
<

\)

Proof of Theorem 1. By (5.6), Lemma 5.3, Lemma 5.4, and using that [|II§q| e (as)
Clq||zo(ary for each p € (2,00), we have that there is Cy > 0 depending only on (M, g)
and C' depending on (M, g, ||q|lw1.) such that

9,91 9,92

[ ) v, < CeOmAg, — A5 12+ Cef (5.13)

e
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Then, defining o := e~ 57 and m := —% > 0, we deduce from (5.13) that
1050320y < C (@™ 145, — AS,IIY2 + 7).
1
We next take Ty sufficiently large so that a = [|AS  — A§q2|| 2m+Y With this choice, we
obtain
S || 2w
m+
”H C]HL2 (Me) < CHAg a1 Ag qg” . (514)

This holds in the regime

2 TRTD
TO = alog (HAg a A5q2||2< +1)) .
Finally, by (3.4), there is C' > 0 depending only on (M, g) such that
lall 2y < ClIGallmr oy, 115all m20ne) < Cllallmran- (5.15)

Using this, an interpolation estimate, (5.14), we obtain

1
callmzony < CIAS =AD" Vgl any

9,91 9,92

IMT5alZ ar,) < ClITTGg| 22

Finally, by the first bound of (5.15), we conclude that for ¢i, g, € Q(Ny)
1
HQH%Z < CHqul _A§q2||4(m+l)NO'

This concludes the proof. Il

6. STABLE DETERMINATION OF THE ELECTRICAL POTENTIAL FOR THE WAVE
EQUATION

In this section we shall prove Theorem 3.

6.1. Preliminary estimates. We start with a Lemma very similar to Lemma 5.1 but
now in the context of the wave equation. Its proof follows the lines of that of Lemma 5.1.

Lemma 6.1. Let q,q0 € WH°(M) with qilonr = qolom and set ¢ == q — g2 There
exist C' > 0 depending only on (M, g, ||¢|lwre=r)), v > 0 depending only on ||g;||~ and
Co > 0 depending only on (M, g,v) such that for any T > 0,A > 1, and for aj,ay €
H}([0,T], H*(M)) the functions constructed in (4.6) with function b given respectively by
by, by € HQ(f)_SM) satisfying by |or ) = b2lo7, (1) = 0, the following estimate holds true:

z)ay (t, x)ag(t, z) dvg(z)dt| < CeT (AN AV — AV 1) lad ||« ]laz]]«

9,91 9,92

where q is the lift of q to M.
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Proof. We shall proceed as for the Schrodinger equation. By Lemma 4.4, let A > 0, there
exist ag, ¥y as in (4.6), such that the for G )\(t, z) given by (4.20) with a = as, the solution

us(t, ) = Gax(t,x) + vo (¢, )
to the wave equation corresponding to the potential g9

(02 + Ay + qo(x))u(t,z) =0, inlx M,
u(0,:) =0, Ju(0,-) =0, in M,

satisfies vy 5(¢,2) = 0 for all (¢,x) € (0,7) x OM, and (for € > 0 small)
)\HU2,)\He”’5L2(I><M) + HVgU2,,\HevtL2(1xM) < C€(h+€)T|\CL2H*- (6'1)
We next denote by fy the restriction of Ggy to [0,7] x OM
f)\(ta 37) = GQ,)\(t7 $> = Z a2<t7 ,y(x))el/\(wg(’y(l“))*t)
’yEﬂ'l(M)
Let v be the solution to the boundary value problem

(0F + Ag +q)v(t,x) =0,  (t,x) €I x M,
v(0,2) =0, Ow(0,x) =0, z¢€ M,
v(t,z) =us(t,z) := fa(t,x), (t,x) €l xIM,

and denote w = v — uy. Notice that w solves the following homogeneous boundary value
problem for the wave equation:

(07 + Ay + @)t ) = g(@)us(t,2), (12) € Tx M,
w(0,2) =0, Juw(0,z) =0, x € M,
w(t,x) =0, (t,x) € I x M.

Since q(x)uy € C([0,T]; L*(M)) with u(0,-) = 0, by Lemma 4.3, we obtain that
w e CHI; L*(M))NC(I; Hy(M)).
On the other hand, we construct a special solution
up € "' HY(I; L*(M)) N e L*(1; H' (M)
to the backward wave equation

(atQ + Ag + (jl(x))ul(t,:c) = 07 (t,l') S (07T) X M7
w(T,z) =0, Ou(T,x) =0, x€ M,

having the special form
ui(t, ) = ay (t, ()@ o (¢, ),
yem1 (M)

which corresponds to the electric potential ¢;, where vy » satisfies v1 \(7,-) = Qi A (T, ) =
0, and for each € > 0 there is C' independent of T', \ such that

>\||U1,)\||thL2(I><M) + ||V9U1,A||evtL2(1xM) < C€(h+E)T||G1H*~ (6'2)
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By integration by parts and Green’s formula, we obtain

T 0
/ / (0} + Ay + q)way dv, dt = / / quaTiy dvg dt
o Jum o Jum

T
= —/ Ohwty dvg,,, dt.
o Jom

We therefore obtain

/0 quatiy dvg dt = / / g a AZqu)(f>x)§)\ dv9|aM dt?

where the boundary data g, is given by
aa(t,x) =) ax(t,y(x)erWs0E T (1 2y € (0,T) x OM.

~vyem (M)

Using the definition of u; and usy, we get

> // )ag(t, 1 (x))a (t, 72(x)) dvg(z)dt

7,72€m1 (M
= / / §>\ g @ g, q2>f)\ dVg|aM dt / / qvg )\Ul A dVg dt

Z / /qe WO ay(, ()01 2 dv; di

yem (M

-2 //q?fme Mg, (¢, 4(-)) dv; dt.

yem (M)

By (6.1) and (6.2), for each € > 0 small, there is C' > 0 depending on g, ||¢|| <, € such that
for all T', A

qez)\(wOfy a2 t ’}/( ))Ul )\dVg dt‘ qel)\(wo’}’ al t 7(-))@2’)\ dVg dt

’Y€W1

<C Z / llas(t, )| 2y 1via () 2 an dt

’Y€7T1

< Ce h*”“ A azlllaa ..

and ]fOT Jor @uanTix dvy dt] < Ce* P IT A2 gy |, [|ag||.. We also have, using that Ve > 0,
| fall i o, xom < C e 97 ay ||, and lgall2omyxom < Ceh+97|q,], for some C' > 0
depending only on the metric g and ¢,

T
[ = A (03 v ] < CH TNl AT, = A
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Finally, using that
Z / / z)ag(t, y(x))ai (t, y(x)) x)dt = / / x)as(t, x)ay (t, x) dvy(z)dt
YETL M)
and bounding the off-diagonal terms as in (5.3), the Lemma holds. O
We then obtain the following Lemma comparable to Lemma 5.2:

Lemma 6.2. There exist C > 0 depending only on (M, g, ||q1|lwi., ||q2]|wi.), v depending
on (||g1llze, ||g2||z<) and Cy > 0 depending on (M, g,v) such that, for any T > 1, b €
H?*(0_SM,) such that blor, () = 0, one has

¢ (yv)
/ / a(exp, (50))b(y, v)ly, v)ds duw, (v)
9_Sy M.

< CePYAG, — Age 110, Moo,

holds uniformly for any y € OM,., where u(y,v) = g(n,,v).

Proof. Take ay, as solutions to the transport equation on the universal cover M as before.
Then as in the proof of Lemma 5.2, we obtain

7$ (y,0)
/ /Nqaladegdtz / / / a(exp, (o)) 62(t — r)b(y, v)u(y, v)drdu, (v)dt
0o JM 0 Jo_s,(M.) Jo
) 7% (y,v)
ley [ [ alep, )bty oty o)drda o)
a_5,(M.) Jo

1
g1 gq2|| 2 yields the desired
result. -

Combining this with Lemma 6.1 and choosing A = ||[AY —

6.2. Proof of the stability estimate. Using Lemma 6.2 there is C' > 0 such that for
any y € OM and b € H*(0_SM,) such that b|sr, (1)) =0,

T+ (y,v)
/ / 15() (9, 0)b(y, v)dp (9, v)
o_5,(M.) Jo 03

Now we take a bump function xr € C2°(R) as in Section 5.2 and choose b by (5.5) with T’
instead of Tj

< CeOT AL, = Ay 12100y, M 20-s, an.)-

Proof of Theorem 3. The proof is then almost the same as the proof of Theorem 1, we then
just briefly describe it. From (6.3), the same as (5.6) holds with A5 ~— AS  replaced by

9,91

Aqul — AquQ, then using Lemmas 5.3 and 5.4 with ||II§¢||r(ar.) < [/¢|| oo (ar), We obtain

Q
W22l s +C€2THC]H2L°°(M)

9,q1 ng

/ I3 () dv, < CeCoTol|AY

e
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The last part of the proof is exacly the same as for Theorem 1 by choosing T so that
e QT2 = ||AW — AW ||, N with m = —2C,/Q. O

9,91 9,92
7. STABLE DETERMINATION OF THE CONFORMAL FACTOR FOR THE SCHRODINGER
EQUATION

In this section we prove Theorem 2. The proof follows the argument of [BDSF10, Thm.
3], and we indicate the main modifications. Let ¢ € € (Ny, k,€), be such that ¢ = 1 near
the boundary M, we denote

po(w) :=1=c(z), pi(r):=c"(2) =1, pa(a) = 7N (2) — 1,
px) = pa(@) = pi(w) = "> (2)(1 = c(@)),

where recall that d = dim(M). We modify the construction of geometric optics solutions
[BDSF'10, Sect. 6.1] in our geometrlcal setting similarly to what was discussed in previous

(7.1)

sections, using the universal cover M. We consider two solutions wl wg, respectively to the
lifted eikonal equations \ngl\ =1 and ‘ch¢2| = 1, a solution ay to the lifted transport
equation

Ouay + das(V7n) = 5 Ayt = 0, (7.2)
given in geodesical polar coordinates with respect to g, as in (4.6), by
as(t,z) = a V2ot — r(2))b(7,v(x)), € dSM,,
for some b € H*(0_SM) satisfying that b|o7, (1,) = 0, and ¢ € C°(R) with supp ¢ C (0, &),
go > 0 small, and a solution a3 to the lifted transport equation

o7 1 1\ o d
Bhas + dag(VFPy) — = Agthy = as(t, x) (1 — :> N P1—12)
Z C

which satisfies (analogously to [BDSFl(), (6.10)]) the bound
las ]l < CA* 1 = cllezanlaz|l-, (7.3)

for some C' > 0 depending on (M, g) (it does not depend on Tp, notice that the derivatives

of the difference between v, and 1, can be bounded in terms of derivatives of ¢), where
|- 1le=1l" ”Hl([o ToJ.H2 (31))- Then, [BDSF'10, Lemma 6.2] becomes in our setting:

Lemma 7.1. The equation

(10, — Agg)u =0, n (0,T) x M,
u(0, x) =0, in M,

has a solution of the form

1 - s
up(t,x) = ) <Xa2(2)\t;’V(x))emwlmw))M)+03(2)\t;’7(x)3A)em(w2(7(z))At)>+U2,A(t7$);
yem1 (M)
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which satisfies, for X > Ty /2T,
Moot Mzzany + V902t ) z2any + A 0w a (E, )l 200y
< O (X poleaay + A1) .
for C > 0 depending on (M, g, Ny) and Cy > 0 depending on (M, g).

The constant C above can be written in terms of the max of the volume entropies of
the metrics cg for |c — 1]¢1(ary < 1/2 (this can be bounded by a uniform constant times the
volume entropy of (M, g)).

Moreover, reasoning as in previous Sections, [BDSF10, Lemma 6.3] becomes in our
setting:

Lemma 7.2. There ezist constants C' > 0 depending on (M, g, Ny) and Cy > 0 depending
on (M, g) such that, for any ai,ay € H*([0, Tol; H?*(M)) solving (7.2) associated to by, by €
H2(8,SM ) with bilo7, (1) = b2loT. (1) = 0, the following estimate holds:

DY / [ oo @A a2t ) ()]

yem (M)
< O™ ([|pollerany A+ N lpollezan) + AAS = AZ L) llaall.las ..
for any A > Ty/2T.
Finally, [BDSF10, Lemma 6.4] becomes in our setting

Lemma 7.3. There exists C > 0 and Cy > 0 as in previous Lemma such that, for any
b e H*(0_SM.) with blor, (1) = 0 the following estimate

[ o))t
O_SM,

< CeT (A4 Nl pollezany) | pollerany + MIAS = AZ )10l 205y
holds for any A > Ty/2T. Here I§ is the X-ray transform for g on functions on M..

Proof of Theorem 2. We take b as in (5.5) with ¢ replaced by p. By Lemma 7.3, Lemma
5.3, and Lemma 5.4, there is C' > 0,y > 0 depending on (M, g, Ny, €) such that

||H0p||L2(Me)
B Q
< 0O (A + X pollescan) o lles i + AIAS = AS L) plhwson + CeF o

for some p > 2. By interpolation,
ITT8oll ar.y) < ClITT N 2o

5o r2 (o)
1
Co _ 3 1
< Ce¥ (A 1+A3||po||c2(M>>upoan)+A||A:§—Afgr|*) (T e

Q
+ Cei ™| pll Loany 1ol 2 an)-
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We use (3.4) to deduce the bound

_ 1 1 1
ol Z2qany < CePT2O + X pollezan) 2 1pollé: (a2t gan Il oy

1 Q
+Ce? o)z HpoHcl(mHAS A2 N2+ Ced™|pll o o)l rar

y— Lo (lpollezan )
2T 2N, !

17 11 1 Q
1P Z2ar) < CeP (llpoll&aary + Io0ll G an 1AG — AZl12) + Ced™lpllmocan ol ary

Taking

we obtain for T > 0 large

i Q
< Ceo(e ZIIPoch(M +HIAG = AZlIZ) + Cet™lpll ocan |l
where C' depends on Ny, ¢ = (1 — ) and we have used the interpolation estimate
17% 1—2
Inollezany < Cllpolligy < CE-2.

By interpolation, choosing k& > max(s, s') large enough, we have for some 4, > 0 small

32/33+46 1/33—6 32/33+6
WMMMSQWM%WW<CWﬂ/+WO/ <Clpol 307 (74)
ol any < ol 5zt N5 ary < Cllollizt: (7.5)
lollzoan < llollEzs 1ol <0MPy (7.6)

where C' > 0 depends on Ny. Thus, using that C|poll2 < ||pllze < Cllpol|L2, we see that
there is C' > 0 depending on (M, g, Ny, k) and Cy > 0 depending on (M, g) such that

lpollZ2ary < CeTe pol| T3y + Ce“ AT — ASIZ + Ced | po 12320,
We finally take TO sufficiently large so that
Q ’
Cei® < —HpoH%
This allows us to absorb the third term of the right-hand-side in the left-hand side:

/ / 1
loollZ2ary < CellpollZian ool T3asy + Cllooll i 147 — A2,

for m = Cy/4|Q| > 0. Choosing § > 2md’ and taking e sufficiently small, we can absorb
the first term of the right-hand-side into the left-hand-side. Therefore, there exists 5 > 0
depending on (M, g) and C' > 0 depending on (M, g, Ny, k, €) such that

pollz2any < CIIAS — AZ|I17,

and the proof is complete. [l
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8. STABLE DETERMINATION OF THE CONFORMAL FACTOR FOR THE WAVE EQUATION

In this section we sketch the proof of Theorem 4. We just indicate the modifications
with respect to the proof of [BDSF11, Thm. 2]. We will assume that the conformal factor
satisfies ¢ € € (No, k, €) be such that ¢ = 1 near the boundary 0M, and we use the notation
(7.1). First, [BDSF11, Lemma 6.2] becomes in our setting:

Lemma 8.1. The equation

(O} + Ay)u =0, in (0,T)x M,
u(0, x) =0, in M,

has a solution of the form
1 . )
UZ(t> .’L') = Z (XCL2 (t, ,y(l,))ez/\(wl(’Y(x))*t) + as (t, ’)/<£L'>, )\)61/\(1/)2(7(:6))75)) + 027)\(75’ iL‘),
yemL (M)

such that there is vy > 0 (given by Lemma 4.3) so that for all v > vy, there is C > 0
depending only on (M, g, No,v), and Cy > 0 depending only on (M, g,v) so that VA > 1

)\HU2,)\H5WL2(R+><M) + vaUQ,)\He”tLQ(R+ x M) T >\_1Hatv2,,\HevtL2(R+xM)
< Ce ([lpolleanA* + A7) llag] .

Moreover, [BDSF11, Lemma 6.3] is replaced by:

Lemma 8.2. There exist constants Cy > 0 depending on (M, g,v) and C > 0 depending
on (M,g, No,v) such that, for any ay,ay € H'([0,T]; H*(M)) solving (7.2) associated to
b1, by € H*(O_SM.) with by o7, (1) = balo7, (1) = 0, the following estimate holds:

> // w)ay(t,v(x))az(t, 7(x)) dvg(x)dt

’YEWl(M
< Ce“Tpollerany (A" + Nlpollezan) lla[l«llaz]l« + Ce@TAAY — A% |l ullasl]laz]s,

for all X > 1.
Finally, [BDSF11, Lemma 6.4] is replaced by:

Lemma 8.3. There exists C' > 0 depending on (M, g, No,v) and Cy > 0 depending on
(M, g,v) such that, for any b € H*(0_SM.) with blor, (1) = 0 the following estimate

/a < I (p) (y, v)b(y, v)du, (y, v)

< Ce“T (A + Nllpolezcan) lpolles any + AIAY = ALY s ) [bllzrgo_snr

holds for all A > 1.
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Proof of Theorem 4. We take b as in (5.5) with ¢ replaced by p. By Lemma 7.3, Lemma
5.3, and Lemma 5.4, there is C' > 0 depending on (M, g, No,v) and Cy > 0 dependlng on
(M, g) such that

’|HSPH%2(M )
_ Q
< O (7 + Nl pollezan)llpolles an + AAY = A ) lollwroan + Ce57 plEuan
for some p > 2. By interpolation,

10501301,y < CITspl20000 I Tl 20
;3
< CeFT (A + W pollezan) lolleran + AL = A% 1l ) 1o

Q
+Cei T plloan ol any
We use (3.4) to deduce the bound

1 1 3
lol3200) < Ce 8 (A +>\3||Po||c2(M)2||Po||§1(M)||P||§1(M)
Q
+CeF TN poll s onlliAg = AW|| +Cet ol ol an-

_1
Taking A\ = ||p0||c24(M), we obtain for T' > 0 large:

17 11 1 Q
o022y < CeCOT(HpoHc%(M + ool an Ay — Ay l120) + Ced T pllwoan [l pl
1 Q
< Ce%T (e proH San TIIAY = A llZ0) + Ce T plloan ol

where ¢ = £-(1 — 2). Choosing k > max(s, s') large enough as in the previous section, we
have for some 9,90’ > 0 small the interpolation estimates (7.4), (7.5), and (7.6). Thus we
get that there is C' > 0 depending on (M, g, Ny, k) and Cy > 0 depending on (M, g) such
that

loollZ2ary < Ce™ e lpollTE 0y + CeTlIAy = Agg o v+ CeT |22,

We finally take T sufficiently large so that

!
—H 17

This allows us to absorb the third term of the right-hand-side in the left-hand side:

leolaqary < Cellooll 2™ poll25° + Clloll 27 AN — AY |2,

for m = Cy/4|Q] > 0. Choosing 6 > 2md’ and taking e sufficiently small (depending
only on ||1 — ¢||z2), we can absorb the first term of the right-hand-side into the left-hand-
side. Therefore, there exists f > 0 depending on (M, g,v) and C' > 0 depending on
(M, g, Ny, k, €) such that

ol z2ary < ClIAY = AGIIY
and the proof is complete. [l

*,V)
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