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THE WAVE FRONT SET CORRESPONDENCE
FOR DUAL PAIRS WITH ONE MEMBER COMPACT

M. MCKEE, A. PASQUALE, AND T. PRZEBINDA

ABSTRACT. Let W be a real symplectic space and (G, G’) an irreducible dual pair in
Sp(W), in the sense of Howe, with G compact. Let G be the preimage of G in the
metaplectic group é?)(W) Given an irreducible unitary representation II of G that occurs
in the restriction of the Weil representation to C~}, let ©1 denote its character. We prove
that, for a suitable embedding T of éB(W) in the space of tempered distributions on W,
the distribution T(@H) admits an asymptotic limit, and the limit is a nilpotent orbital
integral. As an application, we compute the wave front set of II’, the representation of
G’ dual to IT, by elementary means.
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1. Introduction.

Let (G,G’) be an irreducible reductive dual pair with G compact. Thus there is a
division algebra D = R,C or H with an involution D > a — @ € D over R, a finite
dimensional right D-vector space V, with a positive definite hermitian form (-,-), a finite
dimensional right D-vector space V' with a skew-hermitian form (-,-)" so that G is the
isometry group of (-,-) and G’ is the isometry group of (-,-)’. ! Explicitly, (G, G’) is one
of the pairs 2

(04, 5p2n(R)),  (Ua,Upyg)s  (Spa; 03,). (1)

These groups act on W = Homp(V, V') via post-multiplication and pre-multiplication by
the inverse. We set d = dimp V and d’ = dimp V'.
There is a map
Homp(V, V') 3 w — w* € Homp(V', V)
defined by
(wv,v") = (v, w*") (veV,dv eV,
a non-degenerate symplectic form (-, ) on the real vector space W

(W', w) = trp/r(ww) (w,w" € W),

preserved by the actions of G and G’. Here trp g denotes the trace of an endomorphism
considered over R. Moreover, we have the unnormalized moment maps

T Waw—ouwweg, 7:Wodw—sww eg, (2)

where g and g’ are the Lie algebras of G and G’, respectively. These maps are GG'-
equivariant in the sense that

(99 (w)) = gr(w)g™", T(99'(w)) =g T (w)g™" (9€G, ¢ €G, weW).
In particular the fiber 771(0) € W is a union of GG’-orbits, which are well known and
easy to describe. We collect the relevant facts in the two lemmas below. Since we could
not find a reference, their proofs are provided in Appendices A.1 and A.2.

Lemma 1. Let m be the minimum of d and the Witt indez of the form (-,-)". In particular,
d = m means that the pair (G, G’) is in the stable range with G the smaller member. Then

770) =0, U0 1 U---UQOy, (3)

'We use the notation G’ for the second member of a dual pair because it is the centralizer of G in Sp(W).
We also use the notation - for all the objects associated with G’, such as g/, IT', ... . Unfortunately, this
collides with the usual notation for the dual of a linear topological space in functional analysis, also used
in this paper, such as D'(R"), §’'(R™), ... . We hope the reader will guess from the context the correct
meaning of the notation.

2The notation for Lie groups is as in Howe [How89]. In particular, we denote the quaternion unitary
group Ug(H) by Spy.
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where:

o Op CHom(V,V') is the subset of elements with isotropic range and rank k
e OLUOR_1U---UQOqy 1s the closure of O for 0 <k < m,
o dim Oy, = dimg(D) - ((d' — k)k + (d — k)d) + dimg H(D) (4)
and
k(k—1)
2
is the dimension, over R, of the space Hy(D) of hermitian matrices of size k with entries
in D.
Set O, = 7'(Ok). Then

7 0) =0, U0, U---UO,

dimg Hy(D) = dimg(D) - +k

where:
e OLUO,_;U---UQOy is the closure of Oy for 0 <k <m,
o dim Q) = d'k dimg(D) — 2dimg SHx(D), (5)
and
k(k—1) if D =R,
2k(2k+1) if D=H
is twice the dimension, over R, of the space SHy(D) of skew-hermitian matrices of size k
with entries in D.

For an open set U in a finite dimensional real vector space and ¢t > 0 such that tU C U,
let M} : D'(U) — D'(U) denote the pullback of distributions defined by the submersion
M, :U > v — tv e U, [Hor83, Example 6.1.4]. In particular a distribution v € D'(U) is
homogeneous of degree a € C it M;u = t*u for every ¢t > 0.

Lemma 2. For each k =0,1,2,...,m, the orbital integral pp, is a GG -invariant distri-
bution on W, homogeneous of degree deg po, = dim Q) — dim W.

Recall the embedding of the metaplectic group SB(W) into the space of the tempered
distributions S&’'(W),

T:Sp(W) = S'(W), (7)
[AP14, Definition 4.23] and the corresponding Weil representation [AP14, Theorem 4.27].
Let G be the preimage of G in Sp(W).
The main goal of this article is to prove the following theorem and its corollary.

Theorem 3. Let O be the character be an irreducible representation 11 ofé that occurs
in the restriction of the Weil representation to G. Then, in the topology of S'(W),

deg 1o, £ r* =
t Mt—lT(QH) t—>—0—>|— Cuom,
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where C' #£ 0,
@H / On(g g)dg,

dg is a Haar measure on the group G and the product ©n(g—')T(g) does not depend on
the element g in the preimage of g in G.

Remark 1. If I1 is an irreducible admissible representation of a real reductive group G with
Gelfand-Kirillov dimension k, then [BV80] shows that there is a function u,, homogeneous
of degree —k and defined on the set g™ of regular semisimple elements of the Lie algebra
g of G, such that

lim; o+ t"Op(exp(tz)) = ug(x) (x € g™). (8)
The function u, extends to a tempered distribution on g. Its Fourier transform is a sum
of milpotent orbital integrals over nilpotent orbits of the same dimension 2k. However,
the Fourier transform of the left-hand side of (8) might even not be well defined. On the
other hand, Theorem 3 shows that for G compact, T(On) admits an asymptotic limit, and
the limit is a nilpotent orbital integral on W.

The limit in Theorem 3 was previously computed in [Prz93, Theorem 6.12], even for
dual pairs with a noncompact G, but only on an open dense subset of W. The explicit
formula for the intertwining distribution from [MPP21] — see also section 5 — allows us to
compute the limit on the entire space W. N

Let II' be the irreducible representation of G’ corresponding to I in the Howe’s cor-
respondence. As a corollary of Theorem 3, we obtain an elementary computation of
W F(I), the wave front of the character O at the identity.

Corollary 4. For any representation 11 ® IT" that occurs in the restriction of the Weil
representation, to the dual pair (G,G),

WE(IT) = 7(r(0)) = O,,.

In [Prz93], the wave front set was determined using a computation of the Gelfand-
Kirillov dimension and Vogan’s results in [Vog78]. For completeness, one should also recall
that this dimension was independently computed in [Prz93], [NOT*01] and [EW04]. In
this paper, we do not use the notion of Gelfand-Kirillov dimension.

The proofs of Theorem 3 and Corollary 4 are given in sections 5 and 6, respectively.

LIST OF SYMBOLS

Function spaces

U = open subset of a smooth manifold

C*(U) = D(U) = the space of compactly supported smooth functions on U
D'(U) = the space of distributions on U

SU) the Schwartz space on an open subset U C R"

S'(U) the space of tempered distributions on an open subset U C R"”
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Dual pairs

page, (equation), or theorem

= R (the reals), C (the complex numbers), or H (the quaternions) ............................ 2
right D-vector space with positive definite hermitian form (-,-) ......... ... oo, 2
= dln’l]D) P 2
= D? as a right D-vector-space, which coincides with the above V in the supergroup realization
of dual PairS . ... 6
right D-vector space with skew-hermitian form (-,-) ... ..o i 2
= dim]]) V/ ................................................................................... 2
=D? asa right D-vector-space, which coincides with the above V' in the supergroup realization
Of dUAl PAITS ...t 6
= Homyp(V, V'), R-vector space with non-degenerate symplectic form (w’,w) ................. 2
= Homp(Vg, V1) = My 4(D) in the supergroup realization of dual pairs ....................... 6
the 1ISometry group Of (4, +) vttt e 2
= {g € My4(D); g'g = I;} in the supergroup realization of dual pairs ......................... 6
the connected component of the identity in G ....... ... i 18
a fixed element in GLg (D) satisfying F' = . 6, (27)
the ISOmMeEtTy Group Of (1, ) i ut ittt 2
={g € My (D); g'Fg = F} in the supergroup realization of dual pairs ....................... 6
the Lie algebras of G and G', respectively .......... i 2
the ranks of g and @', respectively ... ... ... i 15
= g x ¢’ diagonally embedded in My qa/ (D) «.o.ooiii (10)
= {o = (g " ) € Mayar(D)iw € W} oo (10), (13)
= 56 (&) ST ................................................................................. (10)
= G x G’ diagonally embedded as a subgroup of GLgya (D) ..ot (10)
the idenfication of W and st via w — x,, and its inverse ¢ = wy .................... (13), (14)
S'(W)5, C(W) are S'(s1), S'(s7)%, C°(s7), when we identify W and s7 ................... 15
= Ad(8)T = STSTL (8 € S, L € 8) 1t (11)
=ad(@)(w) = 2w —WT (T E S, W EST) «ereinit et (11)
the unnormalized MOMENt MADPS .. ...\ttt (2)
as maps 7 : 57 — g and 7’ : s7 — ¢’ in the supergroup realization ................. ... ... (32)
automorphism of s restricting to a Cartan involution on sy and to a negative-definite compatible
complex SEIUCTUTE ONL ST ..o\ ovi i 8
positive-definite symmetric bilinear form on W, or on sy using w ¢— Xy, «.oovovin. (19)
orthogonality with respect t0 B ... ..o . e 8

the symbol used for both the linear span of 7(h7) C g and the linear span of 7/(hy) C g’, which
are isomorphic. It is a Cartan subalgebra of g if [ <!’ and a Cartan subalgebra of g’ if [ > 1’ 15

the centralizer of B In g ... 15
the centralizer of h In @' ... . o 15
if h is a Cartan subalgebra of a Lie algebra g, this is the product of a choice of positive roots of
(bc, g(c) ..................................................................................... 15
if 3 is the centralizer in g of a Cartan subalgebra b, this is the product of the positive roots of
(bc, gc) such that the corresponding root spaces do not occur in 3 «.v.vvvvvrvenenenninin.. 15
a Cartan subspace il ST ... 15
the set of regular elements in hy ....... ... 15
the metaplectiC Group ... ...t 3
the distribution character of the Weil representation .................c.coiiiiiiiiiia... (68)

the embedding of Sp(W) into the space of the tempered distributions &' (W) .......... (7), (68)



6 M. MCKEE, A. PASQUALE, AND T. PRZEBINDA

G, G’ the preimages of G and G/ in §f)(W) .......................................................... 3
II an irreducible representation of G that occurs in the restriction to G of the Weil representation
................................................................................... Theorem 3
T the irreducible representation of e corresponding to II in Howe’s correspondence Corollary 4, 33
On the character of I1 ... ... e Theorem 3
T OIT) et Theorem 3
WF(IT') the wave front of the character O at the identity ................... ..., Corollary 4
Orbital integrals and their limits
My, M} the dilation of radius ¢ and its pullback on distributions ............................. 3,11,(38)
b et e e e e 11
Gt I G O St it 11
m the minimum of dimp V and the Witt index of the form (-,-)" ....... ... ..., 2
Oy the set of elements of Hom(V, V') with isotropic range of dimension k, where 0 <k <m ...... 2
O;C = T(Ok) ...................................................................................... 2
1o, the orbital integral associated with Ok ... Lemma 2, A.2
O(w)  =0(24) = 8.y, where @, € HX oo 15
F(y) € 8'(W)S, Harish-Chandra’s almost elliptic orbital integral attached to the S-orbit O(w). Here
y = 7(y) = 7(w) where w € W is such that z,, € b= ... 15
Fyly) =F(y)(@), where ¢ € S(W) ..o 15
An integral over the slice through a nilpotent element
N a fixed nilpotent element in s7 ....... ... ... 8, Lemma 5
WHED WN € Oy v veo e 10, 19
U a slice through N ... . (23)
o the submersion S X U D (S,1) = S.U € BT <. vvttniit et e (24)
Gy the stabilizer of IV In G ..o 19
gN the Lie algebra of G ... 19
RN TN oo J OO PP UPPRPII 19
Ow, the character of the Weil representation of Sp(Wy) «....ooviiiiiiiiiii it Lemma 17

Other symbols

X the character X(£) = €2 £ € R ...ttt 21

Xz the imaginary Gaussian on W (or s1) associated with = € g, given by x,(w) = x(5 (zw, w)) (65)

c(z) = (x+1)(z—1)7"! the Cayley transform of & € g ........cooiiiiiiiiiiiiiiiiiiinn. 18

c g — G a real analytic lift of ¢ passing through ¢(0) ..........oo i, 21
_ 2dimgpg

T i v R R R R AR 18

2. A slice through a nilpotent element in the symplectic space.

We will need the realization of the dual pair (G, G’) as a supergroup (S, s), [Prz06]. We
present it in terms of matrices.
Consider Vg = D? as a right vector space over D via

av :=va (ve Vg, aeD).

The space Endp(Vg) may be identified with the space of square matrices My(D) acting
on D? via left multiplication. Let

(v,0") =" (v,0" € D?).
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This is a positive definite hermitian form on D?. The isometry group of this form is
G ={g€ My(D); 3'g = Ia} .

Similarly, Vi = D? is a left vector space over ID and

G ={g€ My(D); §'Fg=F},
for a suitable F = —F' € GLy (D). This is the isometry group of the form

(v,0") =0 F (v,v" € DT).
Set

W = Homp(Vg, V1) = My (D),
with symplectic form

(W', w) = trp/r(ww') (w,w" € My 4(D)), 9)

where w* = w'F. Let

s5=g x g diagonally embedded in My, 4(D),

5 = { (3 “(’)) € Myya(D);w € W} , (10)

S=G x G diagonally embedded as a subgroup of GLg, ¢ (D).

Then (S,s) is a real Lie supergroup, i.e. a real Lie group S together with a real Lie
superalgebra s = s5 @ s7, whose even component s; is the Lie algebra of S. We denote
by [-,-] the Lie superbracket on s. It agrees with the Lie bracket on sz and with the
anticommutator {x,y} = xy + yx on s1.

The group S acts on s by conjugation. We shall employ the notation

s.x = Ad(s)r = sxs™* (se8S, xes), (11)
r(w) = ad(x)(w) = rw — wx (x € 855, w € s57). (12)
We shall also write
0 w
W= Md’,d(D> CEW— Ty = (w 0 > € 57 (13)

for the natural vector space isomorphism between W and st, and
W= Md’,d(]D)) €W, < T € 57 (14)

for its inverse. Under this isomorphisms, the adjoint action of g € G C S on s7 becomes
the action on W by right multiplication by ¢g—!. Similarly, the adjoint action of ¢ € G’ C S
on s7 becomes the action on W by left multiplication by ¢’. Explicitly,
G-Tyy = Typg—1 (g€ GiweW), (15)
G Ty = Ty (¢ e G',weW). (16)
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For an endomorphism h € End(W), we denote by the same symbol the corresponding
endomorphism of sy, given by

h(l‘w) = Th(w) (w c W) . (17)

Notice that two elements w, w’ € My 4(ID), viewed as members of s7, anticommute if and
only if
ww™ +w'w* =0 and w'w +w*w=0. (18)

Remark 2. The unified realization of the dual pair and the symplectic space in the Lie
supergroup (S, s7) is convenient in many computations. Distinguishing between the sym-
plectic space W and its isomorphic space s makes the matriz algebra more transparent.
Still, most of the representation-theoretic applications of Howe duality prefer focusing on
the symplectic space W rather than on sy. So, later in the paper, when working on or-
bital integrals in section 3, we will choose to come back to the symplectic picture, which
in practice corresponds to identifying W and st under the isomorphism (13). With this
identification, we will for instance write g.w, ¢'.w or s.w instead of §.xy, § . Ty OF STy,
as we did in (15) and (16). Correspondingly, the S-orbit S.x,, of x.,, € sy will be written
S.w, called the S-orbit of w € W and denoted O(w). This identification will allow us to
refer to the existing literature on the subjet without any serious change of notation.

We denote by 6 the automorphism of s defined in [Prz06, sec. 2.1]. See also [DKP05,
§5.3]. The construction of § is done case-by-case and we shall not need these details. It can
also be found in [BS17, Proposition 1.1 and §2]. Its restriction to s is a Cartan involution
and the restriction of —0 to sy is a positive definite compatible complex structure. Using
(13), we can think of 6 and (-, -) as maps either on st or W. The bilinear form B(-,-) =
—(0-,-) is symmetric and positive definite. Moreover, —0(w) = F~'w for w € W. Hence

B(w',w) = trpp(w'w’) (w,w" € W). (19)

We can now get into the topic of this section. Fix an element N € sy. Then N+[s5, N] C s
may be thought of as the tangent space at N to the S-orbit in s7 through N. Denote
by [s5, N]*# C s7 the B-orthogonal complement of [s5, N|. Since the form B is positive
definite, we have a direct sum orthogonal decomposition

st = |53, N] @ [s5, N2 . (20)
Consider the map
o:Sx (N + [s5,N]"?) 2 (s,u) = s.u € s1. (21)
The derivative of o at (s,u) coincides with the following linear map:
55 @ [s5, N|*2 5 (X,Y) = [X,s.u] +5.Y € s57.
Therefore the range of the derivative of o at (s,u) is equal to
[s5, s.u] + s.[s5, N2 = s. ([sg, u] + [s5, N|"?) . (22)

Let
U= {U eEN+ [567 N]LB; [567 u] + [567 N]lB = 5T} . (23>



DUAL PAIRS WITH ONE MEMBER COMPACT 9

Then U is the maximal open neighborhood of N in N + [s5, N]*5 such that the map
0:SxU>(s,u) = su € sy (24)
is a submersion. Therefore o(S x U) C s7 is an open S-invariant subset and
0:SxU>3(s,u) > suea(SxU) (25)

is a surjective submersion. The title of this section refers to the set U and a nilpotent
element N € s7. Here, nilpotent means nilpotent as a matrix; see (10). Notice that N € s
is nilpotent if and only if 7(wy) € g is nilpotent, i.e. equal to 0 since G is compact. By
(3), it follows that wy € Oy for some k € {0,1,...,m}. We shall use the map (25) to
study the S-orbital integrals in s7.

Lemma 5. Keep the notation of Lemma 1, and let N € sy such that wy € Ok. Then the
map
N + [55, NJ*2 > u — u? € 55 (26)

is proper (i.e. the preimage of a compact set is compact).

Proof. We can choose the matrix F' as follows:

0 0 I
F=[ o0 F 0 (27)
L 0 0

with 0 < k < m, where m is the minimum of d and the Witt index of the form (-,-),

as in Lemma 1, and F” is a suitable element in GLy_ox(D) satisfying F' = —F Then,
with the block decomposition of an element My 4(D) = My (D) & My 41 (D) dictated
by (27),

*

w1 Wy st et OV st
= 3 2 .
w —wg Wl wy
3 We

By the assumptions, we may choose N = (u? ug\, ) where
N

Notice that

[567 N]LB = ([ﬁﬁa N]J_) =0 (NﬁT) = eNsTa
where “ 1 7 is the orthogonal complement with respect to the symplectic form and the
second equality is taken from [Prz06, Lemma 3.1]. Since,

0 0
WyN — —Fﬁl’LUN = 0 0
—I; O
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a straightforward computation using (18) shows that [s5, N|*5 = {x € 575wy € Wig yjip },

where
0 O
W[sﬁ,N}LB =qw= 0 Ws € W, W3 = —@g . (29)
w3  We

Let © = z,, with w as in (29). Then the image of N + x under the map (26) consists of
pairs of matrices

*

[k: 0 Ik 0 W3 0 Ik
0 Ws 0 Ws = —’LU5wé w5ng, 0 € g/ (30)
W3 Weg W3 Weg —U)gwg — ’UJGEE ’IUGEEF/ w3
and
I 0\ (L O
2wy w
0 Ws 0 Ws = ( —wgé EZF/U);—; ) cg. (31)

w3 We w3 We

If the set of these pairs varies through a compact set, so do the ws, wg and wswLF’. Hence
the claim follows. 0

The maps 7, 7/ from (2) can be considered as maps 7 : st — g and 7" : st — ¢ by
setting
T(xy) = 7(w) = w*w and 7'(z,) = 7' (w) = ww* (we W), (32)
or equivalently,
T(x) =2y, and 7'(z)=2%|v, (x € s7),

where |V6 and ’VT respectively indicate the selection of the upper diagonal block of size d
or the lower diagonal block of size d'.

Corollary 6. If k = m, then the restriction 7|y (. njrs of 71857 = g to N + [s, Nte s
proper.

Proof. This follows from the formula (31). Indeed, it is enough to see that the map
Ws —> EEF /’LU5

is proper. The variable w5 does not exist unless D = C and d > m. This means that m
is the Witt index of the form (-,-)". Hence iF” is a definite hermitian matrix. Therefore
the above map is proper. O

Corollary 7. Suppose k =m. If E C st is a subset such that 7(F) C g is bounded, then
EN (N + [s5, N|"?)
s bounded.

Proof. This is immediate from Corollary 6. U
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3. Limits of orbital integrals.

Since we are interested in S-invariant distributions, we want to see dilations by ¢ > 0
in s7 as transformations in the slice U modulo the adjoint action of the group S. This will
be accomplished in Lemma 8 below.

For ¢t > 0 let
t_lfk 0 0
ss=1 O I 0
0 0 ti

where the blocks are as in (27). Then s, € G'. Define isomorphisms s;, M;, g; of
W = My (D) by
si(w) = syw (we W),
My(w) = tw (we W),
and g, = M, o s, i.e.
gi(w) = tsyw (weW).

Explicitly,
w1 Wy w1 Wy
agi Wo Wy = th tw5 . (33)
w3 We t*ws  tPwe

We denote by the same symbols the corresponding linear isomorphisms of st, as in (17).
In particular,

gi(x) =tsp.w (x € s7).

Lemma 8. The linear map g; € GL(s7) preserves [s5, N|*2, N + [s5, N|*5 and the subset
U C N + [s5, N|*B defined in (23). In fact,
Tlvogily = Mp o 7|y . (34)
Furthermore, for o as in (24),
groo =0 o (Ad(s) X gi|n e nts) (35)
where gt’N+[56’N}LB on the right-hand side stands for the restriction of g; to N + [s5, N]*.

In particular, the subset (S x U) C st is closed under multiplication by positive reals.
Moreover, the determinant of the derivative g, of the map g, : $7 — 57 1S

det(g]) = 14, (36)

and
det((gt\N+[567N]LB)/) _ ydims;—dim O}, (37)

Proof. The preservation of [s5, N]*# and N + [s5, N]*® follows from (33), (28) and (29).
The equality (34) follows from (33) and (31). Notice that

0 0 / /
|:<:(y) y/)agtu]:gt[(g Ad(St_l)y/)’u} (yEg,y €g,t>0,u€U).
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So
55, geu] = gilsg,u] (¢ >0,u€U).
Hence

[557 gtu] + [557 N]LB = [567 gtu] + gt [567 N]J—B = gt([557 u] + [55’ N]LB) :

This implies that the set U is also preserved.
To verify (35), we notice that for s € S and u € N + [s5, N]*# we have

gioo(s,u) = g(su)=1t(s8).u=(s857").(ts,.u)
= o(sess; s gew) = 00 (Ad(5e) X Gl s peyn10 ) (5,1)

Fix t > 0. The conjugation by s;-1 preserves (S x U) because s;-1 € S. Since multi-
plication by ¢ coincides with g; o s;-1, (35) implies that o(S x U) is preserved under the
multiplication by ¢.

Since g; = (M o s;) = My o s; and since det s; = 1, (36) is obvious.

In order to verify (37) we proceed as follows. The derivative of the map g:|y (s, nj5
coincides with the following linear map

0 O 0 0
0 Ws — 0 tws
w3 Weg t2w3 t2 We

By (29), the determinant of this map is equal to
(2 dimg SHy (D) yd' (d—k) dimz D

Since, by (5),
2dimg SHy(D) + d'(d — k) dimg D = dim 7 — dim Oy,
(37) follows. O

Next we consider an S-invariant distribution F' on o(S x U). The following lemma
proves that the restriction of F' to U exists and that the restriction of the ¢-dilation of F'
is equal to (g¢|v)* applied to F|y.

Lemma 9. Suppose F' € D'(o(S x U))S. Then the intersection of the wave front set
of F' with the conormal bundle to U is zero, so that the restriction F|y is well defined.
Furthermore, c*F = us ® F|y, where us is a Haar measure on S. Moreover, fort > 0,

M{F = g{F, (38)
and
(M F)lu = (gelo) Flo - (39)
Proof. Since sjF = F we see that g/ F = M;s; ' = M/ F and (38) follows.
The wave front set of F' is contained in the union of the conormal bundles to the S-
orbits through elements of s7. This is because the characteristic variety of the system of

differential equations expressing the condition that this distribution is annihilated by the
action of the Lie algebra s; coincides with that set. The intersection of this set with the
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conormal bundle to U is zero. Indeed, at each point u € U, this intersection is equal to
the annihilator of both, the tangent space to U at u and the tangent space to the S-orbit
through u. Since by (24) the map o is submersive, these tangent spaces add up to the
whole tangent space to st at u. Hence the annihilator is zero. Therefore F' restricts to U.
The formula 0*F = ug ® F|y follows from the diagram
U—SxU-Z0(SxU), u—(1,u) = u,

which shows that the restriction to U equals the composition of ¢* and the pullback via
the embedding of U into S x U. By combining this with (38) we deduce (39). O

The following lemma shows that the computation of limits of weighted dilations of S-
invariant distributions on W may be accomplished by computing weighted limits on the
slice U.

Lemma 10. Suppose F, Fy € D'(a(S x U))® and a € C are such that

t*(ge-1|v) " Flu tjm>r Folo -
Then

"M F — Fy
t—0+4

in D'(c(SxU)).
Proof. Proposition B.1 shows that it suffices to see that

o (t" M. F) il Fy.
But Lemma 9 implies

o* ("M F) = us @ t*(gi-1|v)" Fly and o*Fy = pus @ Fylu -

Hence the claim follows. 0

Now we are ready to compute the limit of the weighted dilatation of the unnormalized
almost semisimple orbital integral po.

Proposition 11. Let O C o(Sx U) be an S-orbit and let po € D'(s1) be the corresponding
orbital integral. Then

tl_iigrtdeg Hom M polosxvy = polu(U) po,, losxuy » (40)

where pp,, € D'(o(S x U)) is the orbital integral on the orbit O,, = S.N normalized so
that pe,, v is the Dirac delta at N and the convergence is in D'(a(S x U)).

Before the proof, we make two remarks. First, the scalar pup|y(U) may be thought of
as the volume of the intersection ONU. This volume is finite because the restriction pe|y
is a distribution on U with support equal to the closure of O N U, which is compact by
Corollary 7, since 7(O) is a G-orbit and therefore bounded. Hence po|y applies to any
smooth function on U, in particular to the indicator function I;;, equal to 1 on U. Thus

polo(U) = polv(Iy).
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The second remark is that our normalization of ;p,, does not depend on the normal-
ization of p, which is absorbed by the factor ue|y(U).

Proof. By the definition of pull-back and (37)

piolu (1 o gily) = tAmOm=dmer (g | o | (V) -

(Indeed, for a distribution equal to a function f(x) times the Lebesgue measure,
isf(0) = [ floayite) do = |det(gp)] | f)o(ae) do. (11)
ST ST
Since pp|y is a limit of such functions, it has the same transformation property.) We see

from (33) that
;lfg%gtu:N (wel).

Hence, for any ¢ € C(U),

I piolu (4 0 g1) = polu((N)ly) = polu ()P (N) = polu(U)p(N). (42)
Replacing O with O,, in (42) we see that the restriction of pp,, to U is a multiple of the
Dirac delta at N. Thus (40) follows from Lemma 10 with Fy = po,, O

Next, we want to compute the limit of the weighted dilations of the normalized almost
elliptic orbital integrals. We need some additional notation.

For z,y € sy, let {z,y} = 2y + yx € sy5 denote their anticommutator. Let x € sy be
fixed. The anticommutant and the double anticommutant of x in sy are

xﬁT = {yEﬁT:{w,y}:0},

5T5T = ﬂ ysTv

yETST

respectively. A semisimple element x € sy is said to be regular if it is nonzero and
dim(S.z) > dim(S.y) for all semisimple y € sy. A Cartan subspace by of s7 is defined as
the double anticommutant of a regular semisimple element x € sy. The Cartan subspaces
of s1 are classified in [Prz06, §6]. See also [MPP15, §4] and [MPP20, §2.2] for additional
information. We denote by ht"? the set of regular elements in hy. As in [MPP20, (13)-
(15)] the linear spans of 7(h1) and 7/(hy) will be identified and both denoted by b.

Let [ and I’ denote the ranks of g and ¢, respectively. Then h C g is a Cartan subalgebra
of gif ] <!"and h C ¢ is a Cartan subalgebra of g’ otherwise. One can check that d > d’
is equivalent to [ > I’ except for (G, G’) = (Og41, Spyy) with I = [.

Let 3 C g and 3’ C g be the centralizers of h. Suppose b is a Cartan subalgebra of g and
fix a set of positive roots of (hc, gc). Let 7y denote the product of all positive roots and
let 74/, denote the product of all positive roots such that the corresponding root spaces
do not occur in j¢. Similar notations will be used when § is a Cartan subalgebra of g'.

Harish-Chandra’s almost elliptic orbital integral F(y) € 8’'(W)S attached to the S-orbit
O(w) was defined in [MPP20, Definition 3.2]. Here y € Uy 7(h™), the union being on
the family of mutually non-S-conjugate Cartan subspaces of s7, and w € W is such that
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z, € b7 and y = 7(v,) = 7(w). Observe that, by classification, [Prz06, §6], all Cartan
subspaces hy C sy are S-conjugate except when (G,G’) = (U, U,,) with I < p + ¢.
Besides these exceptional cases, the above union reduces therefore to one term. Following
Harish-Chandra’s notation, we shall write Fy(y) for F'(y)(¢), where ¢ € S(W).

As indicated in Remark 2, in the following we will adopt the notation from [MPP20]
(and references therein) and identify st and W by means of the isomorphism (13). So,
for instance, O(w) means O(z,,) = S.z,, and we write w € b instead of z, € h™.
Moreover, S'(W)% = S'(s17)%, S'(W) = &'(s7), and C°(W) = O (s7).

We refer to [MPP20, Theorems 3.4 and 3.6] for the differentiable extension and regu-
larity properties of the map y — F(y). These properties of are different when [ > I’ or
[ < I'. These two cases have therefore to be treated separately.

In fact, when [ > I’, then F'(y) turns out to be a constant multiple of Harish-Chandra’s
orbital integral; see [MPP20, (39)]. When [ < ', then F(y) can still be related to Harish-
Chandra’s orbital integral, but the situation is more involved: the differential extension
of F(y), up to a specific order, is on the set h N 7(W). We refer to [MPP20, Theorem 3.6
and (72)] for more details.

Corollary 12. Let | > I". Assume (for the construction of U) that k = m. Then,

Jim 9B 10m MELE (y)lo(s ) = F@)lo(U) honlosxw) - (43)
Proof. The statement (43) is immediate from Proposition 11. 0

As in [Harb7], we identify the symmetric algebra on g with Clg], the algebra of the
polynomials on g, using the invariant symmetric bilinear form B on g.

Lemma 13. Assume that 1 <. Lety € h N 7(W) and let Q € C[h] be such that deg(Q)
is small enough so that, by [MPP20, Theorem 3.6], O(Q)F(y) exists. Then

tdegﬂom Mt*,la(Q)F(y)‘o-(SXU) tﬁ C/,L(')m (44)

in D'(c(S x U)), where C = 0(Q)F(y)|u(ly) is the value of the compactly supported
distribution 0(Q)F(y)|u on U applied to the indicator function L.

Proof. We see from Lemma 10 that it suffices to prove the lemma with (44) replaced by
ti8rom (g1 |y) Q) F (y)|lv — Conlu, (45)
t—0+
Let ¢ € C°(U). Lemma 2, the argument of (41), and the equality (37) show that

tieEon (g1[u) AQ)F (W)|u () = AQ)F (W)lu (v 0 g.).
Since J(Q)F (y)|v is a compactly supported distribution on U,

IQ)F(y)|u(¢ o gr) o IQ)F(y)|v(¥(N)ly)
= I(Q)FW)|lv(ly)dn ().
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Next we show that the convergence of Lemma 13 happens not only in distributions
in D'(o(S x U)) but also in §'(W). This generalization will require Harish-Chandra’s
Regularity Theorem.

Proposition 14. Let y € h N 7(W). If I < I' let Q € C[b] be such that deg(Q) is small
enough so that, by [MPP20, Theorem 3.6], 0(Q)F(y) ezists. Ifl > I' set O(Q)F(y) = F(y)
Then,
tiesron M, 0(Q)F(y) — Cho,, (46)
t—0+

in the topology of S'(W), where C' = 9(Q)F (y)|u(ly). Moreover, there is a seminorm g
on S(W) and N > 0 such that

[tesron ML D(Q) Fy(y)] < (1+ |y) Y a(0)
0<t<1, yebhnr(W), o € S(W)). (47)
Proof. Since the pull-back
S(@)o¢ = ot e S(W)
is well defined and continuous, we have a push-forward of tempered distributions
SW)su—T1ueS(g), 7Tu)=ulpor),

see [Prz91, (6.1)]. If [ > I’ then 7/(F(y)) is a constant multiple of a semisimple orbital
integral supported on the G’-orbit through y in g¢; see [MPP20, (39)—(40)]. As a distri-
bution, it is annihilated by the ideal in C[g']%" of the polynomials vanishing on that orbit.
This is an ideal of finite codimension.

We shall prove a similar statement about 7/(9(Q)F(y)) in the case | < [I'. According
to [MPP20, (75) for G = Ogyq with [ < ', and (72) otherwise|, we may complete b to an
elliptic Cartan subalgebra b’ = h @ h” C g’ and there is a positive constant C' such that
for ¢ € S(¢')

HOQFW)W) = AQFW)W) (a9
= Co@aw) (mamly+o) [ vlotu o) do)

short

where y” € b, 7y = w780 (the product of the positive short roots) if G = Ogq with
| <, and 7y iy = my s otherwise. Let P € C[g/]“". Then

QT y y) (Wg’/h’ (y+y") /G (PY)(g-(y + y")) dg)

11 07
Y=

(49)

y"'=0

= 0@y P+ memlu+ o) [ wlotu+ ) ds)

By commuting the operators of multiplication by a polynomial with differentiation, we
may write

y"'=0 )

0QFy)Ply+y")= Y,  Paly+y")d",

|a|§deg(Q7~r5//h/)
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where 0% = H?Zl o(J;)% for a = (au, ..., ar). Hence, (49) is equal to

>, Pay)or (Wg'/w(y +y") /G Wlg-(y +y") dg)

o] <deg(QF /)
We see from (48)—(50) that the range of the map
Clg1% 3 P = 7(A(Q)F(y)) - P € S'(g) (51)

is contained in the space spanned by the distributions

0" (Wg'/ry (y+y") /G W(g-(y+y")) dg)

In particular this range is finite dimensional. Therefore the distribution (48) is annihilated
by an ideal of finite co-dimension in C[g/]%".
Hence, in any case (I > 1" or [ <!'), the Fourier transform

(TL(O(Q)F ()" € S'(¢) (52)

is annihilated by an ideal of finite co-dimension in d(C[g/]"). Here 9(C[g]%") is the alge-
bra of G'-invariant constant-coefficient differential operators on g’. Now Harish-Chandra
Regularity Theorem [Har65, Theorem 1, page 11| implies that the distribution (52) is a
locally integrable function whose restriction to the set of the regular semisimple elements
has a known structure. Specifically, Harish-Chandra’s formula for the radial component of
a G'-invariant differential operator with constant coefficients on g’ together with [Har64,
Lemma 19] shows that the restriction

Ty sy (TLO(Q)F (Y)))" lyres
is annihilated by an ideal of finite co-dimension in d(C[h’]). Hence, for any connected
component C(h") C h’" there is an exponential polynomial Zj pje’ such that

(FOQFM) legren = —— 3 pye s (53)

Tl /!

(50)

y''=0 )

(laf < deg(Qy ) -

y''=0

see e.g. [War72, Lemma 2, Appendix to 8.3.1]. Let
plr) =D pi(@)e® (w e CH)).
J

This function extends analytically beyond the connected component and for any k =

1,2,3,... we have Taylor’s formula, as in [H6r83],
@ 1 @
_ an(0) _ S g T
plx) = a%a p(0)— +k /0 (1-s) g::ka p(sz)ds—. (54)

Since the distribution (52) is tempered, the real parts of the A; are non-positive on C'(h"").
Furthermore, the )\; depend linearly on y and the p; depend polynomially on y. Therefore
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a straightforward argument shows that there is N > 0 such that

o’ N N
|0%p(tz)| < constant - (1 + |y|)™ (1 + |z|) Z i

|lal=k

(55)

:CO“

Hence (52) is a finite sum of homogeneous distributions, of possibly negative degrees,
plus the error term which is bounded by (55). Thus there is an integer a such that the
following limit exists in S’(g’):

lim °M; (T,(0(Q)F(y)))" . (56)

t—0+

Moreover, there is a seminorm ¢ on S(g') and N > 0 such that

[t My (rLQ@Q)FW)) ()] < (1+ [y a(v)
0<t<1,yephnr(W), v €S(g)). (57)
By taking the inverse Fourier transform we see that there is an integer b such that the

following limit exists in S’(g'):

lim " M;1m(D(Q)F(y)) (58)

t—0+
Moreover, there is a seminorm ¢ on S(g') and N > 0 such that

lim "M 7 (0(Q)F (y)(¥)| < (1+ lyl)Va(¥)

t—0+
0<t<1,yebnrt(W), v €8(g)). (59)
Notice that the following equivalent formulas hold.
(Por)y =t Mmo=dm Wy, o' (e S(g)),
(M u) = tdimW*QdimglMt*,ﬂ; (u) (ue S'(W)). (60)

The injectivity of the map 7/, see Corollary [MPP20, (6)], and (60) imply that there is
an integer n such that the following limit exists in S'(W),

Jim ML O(Q)F(y) (61)
Now Lemma 13 shows that n = deg e, and the proposition follows. U

4. An integral over the slice through a nilpotent element.

4.1. Normalization of measures. Recall from section 2 the positive definite symmetric
bilinear form B(-,-) = —(#-,-) on 5. We normalize the Lebesgue measure on s so that the
volume of unit cube, defined in terms of B(,-), is 1.

Let G° C G denote the connected component of the identity and set —G® = {—g;¢g €
G%}. Recall that for our compact group G, the Cayley transform c(z) = (z +1)(z — 1)~*

maps g onto —GY. Notice that G = G® = -G if G = Uy or Sp,. Set r = %EI;—W‘ Then,
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as checked in [Prz91, (3.11)], one may normalize the Haar measure on the group G so
that
de(x) = |detg(1 — z)| " dx (xeg).

The proof presented in [Prz91, (3.11)] is valid for G # Osg,y1. In the case G = Og,1q
a parallel argument works too. This is different than the normalization given in [Hel84,
Theorem 1.14].

Having normalized the measures, we may study the distributions on W, g and G as
“generalized functions”, in the sense that they are derivatives of continuous functions
multiplied by the corresponding measures, as in [H6r83, section 6.3].

4.2. Some geometry of the moment map. Fix an element N € s7such that wy € O,
see Lemma 1. Let Gy C G be the stabilizer of N and let gy C g be the Lie algebra of Gy.
Then we have a direct sum decomposition, orthogonal with respect to the form B(-,-) of
section 2,

0=0y Doy
Recall the subspaces
55 NI7# Csy  and Wiy CW
defined in (20) and (29). Let Ry © W{,_njip denote the radical of the restriction of
the symplectic form (-,-) to Wi,_njip, and let Wy © Wi, yjis denote the orthogonal

complement of Ry with respect to the form B(-,-). Then either Wy = 0 or the restriction
of the symplectic form (-, -) to Wy is non-degenerate and

W[S@N]LB == RN @ WN .

In the notation of the proof of Lemma 5, we have

0 0
RN = 0 0 ; Ws € SHm(]D)), We € Mm,dfm(D)
w3 We
0 0
Wy = 0 ws |; ws € Ma—oma—m(D)
0 O
if d > m, and
0
RN = 0 ; W3 € SHm(]D), We € Mm,d—m(D)
w3
Wy =0

if d =m.
Suppose d > m. Then Wy = 0 if and only if d' = 2m, i.e. (-,-) is split. Hence Wy # 0
if and only if G’ = U, , with p=m < ¢=m+ (d' — 2m).
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Lemma 15. The map

RNEU—>T(U)N+U)EQJJ\}B (62)
s an R-linear bijection. The absolute value of the determinant of the matriz of this map
defined in terms of any orthonormal basis is equal to

odimp SHon D)+ dimg Myn,a—m(D) _ o3 dimg SHm (D)o} dim anP . (63)

Proof. An orthonormal basis of Ry consists of the matrices

1
E(Ep,q_Eq,p)a I<p<qg<m,

E.s, m<rs<d,
if D = R, and of the matrices

YE.., m<rs<d,
where vy =4,7 =1,i if D=C, and vy =14, j,k, v = 1,4,4,k, if D = H.
An orthonormal basis of g consists of the matrices
1
V2

if D = R, and of the matrices

(Bpq — Eup), 1<p<q<d,

where y =7 if D =C, and v =14, j,k, if D = H.
As we have seen in (31), the map (62) is given by the formula

00 2wy w
Rv>|[ 0 0 —>< 5 6)69.

—wi 0
w3 We

00 .
we {( 0 2 ) T = T € Md_m(D)}

x € i
g]LVB = {( - 12 ) ;L1 = —3711t € MmGD))v T12 € Mm7d_m(D>}

Since

and

—513'12t 0
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the R-linearity and bijectivity of the map (62) follows.

Also, this map sends an element of our orthonormal basis contained in the ws block
to 2 times an element of the orthonormal basis contained in the x1; block. Furthermore,
it sends an element of our orthonormal basis contained in the wg block to /2 times an

element of the orthonormal basis contained in the < 0 — 2 ) block. Hence, (63)

—T12¢ 0
follows.
Lemma 16. Let 7y : Wy — gn be the unnormalized moment map. Then
T(wy +v+w) =7(wy +v) + Tn(W) (ve Ry, we Wy), (64)
where T(wy +v) € gn®. If Wy = 0, then the map (64) coincides with the map (62).
Proof. This is immediate from the formulas (29) and (31). O

4.3. The integral as a distribution on g. Recall the character x(t) = €™ t € R,
and the imaginary Gaussians

Xo(w) = x(7 (2w, w)) = X(%l trp/r(zr(w)))  (reg, weW). (65)

As usual, by (14), we can consider x, as a function on s7 by setting
Xa(y) = Xa(wy)  (y € 57).

Fix an element &(0) € Sp(W) lifting ¢(0) = —1. Since g is simply connected, there is
a unique continuous (in fact real analytic) lift ¢ : g — G passing through ¢(0). Then

¢: gy — Gy. Since G is compact, the Cayley transform ¢ maps g onto the dense subset
of —G° consisting of the elements g such that det(g — 1) # 0. The fixed normalization of

the measure on G is so that on ¢(g) € —G° we have
dé(x) = de(x) (xeg).
Lemma 17. Recall the slice U = N + [sg, N|*% through N, (23). As a distribution on g,

Ow, (¢(0)é(zn))
Owy (¢(0))Owy (E(zN))

3 dimarB a—1 d; L . .
where C = 22 4mon" 95 dimaSHn(D) 0 — gl 4 gy 28 € P 2y € gy, (5@3 is Dirac

/U Xo(u) di du = C5 1 (a2) doy (weg),  (66)

delta at 0 on ngB, and Ow , 1s the character of the Weil representation oféB(WN) attached
to the same character x. If Wy = 0 then Ow, = 1.

Proof. We see from Lemma 16 that

/ng(u)dxdu:/ XmLB(wN"—’U)dI‘LBd/U/ Xay (W) dxy dw .
U RN Wn
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Lemma 15 implies that

1
X(= trpyr(ya™?)) dot® dy

/ Xoip (Wy + ) dz'? dv = 93 dimoy® 9=} dime SHon (D) /
Ry 4

ip
In

L . 1 L .
— 2f%d1mgNB 2*%dlmR5'Hm(D)6 ip (_xJ_B> _ 2%d1mgNB 2f%dlmRS’Hm(D)5 ip (xLB) )
IN 4 IN

Furthermore, by evaluating both sides of the equation [AP14, (139)] at w = 0 we see that

GWN(é(O))GWN(é(iN))/W Xay (W) dzy dw = Ow, (¢(0)é(zy)) dry .

(Here we are using the convention on “generalized functions” we introduced in subsection
4.1. So, with the notation of [AP14, (139)], t(¢(x))(w) = x.(w) and [t(¢(0))tt(¢(zn))](w) =
[10x2, ] (w), where f denotes the twisted convolution on Wy. Since y., is even, we con-
clude that [£(¢(0))5¢(¢(xn))](0) = [11xay](0) = [iy, Xaw (w) dw.) B

4.4. The integral as a distribution on —GO. Asin [AP14, (138)], we consider the
embedding
T :Sp(W) = S'(W) (67)
of the metaplectic group into the space of tempered distributions on the symplectic space.
In particular,
T(e(x)) = ©((2)xa(w) dw  (zeg, we W), (68)
where © denotes the character of the Weil representation of §13(W) attached to the char-

acter .
Suppose Wy # 0. The structure of our dual pair is such that the metaplectic covering

Sp(W) 2 G — G C Sp(W)
restricts to the metaplectic covering
SAI;(WN) DGy — Gy C Sp(Wy) .

Indeed, Gy consists of the elements of G of the block diagonal form (I(’)" 2) The dual
pair (Gy, GYy) is of the same type as (G,G’), with Gy consisting of elements of the form

I, 0 0

0 ¢ 0 |. The dimension of the defining space V/ of Gy is d’ — 2m, which has the
same parity as d’. The claim therefore follows from [MPP21, Appendix D].

In particular we have an inclusion ¢ : Gy — G and hence the pull-back of test functions
0 CF(G) — C°(Gy) and push-forward of distributions ¢, : D'(Gy) — D'(G). By
restriction, we get

L D(ZGY) — D(~GY). (69)
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If Wy =0 and d > m (and hence the form (-,-)" is split), then we still have (69), where

the coverings are in Sp(W). It follows from [AP14, Proposition 4.28] that in the above
two cases, the formula
N C10)

X+(9) = 0] (9€G) (70)

defines a group homomorphism y : G — C*, because there is a complete polarization
of W preserved by G. Indeed, such a polarization is W = X &Y, where X and Y are the
spaces of the first m rows and of the last m rows of W, respectivement. In particular,
X+ restricts to a character of Gy. Notice that X+ is a character of G whenever there is a
polarization is W = X @ Y such that G preserves X and Y to fit into [AP14, Proposition
4.28]. This is always the case when the form (-,-)" is split.

If Wy =0 and d = m, then Gy = 1. In this case we artiﬁgiaﬂy (?anarge Gy to be the
center Z = {1, —1} of the symplectic group Sp(W). Then Gy = Z and, as checked in
[IMPP21, (22)] the formula

. 6(9) .
X+(9)——|@(§)| (g € Gn) (71)

defines a group homomorphism y : Gy — C~.
Lemma 18. Suppose Wy = 0. Then, as a distribution on —/E}/O,

/U T(G)(u) dgdu = C2 3™V, (v, () diix) (72)

—_~—

3 dimatB o—1 di ~
where C' = 23 Moy 25 dime SHa®) g dgy is the Haar measure on —GY;.

Proof. We compute using Lemma 17,

/U T(e())(u) dé(z) du = O(&(x)) /U Yo ()| det(1 — )|~ dz du
= COE(n))yn ()| det(1 — )| day
= 059;3( P)x+(E(zn))|O(E(xn))|[ det(l — zn)| " day
= C2 NG (a0 (@) det(1 — o) |5 da
= O EIG L () (e delen).

because (a straightforward computation shows that) %/ —r = ﬁf‘*‘g\fﬁ, where Vy C V is

the defining module for Gy. O

Lemma 19. Suppose Wy # 0. (Equivalently, d > m and the form (-,-) is not split.)
Then, as a distribution on —QGO,

/(JT@)(U) dgdu = €22 ™ WEmWN L (3(0)) 7 e (O (60)g) diw) (73)
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—_~—

. €L .
where C' = 22 9moN” 9=3 dime SUnD) 4 i dgy is the Haar measure on -GY.
Proof. We compute using Lemma 17,

s a1 oE0)  O(Ean) O e
= O () 0 B (60)) B () O CO ) det(1 = )|

|det(1—xy)| " dx

Notice that

o 3 o o OOy (Ean)|_ 0o [Busllar] e (g

Owy (c(zn)) | ©((zn)) | [0(e(xn))] Owy(E(zn))
is a continuous function taking values in a finite set. The latter property is a consequence
of [AP14, Proposition 4.28]: G may be considered as a subgroup of GL(X), where X &Y

is the polarization of W. Then x(g) is written in terms of det;(l/ *(§), which can assume
a finite set of values because the image of detx |5 is a compact subgroup of R*. Hence
(74) is constant, equal to its value at 0, which is 1. So

O(zy)) | O(zn)) ‘
Owy (E(zn))  [Owy(e(zn))|
Therefore
0(c(0)) ©O((zy) | 6(c0) O(E(zy)) ’
Ow, (¢(0)) Owy (E(zn))  |Owy (¢(0) Owy (E(zn)) |

The only dual pair that satisfies the assumptions of this Lemma is (G, G’) = (Uqg, Uyt (@ —2m))

with d’ —2m > 0. In terms of matrices, as in the proof of Lemma 5,
Gy =Usgrn, Wn=My_omdm-

Hence,
_ 2d1ng —d S 2dlngN —d—m
dimR Cd ’ N dlIIlR (Cd—m
and therefore b a9
—2m
5 — 9 —Trr=-rnN.
Thus
O(c(zn)) ’ _ ‘ 0(¢(0)) ‘ _

—— 7 _I|det(1l — =z ”——~ det(l — z '~

‘@wm(m)) et = ol = g eop |4t — )]
Therefore

) o T @) OFan))
|| 7)) dea) = o o ) @0) O] l@m 5(0)) Oy (E(xn))

X ®WN (6(0)6(2?]\[))’ det(l — ZEN)| d.i?N

_ | BCO) s L o 0V det(l — zx)| T di
_C‘@wN((O)) Oqin >X+(5(0))@ww( (0)&(zn))| det(1 — zn)| 7™ day
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and the formula follows. O

5. Proof of the main theorem.

Here we verify Theorem 3. We begin with an intermediate statement. Recall the
connected identity component G° C G. Retain the notation of the previous subsection.

Theorem 20. Let 11 be an irreducible representation ofé that occurs in the restriction of
the Weil representation to G. Then, in the topology of S'(W),

tdegHOm Mt*_lT(éH|;\G’O) tjm_ Ku(’)m , (75)

where K # 0.
Suppose d =m or d >m and (-,-)" is split. (Equivalently, suppose (G,G’) is different
from (Ug, Uy gr—pn) with d —2m > 0.) Then

L Qim
K =221 er@x;l(—l)/

G

Onoy 1 (9n) dgn (76)

where C' is as in Lemma 18 and x 1is the character defined in (70). The integral in (76)
is equal to the multiplicity of the trivial representation of G% in the restriction of I ® y '
to G%.

Suppose (G,G") = (Uyg, Uy ar—m) with d —2m > 0. Then

K = CobdmW—dmWa () / On(gn)Ow, () gy . (77)
Gy

where C' is as above, Gy = Ug_,,,, and Ow,, is the character of the Weil representation
of Sp(Wy). The integral in (77) is equal to the sum of multiplicities of the irreducible
component of H|é; in the restriction of wy to Gy.

Notice that if G = Uy or Sp, then —GY = G° = G. Hence, in these cases, Theorem 20
is equivalent to Theorem 3.

Proof. We first prove that the limit in (75) exists and is a constant multiple of up,, . For
this, we use the expression of T'(Or]| o) in terms of Harish-Chandra’s almost elliptic or-
bital integrals F'(y) € 8'(W)® determined in [MPP21]. We need some additional notation.
If 1 <V, let (Jy,...,J;) be the basis of b introduced in [MPP21, (42)]. If | > I’, extend
h to the Cartan subalgebra h(g) of g, with basis (Ji, ..., J;) defined as in [MPP21, (45)].
Then (Ji,...,Jy) is a basis of h. We denote by (y1,...,y) (respectively, (y1,...,yr))
the coordinates of y € h with respect to these bases. Let (Jf,...,J) be the dual basis
of b* if [ < I’ (vespectively, of h(g)* if [ > I'), and set e¢; = iJ; for 1 < j < [. The
Harish-Chandra parameter p = 2221 pje; of 11 is strictly dominant. In this paper, this
means that g > po > - > .
For 1 <j <[ set

aj=—pj+0—1 and bj=—p;+5-1,
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where
'—1 if G = Oy
l/—l—% if G = Og 41
et if G=U,
I'—1—1 if G = Spy.
Furthermore, set § = 4x if G = Sp; and § = 27 otherwise.

Suppose first that [ < I’. Then, according to [MPP21, Theorem 2],

0—1=

T(On 5)(9) = C /b o (H (ps(ys) + Qj(ayj)(so(yj))) Fly)@)dy (€ SW)),
"~ (78)

where
P;i(y) = Pay, (=By)e™™¥and  ¢;(y) = 87" Qu,,(57'0) ,

and Py, 5, and Qg 5, are polynomial functions on (—oc,0] and on [0, 4+00). The explicit
expression of P ;. and Q4,5 does not play any role here, but one needs to notice that
Pyp, =0if a; <0and b; <0 (ie. if |pj| <6 — 1), and in this case Qu, 4, # 0.

The domain of integration hN7(W) is described in [MPP20, Lemma 3.5]. It agrees with
h unless G = U;. If G = Uy, then h N 7(W) is a union of closed orthants associated with
the fixed basis (J1,...,J;) of h. In all cases, the right-hand-side of (78) is the constant C'
times a finite sum of integrals of the form

/YIHPJ v;) qu ) ))

Jel°

dy; s (79)

yre=0

where I = {ji,...,Jjr} is a (possibly empty) subset of {j € {1,2,...,} : p; # 0},
I ={1,2,...,1} \ I, the integration domain is Y7 = [[;.; ¥; where Y; can be (—o0,0],
0, +00) or R, and dy; = dy;, - - - dyj,.

Proposition 14, the exponential decay of the p;’s in (79) and the Lebesgue Dominated
Convergence Theorem imply that

Jim ¢ om ML T(On| )

l

- (c /b . (H (ps(y) + qj@yj)ao(yj))) )y (Iy) dy) o, - (80)

j=1
Suppose now that [ > I’. According to [MPP21, Theorem 3],

16w =C [ (Mns'nn) Fo@d  Gesw), @)

Jj€lo
where sq is a suitable element of W (G, h(g)) and

Lo Ul p L G =T &)
{1,....U'} otherwise .
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With respect to the fixed basis (Ji,...,Jy) of b, the integration domain 7/(hy"“) is a
dense subset of the positive orthant. As in the case [ > I, Proposition 14, the exponential
decay of the p;’s and the Lebesgue Dominated Convergence Theorem imply that

de . *
tl—l>r()r}&-t sHom M 1T(@H‘ ) ( /l(hmg (HPJ S0 Y); ) (y)|U(HU)d?/> po,, - (83)

Jj€Jo

Thus, in each case, the limit is a constant multiple of the measure p,,. This constant is
the term in parenthesis in (80) or in (83). It is equal to

(@H| Go |U HU / /GO @H )(u) dg du. (84)

We need to prove that it is non-zero.
Suppose d = m (stable range) or d > m and the form (-, )
implies that (84) is equal to

CQ%dimW/GO On(gn ) x+(gn) dgn -

/

is split. Then Lemma 18

N
Furthermore,
/ On(gy')x+(9n) dgn = / Orrgy -1 (In') dgn = / Oy (9n) dgn
-GR -G -G

where in the last formula II ® X:Ll is viewed as a representation of Gy. Thus
T(Onl )lv) =24 [ 6y, 1(ow) doy. £
_GN

Since —1 is in the center of Sp(W), it acts via multiplication by a scalar XH®X;1<_1) on
M X:Ll. Therefore

/ w Onsy: (9n5) dgn = Xy (—1) / _ Ongy;1(9n) dg -

YN GN
Hence, (76) follows.

The integral in (76) is the multiplicity of the trivial representation of G%; in the restric-
tion of IT ® ;' to G. If Gy = {1}, i.e. d = m, then this multiplicity is equal to the
degree of II. Otherwise, there are three cases:

G= Od7 G, = Sp2m(R)7 GN = Od—m )

G=Sp,, G =0;,R), GN = SPy_ s

G= Ud7 G' = Um,m7 GrN = Udfma .
Suppose that G = Oy or Sp,. Since II occurs in Howe’s correspondence, by [Prz96,
(A.4.2.1) and (A.6.2)], the highest weight of [T ® x;'is A = (A, ..., A, 0,...,0), where

the last d — m entries are equal to 0 and A\; > --- > \,, > 0 are integers. We then
recognize that the trivial representation of G% occurs in the restriction of 11 ® Xjrl to G%
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by iterating the branching laws SO,, | SO,,_; or Sp,, | Sp,,_1, see e.g. [Kna02, Theorems
9.16 and 9.18]. If G = Uy, then by [Prz96, (A.5.2)], the highest weight of T ® x7' is
A= (1, s, 0,000, =10y oo —1y), where 0 < s <m, 0 <r <m, r+s < d, and
pp > > s > 0and vy > -+ > p,. > 0 are integers. Notice that there are d — (r + s)
zero entries in the central part of A. The highest weights of the irreducible representations
occurring in the branching U, | U,_; interleave A, see e.g. [Kna02, Theorems 9.14].
Iterating these branching laws m times therefore allows the highest weight of all zero
entries. Hence the trivial representation of G occurs in the restriction of IT® yI' to G%,
in this case too.

Let us now consider the remaining cases, i.e. when Wy # 0. Lemma 19 implies that
(84) is equal to

CQ;dimW—dimWN/GO @H(g]v )@WN( ( )gN) dgn .

Notice that

/ On (") O (E(0)v) dg = / On(#0)3x")Ow (3x) dgn
-8, o

= xu(@(0) | OGO (i) dan

N
where Yy is the central character of II.

Notice that Gy is isomorphic to Uy_,,. Hence G% = Gy and the centralizer of Gy in
Sp(Wy) is compact, isomorphic to Ug_g,,. Thus we have the dual pair (Ug_p, Uy_2m)
inside Sp(Wy). The restriction Il|g— decomposes into a finite sum of irreducibles and the
integral

/GN On(gy')Owy (9n) dgn (86)

is the sum of the multiplicities of those irreducibles that occur in the restriction of wy
to Gy. Again, looking at the highest weight A of II, [Prz96, (A.5.2)], and the branching
rules U 1 U,_1, e.g. [Kna02, Theorems 9.14], we see that the irreducible representation
of Ud m Whose highest weight has the central d — m components of \ is a representatlon

of Ud m occurring in both the restriction of II and the restriction of wy to Ud m. Thus
the number (86) is not zero. O

Now we consider the dual pairs (G, G’) for which —G® # G. They are isomorphic to
(Og, Spyy(R)). More precisely, G \ (—G%) = G% if G = Oy, and G\ (-G%) = G\ G*
if G = Og. Here G\ (—G°) is the complement of —G° in G. We need to know how to
compute

lim 48 Hom pfx 1T(@H\ a0 (87)

t—0+

Suppose d = 1. Then G = O; and G° = {1}. Hence T((L)H|év0) =T(1) = 6. Also,
O, = W\ {0} and pp,, is the Lebesgue measure. Hence deg pip,, = 0 and we see that
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(87) is equal to

; deg 1oy, £ r*
tgl(ﬂ t M T(

)= lim M6 = lim t"™WV§ =0, (88)

On |G\/(:éo) t—0+ t—0+

Assume from now on that d > 1. As shown in [MPP21, section 4], there is a symplectic
subspace Wy, C W such that the restriction of the dual pair (G, G’) to Wy is isomorphic
to (Og_1,Spyr(R)) and the following statements hold, where T is the map (67) for the

dual pair (G, G).
Theorem 21. Let (G, G’) = (Og41,Spyy(R)) with 1 > 1. Then for ¢ € S(W)

/ On(3)T(5)(9) dg = / On(3) det(1 — g)Tu(3)(6%w.) dg . (89)
Qo Qo
where

¢ (w) = / blgw)dw  (weW). (90)

Theorem 22. Let (G,G') = (Ox,Spy(R)) and assume that the character On is not

supported on GY.
Suppose that 1 <1 <1 and the pair (O, Spy(R)) is excluded. Then for all ¢ € S(W)

Ou(9)T(9)(¢)dg = C) | Ou,(§)T5(9)(¢"|w.)dy, (91)
G\GO el
where C(I1) is a constant equal to £1, Iy = 11, @0 is the tensor product of the irreducible

representation of Sping,_; of highest weight \s = )\—l—% 23;11 e; and the spin representation
0. Recall that X is the highest weight of 11.

If1 >0, then o coOn(9)T(g)dg = 0.
If (G, G') = (02, Sp,(R)), then O is not supported in GO = SO, if and only if Il = v~}
where v(g, &) = det(g)"/? for (g,€) € Oq. In this case, fG\GO On(§)T(g) dg = 0.

The following lemma will allow us to reduce the integral on the right hand-side of (89)
to a linear combination of integrals as on the right hand-side of (91).

Lemma 23. Suppose (G,G’) = (Oai41,Spyy (R)). The function Gy > g — On(g) det(1 —
g) € C is a finite linear combination of irreducible characters of Gs.

Proof. Let o denote the spin representation of GY and let ¢ be its contragradient repre-
sentation. Then, by [Lit06, Ch. XI, III, p. 254]

det(1+9) = [0, () = Ouenclg) (g€ Q). (92)

Recall that for (G, G") = (Og4, Spy (R)), x4 is a character of G. Write Op(§) det(1 — g) =
On(g)x+(g) det(1—g)x;' (). Decomposing (II® x;') ®o®0° = >_;0j into a finite sum
of irreducible representations o; of G,, we then obtain

On(3) det(1 = g) = Oypgy o dot(1 =92 (3) = 3 00, (91X () = 3 Ouginc (9).
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where (L)Uf (9) = (L)U§ (9). O

Let O,,s € W, denote the maximal nilpotent Gy x G’ orbit with invariant measure
I’I’Om,s 6 S,<Ws)

Lemma 24. The sharp inequality

deg po,, > deg pio,, , + (dim W — dim W) (93)
holds, unless the dual pair (G, G") is isomorphic to (O4, Spyy (R)) with d > 1'. In this cases
deg po,, = deg pio,, , + (dim W — dim W) . (94)

Proof. We know from Lemmas 1 and 2 that
deg po,, = dim O, — dim W = 2!'min{d, '} — min{d, '}(min{d, '} — 1) — d 2l’,
and similarly
deg pio,,, , = dim O;,, ; — dim W,
=2'min{d — 1,I'} —min{d — 1,!'}(min{d — 1,I'} — 1) — (d — 1)2".
Suppose d < I'. Then
deg o, =2l'd —d(d—1) —d2l' = —d(d — 1)
and, because d — 1 < I,
deg po,,, = —(d—=1)(d—=2) = —d(d—1) +2(d —1).
Also,
dimW — dim W, = d2' — (d — 1)20' =20 > 2(d — 1).
Thus (93) follows.
Suppose d > I'. Then

deg o, =2 = U'(I"' — 1) — d2l
and, because d — 1 >,
deg po,,, =2U'"' =U'(l' = 1) — (d — 1)2I' = deg po,, +2".
Thus (94) follows. O
Lemma 25. Suppose d = m. Then

tl_i}&_tdeguom Mt**1T<@H‘G\/(tE}O)) =0.

Proof. Recall that
Mt*—lT(GH’G\/(j(/;o))((b) = T(éH|G\(/té()))<¢t_l) )

where
dp1(w) =t Vo(tw) .



DUAL PAIRS WITH ONE MEMBER COMPACT 31

Suppose first we are in the situation described in Theorem 22. Then T'(Or]| \/(?E}O)X(b) is
a constant multiple of T, (O, | - o) (@lw,) because —GY = GY. Notice that

(Glw, )i (w) =tV (dlw, ) (tw)
and as above

MO, | ) (6lw.) = Ty(Om.] ) (Slw.)er).
Hence the decompostion of Il into irreducibles and Theorem 20 imply that

tdegMOm,s Mt**lTs(éns :‘d”(s))<¢yws> tﬁ KS:U/Om,s )

where K is a non-zero constant. Thus, for a constant Cf,
deg po,, 1 r* = .
4 MtflT(@HlG\(,GO))(¢)

— O, des o, —dimWHdm We g |fc?g )(Plw.)

G s (b T, (B,

“)(6hw.)
— C 0- Ksuo =0

t—0+
because, by Lemma 24,
deg po,, —dim W + dim Wy — deg pp,,, > 0.

Lemma 23 implies that a similar argument applies to the case of Theorem 89. 0

Because of (88) and Lemma 25, it remains to compute (87) for (Og, Spyy(R)) with
d > m = [l'. According to Theorem 22, we can also suppose I’ > [ and (I',1) # (1,1)
when d = 2[. This leads us to the cases 2l + 1 > [’ for (G,G’) = (Og1, Spor(R)), and
20 > 1" > 1, with (I',1) # (1,1), for (G, G") = (Og, Spyy (R)).
Lemma 26. Suppose (G, G') = (Oa141, Spyy (R)) with 20 +1 > 1" Let I1 be an irreducible

representation of G that occurs in the restriction of the Weil representation to G. Then,
in the topology of S'(W),

tiesron M T(Onlg) = K po, (95)
where
1 dim _
oSO (1) /( , Ono ™)t 4 g)dg,  (90)
Gs N

and |S%| is the area of the unit sphere, Cy is as in Lemma 18 for the group G, acting on
W, and (GY)y is the stabilizer of N in GY.
Proof. Recall the formula (91). We know from Lemma 23 that O(j)det(1 — g) is a

finite linear combination of irreducible characters of G,. Since GY = —G%, we apply
the argument used in the proof of Theorem 20, together with (94), to each individual

representation of Gy and sum the results. This shows that for ¢ € S(W),
tesron My T(Onlg) (0) —0 Katon, (6% |w.), (97)
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where po,, , is the normalized measure on the maximal nilpotent G,G'-orbit O, s € W,
and

1
K, = 02y (1) /

@) Ongy ! (g1 det(1+ g)dg. (98)
s/N

Since, by Corollary D.5
10,4 (6%1w.) = [5%|po,.(4),

(95) follows. O
Lemma 27. Suppose (G,G') = (O, Spyy(R)) with 21 > 1" > 1. Let 11 be an irreducible
representation of G that occurs in the restriction of the Weil representation to G and
whose character is not supported on GO. Then, in the topology of S'(W),

de . * ~ o +
téesHo Mt_lT(@H|G\GO> t_>—0_>’_ K Ho,, (99)
where KT =0 if 2l =1"+1 and
Kt — C(ﬂ)’52171||52172‘0882%dimwss

X Xngy (—1) @H®x—1(971> det(1 +g)dg (100)
" (G N

for 20 > I' + 1. In (100), C(II) = +1 and Css is as in Lemma 18 for the group Gss,
1somorphic to Og_o, acting on W .
Proof. Formulas (91) and (94) imply that

lim 1995400 M7 T(Gn| 57)(6) = C(T) lim #4820 M7 Ty (O, ) (6% w,) . (101)

t—04
Suppose first that 2l = I’ + 1. The defining space of G, has dimension d, = 2[ — 1 =1'.
Lemma 25 applies then to the dual pair (G, G'), yielding

Jip e 0me M T (O, ) (6w, ) = 0.

Suppose now that 20 > I’ + 1. Then 2(l — 1) +1 =20 — 1 > I’ and Lemma 26 shows that

Jim eEHoms ML T (O, ) (6% w,) = K pio,, . (6w, (102)
where
— 1 dim W, _
K: = |S2l 2|Css21+2d We XH®X+1(_1)/( 0 @H®X;1(9 1) det(l -I—g) dg, (103)
Gss N

with Cy, as in Lemma 18 for the group G, isomorphic to Oy _s, acting on W;.
Since, by Corollary D.5

10, (0% |w,) = |5% o, (4)
(99) follows. O
Lemma 28. Let K be as in Theorem 20. With the notation and assumptions of Lemmas

26 and 27,
K+Kt#£0. (104)
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Proof. Recall that

1 dim
K = 022(1 WXH®X+1(_1)/

G

@H®X;1(9N) dgn -
In the situation of Lemma 26,

K+ = |SHC2bim ey () /( . Orioy;2 (o) det(1 +g)dy.
GO N

The constants C' and C; as well as both integrals are integers, and XH®X;1<_1) = +1.
Moreover,
or®s 241! i
ri+3) @ 7
which is an irrational number. Hence (104) follows.
In the situation of Lemma 27, with 2] > " + 1,

5% =

l/
K+ =) ( ) |52l71|‘S2lf2|08321+%dimwss

i
2

~1
X XH®X;1(—1) /(GQS)N @H®X;1(g )det(1 + g) dg,

where both Cy, and the integral are integers. Since

|5«21—1||S21—2| — 27rl 27Tl7§ — 41 7r2l71
(=DI'T((-1)+3) (20 — 2)!
is irrational, (104) follows. Finally, if 2l =1’ + 1, then K + K™ = K # 0. O

Now we easily deduce Theorem 3 from Theorem 20 and Lemmas 25 to 28.

6. The wave front set of IT'.
Recall from Theorem 3 that

1481 M\ T (O) T3, CHom (105)

as tempered distributions on W, where C' is a non-zero constant. Hence, in the topology

of §'(¢'),

—

(4O M7/(T(On)) —» Clioy, » (106)

where
7.(T(On))(¥) = T(On)(Yo7'),

7/(T(Or)) is a Fourier transform of the tempered distribution 7/(7(Oy)) on ¢, and sim-
ilarly for por .

—



34 M. MCKEE, A. PASQUALE, AND T. PRZEBINDA

There is an easy-to-verify inclusion W F(IT') C O, [Prz91, (6.14)] and a formula for the
character O in terms of 7/(T(Or)), namely,

—

~ -0 = (T(On) (107)

where o is a smooth function, [Prz91, Theorem 6.7]. By combining this with Lemma C.1
one completes the argument.

APPENDIX A

A.1. Proof of Lemma 1. The equality w*w = 0 means that the pullback of the form
(+,-) via w € W = Hom(V,V’) is zero. Equivalently, the range of w is an isotropic
subspace of V. Let us fix a maximal isotropic subspace X' C V'. We may assume that
the range of w is contained in X’. Thus w € Hom(V,X’). Under the action of G and
GL(X'), the set Hom(V,X’) breaks down into a union of orbits. Each orbit consists of
maps of rank k € {0,1,2,...,m}. Since by Witt’s Theorem GL(X’) C G’ and since the
action of G’ cannot change the rank of an element of Hom(V, V'), (4) will follow as soon
as we compute the dimension of ;. We shall do it in terms of matrices. We keep the
notation introduced in section 2. Let F, F’ be as in (27) and choose

~

k

N=1o0 (A.1)
0

o o O

as in (28). The Lie algebra g consists of the skew-hermitian matrices of size d with
coefficients in D and ¢’ of matrices of size d’ and coefficients in I, described in (k, d'—2k, k)
block-form as

T11 T12 Z13
I | —1=—t = _ =t —t 7/ / .
= |zn 22 —F'7TR' |, vi3=T13, T31 =Tz, Tl +Fxpn=0.
—t v —t
T3 —Tgp I —X11

The Lie algebra of the stabilizer of N in G x G’ consists of pairs of matrices (z,z’) € gx ¢’
such that

vy 0 T11 T2 x13
! /—1———t
x = ( ) =0 myp —FTTR|, Tu=yn.

O y22 0 O _x—llt

This implies the dimension formula in (4). Since

=

NN* =

o O O
o O O
o O
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the stabilizer of NN* in g’ consists of matrices of the form

T11 Ti2 T13

J—1=—t —t
0 @90 —F'"7Tp2 y  L11 = —T1n ,
0 0 —Qlllt

and (5) follows.

Remark 3. The fact that, for G compact, 771(0) is the closure of a single GG'-orbit and
a finite union of GG'-orbits was proved in [Prz91, Lemma (2.16)]. If in addition the pair
(G, @) is in the stable range with G the smaller member, then [Prz91, Lemma (2.19)] also
computes the dimension of the maximal orbit. So, Lemma 1 is a generalization of these
statements.

As for other references in the literature, notice that given a dual pair (G, G'), there are
two moment maps one usually considers:

Ty i W—g"” and Ty : W — 5",

where g = ¥ @& s is a Cartan decomposition and the second map is obtained from the
first one by composing with the restriction to s'. The first map leads to G’'-orbits and the
second to Ki-orbits.

Our Lemma 1 deals with the maps 1y, whereas the articles [NZ04, NZ01] deal with the
map Ty only. Therefore they do not provide any direct proof of Lemma 1. Moreover, these
references consider only dual pairs in the stable range. We do not have this assumption
i our Lemma.

Furthermore, these two moment maps are sort of “equivalent” in the stable range as
was shown in [DKPO5], but they are not “equivalent” beyond the stable range.

A.2. Proof of Lemma 2. Let N € O as in A.1. The stabilizer of the image of N in V'
is a parabolic subgroup P’ C G’ with Langlands decomposition P’ = GL;(ID)G"N’, where
G” is an isometry group of the same type as G’ and N’ is the unipotent radical. As a
GLy(D)-module, v, the Lie algebra of N, is isomorphic to M #_ox(D) & Hy(D), where
Hi (D) C Mi(D) stands for the space of the hermitian matrices. In the notation of A.1,

0 19 T13

Tl/ = 0 0 —F,_ll’_lgt ; X192 < Mkyd/,Qk(D), 13 € Hd(ID)) ,
0 0 0
0 0 O

g// = 0 T2 0 3 .I'_QQtF/ + F/.TQQ =0 s
0 0 0
a 0 0

GLk(]D)) = 0 [d/,Qk 0 ;ac GLk(D)

o
o
~~
Q|

~+~
S~—
L



36 M. MCKEE, A. PASQUALE, AND T. PRZEBINDA

Hence the absolute value of the determinant of the adjoint action of an element a €
GLy (D) on the real vector space n’ is equal to
, 2 dimp Hp, (D)
| detr Ad(a)w| = | detg(a)|? 2 Famad
Since G’ = K'P’, where K’ is a maximal compact subgroup, the Haar measure on G’ may
be written as
= | detg Ad(a)y|dk dadg” dn’.
Since the stabilizer of N in G’ is equal to G"N' C P’ the G’ orbit of N defines a
tempered distribution on W by

/ o(w) djicon (w / p(kal)|det Ad(a)y|dkda (6 € S(W)).
GLy (D) JK/

Since
a 0 0 I, 0 ta 0O ta 0 0 I, 0
t|0 Id/_Qk 0 0 0 = 0 0 = 0 ]d’—zkz 0 0 0
0 0 (@) \o o 0 0 0 0 (ta)*) \0 0
and for ¢ > 0

/ bo(w) dpcn (w) = = dmW / 6(k(t"a) N[ det Ad(a)w| dk da
W GLy (D)
2 dimp H,, (D)

I
= ¢~ dmW / / d(kaN)|detg(ta)|” 2T *Fam> dk da
GL,(D) JK

2dimp H (D)

—dim W+ <d’—2k+ e >kd1m D
- % dimg D R /¢ d/LG/N( )

this distribution is homogeneous of degree

2 dim H,,(D)

d — 2k
( T dimg D

)dimg D — dim W .

Thus it remains to check that

2 dim ,Hk(]D))

d — 2k
( T dimg D

)k dimg D = d'k dimg (D) — 2 dimg SH, (D),
which is easy, because My, (D) = Hy(D) & SHy(D). In order to conclude the proof we

notice that the orbital integral on the G x G’-orbit of N is (up to a positive multiple) the
G-average of the orbital integral we just considered:

/ o(w) dpo, (w / / ¢(kaNg)det Ad(a)y dk dadyg .
GLi (D) JK
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A.3. A few facts about nilpotent orbits. Let g’ be a semisimple Lie algebra over
C. Then there is a unique non-zero nilpotent orbit in g’ of minimal dimension which is
contained in the closure of any non-zero nilpotent orbit, [CM93, Theorem 4.3.3, Remark
4.3.4]. The dimension of that orbit is equal to one plus the number of positive roots not
orthogonal to the highest root, relative to a choice of a Cartan subalgebra and a choice
of positive roots, [CM93, Lemma 4.3.5]. Thus in the case g’ = sp,,(C), the dimension
of the minimal non-zero nilpotent orbit is equal to 2/’. This is precisely the dimension
of the defining module for the symplectic group Sp,,(C), which may be viewed as the
symplectic space for the dual pair (O1, Spy, (C)).

Consider the dual pair (G,G’) = (Oy,Spy,(R)), with the symplectic space W and
the unnormalized moment map 7/ : W — g'. Since W \ {0} is a single G’-orbit, so is
7' (W \ {0}). Further, dim(7'(W \ {0})) = dim(W) = 2I". Hence, 7/(W \ {0}) C ¢ is
a minimal non-zero G’-orbit. In fact, there are only two such orbits, [CM93, Theorem
9.3.5]. In terms of dual pairs, the second one is obtained from the same dual pair, with
the symplectic form replaced by its negative (or equivalently the symmetric form on the
defining module for O; replaced by its negative).

Consider an irreducible dual pair (G, G’) with G compact. Denote by [ the dimension
of a Cartan subalgebra of g and by [’ the dimension of a Cartan subalgebra of g’. Let us
identify the corresponding symplectic space W with Hom(Vy, Vg) as in [Prz91, sec.2].

Recall that Wy denotes the maximal subset of W on which the restriction of the un-
normalized moment map 7 : W — g is a submersion. Then [Prz91, Lemma 2.6] shows
that W, consists of all the elements w € W such that for any = € g,

rw =0 implies z = 0. (A.2)

The condition (A.2) means that x restricted to the image of w is zero. But in that case
x preserves the orthogonal complement of that image. Thus we need to know that the
Lie algebra of the isometries of that orthogonal complement is zero. This happens if w is
surjective or if G is the orthogonal group and the dimension of the image of w in Vj is
> dim(Vg) — 1. Thus

W, # 0 if and only if I <1'. (A.3)

Consider in particular the dual pair (G,G’) = (Os, Spyy(R)) with 1 < I'. We see from
the above discussion that W consists of elements of rank > 2. Hence, W \ (W, U {0})
consists of elements w of rank equal to 1. By replacing Vg with the image of w, we may
consider w as an element of the symplectic space for the pair (Oy, Spy, ). Hence the image
of w under the moment map generates a minimal non-zero nilpotent orbit in g’.

If (G,G") = (Og,Spy(R)), with 1 < I’ then W, consists of elements of rank > 1.
Therefore W\ W, = {0}.

APPENDIX B: PULL-BACK OF A DISTRIBUTION VIA A SUBMERSION

We collect here some textbook results which are attributed to Ranga Rao in [BV80].
These results date back to the time before the textbook [Hor83] was available.
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We shall use the definition of a smooth manifold and a distribution on a smooth manifold
as described in [Hor83, sec. 6.3]. Thus, if M is a smooth manifold of dimension m and

M D M, 5 M, CR™

is any coordinate system on M, then a distribution u on M is the collection of distributions
Uy, € D’(M,{) such that

U, = (K0 KT 1) Uy . (B.1)
Suppose W is another smooth manifold of dimension n and v is a distribution on W.
Thus for any coordinate system

W D Wy = Wy CR"
we have a distribution v, € D/(W,) such that the condition (B.1) holds. Suppose
o:M—=W

—~

is a submersion. Then for every x there is a unique distribution u, € D'(M,;) such that
uﬁ‘()\oo'on—l)—l(w/\) =(Aogor ). (B.2)
Since
(kor )*Noogor HNuy=(Nocok Toror ) uy=(Aooor;!) vy

the u, satisfy the condition (B.1). The resulting distribution u is denoted by o*v and is
called the pullback of v from W to M via o.

Proposition B.1. Let M and W be smooth manifolds and let o : M — W be a surjective
submersion. Suppose u, € D'(W) is a sequence of distributions such that

lim o*u, =0 in D'(M). (B.3)
n—oo
Then
lim u, =0 in D'(W). (B.4)
n—oo

In particular the map o* : D'(W) — D'(M) is injective.
More generally, if u,, € D'(W) and @ € D'(M) are such that

lim o*u, =1 in D'(M), (B.5)
n—oo
then there is a distribution u € D'(W) such that
lim w, =u in D'(W) (B.6)
n—oo

and 4 = o*u.

Proof. By the definition of a distribution on a manifold, as in [H6r83, sec.6.3], we may
assume that M is an open subset of R™ and W is an open subset of R".
We recall the definition of the pull-back

ot D'(W) — D'(M) (B.7)
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from the proof of Theorem 6.1.2 in [H6r83|. Fix a point xyp € M and a smooth map
g: M — R™" such that

cdg: M—R"xR"™™"
has a bijective differential at x3. By the Inverse Function Theorem there is an open
neighborhood My of g in M such that

(c®9g) |y Mo — Yo

is a diffeomorphism onto an open neighborhood Y of (o @ ¢g)(xg) = (0(20),9(z0)) in
R"™ x R™™". Let

h: Yy — M,
denote the inverse. For ¢ € C2°(M,) define ® € C°(Yy) by
O(y) = o(h(y))ldet M'(y)]  (y € Yo). (B.8)
Then
o u(¢) =u® 1(P) (ue D'(W), ¢ € CF(M,y)). (B.9)

By localization this gives the pull-back (B.7).
Let Wy be an open neighborhood of o(zg) in W and let Xy be an open neighborhood
of g(zp) in R™™™ such that
Wox XoCYp.
Fix a function n € C2°(Xj) such that

/ n(x)dr =1.
Xo
Given ¢ € C°(W)y) define
O(2', 2") = (2" (") (' € Wy, 2" € X,) .
Then ® defines ¢ via (B.8) and

Hence the assumption (B.3) implies
lim u, () =0 (¢ € CF(Wo)).

n—o0

Thus, by [H6r83, Theorem 2.1.8],
lim w,|w, =0
n—oo

in D'(Wy). Since the point xy € M is arbitrary, the claim (B.4) follows by localization.
Similarly, the assumption (B.5) implies that for any ¢ € C°(W,)

lim w,(¢) = lm o"u,(¢) = u(¢)
n—oo n— oo
exists. Thus, by [H6r83, Theorem 2.1.8], there is u € D'(Wj) such that
lim w,|w, = u.
n—oo

By the continuity of ¢*, c*u = 4. Again, since the point x¢ € M is arbitrary, the claim
follows by localization. 0
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Lemma B.2. Let M and W be smooth manifolds and let o : M — W be a surjective
submersion. Then for any smooth differential operator D on W there is, not necessary
unique, smooth differential operator o*D on M such that

c*(wo D) = (c*u) o (6*D) (ue D' (W)).

If D annihilates constants then so does o*D. The operator o*D is unique if o is a
diffeomorphism.

Proof. Suppose o is a diffeomorphism between two open subsets of R". Then
o u(¢) =u(@oo | det((c™))]) (¢ € CZ(M)).
Let
(0*D)(¢) = (D(poo™!))oo  (p€CX(M)).

Hence
o*(uo D)(¢) = (wo D)(¢o o[ det((o™"))])
w(D(p oo™ det((a7"))]))
=u((D(¢poo ") oa)oo det((a7))]).

Using the local classification of the submersions modulo the diffeomorphism [Die71,
16.7.4], we may assume that o is a linear projection

o:R™™ > (z,y) > v € R",
in which case the lemma is obvious. O

Suppose M is a Lie group. Then there are functions m, € C’OO(MH) such that the
formula

/M b 0 k() dyiasy) = /M peym(x)de (6 € C=(3L) (B.10)

defines a left-invariant Haar measure on M. We shall tie the normalization of the Haar
measure dyy(y) on M to the normalization of the Lebesgue measure dz on R™ by re-
quiring that near the identity,

Moy (1) = det 1-e e (B.11)
P ad(z) ’

as in [Hel84, Theorem 1.14, page 96]. Collectively, the distributions m,(z) dx € D'(M,)
form a distribution density on M. (See [Hor83, sec. 6.3] for the definition of a distribution
density.)

Suppose W is another Lie group with left Haar measure given by

/W voMwdun(y) = [ s (e o).

and let ¢ : M — W be a submersion. Given any distribution density vy € D'(W))
we associate to it a distribution on W given by w%w € D'(W,). We may pullback this
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distribution to M and obtain another distribution. Then we multiply by the m, and
obtain a distribution density. Thus, if ¢ : M,, — W, then

1
(0*0) = me(Nooor 1) (—wy). (B.12)
wy

Distribution densities on W are identified with the continuous linear forms on C°(W) by

oo N) =u() (b ECT(Wh).
(Here v stands for the corresponding continuous linear form.) In particular if ' € C(W).
then Fuy is a continuous linear form on C2°(W) and for ¢ € C°(W)),

Fuw)a(@) = (Fuw)(wo) = /W b o M) F(y) dpaw (v)
= [ Y@)(For ) (z)w(z)dx.
Wi

Hence, for ¢ € C=°(M,,), with o : M, — Wy,

(" (Fun))el9) = (ooon™)( uf (Fawr))(m,)
= mﬂ r)Folto(Aoookr™)(z)de

- . gb(x)(F oc) ok H(z)m,(z)dr
_ /M 6 0 K(y)(F 0 0)(y) dur(y)

Thus
o (Fuw) = (Foo)uy . (B.13)
As explained above, we identify D’(M) with the space of the continuous linear forms on
C*(M) and similarly for W and obtain
o*: D'(M) — D' (W) (B.14)

as the unique continuous extension of (B.13). Our identification of distribution densities
with continuous linear forms on on the space of the smooth compactly supported functions
applies also to submanifolds of Lie groups.

Let S be a Lie group acting on another Lie group W and let U C W be a submanifold.
(In our applications W is going to be a vector space.) We shall consider the following
function

g:3xU>(s,u) = sueW. (B.15)
The following fact is easy to check.

Lemma B.3. If O C W is an S-orbit then o~ 1(0) =S x (ONU).
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Assume that the map (B.15) is submersive. Let us fix Haar measures on S and on W
so that the pullback

o :D'(W)—=D(SxU)
is well defined, as in (B.14). Denote by SY C S the stabilizer of U.

Lemma B.4. Assume that the map (B.15) is submersive and surjective. Let O C W
be an S-orbit and let uo € D'(W) be an S-invariant positive measure supported on the
closure on O. Let po|ly € D'(U) be the restriction of po to U in the sense of [Hor83, Cor.
8.2.7]. Then poly is a positive SY-invariant measure supported on the closure of O N U
m U. Moreover,

o o = s @ polu - (B.16)
Proof. Let s € SU. Then
s* (holv) = (s"po) lv = polv -

Hence the distribution pel|y is SY-invariant. Lemma B.1 implies that uo|y # 0 and
Lemma B.3 that uel|y is supported in the closure of O N U in U. Since the pullback of
a positive measure is a non-negative measure, pup|y is a positive SU-invariant measure
supported on the closure of ONU in U.

Theorem 3.1.4" in [H6r83| implies that there is a positive measure pupny on U such that

ot o = ps @ o -
Consider the embedding
o:Usu— (Lu) e SxU.
Then o ooy : U — W is the inclusion of U into W. Hence,
(0001) o = polu -
The conormal bundle to o, as defined in [H6r83, Theorem 8.2.4], is equal to
Noy =T7(S) X Oy CT*(S) x 0 CT(S x U).
By the S-invariance of o* e,
WF(us ® ponu) COXTHU) CT*(SxU).
Hence
Ny W F (i ® prons) = 0.
Therefore
proly = (0 001) o = 07 0 0" o = 07 (s @ ponv) = ponu -

This implies (B.16). O
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APPENDIX C: WAVE FRONT SET OF AN ASYMPTOTICALLY HOMOGENEOUS
DISTRIBUTION

Let
Fiw) = [ Py

denote the usual Fourier transform on R™. Recall that for t > 0 the function M; : R™ — R"
is defined by M,(z) = tx.

Lemma C.1. Suppose f,u € S'(R"), u is homogeneous of degree d € C, and

EMEAFW) — ule) (€ SRY). (1)
Then
WFy(Ff) D suppu. (C.2)

Proof. Suppose ® € C°(R™) is such that ®(0) # 0. We need to show that the localized
Fourier transform

F(F NP
is not rapidly decreasing in any open cone I' which has a non-empty intersection with

suppu. (See [H6r83, Definition 8.1.2].) In order to do it, we will choose a function
1 € C(I") such that u(y) # 0 and show that

[ e FE Do e e — utw). (©3)
assuming ®(0) = 1. Let ¢ = F®. Then [, ¢(x) dz = 1. Notice that
FMEL(f * 6) = (M7 ) 5 (M9, (C4)

so that, by setting ¥ (z) = (—x), we have

[ e FHE e eyt da

= "M (f % ¢) x 0(0) = (1M f) % (8" M=) % ) (0) . (C.5)
We will check that for an arbitrary ¢ € S(R™)
("M g) x ¢ — 1) (C.6)

t—0-+

in the topology of S(R™). This, together with (C.5) and Banach-Steinhaus Theorem,
[Rud91, Theorem 2.6], will imply (C.3). Explicitly,

(E"Mag) * ) (2) — Y(x) = . o(y)(W(z —ty) — ¥(x)) dy. (C.7)
Fix N=0,1,2,... and € > 0. Choose R > 0 so that

[ 60y (04190 1) sup 1+ 1ol) o)) < e ()
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Let 0 <t <1. Then
(1+ )™ / ()l — ty)| dy
ly|>R
< / BN+ )N (1 + |o — ty) V(e — ty)] dy
ly|>R

< /| BN+ DY dy - sup (14 el) o)

xER™

and

(1+ I:BI)N/|>R|¢(y)II¢(ZB)Idy S/ (o) dy - sup (1 + [a])" ¢ (2)]

ly>R zeRn

so that, by (C.8),

(1+ )™ / L DEE ) v dy < 0<ts1reR).

Choose r > 0 so that

(1 + J[)™ /|<R o) (Wl —ty) —v(x))dy) <e  (0<t<1, [z[=7).

Since the function v is uniformly continuous,

limsup sup
t—0+ |z|<r

/| At 1) - w<x>>dy\ _
Hence,

limsup sup (1 + |z|)™
t—0+ ze€R"

[ owte —t) - w(a) dy] <.
ly|<R
By combining (C.11) and (C.14), we see that

limsup sup (1 + |z|)™
t—0+ xcR™

O(y)((x = ty) — P(x)) dy’ < 2.
R
Since the € > 0 is arbitrary, (C.15) and (C.7) show that

limsup sup (1 + |z|)V |(t_”Mt*_1qb) x(x) — @D(x)‘ =0.

t—04+ xz€R™

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

Since the differentiation commutes with the convolution, (C.16) implies (C.6) and we are

done.

0
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APPENDIX D: A RESTRICTION OF A NILPOTENT ORBITAL INTEGRAL

Let W be a Euclidean space, isomorphic to R™ with the usual dot product. The
Lebesgue measure on any subspace of W will be normalized so that the volume of the
unit cube is 1. This is consistent with [Hor83].

Consider the following diagram

W — W
L[ [L
VvV
~ K (D.1)

where 1 : V. — W and ¢ : V — W are submanifolds and (V) = V. Then we have the
following formula for the pull-backs of distributions,
Uf = (Kly) () (D.2)

[Hor83, Theorems 6.1.2 and 8.2.4], where f € C2°(W)* is such that these pullbacks are
well defined.
Assume further that W is the direct sum of two orthogonal subspaces

W-UaV, (D.3)
that V.= k= 1(V) and that
kN u+v)=ru)+v  (ueUveV).
Then
V=N+V,

where N = £71(0). Let
ty:U—=>W, py:W—=U

be the injection and the projection defined by the decomposition (D.3).
Lemma D.1. Suppose a € C*°(U) and

£(6) = / (bor ) watw)du  (pe CZ(W)).

Then
S f = |det((pur 1)) (0)|a(0)oy € S'(N + V).

1

Proof. By taking the derivative of both sides of the equation I = ko k™" we see that

I=(kok Yo (s .

Hence,
1

~ det((pur'w)) |

det(x) ok oy
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Therefore, by [Hor83, Theorems 6.1.2],
(57 F(6) = f(é0 k| det w']) = / b ook (u)| det(s' o 1) (u) a(u) du
_ / o) det((pur~ o)) () a(u) du

and we deduce from [H6r83, Example 8.2.8] that

(7 f(9) = [ det((pur™ 1)) (0)|a(0)¢(0) .
Now the claim follows from (D.2). O

From now on we specialize to W = Moy, ,(R) with m < n. Let O C W denote the
Spam(R) x O, - orbit through
I, 0O
Vo (b Dew

Denote by H,,(R) C M,,(R) the subspace of the symmetric matrices.

Lemma D.2. The following formula

X m+1l—n
= det(X X? 2 dX dC
£(6) / . /M W(R)qb(cx)\ et (XX

defines an invariant measure f € S'(W) on the orbit O.

Proof. Since for g € GL,,,(R) and B,C € SM,,(R),
I, 0 g 0 I, B I, 0 (g O
C I,)\0 (¢! 0 I, 0 0/ \Cg 0O

O = {(C)§(> ; X € My o(R), rank(X)=m, C € ’Hm(R)} :
Furthermore the elements

(@ 5) (6w (L5

generate Sp,,,(R) and it is easy to check that f is invariant under the action of these
elements, assuming the following two formulas:

/ P(gCgh) dC = |det g™ / H(C)dC,
Hm (R) Hm (R)

we see that

/ Y(CYydC —/ $(C)| det O™ 1 dC
Hm(R) Hm(R)
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The space tangent to O at N may be identified with

U= {(“gl “(1)’2) Dy € Mo(R), 13 € Myym(R), B € ’Hm(R)} .

Then the orthogonal complement is equal to

V= {(g USQ) ; D=—D"€ My(R), ugs € Mm,n_m(R)} .
Set V.= N + V. Then we have the inclusion ¢ : V — W.
Lemma D.3. Let f be as in Lemma D.2. Then
Sf=0yeS(N+V).
Proof. First we rewrite f as an integral over U. Let
Ny = (1, 0) € M, n(R).
Then

m+1l—mn

1) = [ o(gat ) et + N + 314w,

where

Uy1 U2
U= ) ’ U1 = (u11 u .
<B 0 ) 1 ( 1,1 1,2)

Next we introduce the diffeomorphism

-1 . Uy + Nl
K (u+v) = <B(u1+N1)) teo welovev)
Then
4 - u1,1 + Nl u1,2
puseu(u) (%(B(Ul,l + Ni) + (uin + M)'B) 0 ) .
Hence

o orons = (555

and consequently
det((purtw)(0)) = 1.

Since

m+1l—n

|det(u1+N1)(u1+N1)t| 2 |u:0 =1

the claim follows from Lemma D.1. O

Lemma D.4. Suppose m < n. For ¢ € S(M,,,,(R))°"

/ B(X)dX = 5™ / et (XX Flr, . (X) dX.
Mm,n(R) M'm,nfl(R)
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Proof. By working in spherical coordinates of decreasing dimensions on the rows of X,
we see that the left-hand side is equal to

T101,1 T101,2 T101,m T101,m+1 T101,n
21 2022 s s T202,m 7202 m+1 st T202.n
.. ¢ x3,1 x3,2 7303,3 e T303,m T303,m+1 e T303,n
m(m—1)
R 2 (]R+)m Sn—1 n—m : : .. .. :
Tm,1 Tm,2 ot Tm,m—1 TmOm,m TmOm,m+1 ot T'mOm,n

Aoy -~ doy r ey R ey - dry dry dray - dTmm-1, (D.4)

where
n—1
0'1:<O'1,1,0'1’2,...,O'1’n> es ,
n—2
0y = (022,023, ..,02,) € S" ",
n—m
Om = (Um,m7 Omm+1; - - - 70m,n) es .

The O,-invariance implies that (D.4) is equal to

" 0 ... 0olo --- 0
xQ,l T2 0 O 0 0
. 3 . .
/m(m_l)/ |Sn ‘|5’n m|¢
R 2 (R+)m 0
Tml o -or Tmm—1 Tm |0 -+ 0
X r?‘lr’g_z---Tﬁjmdrm---drgdrl drgq - AT m—1
- 0 - 0 0 --- 010
@91 12 0 - 0 0 - 0]0
_ 1 2 - : .
=" \/m(ml)/ |S™ 72 [ ST
Rz JRHm
0
Tm1l -+ o+ Tmom—1 Tm 0 -+ 0]0
X (riTre 1) T?_2T§_3"'T;L,L_l_md7“m"'d’f’QdTldl'Qvl"'dl'm7m_1

—|5m /M Pt (O] et (XXX
m,n—1

For the last equality, we consider spherical coordinates, as before, but on the first n — 1
columns only, noticing that for

r 0 --- olo --- 0
xo1 T2 0 010 --- 0
X:(T‘O): : co : € Mpmn-1(R),
) , 0l )
Tmi oo oo Tmm—1 Tm |0 -+ 0
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we have

XXt:(TO)<7(;t):TTt.

Hence
det(XX") = det(TT") = det(T)* = (1179 - - 11m) .
O

Corollary D.5. Let us denote the measure f € 8'(M,,) defined in Lemma D.2 by f,, and
assume n > m. Then for ¢ € S(M,,,,(R))O"

fn(¢) = ‘Snilyfnfl<¢’Mm,n71(R))a
where
¢|Mm,n_1(R)(X) = ¢(X ‘ 0 ) (X € Mm,n—laR)) .

Proof. This is clear from Lemmas D.2 and D.4. 0
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