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The wealth of technological patterning technologies of deca-nanometer resolution brings opportu-

nities to artificially modulate thermal transport properties. A promising example is given by the

recent concepts of "thermocrystals" or "nanophononic crystals" that introduce regular nano-scale

inclusions using a pitch scale in between the thermal phonons mean free path and the electron

mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders

of magnitude with respect to its bulk value. Beyond the promise held by these materials to over-

come the well-known “electron crystal-phonon glass” dilemma faced in thermoelectrics, the quan-

titative prediction of their thermal conductivity poses a challenge. This work paves the way toward

understanding and designing silicon nanophononic membranes by means of molecular dynamics

simulation. Several systems are studied in order to distinguish the shape contribution from bulk,

ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes.

After having discussed the equilibrium properties of these structures from 300 K to 400 K, the

Green-Kubo methodology is used to quantify the thermal conductivity. The results account for sev-

eral experimental trends and models. It is confirmed that the thin-film geometry as well as the pho-

nonic structure act towards a reduction of the thermal conductivity. The further decrease in the

phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally,

limitations of the model and further perspectives are discussed. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4915619]

Silicon nanoscale structures are currently being investi-

gated from a rather unconventional point of view: thermo-

electric (TE) generation. Indeed, while silicon is known to

be the keystone of today’s information and communication

driving technology, namely, Complementary Metal Oxide

Semiconductor (CMOS), its high Seebeck coefficient,

400 lV K�1 for 1.7� 1019 cm�3 p-doped silicon,1 is rarely

mentioned. As a matter of fact, silicon features a very high

thermal conductivity (148 W m�1 K�1 @ 300 K) such that a

sufficient heat gradient cannot be sustained across devices

based on this material which turns to be a very poor TE ma-

terial. As an example, naturally disordered materials such as

Si1�xGex feature a 20 times lower thermal conductivity2 and

are used in high operating temperature TE generators. Since

the phonon mean free path distribution peaks in the hundreds

of nm range at 300 K, nanoscale patterning, through the

introduction of phonon confinement, surface effects, or inter-

ferences, is an alternative way to obtain artificially such low

thermal conductivity materials. In addition, such a material

could preserve the electric conductivity related to the crystal-

line structure of silicon for the reciprocal reason that the av-

erage electron mean free path is estimated to a few nm at

room temperature.1 These approaches use the transition from

the ballistic to the diffusive regime as a leverage and are of-

ten referred to as phonon engineering. Several reports have

demonstrated such effects in thin-films,3 nanowires,4 and

holey membranes.5,6 Recently, Yu et al. published a thor-

ough study of various silicon based nanostructures among

which a periodic nano-holes membrane exhibits the lowest

conductivity around 2 W m�1 K�1 with low electric proper-

ties degradation.7 Such a material, combined with an effi-

cient membrane design integrated converter, is expected to

push silicon among state-of-the-art TE materials.8

Nevertheless, before the accomplishment of this goal,

some challenges have to be solved such as the establishment

of an efficient and predictive modeling tool for the correct

design of the artificial material. As a matter of fact, the origin

of the 100-fold reduction in the membrane phononic crystals

(PCs) by itself is still debated. While some authors claim

that band folding effects (frequency band gaps and group ve-

locity reduction) sometimes named "coherent effects," play a

major role3,9 in thermal conductivity reduction, others pledge

that the introduction of inclusions, which scale as the bottom

of the thermal conductivity accumulation curve, is the main

explanation.5–7 Indeed, thermal phonons with mean free

paths comprised between 40 nm and 40 lm account for 80%

of silicon thermal conduction.9 In the following, the term

"phononic" has the broader meaning of a structure which

acts on the thermal phonons propagation whether this effect

arise from band folding or scattering by the inclusions. In

semiconductors, near room temperature, thermal conductiv-

ity is dominated by phonon scattering processes. In principle,

thermal conductivity can be derived from the Boltzmann

transport equation (BTE), but it requires a few assumptions

over the phonon dispersion curves and/or the use of ad hoc
semi-empirical models for the computation of phonon life-

time distribution. Plane wave expansion (PWE) and finite

elements methods enable the calculation of the band struc-

tures of phononic crystals. However, the linear elasticity hy-

pothesis cannot account for phonon-phonon interactions thata)jean-francois.robillard@isen.iemn.univ-lille1.fr
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result from anharmonicity and give its finite value to the

thermal conductivity.9 Lattice dynamics offers an alternative

method. It requires to calculate the dynamical force constant

matrix that describes the interactions between atoms and the

successive neighbors in the unit cell in order to calculate the

dispersion curves. Then, phonon lifetimes can be computed

in the frame of the perturbation theory and used as input for

the BTE. Such an analysis can be found for the case of

Lennard-Jones argon.10 This methodology is hardly suitable

for large and complex simulation cells since the dynamical

matrix has to be determined first by another method.

In this work, we chose Molecular Dynamics (MD) com-

bined with the Green-Kubo method to predict lattice thermal

conductivity. Molecular dynamics relies on the use of an

interatomic potential to solve the classical motion equations

and gather statistical thermodynamic data. This method

encompasses all the effects of the anharmonic part of the

potential. Especially, all the changes induced in the phonon

lifetimes and group velocities can be described with no fur-

ther assumptions. MD simulations are performed using the

LAMMPS software.11,12 The environment-dependent intera-

tomic potential (EDIP)13,14 was chosen for its better ability

to reproduce thermal conductivity of bulk silicon with

respect to other models such as the Stillinger-Weber or

Tersoff potentials. A full demonstration of EDIP suitability

for studying silicon bulk thermal conductivity is provided in

Ref. 15. The frequencies extracted from MD simulations and

lattice dynamics calculations are compared with experimen-

tal values, showing the satisfactory agreement of the

obtained phonon dispersion curves. The simulation cells geo-

metries are aimed at describing bulk, membrane, PC, and

phononic membrane (PM) and are schematized in Fig. 1.

The bulk cell is an 8 � 8 � 8 silicon lattice constants cube

with periodic boundaries in all directions. The membrane

cells are 8 � 8 � N parallelepipeds with N¼ 15, 20, and 30,

boundaries are periodic in the x and y directions only. The

PC cells are N � N � N boxes with periodic boundary con-

ditions in all directions; a cylinder of radius R lattice con-

stants depending on the size N is extruded. This cell

describes a 2D N-periodic array of cylinders etched in bulk.

Finally, the PM cell combines the N � N � N geometry and

the periodic boundaries in the x and y directions. The geo-

metrical filling fraction (ff), which is a conventional compar-

ison figure for phononic structure, is equal to pR2/N2. All the

parameters (N, R, ff) are reported in Table I.

The choice of simulating perfectly periodic structures

matches both experimental fabrication constraints and effi-

cient computation time in simulations. The dimensions were

chosen as a tradeoff between reasonable computation time

and meaningful dimensions. Indeed, the 15 lattice constants

correspond to a thickness of 8.5 nm which is the experimen-

tal state-of-the-art for ultrathin silicon membranes.16

However, the lateral dimensions are still low as compared to

actual phononic materials for which pitch scales as 40 nm at

best.7,17

The simulation time step is 0.5 fs. A first simulation

stage, using NPT ensemble with a Nos�e-Hoover thermostat

at T¼ 300, 350, and 400 K and barostat at zero pressure,

aims at finding the equilibrium configurations. Indeed, the

interfaces introduce local stress, which need to be

unclenched before further analysis. During this stage, the

cell dimensions in all directions are averaged until equilib-

rium is reached (from 5 to 10 ns) in order to determine the

lattice constant. In the bulk case, the three dimensions are

coupled to simulate a hydrostatic pressure tensor. In all other

cases, since the cells have different boundary conditions

along the z axis, the x and y dimensions are coupled while

the z dimension is independent. Having obtained an equilib-

rium configuration, the velocities are then randomized fol-

lowing a Gaussian distribution, in order to simulate ten

independent systems for each set of parameters and compute

satisfactory statistics. An additional NVT 10 ps run is then

applied before the NVE ensemble is established and the heat

current autocorrelation function is accumulated following

the Green-Kubo formalism until sufficient convergence

(10 ns). More details about this methodology can be found in

Ref. 18.

Figure 2 shows a set of simulation summarizing the

results. First, the bulk value of the silicon thermal conductiv-

ity is well reproduced.19 At temperatures higher than 300 K,

FIG. 1. MD simulation cells used in this work to describe: (a) Bulk silicon,

(b) membranes, (c) phononic crystals with infinite z-axis dimensions, and (d)

phononic membranes. The figures X � Y � Z denotes the cells dimensions

in terms of silicon lattice constants.

TABLE I. Cells dimensions, filling fraction, and simulated thermal conduc-

tivities at 300 K.

Type/boundaries

Size

N

Radius

R

ff

(%)

j (W/m/K)

p p p

j (W/m/K)

p p s

Bulk 8 � 8 � 8 … … … 165.7 …

Membrane8 � 8 � N 15 … … … 44.9

20 … … … 54.2

30 … … … 59.3

PC and PMN � N � N 15 3 12.57 19,82 12,03

15 4 22.34 9.51 7.22

15 5 34.91 5.76 4.11

15 6 50.27 2.24 2.36
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the thermal conductivity of semiconductors is known to

decay following a power law:20

j ¼ j300K
T0

T

� �a

; (1)

where j300K is the thermal conductivity at T0¼ 300 K.

Equation (1) has been plotted using the coefficient a¼ 1.65

from Palankovski’s work.21 The agreement between simula-

tion and this model is remarkable for bulk. For the mem-

branes and phononic crystals, the accordance remains within

the error bars. Though, an effect is clearly seen that flattens

the thermal conductivity curve as a function of temperature.

Such a behavior is well known to occur in low dimension sil-

icon structures22 and it is noticeable that it is accounted for

by the simulation procedure. Indeed, tuning down the a coef-

ficient as indicated in Figure 2 enables a precise fitting of the

results. This procedure could provide insight about the way

anharmonic processes are affected by dimensionality since

the exact value of a is mainly governed by the third and

fourth order anharmonic parts of the potential.23

On another hand, Figure 2 shows a decrease of the thermal

conductivity from bulk to thin film geometry (44.9 W m�1

K�1) and phononic crystal geometries (5.76 W m�1 K�1). It is

noticeable that, despite the phononic crystal being infinite

along the z axis, this configuration achieves a 30 times reduc-

tion of j with respect to bulk. The same order of magnitude is

obtained for all phononic crystals whatever the pitch. This

result supports several experimental observations of reduced

thermal conductivity in relatively thick silicon membranes6

and is of great relevance for practical use in the frame of

micro-integrated thermoelectric devices.8,17 Finally, a further

reduction is observed for phononic membranes (4.11 W m�1

K�1), which demonstrates that both effects cumulate in such

systems. This last result is all the more relevant that it takes

into account and evaluate the respective contributions of the

thin film geometry and the phononic structure with no need for

further hypothesis or ad hoc parameter.

Detailed results for plain membranes are shown in Fig. 3.

As expected, the thermal conductivity of thinner membranes

is reduced. This is usually explained in terms of phonon con-

finement and surface scattering that limits the thermal pho-

nons mean free path. The same trend is noticed for all

temperatures and reproduced using the Fuchs-Sondheimer

model24,25 (Eq. (1), solid line in Fig. 3)

jmemb:

jbulk
¼ 1� 3 1� pð Þ

2d

� �
�
ð1

1

1

n3
� 1

n5

� �
� 1� e�

t
Kn

1� pe�
t
Kn
� dn;

(2)

where t is the thickness, K¼ 300 nm is the mean free path at

300 K (Ref. 21), and p¼ 0.75 is the fraction of phonons spec-

ularly reflected at the boundaries.

Figure 4 stresses the influence of the holes on thermal

conductivity. It is worth noticing how increasing the filling

FIG. 2. Simulated thermal conductivity as a function of temperature (plain

symbols). The results are fitted according to the model described by Eq. (1)

(solid lines). A comparison to several experimental results from literature19

is shown (white symbols).

FIG. 3. Thermal conductivity as a function of membranes thickness for three

different temperatures. The results for 300 K are fitted using the Fuchs-

Sondheimer model24,25 for a mean free path of 300 nm and a value of the

specularity parameter p¼ 0.75. The value of p chosen is in agreement with

calculation and experimental measurements by Maldovan.3

FIG. 4. Thermal conductivity as a function of filling fraction ff for periodic

patterns in bulk (squares) and thin film membranes (circles) at 300 K.

Maxwell-Eucken and Vegard models of porous media are indicated and

clearly show that phononic engineering is far more efficient than the sole

material removal effect. A comparison to several experimental results from

literature5,7,27 is shown (white symbols).
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fraction (by increasing the radius of the enclosures) induces

a further reduction of the thermal conductivity. Because the

Green-Kubo methodology provides quantitative information

from a statistical analysis, it is difficult to discriminate the

microscopic processes leading to the conductivity reduction.

The commonly cited effects are band gap opening, group ve-

locity reduction due to band folding, and increased diffusion

on boundaries. Band gaps usually arise in the lower fre-

quency range of the band folded dispersion curves. Thus,

even a pitch as low as 8.5 nm would not produce a gap above

1 THz. Furthermore, square lattices symmetry is not usually

suitable to obtain large band gaps,26 unless very high filling

fractions are achieved. It is unlikely that the structures stud-

ied here exhibit any phononic band gap. Finally, the conse-

quence of local disorder in the periodic structure is the

introduction of propagating modes in the band gap and

would reduce its efficiency. Another common interpretation

is given in terms of reduced limiting dimensions of the struc-

ture.9 Indeed, as the radius increases, the space between two

enclosures forms a bottleneck. The reduced neck size (dis-

tance between two consecutive holes) entails an increase of

scattering and the consequent decrease of the phonon mean

free path. Finally, the mostly cited effect provoking a 2-

order of magnitude decrease of j is the band flattening due

to the Brillouin zone folding, related to the artificial crystal

periodicity.9 The methodology described in this letter cor-

rectly encompasses the effects of the thin film geometry, cy-

lindrical enclosures, and possible periodic effects. However,

the two later contributions remain intricate. Indeed, discrimi-

nating the effect of periodicity with respect to scattering on

the cylindrical patterns would require to relax periodic

boundary conditions and to simulate a randomized holes dis-

tribution at high computational cost.

From the quantitative point of view, the order of magni-

tude matches experiments such au Yu et al.7 (1.9 W m�1 K�1)

and Tang et al.5 (from 1.73 to 10.23 W m�1 K�1). Though,

several discrepancies exist between these experiments and the

systems studied in this paper. The most critical being the lim-

ited dimensions of the simulation cell related to computational

limitations. Interestingly, all the remaining effects that could

be taken into account should further hinder the phonon trans-

port and reduce thermal conductivity. Green-Kubo methodol-

ogy provides a classical description of specific heat for

temperatures below the Debye’s one. Thus, it slightly overes-

timates the thermal conductivity, which could be compensated

by quantum corrections. Defects, impurities, and isotopic

composition are known to be other factors toward low con-

ductivity. Last but not least, the native silicon dioxide layer

formed at the silicon surfaces exposed to air could likely

account for the difference between the plain silicon conductiv-

ity modeled with MD and the value obtained by experiments.

All these effects can be appropriately treated in the frame of

MD simulations or estimated. Thus, better matching of simu-

lated values with respect to experiments mainly relies on the

capacity to achieve realistic cell dimensions that in turn

require sufficient computation capability.

In summary, the impressive reduction of silicon thermal

conductivity due to nanoscale periodic patterning is well repro-

duced by means of a Green-Kubo MD methodology using the

EDIP potential. Furthermore, the results highlight the

suitability of MD toward quantitative comparison to experi-

mental values. Neither assumptions on the phonon distribution

nor on the transport mechanisms are necessary. The method is

demonstrated to reproduce several experimental trends, such

as the temperature and the dimensionality effects, which shed

light onto the thermal transport in nanoscale systems. The find-

ings clearly show that the phononic structure accounts for a

significant part of the thermal conductivity reduction with

respect to the thin film geometry. This fact is in agreement

with several experimental reports and is of crucial importance

for application in thermoelectric device design.
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