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SRB MEASURES FOR ANOSOV ACTIONS

YANNICK GUEDES BONTHONNEAU, COLIN GUILLARMOU, AND TOBIAS WEICH

ABSTRACT. Given a general Anosov R" action on a closed manifold, we study properties
of certain invariant measures that have recently been introduced in [GBGHW20] using the
theory of Ruelle-Taylor resonances. We show that these measures share many properties of
Sinai-Ruelle-Bowen measures for general Anosov flows such as smooth disintegrations along
the unstable foliation, positive Lebesgue measure basins of attraction and a Bowen formula
in terms of periodic orbits. Finally we show that if the action in the positive Weyl chamber
is transitive, the measure is unique and has full support.

INTRODUCTION

On a closed, smooth Riemannian manifold (M, g) (normalized with volume 1) we consider
a locally free abelian action 7 : R — Diffeo(M). Assume that 7 is Anosov, and denote
by W C R* the maximal cone of tranversally hyperbolic elements (see Section 1.1 for a
precise definition of all these terms). In [GBGHW20] it was proved that there exists a Radon
probability measure y, called the physical measure, such that for every function f € C°(M)
and every open proper' subcone C C W,

. 1
u) = lim /. B /M F(r(~A)(@))dwdA. (0.1)

Here Cr = {A € C | e(A) < T}, for some linear form e on R”, positive on W. In this article
we will explore the properties of the measure u, proving in particular:

Theorem 1. Let 7 be a transitive, smooth, locally free, R® Anosov action. Let u be an
invariant Radon probability measure on M, then the following conditions are equivalent:

(1) w is the physical measure.
(2) For every continuous f, every open proper subcone C C W, and Lebesgue almost every

reEM,

. 1
i = tim o [ sea@ia

(3) p has an absolute continuous disintegration w.r.t. to the local stable foliation, W .
(4) the measure p has wave-front set WF(u) C E¥.

Such a measure p is always ergodic. If in addition we assume that the action is positively
transitive in the sense of Definition 2.9, then supp(u) = M.

These properties are very similar to the properties of the SRB measure for transitive Anosov
flows, which was studied extensively by Sinai, Ruelle and Bowen [Sin68, Bow74, Rue76, BR75].
As for all our results, we also obtain a more general and more detailed version (Theorem 3)
without the transitivity assumption.

Date: November 22, 2021.
Lproper meaning that dC N OW = {0}
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For a given smooth Anosov flow, the structural stability implies that any small perturbation
of the flow is again an Anosov flow. Furthermore for any fixed Anosov flow, one can associate
with each potential V' a so-called invariant Gibbs measure that has positive entropy. The
world of smooth Anosov flows is thus very rich and, for a fixed flow, there is also a rich
ergodic theory due to the different Gibbs measures. In contrast, for higher rank Anosov
action the sitation is conjectured (and partially known) to be very rigid: in [KS94] Katok and
Spatzier proved that for a list of algebraic Anosov actions, called standard Anosov actions,
any small perturbation of the Anosov action is Holder conjugate to the original action. More
generally, Katok and Spatzier conjectured (see [Has07, Conjecture 16.8]) that whenever a
higher rank Anosov action cannot be factored into a product of an Anosov flow with another
action, they are algebraic in the sense that they come from quotients of symmetric spaces or
Lie groups. Despite some important recent advances (see e.g. Spatzier-Vinhage [SV19]) this
conjecture is still widely open.

Assuming that this rigidity conjecture holds, the classification of invariant measures reduces
to analyzing homogeneous dynamics, i.e R* invariant measures on homogeneous spaces. Such
measure classifications in homogeneous dynamics have been intensively studied in the past
decades, starting with the works of Katok and Spatzier [KS95, KS98] and culminating in
more recent works of Einsiedler, Katok and Lindenstrauss [EKL06, EL15].

However, in order to make progress in the direction of Katok and Spatzier’s rigidity conjec-
ture, it is obviously important to understand as many dynamical properties of Anosov actions
as possible, without assuming that these actions are homogeneous. In particular it is impor-
tant to understand and to construct meaningful invariant measures®. Let us mention some
related results in this direction: in [KKRHI1], Kalinin-Katok-Rodriguez Hertz obtain the fol-
lowing: for a locally free abelian Anosov action with dim M = 2k +1 with k > 2, an invariant
ergodic measure p which has positive entropy for some A € R” is absolutely continuous under
certain assumptions on the Lyapunov exponents and hyperplanes of p (it is thus the same
as our SRB measure). Let us finally mention that independently, Carrasco-Rodriguez Hertz
[CRH] have constucted an SRB measure using the thermodynamic formalism and also proved
the absolute continuity of the conditional measures. For general Anosov actions by smooth
Lie groups they show that this is the equilibrium measure associated with the potential given
by the unstable Jacobian, as in the rank 1 case.

The second main result of our article concerns the distribution of regular periodic orbits
for higher rank actions. We obtain a Bowen-like [Bow72, PP90] formula for the measure px.
A point z € M is said to be a periodic point if there exists A € R" such that 7(A)(z) =
x. Periodic orbits may have a complicated shape in general, but it is well known that if
7(Ap)(z) = z for some Ay € W, then the orbit set T' =T, := {r(A)(z) € M|A € R"} isa
k-dimensional torus — we say that the orbit is regular. We denote by 7T the set of such periodic
tori of 7 and, for T' € T, we denote by L(T) := {A € R*|7(A)(z) = z} the associated lattice.

Theorem 2. Let 7 be a transitive R¥-Anosov action, with Weyl chamber W. Let C C W

be a proper subcone and n € R** a dual element that is positive on a slightly larger conic
neighbourhood of C. Define Cqp := {A € C|n(A) € [a,b]} if a,b > 0. Let pn be the SRB

2As explained to us by Ralf Spatzier, the existence of ergodic measures with full support is an important
tool in the direction of proving the rigidity conjecture (see e.g. [KS07] where this assumption is crucially used,
as well as the discussions in [SV19])
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measure and a,b > 0. Then for each f € C®(M), we have

p(f) = lim > ] det(ff_w (0.2)

N=oo ‘CCLN bN| TeT AECGN bNﬁL
where P4 is the linearized Poincaré map of the periodic orbzt A restricted to B, & Es.

This result is proved using microlocal methods inspired by Dyatlov-Zworski [DZ16] in
the rank 1 case: one needs in our setting to combine the Guillemin trace formula with the
analysis of the wave-front set of a certain meromorphic function F)(Xi,..., Xy) of the family
of commuting vector fields (X7, ..., X,;) generating the Anosov action, and this function has a
simple pole at A = 0 with residue given by u(f). The result (0.2) shows some equidistribution
of the periodic orbits just as in the rank 1 case, except that here the periodic orbits come as
k-dimensional tori. Notice that for the case of the Weyl chamber flow on a locally symmetric
space M = I'\G/M, the SRB measure is the Haar measure (by uniqueness), thus Theorem 2
gives an expression of the Haar measure in terms of periodic tori: by (4.2), there is € > 0 so
that for all A € L(T)NC, det(1 —P4) = > (1 + O(e~M1)) where p is the half sum of the
positive roots, therefore (0.2) reduces to

w(f) = lim > > e~ 20(4) /T f. (0.3)

N—oo |C
’ aN, bN| TGTAECGN’bNﬂL(T)

We notice that even for locally symmetric space where p is the Haar measure, Formulae (0.2)
and (0.3) were not proved, and our result is new even in that setting.

As a rather direct consequence of (0.2) we get the following result on the counting of
periodic tori:

Corollary 0.1. Assume there is a linear form n € R** that is positive on W and such that
for any proper subcone C C W there is € > 0 such that |det(1 — Py)| = e (1 — O(e~cl4))|
for all A € C. For any proper subcone C C W let Cn :={A € C,n(A)/||n|| < N} then

Jm g (3 S volm) = Il

TeT AeL(T)NCn

Note that the assumptions are fulfilled for all standard Anosov actions (as introduced
n [KS94, Sec. 2]|). In the special case of Weyl chamber flows, Spatzier [Spa83] proved a
related result when the cone C is the whole Weyl chamber: more precisely he proved that if
s(T') := min{|A||A € L(T) N W} denotes the regular systole of a periodic torus 7', then

Jm g (Y VoI(T)) =2l

TeT,s(T)SN

Recall from above that for Weyl chamber flows one has n = 2p and 2||p|| corresponds also
to the topological entropy of the associated geodesic flow. The same asymptotics for torus
orbits of Weyl chamber flows has been obtained by Deitmar [Dei04] (yet with slightly different
counting region) using trace formulae on higher rank locally symmetric spaces and Lefschetz
formulae.

As a byproduct of the proof of Theorem 2, we also construct some zeta-like functions (see
Theorem 5). For each function ¢ € C2°(W) with small enough support, we obtain a function
dy () holomorphic on C” that vanishes exactly when (A —¢) = 1 for some Taylor-Ruelle

resonance ¢ of the action (as was introduced in [GBGHW?20]). Here ) is the Laplace transform
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of ¥. As far as we know this is the first example of a globally holomorphic zeta-like function
for higher rank actions.

Let us mention two results that are related to the Bowen formula in Theorem 2 for the
special case of the Anosov action being a Weyl chamber flow on a compact locally symmetric
space: Knieper [Kni05] studies the measure of maximal entropy for geodesic flows on compact
locally symmetric spaces and showed its uniqueness. From this uniqueness he derives a
Bowen formula for e-separated geodesics. Furthermore, Einsiedler, Lindenstrauss, Michel and
Venkatesh studied distribution of torus orbits of Weyl chamber flows in [ELMV09, ELMV11].
In the special case of Weyl chamber flows on SL(3,R)/SL(3,Z) they obtain a strong
equidistribution result of periodic torus orbits [ELMV11, Theorem 1.4] that among others
would imply the Bowen type formula above®. In [ELMV09] the authors also study torus
orbits on certain compact locally symmetric spaces that are constructed from orders in
central simple algebras. They also obtain equidistribution results (see [ELMV09, Corollary
1.7]) which are, however, weaker then those obtained for SL(3,R)/SL(3,Z) and they seem
not to imply Theorem 2 for this special class of compact locally symmetric spaces.

Before closing this introduction, let us briefly mention the tools and techniques we employ
in this work. We build on our previous work [GBGHW20] using microlocal methods in the
spirit of Faure-Sjostrand and Dyatlov-Zworski [FS11, DZ16] in the framework of anisotropic
spaces (developped originally in dynamical systems by Blank, Keller, Liverani, Baladi, Tsujii,
Gouézel, Butterley [BKL02, GL06, BLO7, BT07]). These techniques have a successful history
in the context of Anosov flows, and we use them intensively in this work. For the proof of
Theorem 1, it is sufficient to be familiar with the notion of Hormander wavefront set. For
the proof of Theorems 2 and 5, however, we assume that the reader is somewhat familiar
with more involved techniques, as were used for example in [DZ16, FRS08]. We will also be
using some classical techniques from the study of dynamical foliations (absolute continuity,
Rokhlin disintegrations...).

Outline of the paper.

In section 1.1 we give the definition of R®-Anosov actions and introduce some related basic
notations.

In Section 1.2 we collect and discuss crucial properties of the stable and unstable foliations
related to Anosov actions which we shall need in the sequel. In particular we give a proof
that the conditional densities of Lebesgue measure along the weak-(un)stable foliations are
smooth along the orbits. While this fact seems folklore, we couldn’t find a precise reference
and as we crucially need this in order to apply our microlocal methods, we took the effort to
work this out in details.

In Section 1.3 we recall how invariant measures for Anosov actions can be constructed using
the spectral theory of Ruelle-Taylor resonances as presented in [GBGHW20]. We also prove
some new statements in this context such as Proposition 1.14 that will allow us to show that
the measures defined by spectral theory are always absolutely continuous along the stable
foliation.

Section 2 and Section 3 are the core of the paper: Section 2 contains the proofs for the
different equivalent characterisations of SRB measures (Theorem 1 respectively the more
general version Theorem 3) whereas in Section 3 we prove the Bowen formula (Theorem 2).

3Note however that our result does not hold for SL(3,R)/SL(3,7Z) due to the non compactness of this space
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Finally in Section 4 we shortly discuss the applications to counting of periodic tori.
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(grant agreement No. 725967) and from the Deutsche Forschungsgemeinschaft (DFG) (Grant
No. WE 6173/1-1 Emmy Noether group “Microlocal Methods for Hyperbolic Dynamics”).
We thank Sébastien Gouézel for helpful discussions and explaining us the arguments in the
proof of Proposition 1.6.

1. ANOSOV ACTIONS AND DYNAMICAL FOLIATIONS

1.1. Anosov actions. Let (M, g) be a closed, smooth Riemannian manifold and denote by
vy its Riemannian measure which we assume to be normalized with volume 1. Note that
while g is fixed, all the results we shall discuss will be independent of the choice of g. Let
7 : A — Diffeo(M) be a locally free action an abelian Lie group A = R" on M. Let
a := Lie(A) = R” be the associated commutative Lie algebra and exp : a — A the Lie group
exponential map. After identifying A = a =2 R”, this exponential is the identity, but it will
be useful to have a notation that distinguishes between transformations A and infinitesimal
transformations a. Taking the derivative of the A-action one obtains an injective Lie algebra
homomorphism

Ja = CX(MTM) (1.1)

1A = X4 = %lt:OT(exp(At)) ’

which we call the infinitesimal action. By commutativity of a, ran(X) C C®(M;TM) is
a k-dimensional subspace of commuting vector fields. Since the action is locally free, they
span a k-dimensional smooth subbundle which we call the neutral subbundle E° C TM. It
is tangent to the A-orbits on M. We will often study the one-parameter flow generated by a
vector field X4 which we denote by ¢;'. One has the obvious identity ;' = 7(exp(At)) for
t € R. The Riemannian metric on M induces norms on 7'M and T* M, both denoted by || -||.

Definition 1.1. An element A € a and its corresponding vector field X 4 are called trans-
versely hyperbolic if there is a continuous splitting

TM=Ey& E, & E, (1.2)

that is invariant under the flow ' and such that there are v > 0,C > 0 with
ldeitv|| < Ce Mo, Vv e E,, vt >0, (1.3)
|deio|| < Ce "M|v||, Vv e E,, vVt <0. (1.4)

We say that the A-action is Anosov if there exists an Ay € a such that X4, is transversely
hyperbolic.

We define the dual bundles E}, E¥, Ef C T*M by"
El(E,®Ey) =0, EXEs®E) =0, EoE,®Es)=0. (1.5)
Given a transversely hyperbolic element Ay € a we define the positive Weyl chamber VW C a to
be the set of A € a which are transversely hyperbolic with the same stable/unstable bundle as

4Note that Esf/u are not the usual dual bundles of E,,, that vanish on E,,; ® Eo. The notation that we

use has grown historically in the semiclassical approach to Ruelle resonances and is justified by the fact that
the symplectic lift of 7 to T" M is expanding in the Ej, fibre and contracting in the E; fibre.
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Ap. The following statement is well known — a proof can for example be found in [GBGHW20,
Lemma 2.2].

Lemma 1.2. Given an Anosov action and a transversely hyperbolic element Ay € a, the
positive Weyl chamber W C a is an open convex cone.

Note that there are different concrete constructions of Anosov actions and we refer to
[KS94, Section 2.2] for examples.

1.2. Dynamical foliations and absolute continuity. Since the point of this article is to
study in detail the SRB measure of Anosov actions, we will have to consider disintegration of
measures along stable and unstable foliations. For this kind of consideration, it will be crucial
that these foliations are absolutely continuous. This fact is well established. However, for our
purposes, we will need that some conditional densities are C'°*°. This seems to be folklore, but
we have not found a complete proof written down. We have thus decided to recall the relevant
definitions, and explain how the regularity of the conditional measures can be derived from
existing results in the literature.

Definition 1.3. Let F' be a partition of M and given m € M let F(m) be the unique
element in F' containing m. Given a neighbourhood U of m denote by F,.(m) the connected
component of F'(m)NU containing m.

The partition F is called a continuous (resp. Hélder) foliation with n-dimensional C*-leaves
if for any m € M there is a neighbourhood U C M and a continuous (resp. Holder) map
f:U — Ck(D", M) such that for any m € U, f(1n) is a diffeomorphism of the n-dimensional
unit disk D™ onto Fioc(m).

The foliation is called a C* foliation if for any m there is a neighbourhood U and a C*
chart o : U — D" x DImM=n with Fo.(¢v71(0,5)) = (D™ x {y})

In the following we will be concerned with foliations which are Holder with C*° leaves, but
in practice, it would not make a difference to us if they were only continuous.

It turns out that for ¢ > 0, 90;40 is an example of a partially hyperbolic diffeomorphism,
specifically, it is partially hyperbolic in the narrow sense with respect to the splitting (1.2).
Partially hyperbolic diffeomorphisms are the subject of many texts, and we will refer to Pesin’s
book [Pes04]. In particular Section 2.2 therein contains all the relevant definitions.

By the stable manifold theorem for partially hyperbolic diffeomorphisms (see e.g. [Pes04,
Theorem 4.1] we get for any m € M a unique ns-dimensional immersed C*°-submanifold
W#(m) C M which is tangent to the stable foliation (i.e. T(W?*(m)) = E3). We call W?*(m)
the stable manifold of m € M and there are C > 0,v > 0 such that it is given by

W (m) = {m’ e M ‘ dy (020 (m'), 20 (m)) < Ce™* for all ¢ > 0}. (1.6)

It is known that the partition of M into stable manifolds is a Holder foliation with C*° leaves
of the manifold M, called the stable foliation. Note that by (1.6) and the commutativity of
the Anosov action, we directly deduce that the foliation into stable leaves is invariant under
the Anosov action, i.e. for all a € A, 7(a)(W?*(m)) = W*(7(a)(m)). This directly implies
that we can define the weak stable manifolds

W (m) = [ Wo(r(@)(m) = |J 74y (1.7)
a€hA yeWs(m)

which are immersed submanifolds tangent to the neutral and stable directions , i.e.
T,(W¥3$(m)) = E2 ® ES. By construction the weak stable manifolds provide again a Holder
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foliation of M with C'*°-leaves of dimension n.s = ns + k. Precisely the same way one can
define the unstable manifolds W*(m) and the weak unstable manifolds W*™*(m) and they
provide foliations with the same properties. Note that despite the fact that all foliations have
C>-leaves, none of these dynamical foliations is known to be a C*°-foliation (or even a C*
foliation) in general (cf. [BFL92] for an example of what is expected to happen when one
assumes smoothness of such foliations).

In order to discuss the disintegration of measures along foliations let us first introduce
product neighbourhoods. We consider given F' and G two continuous foliations with smooth
leaves and assume they are complementary (i.e TM = TF & TG). For 6 > 0 we denote by
Br(m,d) C F(m) the ball of radius 6 around m inside the leaf F'(m). Then for any m € M
there is a § > 0, a neighbourhood U called product neighbourhood (see [PS70, Theorem 3.2])
such that the following map is a homeomorphism

P Br(m,d) x Bg(m,d§) — U
' (IE, y) = Gloc(x) N ﬂoc(y) ‘

Given such a product neighbourhood U, we can introduce the Rokhlin disintegration of mea-
sures along F' in U.

(1.8)

Proposition 1.4 (Rokhlin’s theorem [Rok49]). For any Borel probability measure p on U
there exists a measure ji on Bg(m,d) and a measurable family of probability measures p,, on
Fioc(y), called conditional measures, so that for f: U — C in L*(p),

= [ ([ P @) i) (19)

The py are unique almost surely.

The p1,, are called the conditional measures on the leaves Fioc(y). Note that by (1.9) one has
that [ is the pushforward of u under the projection U = Bp(m,d) x Bg(m,0) — Bg(m,d).
Furthermore by the proof of Rokhlin’s theorem (see e.g. the easily accessible notes by Viana
[Via]) one gets a description of the conditional measures j,. Let us therefore introduce the
F-tubes

Ti(y,2) i= P(Br(m, ) x Baly,2)) C U.
Then for fi almost all y € Bg(m,d) the limit

lim ]lTF(va)y’

=0 u(Tr(y, €))
exists as a weak limit of probability measures on U. Obviously the limit is a probability
measure supported on Fio.(y) and coincides with the conditional measures p, (for the points
y where the limit may not exist the measures 1, can be chosen arbitrarily as they are a fi-zero
set).

Definition 1.5. Let F' be a foliation on M. We say that F' is absolutely continuous if the
Riemannian volume measure vy on M can be disintegrated in all product neighbourhoods
(with an arbitrarily chosen local smooth transversal foliation G of complementary dimension)
such that all the conditional measures v,, are absolutely continuous with respect to the
Riemannian volume measures on the local leaves Fioc(y).

We shall next denote by L?, LY the Riemannian measure induced by restricting the metric g
on the local stable W (x) and unstable W} (x) manifolds, and call it the Lebesgue measure
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on Wli/cu(ac) Similarly we write LS, L% L9 for the Riemannian measure on the weak

stable W“$, weak unstable W%(x) and the action direction W (z) = {7 (x)||A| < €},

loc? loc
and Lf is the Riemannian measure on Gj,c(z) if G is a smooth foliation.

Note that if the foliation is C* with & > 1 then, by Fubini’s theorem, the foliation is
absolutely continuous and the conditional measures have C*~1 densities. It is worthwhile
to note that if the foliation is not smooth anymore but only the leaves are, then absolute
continuity does not hold in general. There are indeed examples of Holder foliations with
smooth leaves that are not absolutely continuous (see e.g. [Pes04, Section 7.4]). However, the
stable and unstable foliations of Anosov actions are absolutely continuous. Even the following
significantly stronger statement holds:

Proposition 1.6. Let X be a smooth Anosov action, and let W, W™ be the associated stable
and unstable foliations. Then, W* and W are absolutely continuous in the sense of Definition
1.5. Moreover if U € M is a product neighbourhood around m € U of W*/* and an arbitrary
smooth transversal complementary foliation G, and vy the Riemannian volume measure on U
then there is a continuous function Oy : U — RY such that

J =] ( Lo, f<z>6Ws/u<z>dL;/“<z>> AL () (1.10)

loc

Furthermore Oyys/u is uniformly smooth along the leaves VVli/Cu(y) i.e. if SWI‘Z/Cu(y) is the
sphere bundle of Ws/u(y), then

loc
H(SWS/U Hck(W;{:“(y)) = sup sup ’Xl e Xk(((SWe/u)‘Wli/cu(y)>‘
zGWS/Cu(y) Xlr"’chESzWS/“(y)

lo loc

are finite and H‘SWS/uHCk( varies continuously in y € Gioe(m).

LAE)
Proof. The absolute continuity of the stable and unstable foliation is well established in the
literature (see e.g. [Pes04, Theorem 7.1] for the statement for partially hyperbolic diffeomor-
phisms which can once more be applied to our setting after passing to the partially hyperbolic
time-one maps go‘f‘o). The absolute continuity is however not enough for our purpose of using
the foliations in combination with microlocal analysis. We additionally need that the 0y s/u
are smooth along the leaves V[/liéu This smoothness seems to be folklore among dynamical
systems specialists, but as the statement is not written down explicitly and is important for
our further analysis, we explain how it can be deduced from existing results in the literature:

In order to simplify the notation we restrict ourselves to the case of the stable foliation
W#. We follow the standard approach to express the density function dys by holonomies and
their Jacobians:

Let us consider around a point m € M a local C*°-foliation G that is transversal to W* and
has complementary dimension n4,,. Let U be a product neighbourhood of these transversal
foliations. Now for any x1,z2 € W} (m) we define the following holonomy map (cf. Figure 1)
of the stable foliation

we Gloc(71) = Groc(72)
1,T2 2 > VV]?)C(Z> N Gloc(xQ)'

As the stable foliation is not smooth in general, the holonomy maps are neither. But we have
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Gloc() Groc(m)

FIGURE 1. In a product neighbourhood of two complementary transversal foliations (e.g.
W? and G in this sketch) one can define the holonomies along the respective foliations. In
the proof of Proposition 1.6 a crucial point is that one can first use a Fubini theorem w.r.t.
the smooth transversal foliation G and then transform this into a disintegration along W*
by the use of holonomies and their Jacobians.

Proposition 1.7 (See e.g. [Pes04, Theorem 7.1]). The holonomy maps of the stable (and
unstable) foliation are absolutely continuous, i.e. there is a measurable function j}g; on
Gioc(1) called the Jacobian of the holonomy map such that
G G
(HW ) (jxl IQL ) - L$2

Z1,T2

In the same manner on can introduce the holonomies along the foliation G, Hﬁ yo
W (y1) — W .(y2) and their Jacobians. As the foliation G is smooth and the leaves W*
are smooth, these holonomy maps are in fact diffeomorphisms and their Jacobians are always
defined via the differential.

With the absolute continuity of H, xl z, one can prove that W? is absolutely continuous
and give an expression for the conditional densities: first, as G is a smooth foliation we use

Fubini’s Theorem and write

4=,

loc

( / f(2)5a(2)dL§(2)> AL, (v)
(m) Gioc ()

with a smooth density dg € C°°(U): Using the absolute continuity of the homeomorphism
HY" . Gloc(m) — Gloc(z) we can transform the integral over Gi,.(z) into an integral over

Gloc(m)

/fdvg= / (/ SO ()b (Y ()30 ()AL (y >>den<w>.
U 2 c(m) \JGloc(m)

Finally using H)\ . (y) = HG y() == Z (cf. Figure 1) we can transform the integral over
Wy .(m) into an integral over I/VIOC( )

IRCE /G / é i e WG EALE))ALEW)  (111)
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making appear the Jacobian jqu of the holonomy map H, me This proves the absolute
continuity of the stable foliation and shows that the conditional densities on W (y) are given

by 6c(2)iW mHG (2)(y)jgm(2). As G was a smooth foliation 5g,jgm and HWGMI are smooth

so it only remains to show that jn‘/K »(y) is a smooth function in z € W (m) depending
continuously on y € Goc(m). However by [Pes04, Remark 7.2] there is an explicit formula
for the Jacobian for partially hyperbolic diffeomorphisms. In order to shorten the notation
we introduce @ := gp’lqo and we can express the Jacobian by [Pes04, (7.3)] as’

00 ‘det ( dq)k(y)q) ‘

iy ( (Gloc<m>>))‘

JJ;‘L/;(?/): ‘dt((d )‘
k=0 | 4€ PR (H 2y ‘ okmHYY m(y))(q)k(Gloc(x)))

In order to analyze the regularity of this infinite product we consider the espressions
det((dq,k(y)q))|T¢k(y>¢k(gloc(m))) as functions on the Grassmanians: Let G — M be the Grass-

manian bundle of n,,-dimensional subspaces in T M. From the Riemannian metric on M,
G inherits a Riemannian metric’. Note that the map ® : T,LM DV — d®,(V) C To(z)M
is a canonical lift of the diffeomorphism ® to the Grassmanian bundle. Furthermore we can
define 7 : G 3 (z,V) + | det((dx®)|y)| € Rxo which is a smooth function. We can thus write

o0
Log (Y3 (4)) = 3" log T (8 (1, Gloc (m)) — log T (¥ (T ) Groe (). (1.12)
k=0
We note that by definition of the holonomies, y and H,‘f‘l/ > (y) lie on the same stable manifold
Wis.(y) and the subspaces S(m) := Ty Gloc(m) and S(z) := Tyws () Goc(2) are both transver-
sal and complementary to W (y). An immediate consequence of the partial hyperbolicity of
® is that those two spaces (considered as points in the Grassmanian) become exponentially
close under the lifted action of @, i.e. there are C,v > 0 such that

dg ((i)k’(S(m)), ék(S(x))) < Cekdg (S(m), S(w)). (1.13)

Now the compactness of G implies that J is uniformly Lipshitz and thus the series in (1.12)
converges absolutely which implies that j,‘fi > (y) is a continuous function (in the y variable as
well as in the x variable). We now show that it is even differentiable w.r.t. z: let us therefore
take a smooth curve v : (—¢,¢) = Ws(m), (O) =z and [|7/(¢)|| <1 then

0 o 28 Im 20 (8 Zdlogj [dt‘t 2SO (1.14)

Using once more the hyperbolicity (in the form of (1.13)) we obtain the estimate

T (S (1))

a < Cle—l/k
dt |t=0 -

Ts(x)9
and this time the uniform Lipshitzness of dlogJ ensures the absolute convergence of the
right hand side of (1.14) which implies that %| 1o log ij,Sy(t) (y) exists and its value depends

5Be aware that Pesin uses the inverted diffeomorphism ®~! in his formula but the numerator and denomi-
nator in his formula are also interchanged so that the formula agrees with the one that we use here.

6There might be different choices of metrics on the Grassmanian-fibres, but they all lead to equivalent
metrics.
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continuously on y. Iteratively we obtain the same statement for higher derivatives. Indeed,
we have that the n-th derivative of (I)k(THx{l/;(y)Gloc(.T)) with respect to x € Ws(m) decays
exponentially in k, this can be checked by writting S(z) := T HY (y)Gloc(z) and by induc-
tion on n. Up to possibly multiplying Ap by a fixed positive integer, we can assume that
|d®(®7(S(x)))|] < e for all j > 0 and € > 0 small by the discussion above. For n = 2,
write

d(FF(5(2))) = dB(F1(S(2)))dB(B*2(S())) ... dD(S(x) )dS (x),
(@ (S(@)) = 3 dB(@ ! (S(@))) - - (P (S(2)) AP (S())) ... dD(S())dS (2)

+ d®(PF1(S(x))) ... dD(S(x))d*S ().
This implies, using that d2® is uniformly bounded on G, that
1% (®*(S(x)))|| < Che~ =1,

Then repeating the same argument with an easy induction on n gives the result for derivatives
of order n (we refer to the proof of [d1L92, Lemma 5.5] for example for more details). Com-
bining this estimates with (1.11) we obtain the desired smoothness of dys along the leaves
Wioc- =

Note that the proof of Proposition 1.6 strongly depends on the fact that there is an expo-
nential contraction along the stable, resp. unstable manifold and it would fail when working
directly on the weak-(un)stable foliation. Nevertheless thanks to the fact that the neutral
foliation is a smooth foliation we can establish the same result as Proposition 1.6. We will do
this in two steps: In a first step we show that there is a continuous density function dyws for
the weak-stable foliations’ and give an explicit expression in terms of dyys and some further
quantitities which we introduce now: by (1.7) we have

Wl my = ) wWlam) = | W), (1.15)
yeWw:/" (m) zeW)) (m)

loc

where W0 _(y) == (t(A)y) N st/wu(m) is simply the A-orbit through y. By the fact that

loc

W/ (r(a)m) = 7(a)(W*/*(m)) and the smoothness of the Anosov action both partitions of

the leaf W/f:j/ “*“(m) are smooth foliations of Wﬁf fwu

(m) and by Fubini there are strictly pos-

ws/wu ws/wu
itive, smooth functions 6%‘50 (m) c COO(WITé’j/w“(m)) and (5;‘;1;% (m) c C’OO(WIE)S/WU(m))
such that
/ ws/wu f(y)dL;UTS/wu(y)
Wloc (m)
st/wu o/
= / y ( / f(2)05° (m)(z)dLg,(z)> AL (4 (1.16)
Wl‘ocu(m) Wl%c(yl)
st/wu m s/u
Z/ (/ u f(2)8,,)5. ( )(z)dLy,/ (z)) dL2 (). (1.17)
Wl%c(m) Wl:;)c (yl)

7Again the case of weak unstable foliation follows exactly the same way but we only focus on thw weak
stable case to simplify the notation.
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Now, in the proof of Proposition 1.6 we chose a transversal complementary smooth foliation
G such that Gloc(m) = W (m). With (1.10), (1.16) and (1.17) this yields

[ ran = » )( / » )f(z)éwws<z>dL$s<z>> aLL (y). (1.18)

loc loc

with W m)
dws(2)dy,6° (pfwlws( WP (y )(2))
Ous(2) = Wes (y)
5W150c (Z)

Here pryjuws () wo () is the projection along the smooth subfoliation (1.15) of W¥(y). In
order to obtain an analogue to Proposition 1.6 it remains to analyze the regularity of dyyws
along the leaves W**(y). Note that for fixed y by the smoothness of the subfoliations (1.15)

loc

of W¥3(y) we conclude that the functions 5%;55@)(2) and (53;1;‘1’];‘(@ (prwm(y) LW 1 () (2 z)) are

loc fpeo

smooth on W% (y). By the Holder continuity of the weak stable foliation their CW;”S(y) norms

vary continuously on y € W} _(m). However, for dys(z) we only know so far that this density
is smooth along W _(y). Using the smoothness of the Anosov action we can improve this
further: for any z € W (y) C U and any a € V C A where V is a neighbourhood of the
identity such that 7(V)z C U we get the following equivariance property which can be derived
from a straightforward calculations using the A invariance of the weak-(un)stable foliations
as well as several occurences of the transformation formula:
e (r(0)2) — [det(dr(a)|(2)

| det(dr(a)pun)|(y) - | det(dT(a) p:)(2)|
All the appearing Jacobians here are understood with respect to the respective Riemannian
volume measures. As the Jacobians depend smoothly on a this shows that dyys has also

bounded derivatives of any order into the direction of the A-orbits. Summarizing we have
shown:

dws(2).

Proposition 1.8. Precisely the same statement as Proposition 1.6 holds when replacing the
(un)stable foliation W*/* by the weak (un)stable foliation Wws/wu,

As a consequence of Proposition 1.8 we can prove the following crucial result which is a
slightly more general version of [Weil7, Prop 6] for Anosov actions. It connects classical
regularity of functions into the directions of a dynamical Hélder foliations with its microlocal
regularity i.e. the wavefront set:

Lemma 1.9. Let 7 be an R¥-Anosov action, and consider its weak-unstable foliation. Let
f be a measurable function on M, such that for Lebesgue almost all p € M, flVVf”é*(p) 18

smooth with all derivatives along the leaves being uniformly bounded with respect to p. Then
WE(f) C Ej.

Proof. We pick a point p € M, £ € Ty M, such that £ ¢ E and a smooth function S such
that d,S = £. Let G be a transverse foliation to W** near p, and we can assume for example
that G(p) = W?*(p). Then, using Proposition 1.6 or more particularly (1.18) (with the weak-
unstable foliation instead of the weak-stable foliation), for each x € C°°(M) supported in a
small neighbourhood of p

‘/Xehsfdvg‘ </
(p)

/ X (@)t f () () ALY ()| AL ().
Wt (y)
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Since each W¥¥(y) is a smooth manifold, and f restricted to this manifold is smooth, we can
integrate by parts in the variable . Here, it is crucial that dyywu(,)(z) is smooth in z. We
deduce (since the estimate on f are locally uniform) that this integral is O(h>), as soon as
dS|W;gg(p) does not vanish. But the condition that £ ¢ E ensures this close enough to p,
since E;; is exactly the set of covectors that vanish on E* @ RX. So for x supported close to
p one gets the desired result. This implies that £ ¢ WE(f). O

1.3. Invariant measures via spectral theory. In this section we state the results about
the physical measures for general Anosov action as they have been obtained in [GBGHW20)]
and we also recall the essential constructions on which our analysis will be based.

The existence was obtained through the theory of Ruelle-Taylor resonances, which are
defined as a joint spectrum of the family of vector fields X 4 for A € a in certain functional
spaces. More precisely, we say that A € af. is a Ruelle-Taylor resonance for 7 if and only
if there exists u € C7*°(M) non-zero with WF(u) C E; (here WF denotes Hormander
wave-front set of the distribution [Hor03, Chapter 8]) and

VAea, —Xau=AA)u. (1.19)

We say that u is a joint Ruelle resonant state of X. Using the operator dy : C~>°(M) —
C*®(M) ® a* defined by (dxu)(A) := Xau for all A € a, the system (1.19) can be rewritten
under the form (—dx — A\)u = 0.

Given a general Anosov action X, we choose vectors Ay,..., A, in the Weyl chamber W,
which form a basis of a. The dual basis in a* is denoted (e;);, and set X; := X4,, and we
use dv, the smooth Riemannian probability measure on M. If we further pick a non-negative
function ¢; € C°(R™T) satisfying [~ ¥;(t)dt = 1 then we can consider the operator

R = H/e_tjxjiﬁj(tj)dtj. (1.20)
j=1

This operator appeared in a parametrix construction in a Taylor complex generated by the
Anosov action and this parametrix was the central ingredient for establishing the existence of
the Ruelle-Taylor resonances in [GBGHW?20]. For the purpose of this paper we will not need
to introduce the Taylor complexes and spectrum but we will only focus on the results needed
for our present work. In section 4.1 of [GBGHW20], we construct a function G € C*°(T*M),
called escape function for Ay € W and satistfying the properties of [GBGHW20, Definition
4.1]: in particular, there is Ry > 0, cx > 0 and a conic neighborhood 'z of Eg in T*M such
that

G(z,§) = m(z,§)log(1 + f(x,£)),

f € C®(T*M,R") positive and homogeneous of degree 1 in |£| > Ry,

m € C®(T*M,[-1/2,8]) homogeneous of degree 0 in |£]| > Ry,

m < —1/4 in an arbitrarily small conic neighborhood I';, of E} if |¢] > Ry

m > 1/2 outside an arbitrarily small conic neighborhood I", of T, if [£| > Ry.

L (Ureo €4 (2,€) N (T U{IE] < Ro}) = 0 = G(eX4 (x,€)) — G(x,€) < —ex

where X f is the Hamilton vector field of the principal symbol p := {(X4(x)) of the operator

(1.21)

—1X 4 (we note that its flow X4 is the symplectic lift of o).
After fixing a quantization procedure Op mapping symbols on T* M to operators acting on
C>®(M) (as in [Zwo12]), we consider the pseudo-differential operator Op(eN¢) with variable
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order and we define the Hilbert space
HNC .= Op(eNE)TLLE(M).

where Op(e®) can be made invertible by choosing appropriately G. For later, we will also
need a semi-classical parameter h € (0, 1], to consider a semiclassical quantization Op;, and
to define

M@ = (Opy (M) T LA M).
The spaces HhN G for different values of h are the same topological vector spaces but the

norms are different. For more details on the construction of the anisotropic spaces and the
used microlocal techniques we refer to [GBGHW20, Section 4.1 and Appendix A].

Proposition 1.10 ([GBGHW20, Lemma 4.14, Lemma 5.1 and Lemma 5.2]). For N > 0
large enough, the operator R of (1.20) is a bounded operator on HNCG with essential spectrum
contained in the disk D(0,1/2). The only eigenvalue s with |s| =1 is s = 1 and this eigenvalue
has finite multiplicity and no Jordan blocks. Finally, if Il denotes the finite rank spectral
projector of R at s = 1, then the following convergence holds in L(HNG)

lim RF =1L

k—+o0

We note that the same results hold on the spaces H1' @ for all b € (0,1). We will also
need the technical Lemma (see [GBGHW20, Proof of Lemma 4.12]) which follows from the
flexibility of the choice of the function G:

Lemma 1.11. A distribution u € C~°(M) having WF(u) C E} satisfies u € HNC for some
N > 0. Conversely, if there is Ny such that uw € HNC for all N > Ny and all admissible
escape functions G (in the sense of [GBGHW20, Definition 4.1]), then WF(u) C E}.

If F C T*M is a conical closed set in T*M, we denote by Cp*(M) := {u €
C~°(M)| WF(u) C F}.

The spectral projector II satisfies RII = II = IIR, and by [GBGHW20, Lemma 5.3] its
Schwartz kernel is independent of NV, G and has the form

.
T=> v eu (1.22)
7j=1

with v; € HNC N CL°(M) and wr € (HNG)* N Cp2°(M); moreover if N > 0 is large enough
we have by [GBGHW?20, Lemma 5.3]
ranll = {u € Cp*(M) VA € a, Xau =0} = {u e ¥ |VA € a, Xgu=0}.  (1.23)

The relation of IT with the physical measure is explained by [GBGHW?20, Proposition 5.4]
as follows:

Proposition 1.12.
(1) For each v € C®°(M,R"), the map

fy 2w € CF(M) = (Tu, v)

is a Radon measure with mass p,(M) = ffvl vdvg, invariant by X; forallj=1,... K
in the sense p1,(Xju) =0 for all u € C*°(M). The space

span{u, [v € CF(M)} = I (C*(M))
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is, for N sufficiently large, a finite dimensional subspace of (HN®)* whose dimension
equals the space of joint resonant states. Furthermore II(C*°(M)) is precisely spanned
by the invariant measures p with WF(u) C E?.

(2) For each open cone C C W in the positive Weyl chamber with 0CNOW = {0}, e; € a*
so that e; > 0 on C, and u,v € C*(M),

py(u) = lim 1 (o2 u, v)dA (1.24)
T—oo |Cr| Jaecr,
where dA is the Lebesque-Haar measure on a and Cp := {A € C|e1(A) € (0,T)}. In
particular, py is the physical measure.

(3) Let vi,vy € C®(M,R") with vy < Cvg for some C > 0. Then p,, is absolutely
continuous with bounded density with respect to py,. In particular any p., is absolutely
continuous with respect to py.

(4) Consider a local stable manifold Wy (xo), f € (VVIOC(ZUQ) R*) and L3, the
Lebesgue measure on W (xo) with [ fdL3 = 1. Then for C, Cr as in (2) the
limit

prrs (u) = lim / / deS dA (1.25)
0 [

T—o0

exists and defines a probability measure in II*(C*°(M)).

Remark 1.13. We will see in Section 2 that in fact the whole space IT*(C*°(M)) is spanned
by measures of the form p L,

Proof. The items (1), (2), (3) are proved in [GBGHW20, Proposition 5.4]. Let us prove the
4th item. For this, we follow closely the proof of [GBGHW20, Proposition 5.4] but we replace
the smooth function v by the measure v' := fL3 . Since W} (z0) is a smooth submanifold
of M we have that (see for instance [Hor03, Example 8.2.5]) WF(fL; ) C E; © Ej. The
distribution v’ belongs to (HN%)*: indeed for u € C®(M),

(u,0") oo -0 = (Op(¥ ), (Op(eN) 1)) e oo

and (Op(eN%)~1)* is a pseudo-differential operator with variable order and with principal
symbol e NG < C|¢|7N/2 in {(z,€) € T*M | € ¢ T, |€] > Ro} by (1.21); since T,N(E;BE?) =
0, we deduce that there is N > 0 large enough so that (Op(eN¢)~1)*s’ € L? (note that
v € H-dmMED/2(A1)), Recalling that Op(eN®) : HNG — L? is an isometry we see that
u > (u,v) oo oo extends to a continuous functional on HVC

For u € C*°(M) we thus have using Proposition 1.10 (notice that the result is independent
of the choice of ¢ in the definition of the operator R)

s
kh_)Il;Q(Rku,U/>HNG,(HNG)* = (Tu, V' )y (yncy = Z;w;(u)<vj,U/>HNG7(HNG)* (1.26)
j=
which proves that p : u— (RFu, v/ )unG (yney- is a Radon measure that converges to some
element in H*(C"X’) depending only on v'. The limit is a probability measure since, using
R1 =1, one has p¥ (1) = (1,9') = 1. Next, in the proof of Proposition 5.4 of [GBGHW20],
we replaced the functions []7_, ¥;(t;) by 1/10( ) = 121 %;(t; — o;) for 0 € R* ~ a small in
the definition of R¥, and call Rk the resulting operator. Fixing one direction AjeC,e €a”
so that ej(A;) = 1, and taking a transverse hypersurface ¥ = e;*({1}) to C, we obtain
coordinates (t1, .. t,.g) with t; = e1(A) on a and ¢ = (¢2,...,tx;) some linear coordinates on
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Y associated with a basis As,... Ay of kere;. We prove in [GBGHW20, Lemma 5.5] that
if w e C((0,1)) satisfies [w = 1 and ¢ € C°(X N C) satisfies [¢ = 1, then for each
veC®M)

N N
1 _ 1 St XA K £
‘NE w(}“v)<R§@u,v>q(i>dt—W/o /RM@ 2=t XAy o) (W) R0 (R)g(L)dtdi

-5 t:Xa.
< e(N)sup|(e 2i=14%45 4, 0)| < e(N)[ullco gy 10l oo (amy)-
1,

where o(t) = (1,¢) in the coordinates t1,...,t; and ¢(N) — 0 as N — oo. We can then take
a sequence v, — v in the topology (C°(M))* dual to C°(M) (i.e. Radon measures) and we
obtain, using (1.26) and letting N — oo,

) = Jim gz [ [ E Gt
By finally letting w(t;)q(#/t1) be arbitrarly close to 5" 1j0,1)(t1)1snc(t/t1) in L, we obtain
that [fLs, can be written as (1.25). O

Now, using the usual proof for the decomposition of the SRB measures along stable leaves
in rank 1, we can prove the

Proposition 1.14. For each zo and f € CP (W (x0),RT) with [ fdL3 =1, the measure
HfLs, defined by (1.25) has strictly positive smooth conditional measures on the local leaves

Wi (z) with respect to Lebesgue measure L3, for each x € M.

Proof. We follow the proof of [You95, Theorem 6.3.1]. Call v := fLj; and vg = (94,10 for
A € W. This measure is supported on the piece of stable manifold gpél(W'lf)c(xo)). We also
define v1 = ﬁ fCT vadA. Let 1 € M and consider a small neighborhood U,, such that
the disintegration along stable leaves can be done by Proposition 1.4. Let y € U,, be such
that 7' (y) € Wi (o) then the measure v4 on a stable leaf Wlf)c(y) C Uy, can be written as

va = |det(dei|g,)|f o pf

and |det(def|g,)| is the Jacobian restricted to Fj (computed w.r.t. Lebesgue), which is
exponentially small as |A| is large. Then, let v*>° := HfLy, = lim7_,0o v1 that we decompose
in U, along stable leaves and we call vg® the conditional on W} (21). If G is a transverse
smooth foliation manifold to the stable foliation near x1, one can write

oo . 1pv™

Voo = 1 e (R

where Fi = Uy (1,0 Wit (y) is a tube of radius € > 0 around W (1), where Bg(r1,¢€) C
G(x1) is the ball of radius € in G(x1). Now let V' C W}’ (x1) be a small open ball and consider
Ve := Uyev G(y)NF.. For |A| large, the leaf o, (W (0)) becomes long and intersect V into,
say ke(A) € NU{+o0} connected components® (W (y;)NVe)j—1, k. (a) for y;(A) € Ba(z1,€);

8The number of components with non-zero Lebesgue measure is countable.
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note that y;(A) depends continuously on A. We then write

VT Ve - T
V)= !

|CT| /c

We can now use the holonomy map Hf "

W (y;(A)) integral as a W} (x1) integral:
/ ) | det(det (2)| ()| (91 (2)) dLy (2)

loc (yJ )mv6

va(Ve)dA

(1.27)

/W | det (At () o)L (2)) A, ) (2)dA.

T j=1 (y] (A))NVe

loc

(4) 88 defined after Proposition 1.7 to rewrite the

/ [det(de (HS , 4y F@RAHES (IS o (2) LS, (2)

where jxl,yj is the Jacobian of Hgl y; Which is uniformly bounded above and below (with

respect to y;) by some positive constants C1, Cy. Let us define the density

pi(2) = [det(dei (HY , o (De)f (01 (He 4y (255 40 (2)

on a neighborhood of V' inside W} (z1). Now we can show that there is C' > 0 such that for
all y,z in W (x1)NV,all j <k(A) andall AcC

A
pi‘(z) < eCdov2) (1.28)
Py (y)
To obtain this estimate we can apply the argument in [You95, Proof of Theorem 5.2.1]: First,

since HY v, (2), H. g v, () are on the same the stable leaf, there is a uniform C' > 0 such that

for all A€ Cr and j < ke(A) and all y,z € W} _(z1)NV
-G
Pl (S, oy @IS, )W) < Clalu2)
TS, oG ()

Next we get, letting A := A/|A| € W and ny := [|A|] be the integral part of |A], that there
are constants Cy, ..., C3 > 0 such that for all with A € Cr, j < kc(A), 7,2 on W _(y;(A))

| det(def|,) (@) _
| det(d'| ) (2 )\ a

< ng@oé(g), (%))
n=0

nA

< Co Yy e dy(7, ) < Csdy(, )
n=0

(dt|,) (32 (9))] — log | det(dpi'| ,) (i ()]

where ¢y > 0 is less than the minimal contraction exponent of the flow in the direction Aec
in the stable bundle. Such a uniform constant exists because the cone C does not touch the
boundary of the Weyl chamber. Applying this with § = HS v, (y) and Z = Hﬁyj(A)(z) we
obtain the desired estimate (1.28) since the holonomy map has uniformly Lipschitz bound

wrt A € Cr and j < k.(A).
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Now, this clearly implies that there is C' > 0 such that for all y,z € W _(z1) NV

1 ke(A) A
[Cr] fCT Jj=1 pj( )dA < eCdg(y,z).

1 k(A) -
e Jer 22551 Py (y) dA

Coming back to (1.27) we get that

(4) .
VIV _ fV<|cT\ch j=1 AdA)dL

vI(F, ) o :
( ) lesoc 1) <|CT\ fCT j=1 dA)dL
and the density on Wy (1)
k (A) A
_ |cT| Jor S5 ot (y) dA
de(y) = k o

lesoc(l"l) (3] fCT j=1 P;\Y ( )dA dLg;1

is of mass 1 for Lj and its logarithm has a Lipschitz constant which is bounded independently
of T and €, so it satisfies a < d. < [ for some positive constant «, S uniform in €,7. This
implies that
ars (V)< L0 / de(y)dLs (y) < BLE. (V)
T _VT(F) v Ey xly — T

which shows, by letting 7" — oo and then ¢ — 0, that the conditional measure 17 is absolutely
continuous with respect to Lebesgue L on W} (z1).

Next, by Ledrappier-Young [LY85, p. 533], if p(y) is the density of the conditional vg? with
respect to Lebesgue Lf , one has for Ag € W and z,y € W _(x1)

A A
p(y) T2 | det(deZS )95 (y)
- A A
plx)  TI52, [ det(deZg| g, )| (07 (2))
Then, using this formula, an argument using the contraction on stable leaves and the chain

rule for derivatives very similar to the proof of Proposition 1.7 shows that p must be smooth
on Wy (x1). A detailed proof is done in [dIL92, Corollary 4.4 and Lemma 5.5]. O

1)

2. EQUIVALENT CHARACTERISATION OF SRB MEASURES

In this section we will study the measures p, obtained by the Ruelle-Taylor spectral theory.
Let us first introduce some notation:

Definition 2.1. For an invariant measure p define the basin (of attraction) to be those points
x € M such that for any f € C°(M) and any proper subcone C C W we have

1
p(f) = lim —— Fley(@))dA. (2.1)
T—oo |Cr| Jaee,
We say that an invariant measure p is an SRB measure for 7 if the basin has positive Lebesgue

measure.

We show that they are linear combinations of SRB measures and give various other different
characterisations:

Theorem 3. Let T be a smooth, locally free, R® Anosov action with generating map X, then
we have:
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1) The linear span over C of the SRB measures can be identified with the finite dimensional
space ker d x| oo
E*

2) The physical measure (0.1) is a linear combination of SRB measures.

3) The union of the basins of the SRB measures has full Lebesque measure in M.

4) An ergodic Radon probability measure p is a SRB measure if and only if it is invariant by
o for all A € a and has wave-front set WF () C E?.

5) The conditional measures of the SRB measures of an Anosov abelian action are absolutely
continuous with respect to the Lebesque measure on the stable manifolds, and they have
smooth densities with respect to Lebesgue. Vice versa any ergodic invariant Radon proba-
bility measure that is absolutely continuous with respect to the Lebesque measure (without
assuming smooth densities) is a SRB measure.

We furthermore prove that if the Anosov action is transitive then there is a unique SRB-
measure (see Corollary 2.4) and if it is positively transitive the SRB-measure has full support
(see Proposition 2.10). Theorem 3 together with these two additional result then gives The-
orem 1 stated in the introduction.

We will first study the ergodic decomposition of 1 and identify the basins of attractions.
We will use some arguments in the spirit of [BKL02, Proposition 2.3.2] to obtain

Lemma 2.2. Let X be an Anosov action, and let ;. = p1 be the physical measure. There
exist disjoint measurable sets Fy, ..., F, such that p(F;) = vg(F;) # 0 for all i and p(U; F) =

vg(U;Fy) = 1. Furthermore the ergodic components of u are given by pl = H:t;i)

the basin of p;. In particular each p; is an SRB measure. Finally the p; form a basis of the
space II*(C*°(M)).

Proof. For C C W a proper open subcone, e; € a* with e; > 0 in C, and f € C%(M), we
define

- and Fj is

Q(f,C) == {xEM‘f(x) = lim —

— o (z dAexistsinR}.
Tt oo |CT| AcCr (90 1( ))

where Cr = CN{e1(A) € (0,T)}. It follows from the ergodic Birkhoff Theorem for actions
(see [Bew71, Theorem 3]) that for all such C and f, and every invariant Borel measure v,
Q(f,C) has full v-measure. By a dichotomy argument on the cones, and using the fact that
CY(M) is separable, we can improve this, by saying that

Q:=[Q(f,0),
f,C
also has full v measure for every invariant Borel measure v. Additionally, we observe that if
x € Q, then the weak unstable manifold satisfies W""(z) C €.

More generally, if a set F' is a union of full weak unstable manifolds, we will say that F' is
unstable-invariant. Notice that §2 is unstable-invariant. According to Lemma 1.9, this implies
WF(1p) C E}, and thus 15 € HNC for N large enough. In particular, since X41p = 0 for all
A € a, 1 belongs to the finite dimensional space ran II by (1.23). This means that 1 = II1p
in the distribution sense, thus Lebesgue almost everywhere since 15 is L!.

Since for v € C*°, the identity p,(u) = (Ilu, v) extends from smooth functions u to elements
u € HNC, we have for each unstable-invariant set F,

,LLU(F):/M(Hlp)vdvg:/devg. (2.2)
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In particular, since u(2) = 1, Q has full Lebesgue measure (even if the Lebesgue measure
is not invariant by the action). If F' is unstable invariant, then we also have pu(F) = vy (F).
Since each such 1 is an element of the space of resonant states at A =0

H :=Span{1p | F is unstable invariant } / ~ is a subspace of ranII.

(here, ~ is the equivalence relation of being equal Lebesgue a.e. or, equivalently u a.e.).
Accordingly, we can find pairwise disjoint unstable invariant sets Fi, ..., F, with r < rankII,
so that the [1 Fj] form a basis of H. Since (2 has full-measure, we can assume that UFj = Q.

If f is a continuous function and C C W is an open proper subcone, we observe that the
sets {z € Q| f-(x) < r} are unstable-invariant for each r € R, so they are finite unions of
F"s up to Lebesgue null sets and by (2.2) also up to p-null sets. This implies that f_(x) is
constant on each F], p-a.e. and we denote f_ ; that value. By Lebesgue theorem and the
invariance of u by ¢4,

WEDTs = [ 1@ = i [ [t @dad) = [ pin o 29)

T—o0 Fj |CT| Cr

Thus, if we define p? = 1ﬁjM/M(Fj) we get f_; = p?(f). Thus for arbitrary f € C%(M)

and an arbitrary proper subcone C C W we have shown that for p a.e. x € Fj we have
f—(z) = p;j(f). Using as above that C°(M) is separable and that we can approximate an
arbitrary cone by a countable number of cones, we deduce that the basin F} of 1, differs from
Fj by a u nullset or equivalently a Lebesgue nullset.

The same argument as in (2.3) can be done for u,, so we deduce that for v € C°°,

[ rne =32 5 El ) = 1 (9) [ v, (2.4)
j j i

We have thus seen that the 1, form a meaningful basis of H. Now we prove that in fact
H = ranll. Let 7 : LY(M,pu) — L*(M,p) be the projector onto the set of X4 invariant
functions (for all A € a) along the closed subspace generated by coboundaries {@{'f — f | f €
L'(p), A € a}. By the ergodic theorem of [Bew71], m is a continuous operator and for u
almost all z € M

We have just proved that m maps C°(M) to functions constant on the Fj’s. In particular,
by density of continuous functions in L'(y), we deduce that the image of 7 only contains
functions constant on the Fj’s. This proves that the F}, or more precisely, the 1 are the
ergodic components of u, and that Equation (2.4) is the ergodic decomposition (in the sense
of Theorem 4.2.6 of [HK02]). One consequence of the above is that p has at most rankII
ergodic components. However, in {u, |v € C*°(M)}, we can find rank IT linearly independent
probability measures, absolutely continuous with respect to u, and invariant under the action.
This implies that the number of ergodic components is at least rankII. We deduce that
H =ranll, and that the 15, form a basis of ranII.

It remains to show that the p;’s form a basis of IT*(C'*°). Since they have pairwise disjoint
support, the u; are linearly independent and they span a space of the same dimension as
IT*(C*°). It thus remains to prove that all p; lie in IT* which by Proposition 1.12 can be
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achieved by considering the wavefront sets of the u/: We can refine (2.4), since the LHS of
(2.4) is equal to (IIf,v). We obtain

T
M=) 1p Qw], (2.5)
j=1
for some w’ € (HNG)*, j =1,...,rankII. Now, we can write u, in two different ways:

pol) = S wj(w) [ iy = 3400 / vy

so that w} = p/. By Lemma 1.11, this shows that p/ has wavefront set only in E}, while we
had a priori no information regarding the wavefront set of p7. O

We thus have shown that the basins Fj of i cover M up to a Lebesgue zero set. Accordingly
any SRB-measure must be equal to one of the p/ and thus lie in {u, | v € C*°(M), v > 0}.
In order to prove the uniqueness of SRB-measures for transitive actions, we will prove.

Lemma 2.3. For any SRB-measure ji; with basin F; there is an open set U;j C M such that
vg(U;j N Fj) = vg(Uj)-

Corollary 2.4. It the Anosov action T transitive then there is a unique SRB measure.

Proof. Assume that there are two SRB-measures p1 and po and Uy, Us the two open sets. By
the transitivity there is A € a such that U; N ¢{(Uy) # 0. Then we deduce that Lebesgue
a.e. x € Uy N (Uy) lies in Fy and (by absolute continuity of ¢¢ w.r.t. Lebesgue) Lebesgue
a.e. © € Uy N (Uy) lies in 7! (F). But as the basins are flow invariant this is not possible
except if F1 = Fs. O

In order to prove Lemma 2.3 we first show:

Lemma 2.5. For xg € M let L} be the Lebesgue measure on Wi (xo) and call L the set

of all these measures supported on small pieces of stable manifolds. Then the vector space
I*(C°(M)) = span{pu', ..., '} is also equal to

{70 € M, £ € CEWigoo) B,
loc\%0

fdLs, =1,L5, € £}.

Proof. We already know that all yy Ly, are contained in the finite dimensional complex vector
space IT*(C*°(M)) = span{u!, ..., u’}. Suppose that they do not span the whole space, then
all py L3, have to lie in a proper subspace and there is a linear functional on span{u!, ..., u’}
vanishing on all [fLs, - This would imply that there exists w = Zj Ajlp;, with A; € C
and F} defined by (1.22), such that (w, fL; ) = 0 for any L; and f as above. First take
v € C°(M,R") so that (w,v) # 0. We can decompose v = >, x;v in small charts (U;);
where the disintegration along stable leaves can be performed as in (1.10): taking G; some
local transverse manifolds to the W* foliation in U,

(woxiv) = | i(o)ela)uo) duy )

U;
/ / Vi) (m)dws (o) ()AL () dLE (2)
G JWE (2)

loc

=0
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where we used our assumption with f = XiU5W15 () on Wi (2) and zo9 = 2z to get the last
line. We obtain a contradiction. O

We deduce, using Proposition 1.14 the

Corollary 2.6. The conditional measures i/ are absolutely continuous with respect to the
Lebesgue measure on the stable manifolds, and they have smooth densities with respect to
Lebesgue.

We can now prove the Lemma 2.3.

. 1r, .
Proof of Lemma 2.5. Recall that p/ := r;?_),u and that F} are the basins of p/. Let us
‘7 .
construct these open sets U;: We consider a point xo € supp ¢/ and a small product neigh-
borhood V' of zy. Furthermore consider the disintegration of p? along the strong stable
wu

foliation in V. By Corollary 2.6, this gives locally around zo for any y € W“%(xo) a
measure gy, on Wi (y) with a smooth density with respect to the Lebesgue measure Ly

on W .(y) and a transversal measure 4/ on W\““(zg). But we know that 1 F W=y

loc ;
and consequently for 4/ ae. y € Wie(zg) we have 1 ijwlic(y)ujy = p3. In particular
there is at least one yg € W""(zp) such that 1 ijWIzc(yO)M‘;O = uio # 0. But as ,u{,o
has a smooth density with respect to the Lebesgue measure on W} (yo) there exists an
nonempty open set Uy, := int(supp ) C Wi (yo) such that p, (F; N WE (v0)) = pio (Us)-
As the Fj are invariant in the weak-unstable directions we can consider the open set
Uj = U, i W (z) C V. Using the absolute continuity of the weak unstable foliation,
Y0
one checks that vy (F; N U;j) = vy(Uj).
O

In a very similar way as the one presented above for the construction of the U; we prove

Lemma 2.7. Let v be an ergodic Radon measure on M that has an absolutely continuous
disintegration w.r.t. W . then the basin of v has positive Lebesgue measure.

Proof. Let Q be the set of # € M such that for all f € C°(M) and all cones C C W

f-(z) !

= lim —
T—+o0 ‘CT‘ AeCr

F(@i(x))dA = v(f)

By the ergodicity assumption €2 has full ¥ measure and is in particular a nonempty unstable
invariant set. Moreover 1grv = v. We now consider a point xy € €2 in the support of v and
a small neighborhood V' of zy. Furthermore consider the disintegration of v along the strong
stable foliation in V: This gives locally around zg for any y € W%¥(zg) a measure v, on
Wi .(y) with a density with respect to the Lebesgue measure Lj on W (y) and a transversal
measure 7 on W% (zg). But we know that z is in the support of v and consequently there is
at least one yo € Wigt(zo) such that loqw: (y0)Vh = Vyo 7# 0. As vy, is absolutely continuous
w.r.t Ly we conclude that Q N W (yo) has positive Lj measure. As the  is invariant
in the weak-unstable directions and as the holonomies along these weak unstable directions
are absolutely continuous we deduce, that QN W (y) has positive L; measure for all y in
V. Now we can use that also the Lebesgue measure has absolutely continuous disintegration

along W . and conclude that V' M€} has positive Lebesgue measure. ([l
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We already know that for a topologically transitive Anosov action only the physical measure
can have a basin of positive Lebesgue measure. Consequently for a topologically transitive
Anosov action any ergodic measure with absolutely continuous disintegration w.r.t. W _ is
automatically the physical measure. For the general case we consider:

Lemma 2.8. Let v be a Radon measure on M that has an absolutely continuous disintegration
w.r.t. W and is invariant under the Anosov action 7. If supp(v) C M is connected, then
v is ergodic, i.e. there is a full v measure set ' C M such that for all x € F, all f € CO(M)
and all proper subcones C C W one has f_(z) = fM fdv.

Proof. Let  be the set of # € M such that for all f € C°(M) and all cones C C W

. 1 A
F = tim o | rehan =
Then we know by the reasoning at the beginning of Lemma 2.2 that €2 has full v measure.
The function f_ is thus a measurable function that is constant on weak unstable leaves. Let
A € W, then W*(z) are precisely the stable sets of the diffeomorphism ¢f'. By [BS02, Lemma
6.3.2] there is a v nullset N such that for any z € M \ N, f_ is constant on W?*(z) \ N.
Now by the absolute continuity in any product neighbourhood U C M we can write

0:/ lNdu:/ /
U wwe(m) \ J W

1N(z)5WS(z)dLZ(Z)> di(y)

oc loc(y)

Accordingly for 7 almost all y € WS (m) one has N NW{ (y) is a Ly zero set. Pick one such
yo and z9 € W}? (yo). Then, by the definition of N for all z € W} (y0) \ N we have f_(z) =
f=(20). Let y1 € W¥%(m) by any other point. As f_ is constant along the weak unstable

loc

leaves we can use the holonomy along the weak unstable leaves Hz‘jg Zf s We(yo) — We(y1).

As we know that this holonomy is absolutely continuous we have that

{f* = f*(ZU)} N I/Vlf)c(yl) C H;([)/,Zf(m/lf)c(yo)) - I/Vlf)c(yl)
has full Lj measure. Using once more the absolute continuity of v along the stable foliation
we get
v({f- = f-(20)} NU) =v(U) (2.6)
Using the connectedness of supp(v), we deduce that Fy := {f_ = f_(2)} has full v measure
and from [Bew71, Theorem 1 and 3] we get

F(z0) = /M fodv = [ sav.

We finally take F' = Ngccop)Fy and use he fact that CY(M) is separable to reduce the

intersection to a countable set in C°(M), we obtain that F has full v measure and satisfies
the desired property. ]

Consequently for any Radon suppr measure on M that has an absolutely continuous
disintegration w.r.t. Wy _ and is invariant under the Anosov action 7 we can decompose

. . 1c,
the support supp v into its connected compontents C; and we deduce that v; := Tgf)u are

SRB-measures. This proves property 5) of Theorem 3.

Definition 2.9. We call an Anosov action positively transitive if there is a proper subcone
C C W such that for any two open sets U,V € M there is A € C such that p{(U) NV # 0.
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If the Anosov action is positively transitive then it is obviously transitive and we know
that there is a unique SRB measure.

Proposition 2.10. If the Anosov action is positively transitive then the SRB measure p has
full support.

Proof. Assume that supp p # M then there are mg € M, ,0 > 0 s.t. the product neighbour-
hood (cf. (1.8)) Uy := Byws(mo,d) X Bywu(mg,e) is disjoint from supp p. Let us also define
the set U := Bys(mo, d) X Bywu(mg,e/2). Recall that, after chosing an arbitrary norm on
a, the transversal hyperbolicity of the Anosov action implies that there are C’,v > 0 such
that for all A € C,v € E, we have ||dpilv||, > (1/C")e’!4l||v]|,. As the splitting Ey © Es @ E,,
is continuous and M is compact, there is C' > 1 so that g(vo,vy) < (1 —1/C)||lvo|glvullg for
all v, € Ey,v9 € Ey, and we deduce that there is C > 1 for all A € C and v € Ey & E,
we have |dpftv|ly > (1/C)||v]lg- As a direct consequence we deduce that for all A € C and

m € o{{(Uy) there is 0 > 0 such that
Byys (1, 0) x Bywu(in, £/(2C)) C @2t (Up). (2.7)
Since the stable and weak unstable foliations are continuous, taking n > 0 small enough,

we can ensure that for m € M and y € Bys(m,n), the weak unstable ball Bywu(y,e/(2C))
is large enough, in the sense that

Bwwu(y,e/(2C)) N Bys(m,n) X Bywu(m,e/(4C)) C Bwwu(y,e/(2C)).

Let us thus cover the manifold M with a finite open cover of product neighbourhoods V; =
By s(mj,n) x Bywu(mj,e/(4C)). As the SRB measure p is nonzero, there is at least one Vj
such that |y, # 0. By the positive transitivity of the Anosov action we can find A € C and
m € i (U1) NVi, # 0. By (2.7) applied with /m and since Byywu(mm,e/(2C)) is large enough,
there is an open set O = Byys (1, d) N Byys (my, n) such that

O X Byywu(my, e/ (4C)) C Vi, N o (Up).

Recall that we started with the assumption that 1(Up) = 0 and we deduce by the invariance
under the Anosov action that p(O X Bywu(my,e/(4C))) = 0. But the latter cannot be true,
because by the absolute continuity of the SRB measure (Proposition 1.14) we can desintegrate
p in the product neighbourhood Vj, and obtain

1(0 X Byywu(mp, e/ (4C))) = /
By (i 2/ (40)

( / 1vay;;<o><z>py<z>dL;<z>) diy)
Wi ()

for some smooth positive p. Now p(O X Bywu(my,e/(4C))) = 0 would imply that
/wlm Lo (L) =0

for fi almost all y, but this contradicts the fact that the conditional densities p, are strictly

positive and that H,mw; (O) are nonempty open sets. O

3. A BOWEN TYPE FORMULA FOR THE SRB MEASURE AND GUILLEMIN TRACE FORMULA

In this section we show that the SRB measure p can be expressed in terms of the periodic
orbits of the flow. We obtain thus a generalized Bowen formula. Before we can state our
result, we have to recall some basic facts regarding the structure of periodic orbits of Anosov
actions. We recall the classical Lemma
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Lemma 3.1. Let 7 be an Anosov action with positive Weyl chamber W. Let x € M, and
A €W, such that ¢{!(x) = x. Then there exists a lattice L C A, such that for all A’ € L,
o (z) =z, and T := 7(A)x ~ A/L is an embedded torus in M. We denote L = L(T).

Proof. 1t suffices to prove that the orbit of x under the action is closed. We denote Y this
orbit. Since the action is abelian, Y is comprised only of fixed points of 90‘14, and thus so is
Y. However, since A is transversely hyperbolic, we can deduce that for each fixed point y of
@4 there is an open set U > y such that for y' € U, if ¢f'(y') = ¢/, then 3/ is in the local orbit
of y under the action. This proves that Y =Y. O

We stress that there may be periodic orbits {(x),t € [0,1]} of the flow in direction
Ap € a which are not contained in an invariant torus. However this can only happen if the
orbit is periodic with respect to a direction Ay which is not transversely hyperbolic and thus
in no positive Weyl chamber. In any case, we denote by T the set of invariant tori which are
precisely the compact orbits of the Anosov A action. According to the closing lemma (see
[KS95, Theorem 2.4)), the periodic tori are locally discrete in the sense that for each compact

set K C W,
KN ( U L(T)) is finite. (3.1)
TeT
Pushing forward the Lebesgue measure on a by the action, we obtain a natural measure on
orbits, and in particular on the periodic tori. It thus makes sense to talk of averages over
periodic orbits.

Given T € T,z € T, and A € L(T) N W, the map ¢4 is hyperbolic transversal to T' by
definition of being an Anosov action. In particular, if we set Pg(x) := dx(cpél)‘ Fu(2)®Es(2)>
we find that

[det(1 — Pa(w))| # 0
and that it does not depend on z. We denote then by P4 some choice of P4(z). Equipped
with these notations, we can now state our result

Theorem 4. Let 7 be a transitive Anosov action, with Weyl chamber W. Let Ay € W and
e1 € a* such that e1(Ay1) = 1. Let C C W be a small open cone containing Ay and define
Cop :={A€Clei(A) € [a,bl} if a,b > 0. Let pu be the SRB measure and a,b > 0. Then for
each f € C*(M), we have

_ Jrf
p(f) = lim Z Z |det(1T——73A)|'

N—oo |C
o | aN bN‘ TETAECQN’I)NOL(T)

In the rank 1 situation, one way to prove such a formula is to consider the flat trace of the
resolvent (X — s)~!, relating it with the periodic orbits on the one hand via the Guillemin
trace formula, and with the SRB measure on the other hand, using the spectral theory of X
on some anisotropic space.

In our case, the proof will be heuristically similar. However, it will be complicated by the
fact that we do not have a resolvent at our disposal in the multiflow situation. Thankfully, we
can work around this. In the paper [GBGHW20], we introduced some averaged propagators
(see (1.20) for the case A =0)

H/ 3G Dap () dt.
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where X; = X4, for some basis (4;); € W of a. By definition, R()\) commutes with the
action. We proved that given N > 0, for G well chosen, R()\) is quasi-compact on HNE for
all X's with ReA\; > —N, j = 1,...,k. Then we proved that given \g, if A is close enough
to Ag, A is a Ruelle-Taylor resonance of X if and only if A is in the joint spectrum of the
family (X1,...,Xx) acting on ker(R(\g) — 1) (see [GBGHW20, Proposition 4.17]). For this
reason, the study of the Ruelle-Taylor resonances (and in particular 0, the leading resonance)
can be done using the averaged propagators R(\). More generally, we will take functions

Y € C(W), with [¢ =1, and consider

Ru(A) = /W e Xa=MA)y( A)dA.

What will replace the propagator in our arguments will thus be the so-called shifted resolvent
Ti\,f(s)? defined for f € C*°(M),

Tj () == FR(V)(Ry(A) —5)7".
We will show that TJ}: f(s) admits a flat trace, and express this flat trace in terms of the orbits.

Practically, one would rather consider the resolvent (Ry(\) — s)~1 of Ry () than the shifted
resolvent, but this operator would not satisfy the right wave-front set condition to define the
flat trace.

3.1. Guillemin trace formula. To start with, we need to extend the Guillemin trace for-
mula to the case of Anosov actions. We write n := dim M and x the rank of the action
7 : A — Diffeo(M). We will follow the proof in rank 1 by Dyatlov-Zworski [DZ16]. Recall
that the flat trace is a regularized trace for certain operators that are not trace class. The
conormal to the diagonal A of M x M is given by
N*A ={(z,2,§,-&) |z eM, {€TM} CTH(M x M).
If P:C®(M) — D'(M) is a continuous linear operator, one can consider its Schwartz kernel
Kp € D'(M x M), and assuming that WF(Kp) N N*A = () we can set
T (P) := (tAKP, 1) oo oo

where ta 1 x € M — (z,2) € A C M x M is the inclusion. Here the pull-back is well-defined
thanks to the wave-front condition, see [Hor03, Theorem 8.2.4].

Proposition 3.2 (Guillemin Trace formula). Let 7 : A — Diffeo(M) be an Anosov action
with Weyl chamber W. Then the map

f € O (M), € CZ(W) s T (f / eXAmA)dA) ,

is well defined, and extends as a Radon measure on M x W. For each closed cone C C W,
there exists a constant C' > 0 such that if h € CO(M x W) satisfies supph C M x C and
SUD, e M, AcC eC‘A||h(x, A)| < o0, then

Jp h(x, A)dx

(o) 5 e

TeT AewnL

Remark 3.3. This formula has a direct extension to the action on vector bundles which
we do not directly need in this article but nevertheless mention for completeness: instead
of functions, let us consider the action on sections of some vector bundle £. For T € T,
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and A € L(T), and z € T, we denote by M(A,x) the holonomy map on &, Then for
f e C®(M x C) the formula becomes

x,A) Tr M (A, z)dx

Tr </W fe_XAdA> - Z Z 2/ |det(1 —P4)|

TeT AewnL(T

Following the approach for flows in [GLP13, BW SZ()], this gives a method to get rid of the
Poincaré factor: We define for m € [0,n — k| the bundle

&' ={w e A"T*"M|VA € a, 1x,w = 0}.

and denote by o(FE;) the orientation bundle which is a flat line bundle (see e.g. [BWS20,
Definition 1.4]). The Guillemin trace formula for the bundle £ ® o(E;) reads

iy / Fe  epanpy dA) = > Y Tr(A™Pa)sign(det(Pa)is,) Jp /(x, A)da

TeT AewnL(T) |det(1 N PA)|

Using
det(1 —Pa) = Z(—l)mTr(AmPA) and sign(det(1 — Py4)) = (—1)T4m Eagign(det (Pa)g,)
m=0

we get a new formula where the determinant of the Poincaré map disappears

S (ayrim By ([ e Xalgopda) = 3% / f(o, Az (3.2)
m=0 TeT AewnL(T

Proof of Proposition 3.2. The proof is divided into three steps. The first step consists in
checking the wavefront set condition necessary to define the flat trace. Next, we need to
make a local explicit computation to obtain the formula. Finally, we need to obtain some
estimates to extend the formula to non-compactly supported functions.

For the first two parts of the proof, we can assume to be working with f(x)y(A), using the
density of product functions in functions on M x W. We introduce the notation

Ry = Ry(0 / PY(A)e XAdA,

First step: Let us show that Ry has a well defined flat trace, which means that its Schwartz
kernel Kp,, satisfies

WF(Kp,) N N*A =0 (3.3)

if A € M x M is the diagonal. First, we consider e=X as an operator C°(M) @ C°(W) —
C>®(M) by f®1¢ — Ryf and we consider its Schwartz kernel IC,-x € D'(W x M x M).
Using the formula for the wavefront set of a pushforward, we obtain

WE(Kr,) C {(z,n,2",n') € T"(M x M) |3A € supp(¢), (4,0, z,m,2",1) € WF(K—x)}-
Since K,-x (4, z,2') =0 one has, by [Hor03, Theorem 8.2.4],

r=ef(a')’

WEF(K,-x) C {(A, —n(Xe(p1'(2")), 01 (2"),m, 2, — depi' (2') ') € T*(W x M x M)

|AewW, 2’ e M,n e T M {0}}
(3.4)
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Thus a point of WF(Kg,, ) belongs to N*A if and only if there exists 2 € M and A € supp¢) C
W such that of(z') = 2/, n(Xa(pii(2')) = 0 for all A’ € a and 1 = dpi'(2')Tn # 0. Note
that n(Xa (7 (2'))) = 0 implies that n € E ® E¥, where dp{!(2/)T has no eigenvalues of
modulus 1 by normal hyperbolicity. This shows that (3.3) holds.

For the second step we start with the following Lemma:

Lemma 3.4. Let xo € M and Ag € W such that 90’140 (xo) = xo. There is a neighborhood U
of o and € > 0 such that if B(Ag,€) := {A € a||A — Ag| < €} one has pi'(x¢) € U for all
|A| < € and for each h € CZ°(B(Ao,€) x U),
1
T’ /hA,xe_XAdA = h(Ag, o (z0))dA.
(f 1s2e™20) = [ =] o, Aot )

Proof. We follow the argument in [DZ16, Lemma B.1]. Take an arbitrary basis Ai,..., A, of
a and take ¢ : U — Bgn(0, €) some diffeomorphism so that, if y = ¢(x)

¢($0) =0, Vr € U7 dqb(x)XAz =0 i
dgb(xO)(Eu('TO) @ Es(l'o)) = Span{ay,wrp s 78yn}'
Let F : BRnfm (07 6) — BRK (0, 61) and G . BRnfn(O, 6) — BRTL*K (0, 61) SO that

poe X0 0p7H0,y") = (F(y"),GWy"), ¥y €eR" " |y <e.

and F(0) =0,G(0) =0. For A € U and (v/,y") € Bgrn(0,€) we thus have, identifying a with
R:‘f

doe X047y, y") = (~A+ Ao +y + F(y"), G(y")).

Then for (2/,2") and (v/,y”) in Bgn (0, €), we can write, using that ,-x (A, z,2) = 596:@,14@,),

Kox (4,071, 2"), 071, y") = 8(G(2") =)oy’ + A= Ag — 2" — F(2")).
Taking the flat trace gives

) / he ¥4 dA) = / ((A.67 W/ )3 — G )OA — dg — F(y"))dyfdy"dA
= [ e+ P67 DS~ Gl )y
B(0,¢)
Now Id — dG(0) is invertible by the normal hyperbolicity of the action (it is conjugated to

the Poincaré map du, ™| g, o5, ), thus ¥ = G(y”) has a unique solution y” = 0 for || < e
if € > 0 is small enough, and we thus get

Tr"(/he_XA dA) = det(l —d

this concludes the proof of Lemma 3.4. O

1

A
2P S ELoB.)| Sy <

h(Ao, ¢~ (4, 0))dy’

Now, call T, the periodic torus containing xg, then if h(A,z) = Y(A)f(z) € C(W) ®
C*°(M) is such that f is supported in a small neighborhood of T}, containing z¢, and

(Uren,, (L(T) x T)) N (supp(¥) x supp(f)) = 0,
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(a choice of such 1, f is possible thanks to (3.1)) we have by a partition of unity and Lemma
3.4

. WA fy, S
Trb(f/d)(A)e X dA) = Z et — Pl

AEWNL(Ts,)

Consequently, using (3.1), since the measure on the orbits is given by the push-forward of the
Lebesgue measure on A, the formula is thus established for compactly supported functions.

The remaining third step is to consider the convergence of the formula when the support is
non-compact. This follows from two observations. The first one is that we have an exponential
bound on the number of closed orbits

Lemma 3.5. Let n = dimM, let dA be the Haar measure on a and M =
SUP AW, A|=1 Hap‘fHﬁ(Cz(MR)). Then there is C > 0 such that for all £ > 0

H{AeL(T) | T eT,|Al <} <Cprer—rIME
${T €T | 3A € L(T),|A| < £} < Crren—mIML
and for each € > 0 and § > 0,
(v ® dA)({(z, A) € M x W | |A] € (6,0),dy(, 41 (2)) < €}) < O™ (3.5)

The proof of this lemma is the object of Appendix A. The second observation is that given
a closed cone C C W, there exists C' > 0 such that for T e T, A€ L(T)NC, and x € T,

1
< CeClAl
[det(1 — Pa(z))] = ©

This follows from the fact that the hyperbolicity constants in formula (1.3) and (1.4) can only
degenerate at the boundary of W. ]

We can apply the Guillemin trace formula to our integrated propagators. Given v €
C(W) with [¢ =1 and supp(¢) contained in a small neighborhood of an element 4y € W,
and f € C*°(M), we obtain

PR =D > |det(ff_m”e‘“/*)w(’“)(A) (3.6)

TeT AewnL(T

where ¥(*) is the k-th convolution power of .

3.2. Flat trace of the shifted resolvent. The purpose of this section is to study the
shifted resolvent, and its flat trace. That is to say that for f € C*®(M),y € C(W) and
A€ ag, s € C, we will consider

Zy.5(5,\) := TP (FRy(N) (s — Ry(\) ™) (3.7)
and prove the:

Proposition 3.6. Let 7 : A — Diffeo(M) be an Anosov action with Weyl chamber W. For
[ e C®WM), and ¢ € CFXW), with support small enough, the function Zy ; originally
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defined for A € ai. with Re X large enough, and s € C with |s — 1| < 1/2 has a meromorphic
extension to ai x Bc(1,1/2). Moreover, we have the formula:

Zpp(s,A) = Z s Z Z | MG_A(AW@ (A). (3.8)

k=1 TeT AeWNL(T

Finally, if we replace ¢ by 1, :=1(-—0), then Zyy, depends continuously on o in a small
neighbourhood of 0 € a*. The topology on Zy . 1is given by uniform convergence on compact
subsets of the holomorphic regions in af x Bc(1,1/2).

The proof of this theorem will follow the ideas of the proof by Dyatlov and Zworski of the
meromorphic extension of the dynamical determinant of Anosov flows [DZ16]. The idea is to
use propagation of singularities, and source/sink estimates to control the wavefront set of the
resolvent. We will explain this in detail. If I' C T*(M x M)\ {0} is a conic closed set, define

C=°(M x M) = {u € C™°(M x M)| WF(u) C T}

the space of distributions on M x M with wave-front set included in I'. Its topology is defined
using sequences in [Hor03, Definition 8.2.2].

To analyze the wave-front set of the resolvent of Ry (), it will be convenient to work with a
small semiclassical parameter A > 0. We also introduce a semiclassical quantization Op,, and
define H,]lVG = Op,(eNE)"IL2(M). As a vector space, HhNG is equal to HNC ; only the norm
is different. We will denote by W (M) the space of semiclassical pseudo-differential operators
of order m € R (see [Zwol2] or [DZ19, Appendix E]). We recall briefly that @ € V(M)
can be written as @ = Opy(q) + Q" with @’ an operator having smooth Schwartz kernel
with its C*¥ norms being O(h*) for all k € N and ¢ € S™(T*M) a symbol of order m, and
WEF,(Q) C T*M is the complement to the set of points where ¢ and its derivatives is equal
to O(h®(1 + [€])~>°) ([DZ19, Definition E.26]). We shall also use the notation T"M for
the radially compactified cotangent bundle and semiclassical wave-front sets can be viewed
as closed subsets of T M (see [DZ19, Appendix E]). We denote by ;P (M) the space of
those semiclassical pseudo-differential operators with compact semiclassical wave-front set.
Below, we say that a family 0 € R" — Ky € C~°(M x M) of Schwartz kernels of operators
has wave-front set contained in I' C T*(M x M) locally uniformly in 7 if for each closed
conic subset Q € T*(M x M)\ {0} not intersecting ', and each B, B’ € ¥(M) satisfying
WF(B) x WF(B') C {(z,&,2',-¢) | (x,&2',&) € Q}, for each N € N and each compact set
K C R", there is Cy k,B,p’ > 0 so that for all 0 € K

”B’CﬁBl”ﬁ(HN(M),H*N(M)) < CN,K,B,B’-

Proposition 3.7. Let O be a small enough convex open set, relatively compact in W, let
Y € CX(O;RT) and define ¥y = (- — o) for o € a small so that 1, € CX(0). Then
the operator Ty, (X, s) = Ry, (Ry, (A) — )71 + HNC — HNC s analytic in |s| > 1 and
meromorphic in |s| > e~N for some cy > 0 and all N > 0. Moreover, locally uniformly
in (0,A,s) (where it is defined) the Schwartz kernel Kr, (xs) of Ry, (A)(Ry,(A) — s)~1 has
wave-front set contained in

WF(Kr, () € {4 (2,€), (2,6)) | (2,€) € By © B}, A € kO, k € N\ {0} U (E; x EY)
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where X is the Hamilton flow of £(Xa(x)), the principal symbol of —iX 4 for A € W. There
is a cone I' C T*(M x M) such that T " N*A = and

(07 A? S) = ,CTwU()\,s) € Cr_‘OO(M X M)
s continuous where it is defined.

This is the main technical result; it is similar to [DZ16, Proposition 3.3]. Using the tools
of [H6r03, Chapter 8], we deduce directly that Zy y is well-defined as a meromorphic function
(with the continuous dependence on o for Zy,, ). It will remain to obtain Formula (3.8) to
prove Proposition 3.6.

To prove Proposition 3.7, we will rely on a wavefront set estimate for a parametrix — much
as [DZ16]. This is in some sense a refinement of [GBGHW?20, Lemma 4.14]:

Lemma 3.8. If O is small enough and Ag € O, there exists co,c1 > 0 and Q € ¥;""P (M)
such Ry(A\)(1— Q) — s has a bounded inverse on Hi' ¢ for |s| > e=N and Re A\(Ap) > —c1 N,
|Im A| < h=Y2 for all N > 0. In that region, its inverse Ti()\, ) = (Ry, M)(1-Q)—s)7!
is an analytic family of bounded operator in (X, s) and its Schwartz kernel ICT:?U (0s) satisfies

uniformly in (o, \, s)
WEL (K0 () NT* (M x M) € N*AUQL(O) (3.9)
01(0):= [J 24(0), 25(0)i={ (¥ (2.€). (2,-9) | (v,6) € E; @ B}, A€ kO}.

k>1

Proof. We start with the proof of existence of T f . For this, we pick I'gz C T"M, a conic
neighborhood of Ej, and then G € C*°(T*M) an escape function for all A € O compatible
with cx > 0 and I'g: C T"M in the sense of [GBGHW?20, Definition 4.1]. This is possible,
because we can take such a function adapted to Ag € O, and it remains adapted to all A’s
sufficiently close to Ag. (This is the first reason for assuming that O is small enough). By
the properties (1.21) of the escape function, there is ¢x > 0 such that for A € O, and some
r > 0 large enough,

H H
U etXA (x7§) N FE(’; = ®7 |§’ >r = G(@XA (x7§)) - G($,§> < —cx.
tel0,1]
Since it will be used several times below, notice that for ¢ € C°(O), using the convexity of
0,
supp(¢*)) C supp(v)) + - - + supp(¥) C kO.

This is contained in a ball of radius §k centered at kAg for some small §, given that O is small.
We imitate now the proof of [GBGHW?20, Lemma 4.5] but with a semiclassical quantization.
The idea here is that in the direction of the flow Ejj, averaging the flow is regularizing, and

in the transverse direction, we can use the escape function to obtain some compactness. Let
Lo := gz N{[¢] > 1} and choose P € ¥} (M) which satisfies

WE,(P) C {(:c,g) eT"M | vt e0,1], X4 (z,6) ¢ PO}

and 0 < o(P) < 1. The operator P is microlocalizing away from the neutral direction Ej.
We also pick I'f; a neighbourhood of T’y which is conic for || > 1 and contained in [£] > 1/2,
and assume that

WF,(1 - P) C T
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(i.e. P is microlocally equal to 1 outside I'g.) Note that we can chose I'{ such that T*M \
Iy is for [£] > 1 an arbitrary small cone around E & E¥. Setting for A € O, By :=
eX4 Opp,(eN%)e X4, we have

Opy,(eN9)e X4 P Op,, (N9t = e X4 B4 P Op, (eV9) 7L
The semi-classical principal symbol of B4 P Opy,(eV%)~1 € U9(M) is (by Egorov’s Lemma)

H
7(BAP Opy,(eNG) 1) = N(Gee™ 4 =C) 5 (p)  1mod hS—L.
Using the properties (1.21) of the escape function G, we find for r > 0 large enough and some

cx >0

‘Sl|lp |o(BaP Oph(eNG)_l)(a:,fﬂ < e exNV,
&l>r

Next, we introduce Qp € U;°"P(M) so that WF;,(Qo) C {[¢] < 2r} and WF,(1 — Qo) C
{I¢] > r} with 0 < 0(Qo) < 1. We also let Co := maxaco |le*4| z(z2(my)- The previous
estimate implies that for all A > 0 small and A € O,

le=XaP(1 — Qo)”g(thG) < Coe™*N 1 O(h). (3.10)

We used [Qo, Opy,(eN%) 71 Opy,(eNY) € h¥, ' (M). The operator e~X4PQ) is compact and
smoothing. We get (using [ = 1)
1Ry (M) P(1 = Qo)ll epvey < COG_CXNZUE) e XA L O(n).
€

We now recall how the smoothing effect in the direction of the flow appears. As in the
proof of [GBGHW20, Lemma 4.14], for each Aj,..., A, € W we see by integration by parts
that

Ry (X +AAD) - (X 4 M) = [ (00, 0 )P

Let us pick Aq,..., Ax € W a local basis and let

AQ(N) = =) (0a; + AA)))?, An(N) = TALN) = =D (X4, +A(4)))*.
j=1 j=1
(The first one acts on A while the second acts on M.) Since we assumed that |Im \| < Y2,
h2A,()) is elliptic on the wavefront set of 1 — P, uniformly in A. We can thus find uniformly

in A for each m € N a parametrix S(\) € ¥, *™(M) so that
(R2AR(A)™S(A)(L = P) — (1 = P) € ¥, (M)
(actually, S(\) is a holomorphic function of hA)). We thus deduce that

Ry(A\)(1 - P) — 2 /W[AxumaJ(A)eXAA<A>S<A><l ~ P)dA € KU (M),

(here the bound on the remainder does not depend on ¢ since |[¢|| ;1 = 1.) In particular, for
each m > 0 there is Cy,, > 0 depending continuously on || D*"4)|| 110y such that

IR~ P)l gy < C™ (3.11)
The same argument (using the operator Ay (\) acting on the other side) shows that

(1= PRy gy < Conh™™ (3.12)
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We thus conclude that there is ¢y > 0 and ¢; > 0 such that for all m > 0, all h > 0 small
enough and ReA(A4g) > —¢; N and [Im(\)| < h~=1/2

Ry(A) = Ry(A) + Ry(A) + Ry(MQ,
R)(A) == Ry(NP(1=Qo), Ry(\):=Ry(\)(1 - P), Q:=PQ, (3.13)
IR (Nl vy < e, IRyl gy < Cmh™

This shows that Ry(A)(1 — Q) — s is invertible on HYC for |s| > e~ and h > 0 small
enough, locally uniformly in ¢ and A. We call Tf (A, s) its inverse.

The second step is to prove the announced property of its wavefront set. We will assume
that ¢, = (- — o) is a family of C2°(O) functions for some parameter o € a* small. We thus
have a family TwQa (A, s) of operators depending on 0 := (A, s,0) and we will assume it lives in

a small compact set K where Tfﬁ (A, s) is well-defined.

We start by recalling a few basic facts about wave-front sets for families of operators and
their Schwartz kernels; we refer to [DZ16, Lemma 2.3] or [DGRS20, Lemma 6.2] for the
parameter dependent version. A point (z,&, 2/, —¢") € T*(M x M) is not in WFh(ICTf (/\75))
uniformly in # € K if there are #-independent neighborhoods U of (z/,¢’) in T* M and V of
(z,€) such that for any B, B’ € ¥}""P(M) with WF,(B) C V and WF,(B’) C U, for any
m > 0 there is C,, so that for all h > 0 small and all 8 € K

IBTZ (A, 5)B|| o(12) < Coh™.

For notational simplicity we shall say that the RHS is an O(h®) uniformly in 6 € K.
Let us start with the elliptic region. We observe that

8 () -~ (1 B =)
ho N7 i i \ 18 b N (314)
= - - R R v - Q)

Applying respectively (1 — P) on the right and then on the left (for P chosen as above with
a I'{; coming arbitrary cloese to E} @ E?) and using that WF,(1 — Q) C {|{| > r}, we obtain
using (3.11) and (3.12) that there is ' € (0,7) such that uniformly in 0 € K,

WFh(ICTf (/\’s)) N T*(MxM)C

N*A U{(,&,2,€) | (2,6) € B} B and (¢/,€) € B} ® Ef, and ¢, [¢] > '}
(3.15)

It remains to consider the intersection of the wavefront set with (E* @& E*)2. Expanding the
formula for ng (A, s), we get a convergent sum in £(HY )

TV o) (LR

S
k>0

This is the inspiration for the wavefront set statement. However, since the terms in the
sum are not increasingly smoothing, only smaller and smaller, we cannot directly obtain the
desired statement.
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Let us rewrite exactly what we need to prove. For each B, B’ € ¥};°"?(M) microsupported

near (E} @ EX) N {|¢]| > 7'}, so that WF,(B') N Qp = 0 with
Qg = {(,6) | ¥ (2,€) € WFW(B), A € Uyz0kO},
it suffices to prove that uniformly for § € K
IBTY (X, 9)B' |l o12) = O(h™) (3.16)
Note that the conormal region N*A is covered because we now include k = 0 in the definition
of QB.

It will be convenient below to use that for |s| > e~V if 4 = Tgy()\, s)f one has u =
(—f+ R%a()\)u + Ria(k)u)/s, thus for each B € ¥) (M) with |o(B)| < 1, we have uniformly
for 0 € K

|Bullypx < Is1™ (1B e + | BRS, (Nullyxe) + O(h). (3.17)

First we will need a so-called source estimate close to E; N T M in order to control the
wave-front set in that region. - -
The source estimate. Let V, C T" M be a small neighborhood of L := EX N 9T M so

that e=XA (V,) C V, for all 4 € O, m(x,€) is constant in V; and P = 1 microlocally on V.
Now using the fact that L is a repulsor (a source) for the flow X4 with A € O, there is
b1, by € SO(T* M) with supp(bs) C {b; = 1} so that by o e=X4 =1 on supp(b;) for all 4 € O.
Notice that for v € HhNG and By /3 = Opy,(by/2)

|Bavlle < 1|BiByvllyge + O [[vllypve).

This means that, thanks to the Egorov’s Lemma, Ble,a()\) - BlR%a (A)Bg € h>°W,°(M).
The remainder here depends continuously on o, A as before. Thus, using (3.13) we get for all

veC®M)
1B RS Nellgse < BRSO Bavllygpe + O [ullxc),
< echN”B?UHHhNG + O(h[[vllyye),
< €_CON||BWHHhNG + O(h>[[vllye).

Combining with (3.17), and assuming e~ |s|~! < ¢ < 1,this yields that there is C' > 0 such
that for all f € C*°(M)

1Brullyye = IBITE (A 8)flaye < ClBifllyne + O™ fllyne) (3.18)

uniformly for (o, )\, s) € K.

2) Propagation estimate outside E;. We will next show how to use the source estimate
to obtain information on the wave-front set of K¢ e (005) outside E;.

Assume that B € U;""P(M) satisfies WF,(B) N E; = 0, 0 < o(B) < 1 and WF,(B)
contained in a small neighborhood of E} @& E} and B’ € W,;°"P(M) satisfying WF,(B’) N
Qp = 0. Since L is an repulsor, there is k € N large enough such that for all A € kO,
e X4 (WF,(B)) C Vs and WF,(B') NV, = () for some small enough neighborhood Vi of L,
invariant by e~X4 asin 1). We will use B; as in 1) for this set Vy and we can assume, up to
taking k even larger, that e=*4 (WF,(B)) C supp(b;) for all A € kO.
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Iterating (3.17), we obtain for each k > 1 and each f € C*®°(M) (with u = Ti N\, s)f)

k—1
1Bullyye < (O IsI 77 HIB(RY, (W) fllae + |s|7HIB(RY, (D) ullzve) + OB fllzve).
§=0
(3.19)
By Egorov theorem, locally uniformly in (o, A, s)
WEL(B(R), (VY f) € WEL(B)N [ X4 (WF ().
AEjO
Again by Egorov, we have B(R%U()\))k - B(R%a (A\)FBy € h*® W5 (M) thus by (3.18)
k—1 ' '
IBTZ (A 8) fllae < CO - IsI 7 M IBRY, (VY fllagye + 18| 1Bif lagye) + OB fllage)-
j=0

with C' > 0 and the remainder being locally uniform in (o, A, s). Applying this with B’f
instead of f and using B1B’ € h>®W¥, *°(M) and B(R%U()\))JB’ € h*>®W, (M) for j € [0, K]
under our assumptions on B, B’, we obtain (3.16) uniformly in (o, A, s) € K.

3) Estimate near E;. As we already have the estimate (3.15) on WF(ICTf ) there remains
to study the case where WF}(B) and WF}(B’) are intersecting E. By Egogov and the fact
that u := ng (A, 8)B'f has WF},(u) contained in {|¢| > '} (which can be read off (3.14)),
we obtain that WFh(R?pU (Au) C UgeoeXA (WF(u)) is contained in {|¢] > #//Cp} for some
Co > 0. We can assume that WFj(B) is a small neighborhood of a point (z,£) € E! N {|{| >
7'}, so that for k > 2 large enough e ¥4 (WF,(B)) € {|¢] < 1//2Cy} for all A € (k — 1)O.
We then obtain by Egorov that HB(R?ZJU (A))k_lR?pg()\)UHH;LVG = O(h*) uniformly in 6 € K.
The estimate (3.19) still holds and we deduce that uniformly for § € K

k—1
IBT,2 (A, )B' fllyeve <> Isl 7 HIB(RY, (\) B fllyve + Oh™| fllzve)-
7=0
Assuming that WF,(B’) N Qp = 0, the right hand side is an O(h*°) uniformly for § € K by

Egorov theorem again.
We conclude that (3.9) holds. O

We can now turn to

Proof of Proposition 3.7. Next we write (Ry, (\) — s)T\IC;?J (A\s)=1- R%(/\)QT‘I%()\, s) and
Tg (A 8)(Ry,(\) — s) = 1 = T¢ (A, 8)Ry, (N)Q for |s| > e=N on HNC. Denote by Q' :=
Ry, (N)Q € ¥;°™P(M) which is compact on H)'¢. We can then use Fredholm theorem to
show that (1 — Q/T\IC’,?J (A, 5))~! extends meromorphically in s € {|s| > e~} on H and

(Ry, (V) = 8) T = T8 (A, 5)(1 = QTS (A, 5)™"

is a meromorphic extension of (Ry, (A) —s)~! € L(HNY) to the region {|s| > e~N}. This
also implies that for |s| > 1

(Ry,(N) = 8) 1 =T& (A, 8) + TL (A, 9)QTE (A 5) + TL (A, )Q' (Ry, (\) — ) ' QTL (A, 5).
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By Lemma 3.8 and since Ry, (A) is h-independent, we have
WEL(TS (A, $)QTE (A, 5)) NT* (M x M) C T,
WEL(T (A, 8)Q (Ry, (A) — ) TQT2 (A, 5)) N T* (M x M) C T,
Y= {(z,& 2, —¢&) € T* (M x M) | (z,€) € E ® EX, Ik, k' € N,JA € kO,
A € KO,e ¥ (,6) € WEL(Q), ¥ (2, &) € WEL(Q)}
and this holds uniformly in 6 € K. Since WFj,(Ry, (X)) C Q1 , this shows that
WE(Ry, (A)(Ry, (N) —s)"H)NT*(M x M) C Q, (O)UT.

Now, using that WF(Q’) is a compact set, we observe by hyperbolicity of the action that if
L > 1 is large, then for the set

{(w.&) e M|le| >Lyn | |J 5 (WFL(Q) N (B @ EY))

k>0 AckO

is contained in {|¢| > L} N CE¥ where CI is a small conic neighborhood of E} and CE is
a small conic neighborhood of E%, with the size of the cone sections going to 0 as L —
+00. Since Ty, (A, 8) = Ry, (A)(Ry, (A) — s)7! is independent of h, we have WF (K1, () =
WFL(Kr, (s) NT*(M x M)\ {0}, thus by taking L — oo we obtain the desired statement,
and this holds uniformly in § € K. In particular, since Q4 (O) U (E} x E¥) is disjoint from
N*A, we obtain the desired result by choosing a cone I' containing Q4 (O) U (E} x E¥). O

By the wavefront estimates from Proposition 3.7 it follows that the flat trace Zyy, (s, A) is
well defined and depends meromorphically on s, A\: indeed, this is a consequence of the fact
that the flat trace Tr’ is a continuous linear form on the space CL (M x M) equipped with
its natural topology given by [Hor03, Definition 8.2.2], provided ' N*A = () (the meromor-
phicity in A can be seen by using the Cauchy characterization of holomorphic functions using
contour integrals). To finish the proof of Proposition 3.6, it suffices to prove the expansion
(3.8) for some open set of s, \. For ¢ € C>°(W,R") with support near a given Ag € W as
above and |o| < € small, since Ry, ()) is bounded on ™Y, for |s| > 1 we have as a converging

series
oo

Ry, (\)(s = Ry, M) =Y 57 Ry, (M. (3.20)
k=1

Formally, if we take the flat trace of the above identity multilied by f on both sides, we obtain
using (3.6) the desired identity (3.8).

Lemma 3.9. Let vy € CX(W,R"), |o] < € and ¥, = (- — o) as above. Then for each
A € ag, if [s| > 1 is large enough, we obtain (3.8), which we recall:

—k fT —X(A), (k)
quy S, )\ Z Z Z |det(1 _,PA)‘e ¢a (A)

TeT AewnL(T

Proof. First, as in the rank 1 case, we need an exponential estimate on the number of periodic
orbits in the region {A € W||A| < L} as L — oo, which will insure the convergence of the
RHS of (3.8) when |s| > 1 is large. This is the content of Lemma 3.5.
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We then follow the argument of [DZ16] in the rank 1 case. By [DZ16, Section 2.4], there is
a family of operators E, with smooth integral kernels E.(z,y) = Cc(z)F(d4(x,y)/€e) approx-
imating the Identity as a bounded operator H® (M) — L?(M) as ¢ — 0 for any fixed small
€0 > 0, with Ce(x) = O(e™™) where n := dim M. Furthermore for each A : C*°(M) — D'(M)
with WF(A) N N*A =0 (see [DZ16, Lemma 2.8])

lim Tr(EAE,) = T (A). (3.21)
e—

Moreover, the proof of [DZ16, Lemma 4.1] yields that there is C' > 0 such that for each

A €W (with || - ||z the trace norm) |Ece= X4 E||n, < CeCl4le=m=2, Since supp(wgk)) c{Ae
al|A — kAg| < 0k} for some small § > 0 (depending on supp(y)) and Ay € W fixed, this
implies that there is C' > 0 such that for all e > 0 and kK € N

|ERE,_ (A E|1y < Ce®WNren=2, (3.22)

This proof also gives for some uniform C > 0

Te(ERE, (VE)| < / “RAA) B (A) [ Tr(Bee XA E, )| dA
Re>\ A
/ o) / (e, y) Bl (), 2)dug (2)du, (y)dA
Mx M
—on (k) “ReA(A)
<Ce /WX . M% (A)e™ M ) <eredy (204, () <erey Wg (T)dvg (1) dA

—n k —Re (A
<Ce /WX DI o, ) coeny g ()dA
Using Lemma 3.5 and the support property of w((,k), this gives

I Tr(ERE, (A\)Eo)| < Ce“PE, (3.23)

Using respectively (3.20), (3.22) and (3.23) we can thus write for A fixed and |s| large enough

o) o0
—k _1 —k k
Zfapo (5, A) —lg%Tr s*E.Ry (\FE.) = 21_{1(1] s Tr(EeRy, (M) Ee)
k=1 k=1
[e.9] o0
—k - — b
= 2 sk lim Tr(EcR}, (\)E.) = Z:s "Te’(RE (M)
where we used (3.21) for the last identity. The formula (3.6) concludes the proof. O

3.3. Proof of Theorem 4. Since our analysis is based on the use of the operators Ry (),
which are a kind of Laplace transform, it will be convenient to introduce the notation

P(N) == /eMA)@z)(A)dA, A€ ak.

(formally, Ry (M) = (X + A)). Using the analytic continuation of the function Z £ 4p, We can
obtain the following result
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Proposition 3.10. Let ¢ € C(W;R™) with [,,,¢ = 1. For real A € a* C a, we denote
6 = log 1&(/\) We have for some ¢ > 0

S w0

TeT AewnL(T) |det(1 N PA)|

Additionally, if v = s, the bound on the remainder is locally uniform in o.

Proof. The terms we want to estimate are the coefficients ¢ in the expansion
Z f, ¢ )\ S Z S_k
k>0

Since Zy .y, is meromorphic in the s variable in C*, according to Cauchy’s formula, we have
for every p € RT such that Zy (X, ) has no poles on the circle of radius p

1

Ck = = —
24 pgl

Zs (N, 8)sF ds 4 Z Res(Zs (A, 8)s¥71ds).

poles of modulus >p

Let us assume that Zy (A, ) has a simple pole sy with modulus strictly larger than all the
other poles, and sg is real. We denote K the residue at sg, and we find for some ¢ > 0

e = Ksh 4+ O((e “s0)F ).

For this reason, we will be done if we can prove that € is indeed a real dominating pole of
order 1 (when A is real), with residue

K = p(f)e’

Let us describe the poles of Zf (A, ). As we have seen before, they are exactly the poles of
the resolvent (s — Ry()))~!. Let us investigate the structure of these poles. Let so € C* be
a pole of s — (s — Ry(X\)) ™1, and denote by II(), so) the corresponding spectral projector, so
that near sg,

(5= Ry = 3 RO tomorphic
Jj=0

Since sg — Ry(A) is Fredholm on some suitable anisotropic space, the characteristic space
E(sp) is finite dimensional, and since Ry (\) commutes with the Anosov action, we can split
E(sp) into a sum of characteristic spaces for the action. We can thus find in FE(sg) a non-zero
vector u such that —X 4u = Ag(A)u for some \g € af and all A € W. Since the characteristic
space is contained in some suitable anisotropic space, we deduce that Ay € Res(X) where
Res(X) is the set of Ruelle-Taylor resonance of [GBGHW20] (and introduced in (1.19)). It
follows that

Ry(Nu = /W e XA A (A udA = P\ — Xo)u,

so that so = ¥)(A—Ag). The converse argument completes the proof of the fact that ran II(), so)
is exactly equal to

{u ’ Ao € Res(X), 1&()\ — Xo) = S0, wu is a generalized resonant state at )\0} )
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Now, we know from [GBGHW?20, Theorem 2| that for all resonances Ao, and all A € W,
Re(Ao(A)) < 0, with equality for \g = 0 (if the action is not mixing, there may be other
purely imaginary resonances). Now, since we have chosen 1 to be real non-negative, we have

/ er%(A)dA‘g / (ReOaA) y( A)dt.
w w

With equality if and only if ero(4)—Re(ho(4)) ig constant on the support of . It follows that
for A real, and \g € Res(X) with \g # 0,

) (A — Ao) )—‘/ (Ro=N)(A),, )dA‘</We_’\(A)zp(A)dA:zﬂ()\).

This implies that € = 121()\) is indeed a dominating pole. It remains to compute its order
and residue. However from [GBGHW?20, Proposition 5.4], we know that there are no Jordan
blocks at 0, so that the O-characteristic space is equal to the 0-eigenspace, and that the
corresponding spectral projector II(\,e?) does not depend on the choices — it was denoted
I1(0) in [GBGHW20]. We deduce that indeed €° is a simple pole, with residue

Tr fRy(MTI(0) = €’ u(f). O
As a corollory of the proof, we find

Corollary 3.11. The function Z1 (X, ) has simple poles, and
Res(Z1,4 (A, s)ds, so) = so Z dim{u € Cp.° | 3 >0, (-X — Ofu=0}.
CERes(X),h(A=C)=s0
Proof. Near a pole sq of (s — Ry(\)) ™!, we come back to the formula
e (Fa() — s0)TT

Ry(N) (s — Ry(N) ' = Z (5 — s *0 + holomorphic around sg.
Jj=0

Since the trace of nilpotent operators is always 0, taking the trace eliminates the terms j > 0,
and we deduce that around sg,

Zl’w(/\, S) =

Tr1l;, + holomorphic around sq.
— 50

We have already seen that the range of 1l is the direct sum of the spaces
{ueCp®|3>0, (X -()fu=0},
for (A — ¢) = so. O

In the case that f = 1, the singularities could become more complicated because f could
interact with the Jordan blocks of R. We can now turn to the proof of Theorem 4:

Proof of Theorem /. If suffices to assume f > 0. We will use some estimates from the proof
of [GBGHW20, Proposition 5.4]. Let v € D'(W) be the measure’

_ Jr f
v=>, > \det(lT—PA)y(sA

TeT AewnL(T

9D’ (W) denotes the space of distributions on the open cone C.
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where 4 is the Dirac mass at A. Choose a basis (A;)7_; of a so that A; € kere; for j > 2,
we then identify a ~ R” by identifying the canonical basis of R* with the basis (A4;);. We let
Y =Cn{A1 + 35 _ot;A;j |t; € R} be a hyperplane section of the cone C. Choose r > 0 but
smaller than the distance of 3 to the boundary of the Weyl chamber 6WW (where the distance
is the euclidean distance in the chosen coordinates. Next choose ¢ € C°((—r/2,r/2)) to be
non-negative and even with [, ¢ = 1, and for each o € R”, define 1, (t) := [T5=1 vt —0y).
We view ¥ as an open subset of {(1,%)|f € R*"!} and choose ¢ € C°(X;RT) with small
support and let Q = [p.—1 q(f)dt > 0, and w € C((0,1);[0,1]) with W := folw > 0. We
consider limy_,o, v(Fy) for o(6) := (1,0) € ¥ where
N
)=y 3 [ etk waoi.

By applying Proposition 3.10 with A = 0, we have
WQu(f)= lim v(Fy). (3.24)
N—o0

In the proof of [GBGHW20, Proposition 5.4], it is shown that if h(t) := 1 "w(t;)q(t/t1) with
t = (t1,t), then with Gn(t) := N*Fn(tN)
”GN(t) - h(t)HLQ(R“,dt) —0as N — oo.

The proof of this convergence is based on the following estimates on the Fourier transform
Gy of Gy: for § > 0 small, and all £ € N there is Cy > 0,C > 0,¢g > 0 so that

vga‘ﬂ > N1/2+6, ’éN(f)P < C(1+CO|§’2)—26N7
Ve, |E) < NYE G (O] < Co(jg] ™ + NTHG)

and Gy (€) — h(€) for cach £ € R®. As a consequence, for cach £ > 0 one can take Ny large
enough so that for all N > Ny
[eMien© -hoPds<cr [ 1g7g = o),
‘§|>N1/2+6 |€‘>N1/2+6

Ligj<ni/z+s (€)X |G (§) — B < Co(e) ™,
where Cy > 0 is independent of N. Using Lebesgue dominated convergence theorem, we

conclude that [|(€)Y(Gy—h(€))|| 2 — 0 as N — oo, thus by Sobolev embedding ||Gx—hl|co —
0 as N — 0. Therefore

[Fn(t) = N“"h(t/N)|lco = o(N~"). (3.25)
Choosing ¢ = 1 on an open set U C ¥ and w(t1) = t’ffl in (¢,1 — €), we deduce that for N
large enough

Fi(0) 2 syt vame) () 1o (/).
This implies that if C,,(U) := {(t1,1)|t1 € [a,b],t/t1 € U}

V(CGN,N(I—E) (U)) < 2NHV(FN) < BNKQWH(f>
where we used (3.24). Thus we obtain v(Co n(U)) = O(N*) by letting € — 0. This estimate
thus also implies by a covering argument that v(C N {|A| < N}) = O(N*). Coming back



SRB MEASURES FOR ANOSOV ACTIONS 41

to a general w, ¢, using that supp(Fn) Usupp(h(-/N)) C Cosn(U’) for some open set U’ €
Wn {t; = 1}, and since v(Co3n(U’)) = O(N*), we obtain by (3.25)

lim N "v(h(-/N)) = lim v(Fy)=WQu(f).

N—o0 N—o00
Next, let U be a small open ball in ¥, we can choose ¢; € C2°(X) supported near U for
j =1,2s0that ¢t < 1y < g2 and [¢; = |U| + O(e), and for 0 < a < b < 1, choose

wj € C°((0,1),[0,1]) such that wy < " 1, < wy with Jy wit)ydt = f t*=Ldt + O(e).
Write now h;(t) = t; "w;(t1)g;(t/t1). One then has

N~™"v(hi(-/N)) < N""v(Csn,1-s)n(U)) < N""v(ha(-/N))
thus if Vo, = f; t*~1dt, we obtain for each € > 0 small
(Vs — U]~ () < lignint N"s(Coy ()
limsup N~ Con e (U)) < (Vas + (|| + ().

N—o0

We let ¢ — 0 and deduce that
lim N7"v(Canpn (U)) = p(f)VaplU| = p(f)[Cap(U)] L.

N—oo

3.4. A dynamical zeta function. We conclude by some comments on links with dynamical
zeta functions. In [BT08], for an operator K, Baladi and Tsujii introduce the flat determinant
as

det’(1 — 2K) := exp Z T "KO
>0
provided the LHS makes sense and converges. From the argument of the previous section, we
see that det”(1 — 2Ry (X)) is well defined for |z| small enough, and has a holomorphic extension
to z € C. Indeed for |z| small enough7

0. det’(1 — 2Ry 1 1
(1 - - 1" Zz‘Tr Ry(N = —=21, (A)
det’ (1 —2zRy(A = z z

As the RHS is meromorphic on C in the z variable, it remains to show it has simple poles,
with integer residue in order to deduce that det’(1 — zRy())) is holomorphic. According to
Corollary 3.11, near a pole 1/sg, Z; 4 takes the form

1 1
——Z1y <)\, ) —__som + holomorphic = + holomorphic.
z z

m
2(1/z — so) z—1/s0
Here m is the dimension of some characteristic space, i.e an integer. This proves that A, z —

det’(1 — zRy(N)) is holomorphic in af x C. The parameter z here is auxiliary, so we can fix
its value to 1, and obtain:

Theorem 5. Let X be an Anosov action of R* with positive Weyl chamber W, and let
Y € CW,RY) have [ =1 and small enough support. Then

(T
d(N)i=exp| =D, D, |detV(1—PA

TeT AeL(T)
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originally defined for Re X large enough (in the sense of evaluating it in elements of the positive
Weyl chamber W), has a holomorphic continuation to ai. This continuation is a regqularized
version of the formal product

H (1 _ &(A _ C))multiplicity of ('
(€Res(—X)
This means that for each Ao € C*, there exist only a finite number of ’s in Res(X) such that
|th(Xo — ) — 1] < 1/2, and for X close enough to A,

dy(N) = H (1 — (X — ¢))muttiplicity of ¢ o 5 holomorphic function.
CERes(X)

As far as we know, this is the first appearance of a multi-parameter zeta function for actions
with a global meromorphic extension. The reader accustomed to the rank 1 case may find
the formula a bit surprising and wonder if it is possible to replace the term F := )" 1/1(]“)/ k
by a simpler weight function. Let us explain briefly why this is not an easy question. The
natural extension of the rank 1 case would be to replace it by

F= L1on>0, j=1..k}

having taken a basis comprised of elements of W and A = (A1,..., \;) in this basis. However,
there seems to be no hope that this can define a globally meromorphic function. Indeed, let
us consider the singular set of such a function. Each resonance { would contribute by

<H AjiCj

For the resulting product to be meromorphic, the singular set has to be (at least) locally
closed. It is given by

>multiplicity of ¢

{AeC" |3 €Res(X), Fj=1...5 A =}

For this to be locally closed, we need that for any sequence of resonances (¢, each coordinate
(Cf) ¢ tends to infinity. For example for the resonances with small real part, this means that
the imaginary parts cannot equidistribute in R”. This would certainly be a surprise to us,
in particular as for Weyl chamber flows a Weyl-lower bound on the number of Ruelle Taylor
resonances with Re(\) = —p is known [HWW21, Theorem 1.1].

4. APPLICATION TO LATTICE POINT COUNTING

In this final section we will work out the consequences of the Bowen formula for the SRB
measures in terms of the counting-problem of lattice points. We focus in particular on the
case of Weyl chamber flows, where we obtain precise estimates for the exponential growth
rates.

Choose a proper subcone C C W and fix some & € a* such that & is positive on a small
conical neighbourhood of C. For 0 < a < b we define Cpyp := {A € C,£(A) € [a,b]} and the

lattice point counting function

Neay = Z Z vol(T).

TeT AEL(T)NCyq
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We furthermore introduce a counting function that is additionally weighted by the Jaco-

bians | det(1 — P4)|
Z Z VOI(T)
TeT AeL(T)NCqp ]det(l N PA)’

Note that by Theorem 4 choosing the constant test function f =1 we get for any ¢ > 1

w
Cn 1 q"
: q
Jim. pre = |C1q] (4.1)

Let us define

log (HlfAEC n—1 gn(UreT L(T ) | det(1 — PA)|)
m :=liminf
n—0o0 qn
log <supA C 1 an(UrerL(ry) | det(l — PA)‘)
M :=limsup €Cn—-1 mNUreTL(T))

n—00 q"

Then for any € > 0 there is N such that for n > N we have
e(m_e)qn/\/’w < N¢ <N eM+e)a"

nlqn* nln— nl’qn
and taking additionally (4.1) into account we get
(ICrql = &)g" ™ Velm=20" < NG\ < (|Cgl 4 €)g" Ve ",

Now, using N, . = Neo, + D k—o ./\fch_lqu we deduce

m < liminf % < limsup
n—oo q n—oo
Now let us assume that there is 7 € a* positive on W such that for any proper subcone C C W
there is € > 0 such that |det(1 — P4)| = e"(A)(1 — O(e=MA))| for all A € C. If we now fix
€ :=n/|n|| then we get the particularly simple expressions M = [|n|| and m = ||n||/q. As we
can choose ¢ > 1 arbitrary close to 1 we get:

log Neg n
ot <y

Proposition 4.1. For an Anosov action for which there is n € a* with the above properties,
one has for each proper subcone C C W

e L

R—o0 R

The assumption on | det(1 — P4)| is fulfilled for all standard Anosov actions. For example
for Weyl chamber flows, a periodic point xyg = I'goM € T\G/M = M under Ay € VW implies
the existence vg € I',; mg € M such that vpgo exp(Ag)mo = go. With these notation we can
give an explicit expression of |det(1 — Py,)|

[det(1~ Pag)| = []

a€A+

— ¢2r(Ao) H

OCGA+

det <1 - e_a(AO)Ad(mal))

Jo

det (1 - ea(AO)Ad(mol))’

J—a

det (1 — e_o‘(AO)Ad(mal))

o

det (Ad(ong ) =)
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Here A, C a* denotes the set of positive roots, g+, the corresponding root spaces, my :=
dim g, and we use the usual notation p := Za€A+ 5> € a* for the half sum of positive
roots. As the adjoint action of M on g, is orthogonal and for any proper subcone C C W,

a(A) > ¢|A]| for all A € C we deduce by the continutiy of the determinant
|det(1 —Pa)| = e (1 4+ O(e~c4) (4.2)

APPENDIX A. UPPER BOUND ON THE NUMBER OF PERIODIC ORBITS (LEMMA 3.5)

First, for dg > 0 small there are is a family of invertible linear maps 7., : T, M — T, M
depending continuously on dy(x,y) < 0 such that 7, , = Id and 7., mapping E,(x), Es(z),
and Ey(x) onto Ey(y), Es(y) and Ep(y). Then exactly the same proof as [DZ16, Lemma A.1]
shows that for each 7 > 0 there is § € (0,8y) and C > 0 such that if dy(z, p'(z)) < 6, AeW
with |A| > r and v € E,(z) ® Es(z), then

o] < Cldgt = T, )0l (A1)

This should be compared to the fact that for A € W, ¢{(x) = x we know that
(dp?t — 1d) g, (@)@ E,(x) 18 invertible. (A.1) generalizes this invertibility to orbits that are
only approximately closed.

Next, we have, by the group property of X", that there is C > 0, M > 0 such that for all
AeW, z,2' e M

le*4 | camsce < CMALdy (i (2), 1 (2')) < CeMIAdy (2, 2"). (A.2)
Next, we show a separation estimate between periodic tori.

Lemma A.1. Let r > 0, then there is C,§ > 0 such that for all € > 0 small, if dy(z, pi'(x)) <
€, dg(:v’,go’f‘,(m’)) <e, A, A€W with |A— A'| <6, dy(z,2") < Je Ml then |A — A'| < Ce,
and furthermore there is A” € a with |A”| < 1 such that d,(z, 1" (z')) < Ce.

Letting ¢ — 0 we get, as a direct consequence

Corollary A.2. If two periodic orbits Ute[o’l]cpf‘(x) and Ute[o,l]gof, (') have minimal distance
< de Ml and nearby period |[A — A'| < 8, and A, A" € W, then A = A’ and there is an
invariant torus orbit T' such that x,2’ € T.

proof of Lemma A.1. We follow closely the proof of [DZ16, Lemma A.2]. Under our assump-
tions, x, 2, f(z) and @{' (/) are all in a small chart in R” and we will frequently identify
points in M and vectors in T'M via as elements in R™ via this chart. The norm | e | then
induces a metric that is equivalent to the Riemannian distance on M. We will furthermore
assume that chart is chosen small enough such that for any x,z’ in the chart, the angle of
E,(x)® Es(x) and Ey(2') is bounded from below. As F,(z)® Eq(x) is a slice of the A action,
there is A” € a with |A”| < 1 such that " (2') —z € E,(z) ® Es(z). We write 2/ := ¢4 (2/).
By the boundedness of the angles between E, & Es and Ey there is a global C' such that
|z, 2"| < C|z,2'|. Then by Taylor expansion there is C' > 0 such that

o (@) — i (z) — doi () (2" — @) < CeMA|z — 2”|? < Cola — 2",
ot (") — it (2") = Xa—a(of (@) < CJA— A2 < CH|A - A
thus we obtain

i (") = o' (@) — de (@) (2" — @) — Xar—alpf (2"))] < O6(|x — 2| +]A - A')).
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Then, using dy(, pi'(x)) < € and dy(2", ¥ (")) < Ce for some uniform C > 0,
(e (@) = 1d) (¢ — 2) + Xa—a(pf (2")] < Co(|z — 2| + A" = A) + Ce.

Using that 7, is uniformly continuous in z,y, and d4(z, () < € we get, if € is chosen
small enough (depending on §):

|(det! (2) = Ty (o)) (@ — @) + Xa—a(oi (@"))] < C(|a" — | + |A" = A]) + Ce.
Finally, using that (def(x) — 7;730{;(96))(3:” —z) € (B, © Ey)(p(2)), Xa_alef(@") €

Eopi(x") together with the lowe bound on the angle of these subspaces as well as (A.1),
we conclude that

A=A+ |z —a"] < C(ldpi (2) = Ty o) (@ —2) | +|A" = A]) < CO(IA" = Al +|a" —z]) + Ce
which gives the result by choosing ¢ small enough. ([l

We now prove (3.5). Let £ > 0 be large. We take a maximal set of points (z;, A;); in
M x {A € W||A| < £} so that dy(zj,z1) > de Mb/2 or |A; — A > §/2. The number of
such balls is O(¢£%e™¢) and the polynomial term in ¢ can easily be absorbed (by changing
M) such that we have O(e"M*) balls. One has

Z = {(w,A) € Mx W||A| < £,dy(z, 97 (2)) < e} | By,
J

B = {(x,A) e M x W||A— A;| <5/2,dy(x, ;) < de ME/2, dy(x, p7H(x)) < €}

Now by Lemma A.1, if (2/,A’) € B;, B; is contained in an e-neighborhood of the orbit
{2 (2') | |A”] < 1} times a e ball of A’ in W. The first neighbourhood has v,-measure
O(e"*) and the latter dA-measure O(e®). This shows that (v, ® dA)(Z) = O(e"e™M).

We conclude with a bound on the number of periodic tori. By Corollary A.2, we see that
the periodic tori T so that L(T) N B(A,§) # 0 with B(A,d) := {A" e W||A - A'| < §} are
separated by a distance at least de~MI4l thus there are tubular neighborhoods of volume

bounded below by C6" e~ ("=#MIAl that do no intersect in M. By a covering argument we
deduce that for each A € L(T) with T € T

#{T" € T|L(T") N B(A,8) # 0} < Co"men—mMIA|
#{A e L(T)NW|T € T, A € B(A,8)} < 0§ eln=rIMIAl
and therefore again by covering W N {|A| < ¢} by O(¢*) balls of radius ¢ we conclude that
H{AE L(T)NWIT € T,|A| < £} < Creln=ME
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