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Abstract—This paper deals with a linear optimization problem
with uncertain objective function coefficients modeled by possi-
bility distributions. The fuzzy robust optimization framework
is applied to compute a solution. Namely, the necessity degree
that the objective value is lower than a given threshold is
maximized. The aim of this paper is to take the knowledge on
dependencies between the objective coefficients into account by
means of a family of copula functions. It is shown that this new
approach limits the conservatism of fuzzy robust optimization,
better evaluates possibility distributions for the values of the
objective function and do not increase the complexity of the
problem.

Index Terms—robust optimization; possibility theory; random
fuzzy set

I. INTRODUCTION

In this paper we study the following optimization problem

with uncertain objective function coefficients:

min c̃ccTxxx,

s.t. aaaTi xxx ≥ bi i ∈ [m],
xxx ≥ 000.

(1)

in Ω such N(A) ≤ Pr(A) ≤ Π(A) for every A ⊆ Ω, where

Π(A) and N(A) are the possibility and necessity degrees of A,

respectively. Thus Π(A) and N(A) are upper and lower bounds

on the probability of A (see, e.g [2]).

Let U ⊆ Rn be uncertainty set containing possible realiza-

tions (scenarios) of uncertain objective function coefficients c̃cc.

It is assumed that a possibility distribution πc̃cc, πc̃cc : U → [0, 1],
is specified in U . It induces a possibility distribution πc̃ccTxxx,

πc̃ccTxxx : R → [0, 1], of uncertain objective function values c̃ccTxxx

for a given feasible solution xxx. Several approaches to handle

uncertainty in (1) have been proposed in the existing literature.

One of the most common approaches is to provide a goal

(budget) g and compute a solution whose cost is lower than g

under possible realizations of c̃cc - both in robust (possibilistic)

and stochastic settings (see, e.g., [3]–[5]). In robust possi-

bilistic optimization the objective is to maximize the degree

of certainty that a solution cost is lower than g, namely the

necessity based criterion: N(c̃ccTxxx ≤ g) = 1 − sup{πc̃ccTxxx(u) :
u > g} is maximized (see, e.g. [6]). Thus a robust possibilistic

counterpart of problem (1) can be formulated as follows:

max N(c̃ccTxxx ≤ g)
s.t. aaaTi xxx ≥ bi i ∈ [m],

xxx ≥ 000.
(2)

In our model the uncertainty of cost coefficients c̃j , j ∈ [n],
is represented by triangular fuzzy intervals c̃j = (ĉj −
∆−

j , ĉj , ĉj + ∆+
j ), where ĉj is the nominal value (the most

possible value of c̃j) and ∆−
j and ∆+

j are the maximal devi-

ations of values of c̃j from ĉj . The membership function πc̃j

of fuzzy interval c̃j is interpreted as a possibility distribution

for c̃j , obviously πc̃j (ĉj) = 1.

A multivariate possibility distribution πc̃cc in uncertainty set U
can be built from marginal possibility distributions for cost

coefficients πc̃j , j ∈ [n]. Typically the dependencies among

the uncertain cost coefficients c̃j are ignored and usually a

multivariate distribution πc̃cc with the minimum aggregator is

chosen as a precaution (see, e.g., [3], [7], [8]). In this paper,

we show how to build a more precise multivariate possibility

distribution πc̃cc by taking into account the available knowledge

on both positive and negative dependencies between c̃j , j ∈
[n]. In order to do this we adopt an approach used in the

In formulation (1), xxx is n-vector of nonnegative decision 
variables, ccc̃ is n-vector of uncertain cost function coefficients, 
aaai = (ai1, . . . , ain) is n-vector of deterministic coefficients of 
the ith constraint, i ∈ [m] ([m] denotes the set {1, . . . , m}). 
We assume that the right-hand side m-vector bbb is precisely 
known.

A method of solving (1) depends on the information avail-

able on the objective function coefficients. This information 
can be imprecise. One of the traditional frameworks to handle 
imprecision is the possibility theory [1]. Let Ω be a set of 
elementary events. The possibility theory enables to encode a 
family of probability distributions in Ω thought a possibility 
distribution π, π : Ω → [0, 1], which assigns to each 
elementary event ω ∈ Ω a possibility degree π(ω) (see, 
e.g., [2]). The value π(ω) = 1 means that ω is totally possible 
and π(ω) = 0 means that ω is impossible. Any subset A of 
Ω is called an event. The possibility distribution π induces 
two dual measures defined on the set of subsets of Ω, namely 
the possibility and the necessity ones, denoted by Π and N, 
respectively, and encodes a family of probability distributions
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probabilistic context, which is based on copulas (see, e.g., [9],

[10]) and apply it in the possibilistic one.

II. COPULAS IN NUTSHELL

In this section we briefly recall the notion of a copula and

some properties, following [10], [11], that are important for its

understanding and interpretation. In the probabilistic setting

a copula C : [0, 1]n → [0, 1] is a cumulative distribution

function with marginals uniformly distributed on [0, 1]. In the

analytical one a copula function can characterized as follows.

Theorem 1: Let C(uuu) = C(u1, . . . , un). Function C is a

copula if and only if the following conditions hold:

(i) C(1, . . . , 1, uj , 1, . . . , 1) = uj for every j ∈ [n], where

uj ∈ [0, 1],

(ii) C(u1, . . . , un) is nondecreasing in each component uj ,

(iii) for each hyperrectangle H ⊆ [0, 1]n the C-volume of H

is nonnegative, i.e.
∫
H
dC(uuu) ≥ 0.

Let Cn denote the set of n- dimensional copulas. Theorem 1,

implies Cn is a convex set. Important examples of copu-

las are: the independence copula
∏

i∈[n] ui, positive depen-

dence copula (or comonotonicity copula) mini∈[n],{ui} and

negative dependence copula (or countermonotonicity copula)

W (u1, u2) = max{u1 + u2 − 1, 0}. The following theorem

gives upper and lower bounds in Cn.

Theorem 2 (Fréchet-Hoeffding bounds): For any copula C ∈
Cn and any uuu ∈ [0, 1]n the following inequalities hold:

W (uuu) ≤ C(uuu) ≤ M(uuu),

where W (uuu) = max{
∑

j∈[n] uj − n + 1, 0} and M(uuu) =
minj∈[n]{uj}.

It is worth pointing out that W is not a copula for n ≥ 3.

We now recall the fundamental theorem of copulas (Sklar’s

Theorem) that provides the theoretical foundation for their

applications. It elucidates the role that copula plays in the

relationship between multivariate distribution functions and

their univariate margins.

Theorem 3 (Sklar): If Fi(cj) = Pr(Cj ≤ cj), j ∈ [n],
are univariate distribution functions, where Cj , j ∈ [n], are

random variables, and C ∈ Cn, then a joint distribution

function F : [−∞,+∞]n → [0, 1] defined as follows:

F (ccc) = C(F1(c1), . . . , Fn(cn)) = Pr(
⋂

j∈[n]

{Cj ≤ cj})

is an n-dimensional distribution function with margins Fj , j ∈
[n].

One can also give a version of Theorem 3 formulated in

terms of survival functions F i(cj) = Pr(Cj > cj), j ∈ [n],
that has applications in risk models. Thus

F (ccc) = C̆(F 1(c1), . . . , Fn(cn)) = Pr(
⋂

j∈[n]

{Cj > cj})

for some copula C ∈ Cn called the survival copula.

III. ROBUST POSSIBILISTIC OPTIMIZATION USING

COPULAS

Suppose that we are given a possibility distribution πc̃cc :
Rn → [0, 1] of an uncertain vector c̃cc (an uncertain cost

vector). Without loss of generality we can assume that πc̃cc is a

possibility distribution in uncertainty set U ⊆ Rn. Then using

the possibility theory (see, e.g., [1]) one can build possibility

and necessity measures, Π and N. Therefore, the degree of

possibility and the degree of necessity of event “c̃cc ∈ A”, where

A is a subset of U , are as follows:

Π(c̃cc ∈ A) = sup
uuu∈A

πc̃cc(uuu), (3)

N(c̃cc ∈ A) = 1−Π(c̃cc 6∈ A) = 1− sup
uuu6∈A

πc̃cc(uuu). (4)

On the other hand if Π(c̃j ∈ Aj), j ∈ [n], are given, where Aj

is the projection of A on the jth dimension, then Π(c̃cc ∈ A)
and N(c̃cc ∈ A) can be built using the copula M , which is a

common approach, namely

Π(c̃cc ∈ A) = Π(
⋂

j∈[n]

{c̃j ∈ Aj}) = min
j∈[n]

Π(c̃j ∈ Aj), (5)

N(c̃cc ∈ A) = 1− min
j∈[n]

Π(c̃j 6∈ Aj). (6)

In fact, in context of ignorance on copula/survival copula func-

tions we want to guarantee that Π (resp. N) is an upper bound

(resp. lower bound) over all possibles copula/survival functions

hence n-dimensional distributions. This is very extreme point

of view since it means that in case of possibility (resp.

necessity) all good (resp. bad) things will occur almost surely

simultaneously. To moderate this point of view, we propose

to use knowledge on copula function and marginal possibility

distribution to evaluate the possibility and the necessity mea-

sure for a n-dimensional distribution. Accordingly, suppose

that univariate possibility distributions πc̃j of c̃j , j ∈ [n] are

given. They induce univariate functions: Πj(c̃j ≤ cj) and

Nj(c̃ ≤ cj) as follows:

Πj(c̃j ≤ cj) = sup
u:u≤cj

πc̃j (u), (7)

Nj(c̃ ≤ cj) = 1−Πj(c̃j > cj) = 1− sup
u:u>cj

πc̃j (u). (8)

In n-dimensional case we have a similar relation, namely

N(c̃cc ≤ ccc) = N(
⋂

j∈[n]

{c̃j ≤ cj}) = 1−Π(c̃cc > ccc)

= 1−Π(
⋂

j∈[n]

{c̃j > cj}).

For simplicity of notation, we write Πj(cj) (resp. Πj(cj)
instead of Πj(c̃j ≤ cj) (resp. Πj(c̃j > cj)) and similarly for

the n-dimensional case, we write Π(ccc) (resp. Π(ccc)) instead

of Π(c̃cc ≤ ccc) (resp. Π(c̃cc > ccc)). Furthermore, from now on,

we call Πj(cj) (resp. Πj(cj) and Π(ccc) (resp. Π(ccc)) possibility

distribution functions (resp. possibility survival functions).



By Theorem 3, we can now construct a possibility distri-

bution function Π(ccc) and a possibility survival function Π(ccc):

Π(ccc) = C(Π1(c1), ...,Πn(cn)), (9)

Π(ccc) = C̆(Π1(c1), . . . ,Πn(cn)), (10)

where C and C̆ are any copulas from Cn. Note that (9)

and (10) do not precisely define an n-dimensional possibility

distribution function (resp. possibility survival function) but

they define a set of possibility distribution functions (resp.

possibility survival functions). Thus let P(C,C̆) be the set of

n-dimensional possibility distributions πc̃cc that induce Π(ccc) and

Π(ccc) satisfying, respectively, equations (9) and (10). We now

claim that P(C,C̆) is not empty. The λ-cuts defined as follows:

{ccc ∈ Rn :C(Π1(c1), . . . ,Πn(cn)) ≥ λ,

C̆(Π1(c1), . . . ,Πn(cn)) ≥ λ} (11)

satisfy (9) and (10). Now we need to show that a distribution

built from these λ-cuts is a possibility distribution, i.e. the

λ−cuts must satisfy the inclusion property and there exists

ccc ∈ U whose possibility degree is equal to 1.

Proposition 1: The λ-cuts defined by (11) satisfy the inclu-

sion property.

Proof: See Appendix.

Proposition 2: The λ-cut for λ = 1 is not empty.

Proof: See Appendix.

We thus get the following lemma

Lemma 1: P(C,C̆) is not empty.

We are now ready to give the possibility and necessity

degrees of event “c̃ccTxxx ≤ g” for a given xxx.

Proposition 3: Let xxx be a feasible solution to (1). For any

πc̃cc ∈ P(C,C̆), the possibility degree of event “c̃ccTxxx ≤ g” is

Π(c̃ccTxxx ≤ g) = sup
ccc:cccTxxx≤g

C(Π1(c1), . . . ,Πn(cn)).

Proof: See Appendix.

Proposition 4: Let xxx be a feasible solution to (1). For any

πc̃cc ∈ P(C,C̆), the necessity degree of event “c̃ccTxxx ≤ g” is

N(c̃ccTxxx ≤ g) = 1− sup
ccc:cccTxxx>g

C̆(Π1(c1), . . . ,Πn(cn)).

Proof: See Appendix.

In this paper, we propose to use a parametric copula

that takes into account the knowledge about positive/negative

dependencies among uncertain cost coefficients. The copula

can be defined as follows:

Definition 1: Hα(uuu) = αW (uuu) + (1 − α)M(uuu) for every

α ∈ [0, 1].
The parameter α models the belief that the copula is the

most negative dependence copula for a given W (uuu), while

1 − α is the belief that the copula is the most positive

dependence copula for a given M(uuu). Hence, if α = 0 we

come back to the classical one which considers positives

dependencies among uncertain cost function coefficients. The

cost function coefficients increase simultaneously. If α = 1,

we have negatives dependencies among uncertain cost function

coefficients. Thus when one cost function coefficient increases

the others decrease. Accordingly, parameter α is the degree

that dependencies are positive.

Now we show a parametric function Hα which can be used

to compute the necessity degree of event “c̃ccTxxx ≤ g” for a

given xxx.

Proposition 5: For n = 2 Hα(uuu) = αW (uuu)+ (1−α)M(uuu)
is a copula function for every α ∈ [0, 1].

Proof: See Appendix.

Proposition 6: For any n ≥ 3, any uuu ∈ [0, 1]n and any

α ∈ [0, 1], there exists a copula C ∈ Cn such that C(uuu) =
Hα(uuu) = αW (uuu) + (1− α)M(uuu).
Propositions 5, and 6 and (10) yield a necessity function:

Nα(c̃cc ≤ ccc) = N(ccc) = 1−Hα(Π1(c1), . . . ,Πn(cn))

and the necessity degree of event “c̃ccTxxx ≤ g” for a given xxx:

Nα(c̃cc
Txxx ≤ g) = 1− sup

ccc:cccTxxx>g

Hα(Π1(c1), . . . ,Πn(cn)). (12)

Proposition 7: Let ǫ ∈ [0, 1]. Then Nα(c̃cc
Txxx ≤ g) > 1 − ǫ

iff for each ccc such that Hα(Π1(c1), . . . ,Πn(cn)) > ǫ , the

constraint cccTxxx ≤ g is satisfied.

Proof: See Appendix.

Proposition 7 now shows that the problem (2) with Nα(c̃cc
Txxx ≤

g) can be reformulated:

min ǫ

s.t. max
ccc:Hα(Π1(c1),...,Πn(cn))≥ǫ

cccTxxx ≤ g,

aaaTi xxx ≥ bi i ∈ [m],
xxx ≥ 000, ǫ ∈ [0, 1].

(13)

Note that the problem (13) contains a maximization prob-

lem maxccc:Hα(Π1(c1),...,Πn(cn))≥ǫ ccc
Txxx called adversarial prob-

lem. For simplicity, we denote by Hα
ǫ the set {ccc :

Hα(Π1(c1), . . . ,Πn(cn)) ≥ ǫ}. Now the adversarial problem

has following form:

ADV: maxccc∈Hα
ǫ
cccTxxx (14)

where xxx is a given feasible solution. In the next section we

show how to solve the adversarial problem.

IV. RESOLUTION OF ADVERSARIAL PROBLEM

The adversarial problem (14) is a maximization of cccTxxx over

the set Hα
ǫ . Thus a structure of the feasible solution set Hα

ǫ

is essential for solving the problem. Let us study the set Hα
ǫ .

We first look at the extreme cases, namely where α = 0
and α = 1. Let us define two sets:

Mǫ =

{
{×j∈[n](−∞, ĉj + (1− ǫ)∆+

j ]} if ǫ ∈ (0, 1],

Rn if ǫ = 0,

and

Wǫ =





{×j∈[n](−∞, ĉj + (1− uj)∆
+
j ] :∑

j∈[n] uj − n+ 1 = ǫ,uuu ∈ [0, 1]n if ǫ ∈ (0, 1],

Rn if ǫ = 0.

From definition of Hα we get H0
ǫ = Mǫ and H1

ǫ = Wǫ.



Proposition 8: The maximum and minimum values of W

and M are:

WM
α,ǫ = min{1,

ǫ

α
},MM

α,ǫ = min{1,
ǫ

1− α
}

Wm
α,ǫ =

ǫ

α
+

α− 1

α
,Mm

α,ǫ =
ǫ

1− α
−

α

1− α
.

Proof: See Appendix.

We now turn to the case α ∈ (0, 1). In this case, W and M

can take more than one value. More precisely, they belong,

respectively, to intervals [Wm
α,ǫ,W

M
α,ǫ] and [Mm

α,ǫ,M
M
α,ǫ] com-

puted by Proposition 8.

Theorem 4: A vector ccc ∈ Hα
ǫ iff there exits ζ ∈ [0, 1] such

that ccc ∈ WζWM
α,ǫ+(1−ζ)Wm

α,ǫ and ccc ∈ MζMm
α,ǫ+(1−ζ)MM

α,ǫ .

Proof: See Appendix.

Theorem 4 gives a characterization of the set Hα
ǫ , i.e

Hα
ǫ =

⋃

ζ∈[0,1]

WζWM
α,ǫ+(1−ζ)Wm

α,ǫ ∩MζMm
α,ǫ+(1−ζ)MM

α,ǫ .

Example 1: We are given two cost function coefficients c̃1 =
(12, 20, 25) and c̃2 = (10, 15, 25), with α = 0.2 and ǫ =
0.5. Thus we have Wm

α,ǫ = 0, WM
α,ǫ = 1, Mm

α,ǫ = 0.375 and

MM
α,ǫ = 0.625. Fig. 1 presents the set H0.2

0.5, H0.5
0.5 and H0.8

0.5.

The set Hα
ǫ is depicted at Fig. 2 for α = 0.2. Note that the
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set Hα
ǫ is not convex.

We now characterize a set of possible realizations (sce-

narios), ccc, of uncertain cost coefficients c̃cc in the adversarial

problem, this allows us to show how to solve it. We need to

consider three cases (in each case the set is specified by linear

constraints):

Case 1 (W = 0 and M = MM
α,ǫ):

C1 = {ccc : cj ≤ ĉj + (1−MM
α,ǫ)∆

+
j , j ∈ [n]},

Case 2 (M = 0 and W = WM
α,ǫ):

C2 = {ccc :
∑

i∈[n]

ui −WM
α,ǫ = n− 1,

cj ≤ ĉj + (1− uj)∆
+
j , j ∈ [n],uuu ∈ [0, 1]n},
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Case 3 (W > 0 and M > 0):

C3 = {ccc :
∑

i∈[n]

ui − (ζWM
α,ǫ + (1− ζ)Wm

α,ǫ) = n− 1,

cj ≤ ĉj + (1− uj)∆
+
j ,

cj ≤ ĉi + (1− (ζMm
α,ǫ + (1− ζ)MM

α,ǫ))∆
+
j ,

j ∈ [n],uuu ∈ [0, 1]n, ζ ∈ [0, 1]}.

Hence, depending on the maximum and minimum values of

W and Mand the value of α we get the following result:

Theorem 5: The ADV problem: max
ccc∈Hα

ǫ

cccTxxx, α ∈ [0, 1] is

equivalent to:

• max
ccc∈C1

cccTxxx if α = 0,

• max
ccc∈C2

cccTxxx if α = 1,

• max
ccc∈C3

cccTxxx if Wm
α,ǫ 6= 0 and Mm

α,ǫ 6= 0

• max{max
ccc∈C1

cccTxxx,max
ccc∈C2

cccTxxx,max
ccc∈C3

cccTxxx} if Wm
α,ǫ = 0 and

Mm
α,ǫ = 0,

• max{max
ccc∈C1

cccTxxx,max
ccc∈C3

cccTxxx} if Wm
α,ǫ = 0 and Mm

α,ǫ 6= 0,

• max{max
ccc∈C2

cccTxxx,max
ccc∈C3

cccTxxx} if Wm
α,ǫ 6= 0 and Mm

α,ǫ = 0.

V. RESOLUTION OF FUZZY LINEAR PROBLEM WITH

COPULA Hα

Before we propose an algorithm for solving the prob-

lem (13), we will focus on the problem (13) for a fixed ǫ. Thus

it boils down to checking if constraint maxccc∈Hα
ǫ
cccTxxx ≤ g is

satisfied. For the sake of brevity, we only consider the case

when Wm
α,ǫ 6= 0 and Mm

α,ǫ 6= 0, the other cases can handled

in a similar manner. Consider the following mathematical



programming problem:

min hǫ (15)

s.t. max
ccc∈C1

cccTxxx ≤ hǫ, (16)

max
ccc∈C2

cccTxxx ≤ hǫ, (17)

max
ccc∈C3

cccTxxx ≤ hǫ, (18)

aaaTi xxx ≥ bi i ∈ [m], (19)

xxx ≥ 000. (20)

From theorem 5 it follows that maxccc∈Hα
ǫ
cccTxxx ≤ g is satisfied

if an optimal value of hǫ, in problem (15)-(18) for a fixed xxx,

is less than or equal to g. Furthermore it is easy to give a

linear programming formulation of the problem (15)-(18) by

dualizing the left hand sides of the constraints (16), (17) and

(18).

We are now ready to propose an algorithm for solving

problem (13), which is based on the standard binary search in

[0, 1] (the interval of possible values of ǫ) due to the fact that

hǫ is nonincreasing function of ǫ. We call it the binary search

based algorithm. In order to find an optimal (x∗, ǫ∗) with a

given error tolerance ξ > 0, we seek at each iteration, for a

fixed ǫ, a feasible solution xxx for which hǫ ≤ g is satisfied. This

which boils down to solving the linear programing formulation

of the problem (15)-(20). The running time of the above

algorithm is O(I(T ) log ξ−1) time, where I(|T |) is the time

required for solving the linear program corresponding to (15)-

(20).

VI. ILLUSTRATIVE EXAMPLE

Consider the following linear problem:

max N(c̃ccTxxx ≤ g)
s.t.

∑
j∈[3] xj = 2,

xj ∈ [0.5, 1], j ∈ [3],

(21)

where c̃1 = (18, 20, 20), c̃2 = (10, 15, 20), c̃3 = (5, 10, 22)
and g = 34. To solve the problem we used the binary search

based algorithm. Let us first focus on two extremes cases,

i.e. for α = 0 an optimal solution is xxx(1) = [0.5, 0.5, 1]
with the necessity degree N(̃ccc

T
xxx(1) ≤ g) ≈ 0.52 and for

α = 1 an optimal solution is xxx(2) = [0.5, 1, 0.5] with the

necessity degree N(̃ccc
T
xxx(2) ≤ g) ≈ 0.834. Fig. 3 shows

that dependencies influence strongly the possibility distribution

of cost. Moreover, it can be seen that the necessity degree

depends on the knowledge on the dependencies, positive or

negative. If the costs coefficients increase simultaneously the

certainty to have a solution with cost lower than 34 is low.

On the contrary, when one cost coefficient increases and the

others decrease the necessity degree to have a solution with

cost lower than 34 is high.

Let us now analyze the impact of the strength α ∈ [0, 1] of

the positive/negative dependencies. Fig. 4 shows the evolution

of the necessity degree as function of α. As expected the

necessity degree increases when α increases. So adding the

Fig. 3. Upper side of possibility distribution for positives/negatives depen-
dencies

Fig. 4. Necessity degree

knowledge on the dependencies allows us a better estimation

of the necessity degree.

Fig. 5 shows the upper bound of the possibilities distribution

of an optimal solution for different values of α. Fig. 6 below

shows an optimal solution for different values of α. The

dependencies influence the preference between x3 and x2

when α increases. The value of x3 passes smoothly from 1 to

0.5 when x3 passes from 0.5 to 1.

Fig. 5. Upper side of possibility distribution of cost for an optimal solution

VII. CONCLUSION

In this paper we have proposed a new model to take into

account the knowledge on uncertain cost function coefficient

dependencies by a generalization of copula functions to the



Fig. 6. Evolution of an optimal solution

possibilistic case. It has turned out that taking into account

these dependencies in a linear programming problem with

uncertain cost coefficients in the objective does not increase

the computational complexity, i.e. a resulting problem remains

a linear programming one. Moreover, we have shown that

taking into account dependencies allows better estimation

of the necessity measure and has influence on choosing an

optimal solution.
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APPENDIX

Proof of Proposition 1: Write ΩC
λ = {ccc :

C(Π1(c1), . . . ,Πn(cn)) ≥ λ} and ΩC̆
λ = {ccc :

C̆(Π1(c1), . . . ,Πn(cn)) ≥ λ}. From the definition of the cop-

ula (see Sect. II) we get ΩC
λ1

⊆ ΩC
λ2

for every λ1, λ2 ∈ [0, 1]

such that λ1 ≥ λ2 (resp. ΩC̆
λ1

⊆ ΩC̆
λ2

for every λ1, λ2 ∈ [0, 1]

such that λ1 ≥ λ2). Hence (ΩC
λ1

∩ ΩC̆
λ1
) ⊆ (ΩC

λ2
∩ ΩC̆

λ2
) for

every λ1, λ2 ∈ [0, 1] such that λ1 ≥ λ2.

Proof of Proposition 2: Let be ccc∗ a vector such that

πc̃j (c
∗
j ) = 1, j ∈ [n]. Such a vector exists since univariate

possibility distributions are normalized. From the definition of

the copula (see Sect. II), we obtain C(Π1(c
∗
1), . . . ,Πn(c

∗
n)) =

1 and from the continuity of πc̃j we have Πj(c
∗
j ) = 1 for

every j ∈ [n]. Again the definition of the copula function

yields C̆(Π1(c
∗
1), . . . ,Πn(c

∗
n)) = 1. So the λ-cut for λ = 1

have at least one ccc∗.

Proof of Proposition 3: Our proof starts with the ob-

servation that for each πc̃cc ∈ P(C,C̆) we have the equality:

supccc:cccTxxx≤g π(ccc) = supccc:cccTxxx≤g Π(c̃cc = ccc). Furthermore since

xxx ≥ 000 and cccTxxx ≤ g, the constraint ccc′Txxx ≤ g is satis-

fied for every ccc′ such that ccc′ ≤ ccc. Hence πc̃cc ∈ P(C,C̆)

supccc:cccTxxx≤g Π(c̃cc = ccc) = supccc:cccTxxx≤g Π(c̃cc ≤ ccc). From (9)

it follows that for each πc̃cc ∈ P(C,C̆) Π(̃ccc
T
xxx ≤ g) =

supccc:cccTxxx≤g C(Π1(c1), . . . ,Πn(cn)).
Proof of Proposition 4: A proof is similar to the one

of Proposition 3. It is sufficient to use the possibility and

necessity measure relationship together with (10).

Proof of Proposition 5: Since W (uuu) and M(uuu) are

copulas for n = 2, their convex combination is a copula as

well (see [9], [11]).

Proof of Proposition 6: From [10, Theorem 2.10.13] it

follows that there exists a copula C ∈ Cn, n ≤ 3, (which

depends on uuu) such that C(uuu) = W (uuu) for any uuu ∈ [0, 1]n.

M(uuu) is a copula. Hence their convex combination is a copula

as well (see [9], [11]).

Proof of Proposition 7: 1 −
supccc:cccTxxx≥g Hα(Π1(c1), . . . ,Πn(cn)) > 1 − ǫ ⇐⇒

supccc:cccTxxx>g Hα(Π1(c1), . . . ,Πn(cn)) < ǫ ⇐⇒ ∄ccc : cccTxxx > g

with Hα(Π1(c1), . . . ,Πn(cn)) ≥ ǫ.

Proof of Proposition 8: The set of values of M and W

can be represented by a set of linear constraints:

ǫ = αW + (1− α)M,

W,M ∈ [0, 1].
(22)

We can see that this system of equation is never empty (W =
M is always a solution). Moreover the maximum value of W

for a given α, ǫ noted WM
α,ǫ is obtain for the minimum value

of M noted Mm
α,ǫ and vice versa.

Proof of Theorem 4: We start with some observations,

namely for each ǫ1, ǫ2 ∈ [0, 1] such that ǫ1 > ǫ2 we have:

• WM
α,ǫ1

≥ WM
α,ǫ2

,

• Wm
α,ǫ1

≥ Wm
α,ǫ2

,

• MM
α,ǫ1

≥ MM
α,ǫ2

,

• Mm
α,ǫ1

≥ Mm
α,ǫ2

,

• Mǫ1 ⊆ Mǫ2 ,

• Wǫ1 ⊆ Wǫ2 .

Accordingly, we have Hα
ǫ1

⊆ Hα
ǫ2

for every ǫ1, ǫ2 ∈ [0, 1]
such that ǫ1 > ǫ2. Hence the set Hα

ǫ depends only on the sets

WǫW and MǫM such that ǫW = ζWM
α,ǫ + (1 − ζ)Wm

α,ǫ and

ǫM = ζMm
α,ǫ + (1− ζ)MM

α,ǫ for every ζ ∈ [0, 1].


