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Introduction

This is a detailed review of the derivation of Kroner's cubic [START_REF] Kroner | Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls[END_REF], which is used to calculate the macroscopic shear modulus of an aggregate of cubic crystals. The macroscopic modulus is assumed to apply to an isotropic ensemble of an aggregate of cubic crystals in perfectly randomized orientations.

The first major part of this derivation is based on the treatment of equilibrium by Gubernatis [START_REF] Gubernatis | Macroscopic engineering properties of polycrystalline materials: Elastic properties[END_REF] and the calculation of the Green tensor function as derived by Weinberger et al [START_REF] Weinberger | Lecture notes -elasticity of microscopic structures[END_REF], all leading to an integral equation for strains by Gubernatis [START_REF] Gubernatis | Macroscopic engineering properties of polycrystalline materials: Elastic properties[END_REF].

The second major part is based on Markov's [START_REF] Markov | Heterogeneous Media: micromechanics modeling methods and simulations, chapter "Elementary micromechanics of heteregeneous media[END_REF] treatment for deriving Kroner's cubic from this integral equation. The third major part compares measured shear moduli with the values predicted by Kroner's cubic with Hashin's bounds.

But first, a few words about fourth-order tensors.

Properties of fourth-order tensors

Fourth-order tensors are designated with such script (C), while second-order tensors are designated without such script (C). Markov [START_REF] Markov | Heterogeneous Media: micromechanics modeling methods and simulations, chapter "Elementary micromechanics of heteregeneous media[END_REF] defines the composition of two fourth-order tensors C : B as:

(C : B) ijkl = C ijrs B srkl (1) 
For a fourth-order tensor B with only minor symmetry:

B ijkl = B jikl (2) 
B ijkl = B jilk (3) 
the identity tensor I

I ijkl = 1 2 (δ ik δ jl + δ il δ jk ) (4) 
has the property:

B : I = I : B = B (5) 
Since:

B ijrs I srkl = 1 2 B ijrs (δ sk δ rl + δ sl δ rk ) = 1 2 (B ijlk + B ijkl ) = B ijkl (6) 
I ijrs B srkl = 1 2 (δ ir δ js + δ is δ jr )B srkl = 1 2 (B jilk + B ijkl ) = B ijkl (7) 
Consider isotropic fourth-order tensors B with both major and minor symmetries:

B ijkl = B jikl = B ijlk = B klij (8) 
Such a tensor can be decomposed as a linear combination of the following orthogonal set of fourth-order tensors I and

I B = b I + b I (9) 
where

I ijkl = 1 3 δ ij δ kl (10) 
I " ijkl = I ijkl -I ijkl [START_REF] Lubarda | New estimates of the third-order elastic constants for isotropic aggregates of cubic crystals[END_REF] with the properties: 

I : I = I ( 
Note, that because of the above properties of I and I , we find that:

B : I = b I (15) B : I = b I (16) 
so that it is clear that b and b are eigenvalues of B with corresponding eigentensors I and I and that with respect to these eigentensors, B is in diagonal form. Therefore, its inverse is a tensor A given in terms of the reciprocals of the eigenvalues (if they do not vanish):

A = B -1 = 1 b I + 1 b I (17) 
The scalar product of two fourth-order tensors is defined as:

A :: B = A ijkl B ijkl (18) 
Notice that while the tensors I and I are orthogonal, only I is normalized, i.e.: Consider a linear elastic solid of volume V with bounding surface S and elastic coefficients C 1 . This solid is assumed to contain an inclusion of volume W with elastic coefficients C 2 . At equilibrium with no body forces, the stress satisfies:

∂σ ij (x) ∂x j = ∂ ∂x j (C ijkl (x) kl (x)) = 0 (24) (25)
where the strain is related to the displacement via:

kl = 1 2 (u k,l + u l,k ) (26) 
and following Gubernatis [START_REF] Gubernatis | Macroscopic engineering properties of polycrystalline materials: Elastic properties[END_REF]:

C(x) = C 0 + [C](x) (27) [C](x) = C 2 (x) -C 1 (x) (28) 
in which the elastic modulus C 0 is constant, and the elastic moduli C 1 (x) and C 2 (x) may vary over an infinite region of volume V but differ only over an inclusion of finite volume W . C 1 is associated with the "matrix" region, and C 2 is associated with an inhomogeneity in the inclusion. We will focus on a spherical inclusion and on constant moduli C 1 and C 2 . Therefore, the equilibrium requirement Eq. 24 may be written as:

-C 0 klmn mn,l = ([C] klmn mn ) ,l (29) 
Throughout the derivation we will be assuming uniform strain fields both in the matrix and in the inclusion.

Integral equation for strains

This concerns the determination of displacement fields in a solid matrix (medium 1) containing an inhomogeneity (medium 2) whose elastic properties differ from those of the surrounding matrix. The goal is to relate the strain in the inhomogeneity to the known strain when there is no inhomogeneity. Only the matrix is assumed to be isotropic. Since the equilibrium equation is based on linear elasticity, Green's (tensor) function can be used to construct the general solution for the displacement. The construction of the Green tensor function follows Weinberger et al [START_REF] Weinberger | Lecture notes -elasticity of microscopic structures[END_REF]. The Green tensor function G mr (x, x ) is defined as the displacement at x in the m th direction in response to a concentrated unit force applied in the r th direction at x . In an infinite homogeneous body, the Green's function depends only on the relative displacement between the points because the underlying differential operator here has constant coefficients and thus is invariant under translation (See Stakgold [START_REF] Stakgold | Boundary value problems of mathematical physics[END_REF] p. 49). Therefore, Green's function may be written as:

G mr (x, x ) = G mr (x -x ) (30) 
For a constant point force F acting at x , the displacement at x is given by:

u m (x) = G mr (x -x )F r (x ) (31) 
So that the displacement gradient and the strain take the form:

u m,n = G mr,n (x -x )F r (32) mn = 1 2 (u m,n + u n,m ) (33) 
and from the constitutive relation, the stress is given by:

σ kl = C 0 klmn mn (34) 
because of the symmetry of the linear elastic coefficients:

σ kl = C 0 klmn u m,n (35) 
σ kl = C 0 klmn G mr,n (x -x )F r (36) 
Now, following Weinberger et al [START_REF] Weinberger | Lecture notes -elasticity of microscopic structures[END_REF], for a given volume V , from the definition of the Dirac delta function, the k component of the force F acting at x can be described by:

V F k δ(x -x )dV (37) 
Equilibrium requires that the force F be balanced by tractions acting on the surface S enclosing this volume V , so that:

V F k δ(x -x )dV + S σ kl n l dS = 0 (38) V F k δ(x -x )dV + S C 0 klmn G mr,n (x -x )n l F r dS = 0 (39)
Applying Gauss's theorem:

V F k δ(x -x )dV + V C 0 klmn G mr,nl (x -x )F r dV = 0 (40) V [F r δ kr δ(x -x ) + C 0 klmn G mr,nl (x -x )F r ]dV = 0 (41)
from which:

-C 0 klmn G mr,nl (x -x ) = δ kr δ(x -x ) (42) 
For an unbounded isotropic matrix, Weinberger et al [START_REF] Weinberger | Lecture notes -elasticity of microscopic structures[END_REF] derive that Green tensor function for x = 0 in their Eq. (1.79) as:

G mr (x) = 1 16πµ(1 -ν)x (3 -4ν)δ mr + x m x r x 2 (43) 
which clearly shows that G mr vanishes as x = |x| approaches infinity, and where µ, ν are the shear modulus and Poisson's ratio of the matrix material. Following Gubernatis [START_REF] Gubernatis | Macroscopic engineering properties of polycrystalline materials: Elastic properties[END_REF], the solution for the displacement is decomposed into:

u i (x) = u 0 i (x) + u 1 i (x) (44) 
where u 0 i (x) is any solution of the homogeneous equation:

C 0 klmn mn,l = 0 (45)
and u 1 i (x) satisfies the inhomogeous equation Eq. 29. The solution for the displacement u 1 i (x) is given by applying Stakgold [START_REF] Stakgold | Boundary value problems of mathematical physics[END_REF] Eq. (5.100) to Eqs. 29 and 42 to find the displacement response at x due to the equilibrating "force" at x given by the right hand side of Eq. 29:

u 1 i (x) = V dx G ik (x -x )σ * kl,l (x ) (46) 
σ * kl,l (x ) = ∂ ∂x l ([C] klmn (x ) mn (x )) (47) 
or,

u 1 i (x) = V dx G ik (x -x ) ∂ ∂x l ([C] klmn (x ) mn (x )) (48) 
so that the total displacement is given by:

u i (x) = u 0 i (x) + V dx G ik (x -x ) ∂ ∂x l [C] klmn (x ) mn (x ) (49) 
Integrating by parts:

u i (x) = u 0 i (x) + V dx ∂ ∂x l G ik (x -x )[C] klmn (x ) mn (x ) (50) 
- V dx ∂ ∂x l G ik (x -x ) [C] klmn (x ) mn (x ) (51) 
Applying the divergence theorem and using the fact that the Green function vanishes on the boundary at infinity:

u i (x) = u 0 i (x) - V dx ∂ ∂x l G ik (x -x ) [C] klmn (x ) mn (x ) (52) 
Since:

∂ ∂x l G ik (x -x ) = - ∂ ∂x l G ik (x -x ) (53) 
The displacement solution becomes:

u i (x) = u 0 i (x) + V dx ∂ ∂x l G ik (x -x ) [C] klmn (x ) mn (x ) (54) 
or, defining:

G ik,l (x -x ) = ∂ ∂x l G ik (x -x ) (55) 
we can write:

u i (x) = u 0 i (x) + V dx G ik,l (x -x ) [C] klmn (x ) mn (x ) (56) 
Now calculate the strains.

ij = 1 2 (u i,j + u j,i ) (57) 
Since only the Green tensor function depends on x:

u i,j = u 0 i,j + V dx G ik,lj (x -x ) [C] klmn (x ) mn (x ) (58) u j,i = u 0 j,i + V dx G jk,li (x -x ) [C] klmn (x ) mn (x ) (59) ij (x) = 0 ij (x) + V dx G ijkl (x -x )[C] lkmn (x ) mn (x ) (60) 
where:

G ijkl (x) = 1 2 (G ik,lj (x) + G jk,li (x)) (61) 
Since the moduli differ only over the inclusion W , Eq. 60 reduces to:

ij (x) = 0 ij (x) + W dx G ijkl (x -x )[C] lkmn (x ) mn (x ) (62) 
At this point of the derivation of Kroner's cubic, the assumption of uniform strain mn (x ) in the inclusion becomes important. This is echoed by Wu [START_REF] Wu | The effect of inclusion shape on the elastic moduli of a two-phase material[END_REF].

Let:

P ijkl (x) = - W G ijkl (x -x )dx (63)
The assumption of uniform strain will be consistently supported below. In Section 7, it will be shown that the tensor P is constant, thereby insuring that the strain (on left side of Eq. 62) is also uniform consistently. Of course, 0 is uniform since it satisfies Eq. 45.

Therefore, since the strain is uniform throughout the inclusion:

ij = 0 ij -P ijkl [C] lkmn mn (64) 
Now:

I ijmn mn = ij (65) 
so that:

(I ijmn + P ijkl [C] lkmn ) mn = 0 ij (66)
Therefore, letting:

B ijmn = I ijmn + P ijkl [C] lkmn (67) 
we have:

B ijmn mn = 0 ij (68) 
Or, with:

B = I + P : [C] (69) 
Markov [START_REF] Markov | Heterogeneous Media: micromechanics modeling methods and simulations, chapter "Elementary micromechanics of heteregeneous media[END_REF] identifies a fourth-order tensor A given by:

A = (I + P : [C]) -1 = B -1 (70) 
and Markov [START_REF] Markov | Heterogeneous Media: micromechanics modeling methods and simulations, chapter "Elementary micromechanics of heteregeneous media[END_REF] connects the constant strain 0 with the constant strain in the inclusion:

= A : 0 (71) 
The derivation of tensor A will be given in Section 8. The role of 0 will be clarified in Eq. 123 in Section 9.

Role of Eshelby's tensor in integral equation for strains

In order to make further progress from the integral equation above toward Kroner's cubic, we need to derive an important connection between the tensor P and another tensor T related to Eshelby's tensor, as described below.

For this purpose, we will follow Weinberger et al [START_REF] Weinberger | Lecture notes -elasticity of microscopic structures[END_REF]. They introduce the Eshelby tensor S (See [START_REF] Eshelby | Elastic inclusions and inhomogeneities[END_REF] Eq. (3.3) p. 104) written as:

S = T : C (72) 
Weinberger et al [START_REF] Weinberger | Lecture notes -elasticity of microscopic structures[END_REF] Eq. (2.13) write:

S ijmn = - 1 2 C lkmn (D iklj + D jkli ) (73) 
where, for an ellipsoidal inclusion, Weinberger et al [START_REF] Weinberger | Lecture notes -elasticity of microscopic structures[END_REF] Eq. (2.16) define D ijkl as:

D ijkl (x) = V0 G ij,kl (x -x )dV (x ) (74) 
Now by letting:

T ijkl = - 1 2 (D iklj + D jkli ) (75) 
we can relate T to P, and from Eqs. 61, 63, 73, 74, and 75, it is clear that:

T = P (76)
7 Symmetry properties and model of tensor D

In order to show that tensor T (and therefore that P) is a constant, we need to establish some symmetry properties of tensor D. Weinberger et al [START_REF] Weinberger | Lecture notes -elasticity of microscopic structures[END_REF] Eq.

(2.61) calculate the D ijkl tensor when x lies inside the ellipsoidal inclusion as:

D ijkl = - abc 4π π 0 2π 0 (zz) -1 ij z k z l sinΦ β 3 dΘdΦ (77) 
where, from [START_REF] Weinberger | Lecture notes -elasticity of microscopic structures[END_REF] Eq. (1.70):

(zz) -1 ij = 1 µ 1 δ ij - λ 1 + µ 1 λ 1 + 2µ 1 z i z j (78) 
and from [START_REF] Weinberger | Lecture notes -elasticity of microscopic structures[END_REF] Eqs. (2.17), (2.42), (2.43), (2.44):

z 1 = sinΦcosΘ (79) z 2 = sinΦsinΘ (80) 
z 3 = cosΦ (81) 
For a unit sphere, from [START_REF] Weinberger | Lecture notes -elasticity of microscopic structures[END_REF] Eq. (2.46):

D ijkl = - 1 4πµ 1 π 0 2π 0 (δ ij + 2κ 1 z i z j ) z k z l sinΦdΘdΦ (82) 
where, given Lame's constant λ 1 , shear modulus µ 1 , Poisson's ratio ν 1 , and bulk modulus k 1 for the isotropic matrix:

κ 1 = - 1 4 1 1 -ν 1 = - 1 2 λ 1 + µ 1 λ 1 + 2µ 1 (83) ν 1 = 3k 1 -2µ 1 2(3k 1 + µ 1 ) (84) 
κ 1 = (- 1 2 ) (3k 1 + µ 1 ) (3k 1 + 4µ 1 ) (85) 
From Eq. 82, it is clear that D satisfies the following minor symmetries:

D ijkl = D jikl = D ijlk (86)
However, it is also possible to show that D satisfies the major symmetry:

D ijkl = D klij (87) 
This is shown in Section 15 so that we can write:

D ijkl = γδ ij δ kl + ω(δ ik δ jl + δ il δ jk ) (88) γ = - 1 3µ 1 (1 + 2 5 κ 1 ) (89) ω = - 2 15 
κ 1 µ 1 ( 90 
)
D ijkl = - 1 3µ 1 (1 + 2 5 κ 1 )δ ij δ kl - 2 15 
κ 1 µ 1 (δ ik δ jl + δ il δ jk ) (91)
or, in terms of the isotropic basis tensors:

D = - 1 µ 1 (1 + 2 3 κ 1 )I + 4 15 κ 1 I (92) 
We now return to the tensor T defined in Eq. 75 with:

D iklj = γδ ik δ lj + ω(δ il δ kj + δ ij δ kl ) (93) 
D jkli = γδ jk δ li + ω(δ jl δ ki + δ ij δ kl ) (94) 
T ijkl = - 1 2 (D iklj + D jkli ) (95) 
T ijkl = 1 3µ 1 2 5 κ 1 δ ij δ kl + 1 2 (1 + 4 5 κ 1 )(δ ik δ lj + δ il δ kj ) (96)
or, in terms of the isotropic basis tensors:

T = t I + t I (97) t = 1 + 2κ 1 3µ 1 (98) t = 1 + 4 5 κ 1 3µ 1 (99) 
Using Eq. 85:

t = 1 3k 1 + 4µ 1 (100) t = 3 5µ 1 k 1 + 2µ 1 3k 1 + 4µ 1 (101)
Thus, the tensor T is a constant and so is the tensor P. and isotropic inhomogeneity

Since P = T , we have from the above:

P = p 1 I + p 2 I (102) p 1 = t (103) p 2 = t (104) 
For the special case where both the matrix and the inhomogeneity are isotropic, with subscript "1" for the isotropic matrix and subscript "2" for the isotropic inhomogeneity, the corresponding elastic moduli are written as:

C 1 = 3k 1 I + 2µ 1 I (105) C 2 = 3k 2 I + 2µ 2 I
(106) so that:

P : [C] = 3[k]p 1 I + 2[µ]p 2 I (107) 
where:

[k] = k 2 -k 1 (108) [µ] = µ 2 -µ 1 (109) 
We now proceed to derive the tensor A in Eq. 8. Putting Eq. 107 into Eq. 8 and using Eq. 11 we have:

I + P : [C] ≡ B = b I + b I (110) b = 1 + 3[k]p 1 (111) b = 1 + 2[µ]p 2 (112) 
Note, that because of the properties of fourth-order tensors described in Section 3:

A = B -1 = 1 b I + 1 b I (113) 
which can be written as:

A = a I + a I (114) a = 1 b = k 1 k 1 + 3[k]k 1 p 1 (115) a = 1 b = µ 1 µ 1 + 2[µ]µ 1 p 2 (116) 
Comparing Eqs. 115 and 116 with Markov's [START_REF] Markov | Heterogeneous Media: micromechanics modeling methods and simulations, chapter "Elementary micromechanics of heteregeneous media[END_REF] Eq. (4.58), shown here:

A w = k 1 k 1 + α 1 [k] I + µ 1 µ 1 + β 1 [µ] I (117) 
we find that:

3k 1 p 1 = α 1 (118) 2µ 1 p 2 = β 1 (119) 
Note that Markov has an error in his Eq. (4.58) for the basis tensor I ijkl which he writes as:

1 2 (δ ij δ kl + δ il δ jk - 2 3 δ ij δ kl ) (120) 
which should be corrected to read:

I ijkl = 1 2 (δ ik δ jl + δ il δ jk - 2 3 δ ij δ kl ) (121)
This concludes the derivation of tensor A for isotropic matrix and isotropic inhomogeneity.

Self consistent scheme for cubic polycrystals

The goal is to derive an equation (Kroner's cubic) that relates the shear modulus of the aggregate of cubic crystals to the elastic coefficients of a cubic crystal.

Since the entire aggregate consists only of inclusions, the foregoing development now applies everywhere in this aggregate.

Markov [START_REF] Markov | Heterogeneous Media: micromechanics modeling methods and simulations, chapter "Elementary micromechanics of heteregeneous media[END_REF] assumes that "...this aggregate (polycrystal) is an assembly of monocrystals, homogeneous grains with one and the same elastic properties, defined by the elastic tensor C. The crystallographic axes of each grain vary. Hence the tensor C is rotated in a complicated manner when one moves across the solid and exactly this is what makes the polycrystal heterogeneous". To keep things simple, Markov assumes that "there exist no preferable orientations of grains, i.e. of the crystallographic axes. Hence there is no texture presented so that the polycrystal is macroscopically isotropic, with a tensor of effective moduli ":

C * = 3k * I + 2µ * I ( 122 
)
where I and I are given by Eqs. 11, 4, and 10. Markov continues. "Our aim is to develop a certain simple approximate scheme of self-consistent type for evaluating C * by means of the given elastic tensor C for a single grain. Imagine each grain is a sphere, immersed into an unbounded matrix with the effective, but yet unknown, [assumed isotropic] properties C * . Fix one of the grains, W . According to Eq. 71 the strain within such a grain is constant":

gr = A(C, C * ) : ¯ ( 123 
)
where ¯ is the "prescribed macrostrain tensor, applied to the polycrytalline representative volume element (RVE)", interpreted here as the strain 0 (see Eq. 71) resulting when the moduli C 1 and C 2 match. Moreover, in virtue of Eqs. 8 and 102, Markov claims that given:

A(C, C * ) ≡ A * (124) 
A * = B * (-1) (125) B * = [I + P * : (C -C * )] (126) 
so that:

P * = p * 1 I + p * 2 I (127) p * 1 = 1 3k * + 4µ * (128) p * 2 = 3 5µ * k * + 2µ * 3k * + 4µ * (129) 
At this point, Markov's argument now is that Eq. 102 applies to both the isotropic matrix and the approximately isotropic aggregate of cubic (anisotropic) crystals in perfectly random orientations. The difference between these two configurations is that in the case of the isotropic aggregate, the elastic modulus C * is unknown.

Markov is expanding the role of tensor A to apply to the case where the inhomogeneity is not isotropic. Note that the tensor P was derived from the Green's function for the isotropic matrix alone. The constitutive tensor C is now allowed to be anisotropic. This is consistent with the previous development.

Markov now describes the critical condition to be satisfied for determining this aggregate effective elastic modulus: "Let us now average Eq. 123 with respect to all possible crystallographic orientations of the axes of the grain. This operation will be denoted by • Ω ". Then:

gr Ω = A * Ω : ¯ (130) 
"The key observation now is the identity":

gr Ω = ¯ (131) 
"i.e. the strain averaged over all crystallographic orientations in a grain equals the macrostrain. Inserting Eq. 130 into Eq. 131:

A * Ω = I (132)
through which the unknown effective tensor C * can be found". The method for calculating averages over all orientations will be described in Section 12 [START_REF] Bertram | Formulation of anisotropic linear viscoelastic constitutive laws by a projection method[END_REF] 

Eshelby's tensor for isotropic aggregate

We can now calculate the Eshelby tensor for the isotropic aggregate by extending Eq. 72 to:

S * = T * : C * (133)
where C * is given in Eq. 122, T * = P * , and where:

P * = p * 1 I + p * 2 I (134) 
with the coefficients given in Eqs. 128 and 129. Now for the isotropic aggregate, the bulk modulus is given by:

k * = 2 3 µ * (1 + ν * ) (1 -2ν * ) (135) 
From Eqs. 128 and 135:

p * 1 = 1 6µ * (1 -2ν * ) (1 -ν * ) (136) 
From Eqs. 129 and 135:

p * 2 = 1 15µ * (4 -5ν * ) (1 -ν * ) ( 137 
)
Carrying out the calculation in Eq. 133 subject to the orthogonality of the basis tensors we find:

S * ijkl = a * δ ij δ kl + b * (δ ik δ jl + δ il δ jk ) (138) 
where:

a * = k * p * 1 - 2 3 µ * p * 2 (139) b * = µ * p * 2 (140) 
Using Eqs. 136 and 137 :

a * = 1 15 (5ν * -1) (1 -ν * ) (141) b * = 1 15 (4 -5ν * ) (1 -ν * ) (142) 
This can also be written using:

ν * = c * 12 2(c * 12 + c * 44 ) (143) 
so that:

a * = 1 15 (3c * 12 -2c * 44 ) (c * 12 + 2c * 44 ) (144) b * = 1 15 (3c * 12 + 8c * 44 ) (c * 12 + 2c * 44 ) (145) 
This is consistent with Kube's result [START_REF] Kube | Elastic constants of polycrystals with generally anistotropic crystals[END_REF] in his Eq. ( 6).

For a cubic polycrystal the calculation of the unknown effective tensor leads to Kroner's cubic for the effective shear modulus. The tensor of the elastic cubic crystal moduli C in this case is given by Markov as:

C = 3kI + 2µ 2 I + 2(µ 1 -µ 2 )O h (146) O h = e 4 1 + e 4 2 + e 4 3 (147) 
Markov does not define e 4 i , saying only that O h is the "basic fourth-rank tensor with cubic symmetry (whose axes are along the orthonormal crystallographic basis e i , i = 1, 2, 3)". However, Bertram [START_REF] Bertram | Formulation of anisotropic linear viscoelastic constitutive laws by a projection method[END_REF] defines e 4 i as (no sum on i):

e 4 i = e i ⊗ e i ⊗ e i ⊗ e i (148) 
To simplify the calculation of the shear modulus, Markov introduces "three basic fourth-rank tensors with cubic symmetry":

Σ 1 = I (149) Σ 2 = I + I -O h (150) Σ 3 = O h -I (151) 
Markov claims that these three tensors are orthogonal, which is true after applying the correction in Eq. 121; that is, for each i, j = 1, 2, 3, i = j:

Σ i : Σ j = 0 (152)
This correction also allows the relation:

Σ 1 + Σ 2 + Σ 3 = I (153)
Finally, this correction also confirms that for each i = 1, 2, 3, with no implied sum on i:

Σ i : Σ i = Σ i ( 154 
)
With respect to this basis, Markov's elastic coefficients take the form:

C = 3K Σ 1 + 2µ 2 Σ 2 + 2µ 1 Σ 3 ( 155 
)
where:

K = k + 2 3 (µ 1 -µ 2 ) ( 156 
)
To interpret Markov's formulation for the elastic coefficients of the cubic crystal in Eq. 146, we introduce the elastic coefficients of the cubic crystal in the form described by Lubarda [START_REF] Lubarda | New estimates of the third-order elastic constants for isotropic aggregates of cubic crystals[END_REF] 

C = (c 11 + 2c 12 )Σ 1 + 2c 44 Σ 2 + (c 11 -c 12 )Σ 3 ( 160 
)
Comparing Eqs. 155 with 160 shows that:

K = 1 3 (c 11 + 2c 12 ) (161) 
µ 1 = 1 2 (c 11 -c 12 ) (162) 
µ 2 = c 44 (163) 
In the sequel, the symbolic notation:

C = (α, β, γ) ⇔ C = αΣ 1 + βΣ 2 + γΣ 3 (164)
will be useful.

Rotational averages

Before proceeding with the averaging process of the constitutive coefficients and, in particular, of the tensor A, it will be useful to describe the details of calculating rotational averages. According to Eqs. ( 2) and (3) in Andrews [START_REF] Andrews | On three-dimensional rotational averages[END_REF], the rotational average of a fourth order tensor C is given by:

C i1i2i3i4 = Λ i1i2i3i4;λ1λ2λ3λ4 C λ1λ2λ3λ4 (165)
and where Λ is defined by Eq. ( 19) in Andrews [START_REF] Andrews | On three-dimensional rotational averages[END_REF] as:

Λ i1i2i3i4;λ1λ2λ3λ4 = 1 30 δ i1i2 δ i3i4 δ i1i3 δ i2i4 δ i1i4 δ i2i3   4 -1 -1 -1 4 -1 -1 -1 4     δ λ1λ2 δ λ3λ4 δ λ1λ3 δ λ2λ4 δ λ1λ4 δ λ2λ3   (166)
Let's begin with finding the rotational average of tensor I .

In the following, the subscripts h and Ω are understood. Following Andrews, we have:

I ijkl = Λ ijkl;αβγω I αβγω ( 167 
)
where we must have the correspondence:

(i 1 , i 2 , i 3 , i 4 ) ⇔ (i, j, k, l) (168) (λ 1 , λ 2 , λ 3 , λ 4 ) ⇔ (α, β, γ, ω) (169) 
and where

I αβγω = 1 3 δ αβ δ γω (170)
Carrying out the above calculations results in:

I = I (171)
Similarly, with the correspondence:

(i 1 , i 2 , i 3 , i 4 ) ⇔ (i, k, j, l) (172) (λ 1 , λ 2 , λ 3 , λ 4 ) ⇔ (α, γ, β, ω) (173) 
we find:

δ ik δ jl = δ ik δ jl (174)
and, with the correspondence:

(i 1 , i 2 , i 3 , i 4 ) ⇔ (i, l, j, k) (175) (λ 1 , λ 2 , λ 3 , λ 4 ) ⇔ (α, ω, β, γ) (176) 
we find:

δ il δ jk = δ il δ jk (177) 
so that:

I = I (178)
and, therefore:

I = I (179)
Let's now find the rotational average of tensor O h . Following Andrews, we have:

O ijkl = Λ ijkl;αβγω O αβγω ( 180 
)
From Eqs. 147 and 148:

e 4 i = δ αi e α ⊗ δ βi e β ⊗ δ γi e γ ⊗ δ ωi e ω (181) 
So that:

O αβγω = 3 i=1 (δ αi δ βi δ γi δ ωi ) (182) 
and from Eqs. 166, 180, and 182 we obtain:

O ijkl = 1 30 (δ αβ δ γω A ijkl + δ αγ δ βω B ijkl + δ αω δ βγ C ijkl )O αβγω (183) 
A ijkl = 4δ ij δ kl -δ ik δ jl -δ il δ jk (184) 
B ijkl = -δ ij δ kl + 4δ ik δ jl -δ il δ jk (185) 
C ijkl = -δ ij δ kl -δ ik δ jl + 4δ il δ jk (186) 
Now:

δ αβ δ γω O αβγω = 3 (187) 
δ αγ δ βω O αβγω = 3 (188) 
δ αω δ βγ O αβγω = 3 (189) 
so that:

O ijkl = 1 10 (A ijkl + B ijkl + C ijkl ) = 1 5 (δ ij δ kl + δ ik δ jl + δ il δ jk ) (190) 
We now define H (following Markov [START_REF] Markov | Heterogeneous Media: micromechanics modeling methods and simulations, chapter "Elementary micromechanics of heteregeneous media[END_REF] in his Eq. (4.56))as:

H ijkl = δ ij δ kl + δ ik δ jl + δ il δ jk (191) 
so that:

O = 1 5 H (192) 
Note that from Eqs. 10, 11, and 191:

H = 5I + 2I (193) 
We now prove the following identities which we will need in the sequel:

Σ 2 = 3 5 I (194) 
Σ 3 = 2 5 I (195) 
From 150, 171, 179,190, and 193:

Σ 2 = I + I" -O (196) 
Σ 2 = I + I" - 1 5 H (197) 
Σ 2 = I + I" - 1 5 (5I + 2I") (198) 
Σ 2 = 3 5 I" (199) 
Eq. 195 is shown is a similar fashion. From Eqs. 150 and 151:

Σ 2 + Σ 3 = I (200) 
so that:

Σ 1 = I = Σ 1 (201) 
Σ 2 = 3 5 I" = 3 5 (Σ 2 + Σ 3 ) (202) 
Similarly, from Eq. 151:

Σ 3 = O -I (203) 
Σ 3 = 1 5 H -I (204) 
Σ 3 = 1 5 (5I + 2I ) -I (205) 
Σ 3 = 2 5 I (206) 
Σ 3 = 2 5 (Σ 2 + Σ 3 ) (207) 
13 Derivation of tensor A for anisotropic inhomogeneity and Kroner's cubic

For the tensor C of a single grain, see Eq. 155, we have:

C = (α, β, γ), α = 3K , β = 2µ 2 , γ = 2µ 1 (208) 
Due to the orthogonal properties of the Σ i s, inversion and multiplication take the forms:

C -1 = ( 1 α , 1 β , 1 γ ) (209) 
With C = (α , β , γ ) and C = (α , β , γ ):

C : C = (α α , β β , γ γ ) (210) 
The most important formula, however, concerns the tensors of the form given by Eq. 164, averaged over all orientations, using Eqs. 201, 202, 207:

C Ω = (α, β, γ) Ω = (α, β, β) (211) β = 1 5 (3β + 2γ) (212) 
From Eqs. 126 and 208 the quantity:

B * = I + P * : (C -C * ) (213) 
has the form:

B * = (1, 1, 1) + (p * 1 , p * 2 , p * 2 ) • [(3K , 2µ 2 , 2µ 1 ) -(3k * , 2µ * , 2µ * )] (214) 
which reduces to:

B * = (1 + 3p * 1 (K -k * ), 1 + 2p * 2 (µ 2 -µ * ), 1 + 2p * 2 (µ 1 -µ * )) (215) 
But Eq. 215 is the inverse of Eq. 124, so that:

A * = ( 1 1 + 3p * 1 (K -k * ) , 1 1 + 2p * 2 (µ 2 -µ * ) , 1 1 + 2p * 2 (µ 1 -µ * ) ) (216) 
whose average follows Eqs. 211 and 171:

A * Ω = (α * , β * , β * ) ( 217 
)
α * = 1 1 + 3p * 1 (K -k * ) (218) 
β * = 3 5 1 1 + 2p * 2 (µ 2 -µ * ) + 2 5 1 1 + 2p * 2 (µ 1 -µ * ) (219) 
Finally, the average of A * must satisfy Eq. 132 subject to Eq. 153, so that: 

α * Σ 1 + β * (Σ 2 + Σ 3 ) = I = I + I (220) Σ 2 + Σ 3 = I ( 
β * = 1 (226) 
from which:

k * = K (227) 
and substituting Eq. 129 into Eq. 219 and applying Eq. 226 gives a cubic equation for the aggregate shear modulus µ * in the form: 

(µ * ) 3 + a(µ * ) 2 -bµ * -c = 0 (228) a = 9k * +
These coefficients agree exactly with Kube's [START_REF] Kube | Elastic constants of polycrystals with generally anistotropic crystals[END_REF] coefficients in his Eq. (16b) (after a bit of algebra) as well as with Kroner's [START_REF] Kroner | Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls[END_REF] Eq. ( 22) which shows the cubic for the aggregate shear modulus G as: 

G 3 + ᾱG 2 + βG + γ = 0 (235) ᾱ = (3 K + 4ν) 8 (236) β = -( K + 12ν) μ 8 (237) γ = -K μ ν 4 (238) 

Comparison with experimental data

Hashin and Shtrikman [START_REF] Hashin | On some variational principles in anisotropic and nonhomogeneous elasticity[END_REF], [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of polycrystals[END_REF] have derived bounds for the isotropic shear modulus of aggregates of cubic crystals. Gschneider [START_REF] Gschneider | Solid State Physics, chapter Physical properties and interrelationships of metallic and semimetallic elements[END_REF] provides experimental data, and Simmons [START_REF] Simmons | Single crystal elastic constants and calculated aggregate properties: a handbook[END_REF] provides cubic crystal elastic coefficients in Mbar. Sisodia [START_REF] Sisodia | Shear moduli of polycrystalline cubic elements[END_REF] compares some experimental data with calculated shear modulus and reports the formulation of the Hashin-Shtrikman bounds, G * 1 and G * 2 in terms of the single crystal cubic coefficients c ij as:

G * 1 = G 1 + 3 5 G 2 -G 1 -4β 1 -1 (248) 
G * 2 = G 2 + 2 5 G 1 -G 2 -6β 2 -1 (249) 
where

β 1 = - 3 5 K + 2G 1 G 1 (3K + 4G 1 ) (250) 
β 2 = - 3 5 K + 2G 2 G 2 (3K + 4G 2 ) (251) K = c 11 + 2c 12 3 (252) G 1 = c 11 -c 12 2 (253) 
G 2 = c 44 (254) 
An anisotropy index à is defined by:

à = G 2 G 1 = 2c 44 c 11 -c 12 (255) 
which reduces to unity for isotropic material. Table 1 shows the cubic coefficients and the anisotropy index for several materials. Notice that Tungsten (W) and Molybdenum (Mo) come closest to being isotropic.

To compare the shear modulus determined by Kroner's cubic with experimental values, we use a simple iterative Newton's method, beginning with a trial value at the arithmetic average of the Hashin-Shtrikman's bounds. Table 1 shows these bounds and compares this calculated value with the experimental value. Notice that for elements which are not in Group IV-A, the error is under 20%, while for Group IV-A, the error varies from 40% to 74%, except for diamond for which Klein [START_REF] Klein | Anisotropy of Young's modulus and Poisson's ratio in diamond[END_REF] gives excellent agreement with the experimental value using Kroner's cubic. The values for c 11 , c 12 , c 44 were taken from Table 1 in Klein's article [START_REF] Klein | Anisotropy of Young's modulus and Poisson's ratio in diamond[END_REF], based on Brillouin scattering data from monocrystalline data for Young's modulus and two Poisson's ratios. The experimental value for the isotropic shear modulus was calculated from experimental values for Young's modulus and Poisson's ratio on a large sample subject to load indentation.

Sisodia [START_REF] Sisodia | Shear moduli of polycrystalline cubic elements[END_REF] mentions that if the anisotropic index à > 1, then G * 2 > G * 1 and vice versa. Notice also from Table 1, for those (most) elements where the anisotropy index exceeds unity, it is the case that G * 2 > G * 1 . For Molybdenum and Tungsten which are practically isotropic, the bounds coincide. Finally, Niobium is the only element with à < 1, and there G * 2 < G * 1 .

Units:

Gschneider's experimental values are given in units of kg f cm 2 × 10 6 . This is converted to GPa by multiplying by gravitational acceleration as 9.80665 m s 2 , so that Gschneider's units are converted as follows: 

kg f cm 2 × 10 6 × 10 4 cm 2 m 2 × 9.80665 m s 2 × N kg m s 2 × P a N m 2 × GP a 10 
D ijkl = - 1 4πµ (M ijkl + 2κ 1 N ijkl ) (257) 
M ijkl = π 0 2π 0 (δ ij z k z l sinΦ) dΘdΦ (258) 
N ijkl = π 0 2π 0 (z i z j z k z l sinΦ) dΘdΦ (259) 
It is clear that N satisfies both major and minor symmetries. It remains to show that M ijkl satisfies major symmetry. Clearly, if i = j, then M ijkl = 0. It can also be shown that if k = l, then M ijkl = 0. For this purpose, since M ijkl satisfies minor symmetries, it suffices to show that:

M ij12 = M ij13 = M ij23 = 0 (260) 
Putting Eqs. 79,80,81 into Eq. 258 as needed to form M ij12 , M ij13 , M ij23 , we find that in each case the Θ-integral vanishes. For M ij12 , the Θ-integral involves:

2π 0 (cosΘsinΘ)dΘ = 1 4 2π 0 (sin2Θ)d(2Θ) = (- 1 4 )[cos2Θ] 2π 0 = 0 (261) 
For M ij13 , the Θ-integral involves:

2π 0 cosΘdΘ = [sinΘ] 2π 0 = 0 (262) 
For M ij23 , the Θ-integral involves:

2π 0 sinΘdΘ = -[cosΘ] 2π 0 = 0 (263) 
From the above, it is clear that the only non-zero values of M ijkl are obtained only if i = j and k = l. With i = j, M ijkl reduces to the second order quantity:

M kl = π 0 2π 0 (z k z l sinΦ) dΘdΦ (264) 
With k = l = 1, 2, 3 and putting Eqs. 79,80,81 into Eq. 264 as needed, we find that: 

M ijkl = 4 3 π (269) 
These results clearly show that, given all the non-zero terms, M ijkl does have major symmetry as well as minor symmetry. Now that we have shown that both N ijkl and M ijkl have both major and minor symmetry, we can construct the following model for D ijkl which assumes both major and minor symmetry:

D ijkl = γδ ij δ kl + ω(δ ik δ jl + δ il δ jk ) ( 271 
)
where γ is given by any member of the list in Eq. 269, say 1122 for which: 

so that:

ω = D 1313 = - 2κ 1 4πµ 1 N 1313 = - 2κ 1 4πµ 1 4π 15 = - 2 15 
κ 1 µ 1 (287) 
giving our model as: 

D ijkl = - 1 

Conclusions

This paper provides an introduction to some early work in the modeling of polycrystals. Comparison with experimental data shows remarkable success in the calculation of the effective isotropic shear modulus of polycrystals with cubic symmetry. In the carbon family, Kroner's cubic does very well for diamond but poorly for Germanium, Lead, and Silicon. These discrepancies require further research, especially for more experimental data.

  12) I : I = I (13) so that: I : I = I : (I -I ) = I : I -I : I = 0

  an isotropic fourth-order tensor B with major and minor symmetries, if we write B = b I + b I (21) Then to solve for b and b , we have: b = B :: I (22) since I is normalized, but: b = B :: I I :: I (23) since I is not normalized.

  221) α * I + β * I = I + I (222) (α * -1)I + (β * -1)I = 0

K = c 1111

 1111 cubic symmetry, c 66 = c 44 , so that Kroner's coefficients ᾱ, β, γ are consistent with the above coefficients a, b, c, namely:+ 2c 12 )(c 11 -c 12 ) = -c(247)as required, thus completing the derivation of Kroner's cubic.

  ijkl = 1111, 1122, 1133, 2211, 2222, 2233, 3311, 3322, 3333 
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 2 Φcos 2 Θsin 2 Φsin 2 ΘsinΦ dΘdΦ (represents any D ijkl term for which M ijkl = 0 but N ijkl = 0, that is, for the following list of (ijkl) indices for which (i = j and k = l) but for which (i = k and j = l) or (i = l and j = k): 1212, 2121,1313, 3131, 2323, 3232, 1221, 2112, 1331, 3113, 2332, 3223 (281) For D 1313 , M 1313 = 0 and:

  in Eq. (3.1) (Note Lubarda's sign error: +2c 44 should be -2c 44 ):C ijkl = c 12 δ ij δ kl + 2c 44 I ijkl + (c 11 -c 12 -2c 44 ) Âijkl

		(157)
	which is equivalent in Markov's notation to:	
	C = 3c 12 I + 2c 44 (I + I ) + (c 11 -c 12 -2c 44 )O h	(158)
	or,	
	C = (3c 12 + 2c 44 )I + 2c 44 (I ) + (c 11 -c 12 -2c 44 )O h	(159)
	but, in terms of Markov's basis: