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We propose an innovative, easy-to-implement approach to synthesize large-area single-

crystalline graphene sheets by chemical vapor deposition on copper foil. This method doubly 

takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the 

copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing 

of the thermal recrystallization process. Subsequent reduction of copper under hydrogen 

suddenly unlocks the delayed reconstruction, favoring the growth of centimeter-sized copper 

(111) grains through the mechanism of abnormal grain growth. Second, the oxidation of the 

copper surface also drastically reduces the nucleation density of graphene. This 

oxidation/reduction sequence leads to the synthesis of aligned millimeter-sized monolayer 

graphene domains in epitaxial registry with copper (111). The as-grown graphene flakes are 

demonstrated to be both single-crystalline and of high quality. 

 

  



Introduction 

 

Chemical vapor deposition (CVD) holds great promises for large-scale production of 

high-quality graphene. The very low carbon solubility in copper (Cu) makes it a very 

attractive catalyst for graphene CVD growth.
1
 Low-pressure CVD leads to the self-limited 

growth of a graphene monolayer
2
 while the same outcome can be obtained by atmospheric 

pressure CVD (APCVD) provided that the amount of injected hydrocarbon is carefully 

controlled (by working with highly-diluted hydrocarbons for instance).
3
 However, graphene 

sheets produced by standard CVD on Cu are polycrystalline
2
 and domain boundaries have a 

detrimental effect on transport properties of charge carriers in graphene.
4
 Besides, large-scale 

single-crystalline monolayer graphene sheets constitute optimal building blocks for artificial 

layer stacking with a precise control of the interlayer rotation angle. Twisted bilayer graphene, 

formed from the stacking of two monolayer graphene sheets, has already demonstrated a 

range of interesting optoelectronic behaviors.
5,6,7,8

 

One approach to grow large-size graphene domains is a drastic lowering of the graphene 

nucleation density by various techniques such as: growth on resolidified Cu,
9
 on Cu annealed 

at high pressure,
10

 or by local feeding of carbon precursors.
11

 The most popular method 

benefits from residual oxygen to suppress nucleation by superficially oxidizing Cu.
12,13,14,15,16

 

A recent study questions the role of Cu oxidation by rather attributing the effect to the 

removal of carbon contamination on the Cu surface.
17

 

The Cu(111) surface plane is very advantageous for graphene synthesis because its 

hexagonal lattice symmetry matches well the honeycomb lattice of graphene (lattice mismatch 

of ~4%), thereby enabling epitaxial graphene growth. A few publications (see Table S1 for 

more details) report on the formation of large Cu(111) grains spanning several millimeters 

starting from polycrystalline foils,
9,15,16,18

 after annealing at temperatures close to the melting 



point of Cu (1088 °C), where the grain boundary mobility is high. After such thermal 

treatments, Cu naturally adopts the (111) crystallographic orientation since it is 

thermodynamically the most stable for face-centered cubic metals.
19,20

 By contrast, Robinson 

et al.
20

 report the formation of large Cu grains with a dominant (001) texture, the initial main 

orientation of the Cu foil. Following this line of thought, a novel method has emerged recently, 

in addition to the “single-domain” one. It consists in orienting the surface of initially 

polycrystalline Cu foils along the (111) orientation by long (several hours) thermal annealing 

at more than 1000 °C. The subsequent epitaxial growth of graphene conduces to the 

alignment of domains which ultimately merge to form a graphene film free of domain 

boundaries over several dozen centimeter squares.
21,22

 Other more expensive, complicated 

techniques imply directly working on Cu(111) single crystals
23,24,25

 or depositing a thin layer 

of copper epitaxially oriented on α-Al2O3(0001)
26,27,28

 or MgO(111) substrates
29

. 

The mechanism underlying the growth of large grains in materials is known as abnormal 

grain growth.
30,31

 Cold-rolled metal foils are polycrystalline in nature. After annealing at high 

temperature, the process of primary recrystallization results in the formation of new 

dislocation-free grains. When subjected to further annealing at high temperature, the average 

grain size continues to increase because it is thermodynamically more favorable to reduce the 

total grain boundary energy. Gradually, larger grains grow at the expense of smaller ones via 

grain boundary migration (normal grain growth). In specific conditions, normal grain growth 

may give way to abnormal grain growth where a selective growth of a few “giant” grains 

occurs by absorbing the small neighboring ones. Abnormal grain growth can only proceed if 

normal grain growth is somehow inhibited, notably by grain boundary pinning.
30

 

In this work, we describe a new method, merging the advantages of the “single-domain” 

and epitaxial growth approaches, where we take advantage of residual oxygen in the gas 

phase. First, by slightly oxidizing the Cu surface, we induce grain boundary pinning and, in 



consequence, freezing of the thermal recrystallization process. Subsequent reduction of Cu 

under hydrogen suddenly unlocks the delayed reconstruction, favoring abnormal grain growth 

over normal grain growth. The posterior adjunction of methane leads to the aligned growth of 

large-area monolayer graphene domains. Compared to the usual hydrogen pre-growth 

annealing, this oxidation/reduction sequence is thus doubly beneficial: (1) the (111) 

reconstruction of Cu foils at the centimeter scale is greatly accelerated, allowing graphene 

domains to grow in an aligned way through epitaxial registry with the Cu substrate and, (2) 

the oxidation drastically reduces the nucleation density and promotes the growth of 

millimeter-sized monolayer graphene flakes. 

 

Experimental 

 

Graphene growth 

We start from Cu foil pieces with a size of 3×3 cm
2
 (Alfa Aesar, reference number 13382: 

25-µm-thick, purity 99.8%). The Cu pieces are cleaned in a 2:1 mixture of acetic acid and 

distilled water (see SI section 16 for more details), rinsed in distilled water, and blown-dry 

with nitrogen. More precisely, the sample is first put on a quartz boat and inserted into a 

quartz tube at room temperature. An argon flow of 2000 sccm is then fed into the tube for 15 

min and the temperature of the hotwall furnace is increased to 1050 °C. Next, the quartz tube 

is introduced into the furnace and the argon flow decreased to 500 sccm, with the immediate 

(S#1:H2/S#2:H2) or delayed addition of 20 sccm of hydrogen (S#1:noH2/S#2:H2). After one 

hour in these conditions, dilute methane (5% in 95% of argon) is injected to grow graphene. 

One hour later, the quartz tube is extracted from the furnace and left to cool down naturally 

(fast natural cooling) in the same gas mixture. 

 



Graphene transfer 

Graphene is transferred onto 300-nm-thick silicon dioxide/silicon substrates or TEM grids 

(Ted Pella, #01896N) by the widely used method based on poly(methyl methacrylate) 

(PMMA). After PMMA coating, the Cu foil is first partially etched in ammonium persulfate 

to remove graphene grown on the backside. After rinsing and rubbing the backside with a 

cleanroom wiper, the foil’s etching is continued in a new persulfate solution. The 

PMMA/graphene stack is next rinsed thoroughly in distilled water and fished on the wanted 

support. The sample is left to dry overnight and, finally, PMMA is removed with acetone. 

 

Additional details regarding the experimental techniques (scanning electron microscopy, 

energy-dispersive X-ray spectrometry, electron-backscattering diffraction, low-energy 

electron diffraction, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, 

transmission electron microscopy) can be found in the supplementary information (SI). 

 

Results and discussion 

 

The temperature-time diagram shown in Figure 1a summarizes the so-called “standard” 

(small, misaligned domains) and novel (millimeter-sized, aligned domains) graphene growth 

conditions, with the corresponding argon and hydrogen flows. The unique difference between 

the two processes is the pre-growth annealing of the Cu foils: (1) a reductive annealing under 

argon and hydrogen
2,3,4,13

 (dubbed S#1:H2/S#2:H2, see Figure 1a for the notations) or (2) an 

oxidative/reductive annealing under argon, then argon and hydrogen
12,13,15,16

 

(S#1:noH2/S#2:H2). The results of the two pre-growth sequences are compared in the low 

magnification scanning electron microscopy (SEM) images displayed in Figure 1b and c. We 

observe that the slightly different thermal treatments result in radically dissimilar Cu foil 



morphologies. It is indeed clearly seen in Figure 1b that the S#1:H2/S#2:H2 Cu foil is 

polycrystalline, as testified by the heterogeneous SEM contrast rendered by the diverse Cu 

grain orientations, due to electron channeling. On the other hand, the other Cu foil exhibits a 

nearly uniform contrast, as in Figure 1c (except for white lines due the rolling striations, 

darker contrast due to curving of the foil, and a few elongated grains). The systematic use of 

low magnification SEM to completely sweep the surface of three S#1:noH2/S#2:H2 foils 

suggests the same qualitative conclusion: the foils present an almost completely unique 

crystallographic orientation. However, a few residual polycrystalline areas are seen, most of 

the time on the edges of the foil (Figure S1a and b), or where it is strongly deformed (Figure 

S1c and d). In line with that observation, the reconstruction proves unstable on the edges of 

pieces cut from reconstructed 3×3 cm
2
 samples when they are heated once again in the same 

conditions (Figure S1e and g). Strain created during the cutting causes the foil to return to a 

polycrystalline state on the edges. These observations evidence that deformations in the Cu 

foil play a very important role in the reconstruction. It is also noteworthy that the 

reconstruction is not purely superficial but rather extends throughout the whole thickness of 

the Cu foil, as proven by the SEM inspection of both sides of a reconstructed copper foil 

(Figure S2). In a final control experiment, it is found out that an annealing under argon and 

hydrogen of at least four hours is necessary to reconstruct a 3×3 cm
2
 Cu foil in a similar 

manner to the S#1:noH2/S#2:H2 treatment (Figure S3), meaning that the oxidative/reductive 

annealing helps to drastically shorten the recrystallization duration and consequently the cost 

of the whole process. 

To unambiguously identify the crystalline structure and determine the size of the Cu 

grains, we perform electron-backscattering diffraction. First, as illustrated in Figure 2a, the 

analysis of a 3×3 cm
2
 S#1:H2/S#2:H2 foil shows that it is mainly (001)-oriented, as already 

reported by other works for Cu foils subjected to similar treatments [20,32]. Then, a 3×1 cm
2
 



Cu stripe cut from a 3×3 cm
2
 S#1:noH2/S#2:H2 foil is investigated in three distinct regions 

(see Figure 2b exhibiting a photograph of the stripe with color-coded circles locating the 

analyzed areas in the center and on the two edges). The corresponding inverse pole figure 

(IPF) maps exposed in Figure 1c–h give a confirmation of the large-scale (111) reconstruction 

of the Cu substrate. More precisely, the uniform color in each out-of-plane IPF map is 

representative of a completely (111)-oriented Cu surface (Figure 1c–e), while the uniform 

color of each in-plane IPF map shows that there is no rotational misfit (i.e. no twinning) 

between the three spots (Figure 1f–h), so the three areas belong to the same crystal. The slight 

color variations that we can see in Figure 2c,e reflect the uneven topography of the foil (local 

corrugations or larger-scale creases, similar to Figure 1b), meaning that, in places, the normal 

to the investigated surface is not at the right angle with respect to the detector. On the other 

hand, the IPF map in Fig. 2d is very uniform and the crystallographic orientation much closer 

to the (111) pole because the copper foil in the center is much flatter. The only observed non-

uniformities are the elongated grains that could already be seen previously in the SEM 

pictures in Figure 1c. These small-sized rare grains are identified as (001)-oriented (Figure 

S4), in agreement with Ref. [21].  

 

Figure 1. (a) Temperature-time diagram summarizing the different steps of the standard (in 

blue) and aligned (in red) graphene growth conditions with the corresponding argon and 



hydrogen flows. Scanning electron microscopy pictures of Cu foils after (b) S#1:H2/S#2:H2 

(highlighted in blue) or (c) S#1:noH2/S#2:H2 (highlighted in red).  

 

Figure 2. (a) Electron-backscattering diffraction out-of-plane inverse pole figure map of a 

3×3 cm
2
 Cu foil after S#1:H2/S#2:H2. (b) Photograph of a 1×3 cm

2
 Cu stripe cut from a 3×3 

cm
2
 foil after S#1:noH2/S#2:H2, with three colored circles locating where the maps are 

recorded. Electron-backscattering diffraction out-of-plane (c–e) and in-plane (f–h) inverse 

pole figure maps at the three locations, with a frame colored according to the circles in (b). In 

inset: the corresponding stereographic triangles with the 001, 101, and 111 poles. 

 



We now investigate the mechanism responsible for accelerating abnormal grain growth 

(see an illustration of abnormal grain growth in Figure S5). The sole difference between the 

two pre-growth annealings considered here is the suppression of hydrogen during S#1. In the 

absence of hydrogen and its reducing effect, it is known that trace amounts of oxygen are 

inevitably present in the atmosphere and affect CVD growth.
33,34

 In consequence, we are 

naturally led to believe that oxygen plays a major role in the reconstruction of the Cu foil. To 

shed more light on the oxidation of Cu, energy-dispersive X-ray spectrometry (EDX) 

mapping is conducted on a Cu piece after the S#1:noH2 thermal treatment (complementary X-

ray photoelectron spectroscopy data can be found in Figure S6a–d). The SEM image in Figure 

3a reveals that the surface of the foil is scattered with micrometer-sized faceted inclusions, 

formed preferentially on the Cu grain boundaries. The corresponding EDX O K and Cu K 

elemental mappings (Figure 3b and c) disclose that oxygen is almost entirely concentrated in 

the crystalline inclusions, with a ~33% atomic concentration, matching the stoichiometry of 

Cu2O; while the dark background corresponds to very weakly oxidized Cu, with less than 1.5% 

in oxygen (see the corresponding spectra in Figure S7a and b). In Figure 2d, micro-Raman 

spectroscopy (µRS) further corroborates that the spectrum recorded on the particles 

corresponds to Cu2O
14,35

 and that the background is weakly oxidized. Besides, the Ellingham 

diagram for the Cu/O2 couple (4Cu + O2 ↔ 2Cu2O) confirms that Cu2O is stable under the 

considered O2 partial pressure and temperature conditions (see SI section 9 for more 

details).
36

 Finally, in two complementary control experiments, we see that the average Cu 

grain size is not altered after prolonged (see Figure 3e–g and SI section 10) or repeated 

(Figure S8a and b) S#1:noH2 annealings, proving that the recrystallization is frozen. 



 

Figure 3. Scanning electron microscopy image (a), energy-dispersive X-ray spectrometry O 

K (b) and Cu K (c) mappings of a Cu foil after S#1:noH2. d) Micro-Raman spectrum of a 

Cu2O inclusion shown by optical microscopy in the insert. Surface of three Cu foils annealed 

for (e) 30 min, (f) 1 h or (g) 2 h in argon only. 

 

Based on the knowledge gained through the previous experiments, we propose the 

following scenario. During the first minutes of annealing under argon, the grain boundary 

mobility is high enough to enable the average Cu grain size to increase under the effect of the 

temperature (primary recrystallization). The conditions of temperature and residual oxygen 

partial pressure evolve in such a way that they become favorable to the formation of Cu2O 

inclusions. These particles end up pinning down the Cu grain boundaries, even provoking the 

stagnation of the recrystallization. These conditions are very propitious to abnormal grain 



growth.
30

 So, when hydrogen is introduced in the reactor and the Cu grains are suddenly 

unpinned, the recrystallization is strongly driven to proceed by abnormal grain growth. 

After unveiling the mechanism underlying the trigger of abnormal grain growth, we 

further investigate the growth of graphene on the (111)-reconstructed Cu foils. The standard 

conditions (growth following S#1:H2/S#2:H2) lead to misaligned, monolayer graphene 

domains with a lateral size of 10-15 µm (apex to apex) as can be seen in the SEM image 

displayed in Figure 4a. This is commonly reported in the literature for graphene synthesized 

without any special pretreatment of the Cu foil.
3,13

 Not content with accelerating the Cu(111) 

reconstruction, the S#1:noH2/S#2:H2 pre-growth conditions also result in a spectacular size 

enlargement of the graphene flakes
13

 beyond 1 millimeter (compared to 50-100 µm for Brown 

et al.
21

 and Nguyen et al.
22

), and, very interestingly, the different graphene domains are 

aligned (Figure 4b). By contrast, unlike Zhou et al.
14

, it is found that the reverse pre-growth 

sequence (S#1:H2/S#2:noH2) leads to a much higher nucleation density, resulting in smaller 

hexagons (< 50 µm) and in multilayer patches (Figure S9). This is most probably due to a 

much higher number of Cu oxide particles formed during S#2:noH2 which are preferential 

sites for graphene nucleation.
37

 Annealing in hydrogen has indeed a short range polishing 

effect on the Cu foil,
13, 38

 smoothing out Cu oxide particles and others defects (rolling 

striations, etc.), thereby strongly decreasing the nucleation density (Figure S10). The top part 

of Figure 4c gives an additional illustration of merged graphene flakes aligned growth over ~7 

mm. In the inset to Figure 4c, we also show one representative low-energy electron diffraction 

pattern acquired on the same sample (three others are available in Figure S11). They all 

display a single set of diffraction spots corresponding to the hexagonal symmetry of both the 

Cu(111) and graphene lattices aligned with each other. The small lattice mismatch and the 

relatively large size of the diffraction spots due to the uneven foil prevents from resolving the 

graphene and Cu(111) diffraction spots, as reported by Brown et al..
21

 The diffraction data 



strongly support the epitaxial alignment between the quasi-monocrystalline Cu(111) foil and 

graphene. 

 

Figure 4. Scanning electron microscopy (SEM) image of graphene flakes grown on Cu after 

(a) S#1:H2/S#2:H2  or (b) S#1:noH2/S#2:H2. c) SEM picture illustrating graphene alignment 

at the centimeter scale. Inset: low-energy electron diffraction pattern taken on the sample. 

 

Next, we evaluate the structural quality of the as-grown graphene flakes by µRS and 

transmission electron microscopy (TEM). Figure 5a exhibits a 800-µm-wide hexagonal 

graphene flake transferred onto a Si/SiO2 (300-nm-thick) substrate. Figure 5b–e present the 

corresponding µRS mappings of the 2D band full width at half maximum (25.8 ± 1.4 cm
-1

), 

the 2D-band shift (2684.4 ± 0.8 cm
-1

), the G-band shift (1582 ± 1.1 cm
-1

), and the ratio 

between the 2D and G integrated intensities (2.3 ± 0.5). The values of each figure of merit 

match the typical values of high-quality CVD-grown monolayer graphene.
2,13,14

 Nanobeam 

electron diffraction (ED) analyses by TEM are also performed to demonstrate the single-

crystalline nature of the graphene flakes.
39,40

 Figure 6a shows a 1300-µm-wide hexagonal 

graphene flake covered by a poly(methyl methacrylate) support film, transferred onto a TEM 



grid. Up to 25 ED patterns are acquired through the holes of the TEM grid (Figure S12). 

Figure 6b displays some of the most representative ED patterns. All of them correspond to 

monolayer single crystalline graphene orientated along the [0001] zone axis. No evidence of 

extended defects or turbostratic multilayers can be inferred from these data. Figure 6c plots 

the evolution of the δ angle (angle between the [0-110] plane and the horizontal axis, see 

Figure 6b) with the covered path. Along the pathway (seen in Figure 6a) covering more than 

4.3 mm, the δ values are centered on a mean value of 63.2 ± 0.6º (with a 95% confidence 

interval). This confirms the good crystallinity and the single crystalline nature of the 

monolayer graphene flake on its entire area. Both µRS and TEM testify to the excellent 

quality and spatial uniformity both of the graphene synthesis and the transfer process. 

 

Figure 5. a) Optical microscopy picture of a 800-µm-sized monolayer graphene domain 

transferred onto a Si/SiO2 substrate. Corresponding micro-Raman spectroscopy mappings of 

the (b) 2D-band full width at half maximum, (c) 2D-band shift, (d) G-band shift, and (e) 2D-

band over G-band intensity ratio. 



 

Figure 6. a) Optical microscopy image of a 1.3-mm-sized monolayer graphene hexagon 

covered with poly(methyl methacrylate) transferred onto a transmission electron microscopy 

grid. Red squares highlight the areas where the 25 corresponding electron diffraction (ED) 

analyses are performed. b) The most representative ED patterns, labeled according to the 

analyzed area. c) Variation of the δ angle along the covered pathway shown by the dotted line 

in (a). 

 

Conclusions 

 

The present work details an innovative method to grow single-crystalline graphene sheets 

by CVD, where residual oxygen in the gas phase proves to be doubly advantageous. The 

superficial oxidation of cold-rolled polycrystalline Cu foils simultaneously (1) accelerates the 

foil recrystallization by abnormal grain growth in the (111) orientation and (2) drastically 

lowers the nucleation density. Growing graphene on such Cu(111) templates leads to high-



quality monolayer single-crystalline graphene flakes spanning more than one millimeter, 

aligned at the centimeter scale. These results pave the way to facile, cheap CVD growth of 

domain-boundary-free graphene films of arbitrarily large dimensions. 
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1) Review on Cu foils with large grain sizes in the context of graphene 

growth by chemical vapor deposition 

 

Reference Orientation Approximative grain 
size 

Starting foil Treatment 

[1] Predominantly 
(111) 

Many millimeters 99.999%, 0.25 mm 
thick, Alfa-Aesar 

Melted on tungsten; atmospheric pressure, 
hydrogen and argon flow rates were adjusted to 

60 and 940 sccm; temperature was first ramped 

up to 1000 °C in 50 min and then to 1100 °C in 
10 min. The temperature was kept constant for 30 

min and then slowly ramped down (1 °C/min) to 

1075 °C. 
[2] Dominantly 

(100) 

Up to a few 

millimeters 

Alfa Aesar, 99.8% 

Cu 25 μm thick 

Oxidation in air + annealed at 1040 °C in a 

quartz tube for 3 h in a 10 sccm H2 flow at 150 

mTorr. 
[3] (111) Several millimetres Alfa Aesar, (purity 

99.8%, lot no. 

13382) 

25 mbar, argon 1000 sccm, 10 min, at 1000 °C. 

[4] (111) A few millimetres 25 mm in thickness, 

purity of 99.8% 

Thermal annealing at 1000 °C under a H2 

atmosphere with 400 sccm flow at 500 Torr. 

[5] Predominantly 
(100) 

From a few 
millimeters to as 

large as a centimeter 

Alfa Aesar, purity of 
99.8% 

Annealing at 1035 °C in 40 mTorr of H2 for 30 
min. 

[6] (111) At the foil scale (up 
to 16 cm in length, 

~2 cm in width) 

Nilaco corporation, 
#CU-113213, 99.9% 

purity 

Annealing it for up to 12 hours at a temperature 
of 1030 °C in an Ar/H2(100 sccm) environment, 

a total pressure of 26 Torr. 

[7] (111) At the foil scale (6 
cm × 3 cm) 

A 100-μm-thick 
copper foil (from 

Nilaco, 99.96%) 

Annealed at 1075 °C with 1000 sccm Ar and 500 
sccm H2 for 2 h, polished using chemical-

mechanical polishing/repeated several times until 

Cu(111) orientation is achieved. 

 

Table S1: Information extracted from several publications dealing with graphene growth by 

chemical vapor deposition on Cu foils mentioning the formation of large (more than 1 mm) 

grains, as quoted in the article. 
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2) Impacts of mechanical deformations on the recrystallization 

The morphology of three 3×3 cm
2
 foils is investigated in a systematic way (5×4 mm

2
 

windows every 5 mm, 36 measurement points in total for each foil). We illustrate that 

mechanical deformations in the Cu foil have a strong influence on the reconstruction. First, 

after the S#1:noH2/S#2:H2 pregrowth treatment, the Cu foil often remains polycrystalline on 

the edges, and more specifically around the corners of the Cu foil (see Figure S1a,b), where 

the foil was stressed during its cutting with scissors from the larger 30×30 cm
2
 as-received Cu 

foil. Moreover, it can be seen in Figure S1c that the region around an initial crumple in the 

foil also remains polycrystalline even after a S#1:noH2/S#2:H2 annealing, while the piece is 

(111)-oriented everywhere else. Figure S1d shows a closeup view on the crumple with an 

optical microscope, where the crumple is much better seen than by scanning electron 

microscopy by the presence of shadows. The same elongated grain is evidenced in both 

pictures by a red-edged rectangle for facile comparison. These two observations evidence that 

it would be preferable to receive flat foils, instead of rolled ones, to avoid any manipulation 

during the unfurling which very often incurs folds and crumples in the foil, notwithstanding 

pleats already present in the as-received foil. We also believe that the final outcome of the 

annealing is in a large part determined by the internal strains in Cu foil, which is beyond our 

control. It is also interesting to note that, due to these “edge effects”, the S#1:noH2/S#2:H2 

annealing of 1×1 cm
2
 Cu pieces very often results in a very erratic reconstruction, either 

absent or very partial. 

Finally, we have investigated what happens to a Cu piece cut from a larger (111)-

reconstructed one, when it is once again subjected to a S#1:noH2/S#2:H2 pregrowth annealing 

(see Figure S1e,f). To help the reader to compare, a few identical grains are highlighted in 

red-edged rectangles. It is revealed that the (111) reconstruction is reversible on the edges of 

the piece that where stressed due to the cutting. Indeed, in Figure S1g, the top edge that was 

cut with scissors returns back to a polycrystalline state while the right one (uncut) remains 

(111)-oriented 
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Figure S1: Low magnification scanning electron microscopy (SEM) image of (a),(b) the edge 

of a 3×3 cm
2
 S#1:noH2/S#2:H2 Cu foil, remaining partially polycrystalline. (c) Low 

magnification SEM image of a crumpled area in a 3×3 cm
2
 S#1:noH2/S#2:H2 Cu foil 

remaining polycrystalline. (d) Optical microscopy picture of the area in the rectangle with red 

edges in (c), better highlighting the crumple in the Cu foil. (e) Low magnification SEM image 

of the surface of a ~1 cm
2
 Cu piece cut with scissors from a 3×3 cm

2
 S#1:noH2/S#2:H2 Cu 

foil. (f) Same image taken at the same location after a second S#1:noH2/S#2:H2 treatment. (g) 

Low magnification SEM image of one corner of the same sample. 
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3) Bulk reconstruction of the Cu foil 

The recto and the verso of the same Cu foil treated by S#1:noH2/S#2:H2 is examined at 

the exact same location in Figure S2. It clearly appears that both sides are identical even if the 

contrast of some grains is different due the uneven topography of the Cu foil. To help the 

reader, a few identical grains are highlighted in red-edged rectangles. The backside picture is 

flipped vertically to enable a direct comparison. 

 

Figure S2: Low magnification scanning electron microscopy image of (a) the front- and (b) 

the backside (flipped vertically) of a Cu foil at the exact same location, evidencing the bulk 

reconstruction of the foil. The bend corner used to handle the Cu piece is seen to point 

downward in (b). 
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4) Prolonged Cu foil annealing in argon and hydrogen 

Similar to the three 3×3 cm
2
 S#1:noH2/S#2:H2 Cu foils mentioned in the manuscript, this 

Cu foil annealed in argon and hydrogen during four hours (S#1 30 min + S#2 30 min+ S#3 

180 min) is also scanned in 36 positions to get a global view. The two pictures in Figure S3a,b 

both evidence a uniform contrast (except for the (001) grains and the pleats), testimony to the 

reconstruction of the foil. Figure S3c reveals that, around a crumple, the foil remains 

polycrystalline. 

 

Figure S3: Two typical low magnification scanning electron microscopy images of a 3×3 cm
2
 

Cu foil annealed during four hours in argon and hydrogen. 
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5) Electron-backscattering diffraction on Cu(001) grains 

 

Figure S4: Electron-backscattering diffraction inverse pole figure maps of an elongated grain, 

(a) out-of-plane (z direction) and (b) in-plane (y direction). In inset are seen the corresponding 

stereographic triangles with the 001, 101, and 111 poles. The grain has a (001) orientation. (c) 

Corresponding analyzed area in the red rectangle of the scanning electron microscopy picture. 
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6) Abnormal grain growth 

As it is, a cold worked metal foil contains a large amount of dislocations introduced 

during plastic deformation. As pictured in Figure S5a, when exposed long enough at high 

temperature, the metal foil becomes fully recrystallized (primary recrystallization), meaning 

that new dislocation-free grains have formed. Upon further annealing, the average grain size 

keeps growing in a continuous manner, a process called normal grain growth (NGG, see 

Figure S5b). In peculiar circumstances (see Figure S5c), NGG can lead to abnormal grain 

growth (AGG) (also called secondary recrystallization). Contrary to NGG, AGG is a 

discontinuous phenomenon, resulting in a bimodal grain size distribution. More details can be 

found in Ref. [8]. The mechanism of AGG is clearly identified in the pictures shown in Figure 

S5d,e. 

 

 

 

 

 

 
Figure S5: Schematic representation of (a) the fully recrystallized state, (b) normal grain 

growth, and (c) abnormal grain growth. (d) Illustration by scanning electron microscopy of 

the process of abnormal grain growth, where a large, elongated Cu(111) grain (near the edge 

of the foil) is surrounded by much smaller grains, and is on the verge of contacting another 

much larger Cu(111) grain. (e) Electron-backscattering diffraction is used to determine the 

surface orientation of both grains (same magnification as in Figure S5d). The corresponding 

stereographic triangle can be seen with the 001, 101, and 111 poles. 
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7) X-ray photoelectron spectroscopy data 

Depth profile X-ray photoelectron spectroscopy (XPS) is performed to compare two foils 

subjected to S#1:H2/S#2:H2 and S#1:noH2/S#2:H2, respectively. The analyses point out that 

there is no difference between the two samples: at the surface, peaks related to CuO, Cu2O, 

Cu(OH)2, and H2O show up with practically the same relative intensities, subsequent to 

interaction with oxygen and water present in the air
9
 (see Figure S6a-d); in depth, Cu is not 

oxidized at all. It is worth noting that the manufacturer specifies a trace oxygen concentration 

of 0.01% in the Cu foil, well below the detection threshold of XPS. Next, the same XPS 

analysis is conducted on a Cu piece after the S#1:noH2 thermal treatment, evidencing that, on 

the investigated thickness, Cu is weakly oxidized and the atomic oxygen concentration 

decreases progressively (see Figure S6e). The signal is integrated over a 250-µm-diameter 

spot and gives thus only average concentrations. 

 

 

Figure S6: X-ray photoelectron spectroscopy (XPS) depth profiles performed to compare two 

foils subjected to S#1:H2/S#2:H2 (a) and S#1:noH2/S#2:H2 (b), respectively. Cu is oxidized 

only at the surface of the samples. (c,d) Corresponding high-resolution core level spectra at 

the very surface of the two foils. XPS depth profiles carried out on a S#1:noH2 Cu foil 

showing that Cu is oxidized in depth. 
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8) Energy-dispersive X-ray spectrometry spectra 

 

Figure S7: Energy-dispersive X-ray spectrometry spectra recorded on a Cu specimen 

subjected to S#1:noH2. Spectrum of (a) a Cu2O(111) inclusion and (b) the background. 
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9) Estimation of the oxygen partial pressure 

First, we ensure that the flow inside the quartz tube is laminar. In that case, when argon is 

introduced, all the air in the tube is driven away without turbulence, gently pushed outside by 

argon. Therefore, argon does not mix with air, preserving its initial purity. The Reynolds 

number, Re, is a dimensionless number allowing to determine, given the rate and the 

geometry of the flow, if the regime is laminar or turbulent. For a flow in a pipe, it is given by 

the well-known formula: 

 

Re = (ρ×vmoy×L)/μ, 

 

where ρ is the density of the fluid [kg/m
3
], vmoy is the average velocity of the flow [m/s], L is 

a characteristic linear dimension [m], and µ is the dynamic viscosity of the fluid. In the case 

of a cylindrical pipe, the characteristic linear dimension is the diameter ɸ, L = ɸ. 

The average velocity can be easily calculated: vmoy = F/S, with F the volumetric flow rate 

[m
3
/s] and S the section of the pipe [m

2
]. For a cylindrical pipe, S = π×(ɸ/2)

2
 and Re = 

(4/π)×(ρ×F)/(μ×ɸ). 

In the specific case of an argon flow, ρ = 1.7832 kg/m
3
 and μ = 2.2×10

-4
 kg/(m.s) (at 

15 °C and 1013 mbar). We take into consideration the “worst case scenario” by taking the 

highest F value of 2 l/min (= 1/30×10
-3

 m
3
/s) used in the process. Finally, with ɸ = 2.5×10

-2
 m, 

we find Re = 13.8. This value is well below the value of 2300 generally considered for a 

transition to a turbulent flow.
10

 Here again, we consider an upper bound for Re with respect to 

the temperature, since we consider the room temperature values of ρ and µ, and ρ varies as 

~1/T while µ increases with increasing temperatures (~T
1/2

), thus Re(1050 °C) << Re(15 °C). 

In the case of a mixture of argon and hydrogen, the contribution of hydrogen can be 

neglected because it has a much smaller density compared with argon. In addition, the typical 

hydrogen flow used here (20 ml/min) is also much lower compared to the argon flow. 

Based on the data provided by the argon cylinder supplier (Air liquide, purity alpha2 

99.9995%), the amount of O2 should be below 0.5 ppm. So we can estimate that the O2 partial 

pressure pO2 is not greater than ~10
-7

 bar. Based on the Ellingham diagram for the Cu/O2 

couple and considering pO2 = 10
-7

 bar, we deduce that Cu2O is stable for any temperature 

lower than ~1050 °C. This is all the more true for any pO2 greater 10
-7

 bar. 
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10) Cu foil annealing in argon alone 

Cu foils are annealed in argon alone for 30 min, 1 h or 2 h to observe how the 

morphology of the sample evolves with the hydrogen-free annealing time. From Figure 2e-g 

of the main manuscript, it is seen that, obviously, the density in Cu2O(111) inclusions 

increases with the exposure duration to residual oxygen. These crystals are preferentially 

formed on the rolling striations, where Cu shows more defects, or along grain boundaries. 

More importantly, when comparing the surface morphology of each sample, it appears clearly 

that the average grain size stagnates at ~50 µm and does not increase after 30 min, even if a 

prolonged annealing of 2 h is performed, as though the recrystallization becomes somehow 

inhibited. In a second experiment, the same Cu piece is annealed twice in a row in the same 

conditions (S#1:noH2). The inspection of the foil at the exact same place by scanning electron 

microscopy discloses that, as could be anticipated based on the previous observation, the grain 

morphology does not evolve in the least bit (see Figure S8a,b). The only notable difference 

lies in the larger number of inclusions adding to the ones already present. 

Figure S8: (a) View by scanning electron microscopy of the surface of a Cu foil annealed 30 

min in argon alone and (b) the same foil at the same spot annealed a second time 30 min in 

argon alone. 

  



S14 

 

11) Reverse pregrowth treatment 

We evaluate the effect of a reverse pregrowth treatment (S#1:H2/S#2:noH2) on the growth 

of graphene. For the same methane flow as the one used in Figure 3c of the main text (0.35 

sccm), the growth following that treatment exhibits a full coverage by monolayer graphene 

with many multilayer graphene patches underneath (see Figure S9a). Figure S9b displays a 

scanning electron microscopy picture for an amount of methane decreased down to 0.2 sccm 

in order to obtain a partial coverage (in the same methane flow conditions, no growth occurs 

with the standard S#1:noH2/S#2:H2 treatment). Even when the methane flow is decreased in 

that way, the coverage is almost complete, except for a few areas where it is possible to 

distinguish the edges of some hexagons only partially incorporated into the graphene film, or 

very occasionally isolated ones. The reduced methane flow allows determining that the typical 

hexagon size is below 50 µm. It is also worth noting that the Cu film is polycrystalline and the 

graphene flakes grow with random orientations. 

 

Figure S9: Scanning electron microscopy images of the graphene growth subsequent to the 

reverse pregrowth sequence, with a 0.35 (a) or 0.2 (b) methane flow. 
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12) Smoothing of the Cu foil after hydrogen annealing 

 

Figure S10: Scanning electron microscopy pictures of a Cu piece (a) before any thermal 

annealing and (b) subjected to the S#1:H2/S#2:H2 treatment at the exact same location. One 

can visualize the smoothing of the cold-roll striations and of a scratch in the top right corner 

of the foil. In addition, the annealed sample reveals a drastic increase of the grain size. 
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13) Supplementary low-energy electron diffraction patterns 

The graphene/Cu(111) specimen seen in Figure 3c of the main text is analyzed in several 

points randomly chosen all over its surface (~1 cm
2
). It is found out that the sample presents a 

unique Cu(111) orientation. Graphene shows epitaxial alignment with respect to Cu(111), as 

testified by the unique set of LEED spots in Figure S11a–c. A weak misorientation is 

occasionally observed, as attested by the very faint ring in Figure S11d (white arrow), 

possibly related to the fact that the foil is not polished, thereby causing little graphene 

misorientation with respect to Cu(111).
7
 

 
 

Figure S11: Low-energy electron diffraction patterns recorded in random positions on the 

sample pictured in Figure 3c of the main text. 
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14) Micro-Raman spectroscopy statistics 

In the average and standard deviation values given in the main text, we also include the 

data recorded on the edges of the hexagonal graphene domain. These data often show a large 

spread relative to the average value. Indeed, by excluding the edges, the standard deviation 

decreases. The average and standard deviation are calculated from more than 400 data points. 

 
 2D-band FWHM [cm-1] 2D-band shift [cm-1] G-band  shift [cm-1] I2D/IG 

µ 25.8 2684.6 1582 2.3 

µ(wo edges) 25.5 2684.4 1.1 0.5 

σ 1.4 0.9 1585.3 2.3 

σ(wo edges) 1.1 0.8 1 0.2 

 
Table S2: Summary of the average and standard deviation of the 2D-band full width at half 

maximum, 2D-band shift, G-band shift, and 2D-band over G-band intensity ratio (I2D/IG) 

extracted from the micro-Raman mappings in Figure 4 of the main manuscript. 
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15) Nanobeam electron diffraction patterns 

Figure S12 shows all the electron diffraction (ED) patterns recorded in nanobeam mode 

on the graphene flake shown in Figure 5a of the main text. All the ED patterns correspond to a 

graphene single crystal oriented along the [0001] zone axis. Between all the ED patterns, the 

rotation of the δ angle (defined in Figure 5b of the main text) is small, thus highlighting the 

single crystalline nature of the graphene flake. 

 

 
 

Figure S12: The 25 electron diffraction (ED) patterns recorded in nanobeam mode and 

through the holes of the TEM grid. Each ED pattern is labelled according to the location 

indicated in Figure 5a of the main text. In addition, the value of the δ angle (defined in Figure 

5b of the main text) is given for each ED pattern. 
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16) Cleaning of the Cu foils 

It is of great importance to properly prepare the Cu foils before growing graphene on top 

of it in order to achieve graphene films of the best quality. In the scientific literature, many 

different pretreatment techniques can be found: (1) chemical treatment in various liquids such 

as acetic acid,
11,12,13,14,15,16,17

 solvents,
18

 water, 
19,20

 inorganic acids (dilute HNO3,
11,19,21

 dilute 

HCl,
21, 22 , 23

), FeCl3,
11, 24

 Cr or Ni etchants;
21

 (2) electropolishing;
11,12,13,19, 25

 (3) chemical 

mechanical polishing. 
26

 More particularly, the removal of Cu oxide with acetic acid was 

shown to be very effective.
27

 In the perspective of large-scale production, it also presents the 

distinctive asset not to involve complicated treatments or hazardous chemicals. On the other 

hand, many works reported in the literature deal with graphene growth on Alfa Aesar Cu foils 

(25-µm-thick; 99.8% purity; reference number 13382; explicitly mentioned 

in
11,12,14,15,18,19,20,23,24,25, 28,29

). However, it is rarely reported that these foils are in fact coated 

with a thin metallic oxide anticorrosion film.
16,25,29

 It goes without saying that this coating 

must be entirely removed, without degrading the underlying Cu foil, prior to graphene 

synthesis. 

Here, we consider the widely used Cu foils mentioned above (Alfa Aesar #13382). X-ray 

photoelectron spectroscopy was first used to assess the presence of contaminants on the foil’s 

surface before any treatment (so-called “as-received” foil). Two different as-received samples 

(1×1 cm
2
) are analyzed in two and three distinct spots randomly chosen, respectively. The 

concentration of the detected elements is determined from the survey scan (see Figure S13). 

The main detected elements are oxygen (O 1s) and carbon (C 1s), corresponding to organic 

contamination. The presence of chromium (Cr 2p) is also unambiguously identified, 

corresponding to a layer of chromium oxide (the anticorrosion coating mentioned above). In 

addition, peaks that can be attributed to calcium (Ca 2p; between 8 and 10%) and phosphorus 

(P 2p; around 6%) appear. Other contaminants such as nitrogen (N 1s) or chlorine (Cl 2p) are 

also found, albeit in very weak amounts (less than 1.5%). The concentrations in the different 

elements can be found in Table S3. 

 

Figure S13: X-ray photoelectron spectroscopy survey scan of an as-received Cu sample. 

 

In order to remove the observed contaminants, we have next tested simple recipes 

involving harmless chemicals such as glacial acetic acid (GAA; Acros Organics; >99.8% 

purity), distilled water (DW) or isopropyl alcohol (IPA): (1) GAA alone for 15 min; (2) DW 

alone for 15 min; (3) mixture of GAA and DW in a 1:1 ratio for 15 min; (4) GAA alone for 15 

min followed by rinsing in IPA. All the treatments are performed at room temperature. Finally, 

the Cu pieces are gently blown dry with nitrogen. All the recipes leave the chromium oxide 

layer intact, as one would expect (see Figure S14a). The only technique being efficient in 
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removing calcium is the third one (GAA+DW) (see Figure S14b). Phosphorus is still present 

in all cases. The concentrations in the different elements are summarized in Table S3. 

 

 

Figure S14: (a) Cr 2p core level spectrum for the as-received, the GAA+DW cleaned, and the 

annealed Cu pieces, respectively. (b) X-ray photoelectron spectroscopy survey scan of a Cu 

sample cleaned in a mixture of glacial acetic acid and distilled water. 
 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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 Composition  

Sample type Point O 1s Cu 2p C 1s Ca 2p P 2p Cr 2p N 1s Cl 2p 

As- received #1 1 40 5 38.5 8 5.6 1.4 1.5 X 

2 41.8 5 35.9 8 6.1 1.5 1.7 X 

As- received #2 1 46.9 5.9 28.9 9.4 6.4 2 X 0.5 

2 46.7 5.8 29 9.7 6.4 1.8 X 0.6 

3 45.3 5.8 30.3 9.5 6.5 1.8 X 0.8 

Cleaned in  

GAA 

1 51.1 13.7 16.5 6.6 9 3.1 X X 

2 51.8 13.2 16.3 6.4 9 3.3 X X 

3 51.3 14.2 14.1 7.2 9.8 3.4 X X 

Cleaned in  

DW 

1 47 10.8 24.8 6 8.8 2.6 X X 

2 46.2 9.4 28.6 5.2 7.9 2.7 X X 

3 45.2 9.5 28.8 5.5 8.4 2.6 X X 

Cleaned in  

GAA+DW 

1 48.7 17.6 22.3 X 8.2 2.6 X 0.6 

2 49.2 17.9 21.4 X 8.1 2.8 X 0.6 

3 49.6 22.2 14.8 X 9.8 2.9 X 0.7 

Cleaned in  

GAA, rinsed  

in IPA 

1 52.1 12.6 17.6 6.3 8.5 2.9 X X 

2 52.3 12.1 17.2 6.8 8.5 3 X X 

3 50.9 12.2 18.2 6.7 9.1 2.9 X X 

 

Table S3: Superficial composition of the as-received samples and of the samples cleaned by 

the four different methods, obtained from the survey scan. 

 

We have next investigated the superficial composition after annealing (i.e. growth without 

methane, in the standard conditions, see Figure 1a of the main text) or after growth (in the 

standard conditions as well), for each type of treatment, in three distinct points. Table S4 

summarizes the composition of the surface of the diverse Cu pieces. The conclusions are 

essentially the same in both cases: the chromium oxide layer evaporates during the thermal 

treatment (also confirmed by the high-resolution core level spectrum of Cr 2p in Figure S14a), 

as well as phosphorus, chlorine, and nitrogen, for all four treatments. The only remaining 

impurity is calcium, in small amounts (around 1%), except for the GAA+DW recipe, as 

already observed before. In addition, the only treatment leading to the successful growth of 

graphene is GAA+DW, as testified by the much higher carbon concentration of the sample 

cleaned with GAA+DW (~48% versus less than 15% for the other three methods) and careful 

scanning electron microscopy (SEM) inspection of each kind of samples (not shown). This is 

further illustrated by the SEM picture displayed in Figure S15, corresponding to a growth 

performed on a sample half-dipped in the GAA+DW mixture. It clearly shows that graphene 

grows on the half dipped in GAA+DW while it does not on the untreated one. It is even 

possible to perceive a difference in color between both parts, evidencing the effect of the 

GAA+DW cleaning.  

In conclusion, it appears (1) that the inhibited growth of graphene is related to the 

imperfect removal of calcium from the surface and (2) that the chromium oxide layer is 

removed by the thermal treatment (and in fact even before the beginning of the growth 

process, since otherwise, the growth would not occur), as well as the other minor 

contaminants. This study also illustrates that some cleaning recipes presented in the literature 

are not universal and the cleaning of the Cu foil must be adapted to the foil’s manufacturer 

(coating, contaminations). 
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 Composition  

Sample type Point O 1s Cu 2p C 1s Ca 2p P 2p Cr 2p N 1s Cl 2p 

Cleaned in  

GAA/after  

annealing 

1 37.2 46.3 15.1 1.4 X X X X 

2 35 51.8 11.8 1.4 X X X X 

3 36.2 48.2 14.5 1.1 X X X X 

Cleaned in  

DW/after  

annealing 

1 37.5 45.6 16.1 0.8 X X X X 

2 34.7 51.8 12.8 0.7 X X X X 

3 36.8 48.1 14 1.1 X X X X 

Cleaned in  

GAA+DW/after  

annealing 

1 37.7 46.1 16.2 X X X X X 

2 35.8 52.5 11.7 X X X X X 

3 36.5 50.9 12.6 X X X X X 

Cleaned in GAA,  

rinsed in IPA/after  

annealing 

1 37.4 44.5 17.1 1 X X X X 

2 37.2 47.8 13.9 1.1 X X X X 

3 35.9 48.2 14.7 1.2 X X X X 

Cleaned in  

GAA/after  

growth 

1 36.7 45.2 15.8 2.3 X X X X 

2 29.8 61.2 7 2 X X X X 

3 25.7 68.3 3.7 2.3 X X X X 

Cleaned in  

DW/after  

growth 

1 35 50.6 13.7 0.7 X X X X 

2 27.5 65.5 6.6 0.4 X X X X 

3 29.1 61 9.4 0.5 X X X X 

Cleaned in  

GAA+DW/after  

growth 

1 5.7 46.2 48.1 X X X X X 

2 6 45.9 48.1 X X X X X 

3 6 45.7 48.3 X X X X X 

Cleaned in GAA,  

rinsed in IPA/after  

growth 

1 38.8 43.2 16 2 X X X X 

2 37.8 48.6 7 1.9 X X X X 

3 34.6 54.1 8.7 2.6 X X X X 

 

Table S4: Superficial composition of the samples cleaned by the four different methods after 

annealing or after growth, obtained from the survey scan. 

 

 

Figure S15: Scanning electron microscopy picture corresponding to a growth performed on a 

Cu piece half-dipped in the GAA+DW mixture. 
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17) Additional experimental details 

Scanning electron microscopy (SEM)/Energy-dispersive X-ray spectrometry (EDX): 

 

The morphology and the size of the Cu grains and graphene domains are monitored with two 

different microscopes: a Jeol JSM-6010LV InTouchScope at low magnification (operated at 

an accelerating voltage of 5 kV and a spot size between 30 and 50, with a working distance of 

25 mm to increase the field of view, in secondary electron mode) and a Jeol JSM-7500F at 

high resolution (operated at an accelerating voltage of 1 kV and an emission current of 5 µA, 

with a working distance of 3 mm, in secondary electron mode with a low gentle beam of 0.2 

kV applied to the specimen). EDX mapping is performed with the Jeol JSM-7500F at 15 kV 

with a probe current of 1 nA and a resolution of 512×384 px. 

 

Electron-backscattering diffraction (EBSD): 

 

The analysis of the Cu foil crystal orientation is performed using a SEM ZeissSupra55 fitted 

with a HKL-Oxford Instruments EBSD system featuring the Nordlys II camera. Data analysis 

is realized using the associated Channel 5 software suit. EBSD data collection is operated at 

an accelerating voltage of 15 kV, a working distance of 11 mm, and a sample tilt of 70°. The 

out-of-plane inverse pole figure (IPF) maps are in the z direction, perpendicular to the Cu foil 

surface, while the in-plane IPF maps are in the y direction, parallel to the plane of the Cu foil 

(instead, the in-plane IPF maps could also be given in the x direction, the information being 

the same). The zero solutions (electron-backscattered diffraction patterns that cannot be 

indexed due to very poor quality) are replaced by an extrapolation based on the neighboring 

points. 

 
Figure Pixel size [µm2] Raster size % of correct indexation 

2a 4×4 100×100 84 

2c,f 10×10 194×148 97.45 

2d,g 13×13 100×100 95.64 

2e,h 10×10 197×143 86.86 

S4 2×2 150×114 96.78 

S5 12×12 261×194 95.68 

 

Table S5: More details about the different inverse pole figure maps presented in this work. 

 

Low-energy electron diffraction (LEED): 

 

The LEED patterns are acquired in a ultrahigh-vacuum setup after outgassing the samples at 

300 °C for one hour. The energy of the incident electrons is set to 70 eV, with an analysis 

spotsize of ~1 mm. 

 

X-ray photoelectron spectroscopy (XPS): 

 

A ThermoFisher Scientific K-alpha spectrometer is utilized. It is fitted with a 

monochromatized Al Kα1,2 x-ray source and a hemispherical deflector analyzer. The spectra 

are recorded at constant pass energy (150 eV for depth profiling and survey; 30 eV for high 

resolution spectra). A flood gun (low energy electrons and Ar
+
 ions) is used during all the 

measurements. During the sputtering, the Ar
+
 ion gun is operated at an accelerating voltage of 

2 kV, with an erosion time of 5 s per cycle, and the analysis is done in snapshot mode. The 

XPS data are treated with the Avantage software. High resolution spectra are fitted by 

Gaussian-Lorentzian lineshapes with an Avantage “smart” background (i.e. a Shirley 
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background in most cases, or a linear background in case the lineshape decreases with 

increasing binding energy). The diameter of the analyzed surface is 250 µm. 

 

Micro-Raman spectroscopy (µRS): 

 

A LabRam HR 800 confocal laser system from Horiba Jobin Yvon is used for the acquisition 

of the Raman spectra. The measurements are performed at room temperature with a laser 

wavelength of 514 nm in backscattering geometry. The spectra are acquired on a 950 µm by 

1100 µm grid with a spacing of 30 µm between each measurement spot (totalizing 32×37 

spectra). A 100× objective (NA = 0.95) is used to collect the signal. The incident power is 

kept below 1 mW to avoid any heating effect. High resolution (1800 lines/mm) gratings are 

used for the measurements (with a corresponding spectral resolution < 1 cm
-1

). For the data 

analysis, the spectra are first fitted with Lorentzian functions. Then, the full width at half 

maximum, the position, and the integrated intensities of the 2D and G bands are extracted 

from the resulting fits. 

 

Transmission electron microscopy (TEM)/electron diffraction (ED): 

 

The TEM experiments are performed by using a FEI Titan Cube operating at 80 kV and 

equipped with a CS image corrector. The analyses are performed at liquid-nitrogen 

temperature to hinder carbon contamination and electron-beam damages. The effective 

diameter of the area probed on the specimen during nanobeam electron diffraction is around 

150 nm. 
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