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Human guided trajectory and impedance adaptation
for tele-operated physical assistance

Guillaume GOURMELEN1 Benjamin NAVARRO1 Andrea CHERUBINI1 Gowrishankar GANESH1

Abstract—Human physical assistance requires the assistant to
tune both his trajectory and impedance in order to assist an
individual as well as be guided by him. In this study we propose
a controller for teleoperated human assistance that allows the
assistant to guide the assisting robot in both trajectory and
impedance. We propose to use the inherent perturbations in the
task, induced by the elderly or stroke patient, for impedance
estimation, while a simple neuroscience based filter allows the
reference estimation of the operator. We tested our impedance
estimation and the controller as a whole in two experiments
in which a human operator guided a robot suffering force
perturbations that simulated a human patient.

Index Terms—impedance control, human guidance, teleopera-
tion, tele-impedance, human in the loop

I. INTRODUCTION

In 2009, adults of age 65 or more represented 11% of the
world population, and this percentage is expected to double
by 2050 [1]. The percentage of elders above the age of 65 is
28% in the European Union [2], and it is expected to reach
34% in Japan by 2030 [3]. Elderly care and support, and
specifically the lack of human assistants to help them, is a
major concern for health-care, and in this regard robots are
seen as a promising tool [4]. In this paper, we are interested
in robotic elderly physical assistance, in scenarios such as
lifting the person out of the bath or chair, and for assistance in
feeding, which have been identified as priority tasks in elderly
care [5].

A human physician or physical assistant can help a person
stand up or take a cup to his/her mouth, in spite of arm
tremor. In these interactions, the assistant is not (or at least, is
not always) the ‘leader’ who imposes or forces the patient’s
movements. The assistant in fact acts as a ‘collaborator’, who
aids haptically, while predicting and perceiving the motion
intention [6]–[8], and constraints of the other individual.
Ideally, one would like a robot assistant to be able to do the
same. However, this physical collaboration requires force and
impedance adaptations, and prediction of the haptic behavior,
all of which are non-trivial challenges for robots. And while
researchers have proposed robot controllers which mimic
human impedance adaptation [9]–[11] and physical assistance
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Fig. 1. Embodied teleoperation setup. Our setup consists of a Virtuose haptic
device and a Franka Panda robot. The operator wears a head mounted display
and operates the robot using the haptic device. He is provided with a first
person visual display from a camera placed above the Franka. The controller
utilized to help him guide the trajectory and impedance of the robot is
explained in Sect. II. The setup can be seen in use in the demonstration
video2

[12], these controllers are reactive, and need a predefined
reference, that is difficult to anticipate in an assistive scenario.
It will take some time before robots will be as effective as a
human assistant.

Another way of replicating the human assistant’s behavior
on a robot is to include him/her ‘in the loop’, for example via
tele-operation [13]. In this case, the physical assistant drives
the behavior of the assisting robot. This is the focus of our
study. In regard to patient or elderly care, teleoperation cannot
remove the requirement of the human assistant. Yet, it can
aid one assistant help multiple individuals without going to
every patient physically, hence it decreases the ‘assistants over
patients’ ratio.

Teleoperation traditionally uses either an impedance or an
admittance framework to connect the human ‘leader’ to the
robot ‘follower’; the impedance in these scenarios is either
constant or adapted, but adapted relative to the environment
and not the human operator [13]. Instead, for human assis-
tance, we need a control framework that allows the transfer of
impedance as well as kinematic trajectories from the human
operator to the assisting follower robot. We can try to achieve
this with stiff position control, but the stability of such an
arrangement is not possible due to limitations of the control
frequency and presence of feedback and control delays that are
typical of tele-operation setups [14], [15]. An alternate method
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one may think of is to estimate the desired/reference trajectory
and impedance of the human operator and implement these as
an impedance controller on the robot side. While this method
still suffers from performance issues due to feedback and
control delays, it can be passive and more efficient in terms of
the stability. This however requires one to estimate the human
impedance, as well as movement reference online during task
performance.

The impedance applied by a human during a movement can
be estimated either by perturbing the human limb [16] or by
estimating muscle activation using electromyography (EMG)
or grip force. Many recent studies have utilized EMG [11],
[17]–[19] or grip force [20] for human impedance estimation.
Relying on muscle activation enables impedance estimation
without the need for external perturbations. Besides, the
changes in EMG and grip force are not only due to the limb
impedance (i.e., to the stiffness and damping parameters) but
are person specific, and also due to: limb motion trajectory,
body posture and time (fatigue). Therefore, while EMG or grip
force may still be good methods to estimate impedance in the
absence of perturbations, they require user-specific calibration
[21], [22]. On the other hand, in the presence of external
perturbations, particularly continuous and non-repetitive ones,
EMG and grip force signals include muscle reflexes, which
are characterized by their own temporal and state dynamics
[22] making impedance estimation non trivial.

Impedance can be estimated by adding controlled perturba-
tions [23], but this can be detrimental for the task. Yet, in tasks
like human assistance, which are themselves characterized
by frequent perturbations, it is arguably better to utilize this
technique – i.e., to estimate the impedance from the recorded
perturbation forces and the resulting movement disturbances.
Impedance measured from perturbations can be more rep-
resentative – quantitatively and qualitatively – than the one
estimated from muscle activation. Qualitatively, because it can
enable better measures of directional impedance variations,
and quantitatively because the measurement is directly at the
human hand.

In this study, we propose a procedure for online (i.e.,
during the task) estimation of the human impedance from the
perturbations. We will focus on the estimation of the stiffness
and damping of the human operator, while assuming that
the robot mass can be compensated for. We also propose a
method, inspired by neuroscience, to estimate the reference
trajectory of the human leader. Overall, our controller enables
the transfer of force, trajectory and impedance, in the presence
of unknown external perturbations. We test the controller in
an embodied tele-assistance experiments.

The paper is organized as follows. In Sect. II, we present the
tele-assistance framework, including human arm impedance
parameters estimation and robot control. Next in Sect. III, we
will present three experiments. In Experiment 1 we perform
the validations on our human impedance estimation procedure.
Then in Experiment-2, we test the impedance estimation and
controller in a maze task in which human operator was re-
quired to, in some scenarios, guide the robot through a channel

Fig. 2. Block diagram of our proposed controller and setup. The key features
are the robot reference estimation and the online perturbation based impedance
estimation blocks.

(a task requiring high impedance) in the presence of external
disturbances (which simulated a patient) in 1-dimension, and
in other scenarios, follow the directions preferred by the
robot (a task requiring low impedance). In this experiment
we will neglect any feedback delays, and focus on the issue
of impedance and trajectory transfer assuming that popular
methods of delay compensation can be utilized as such. Finally
in Experiment-3 we do a stress test of the system in a scenario
with 2-dimensional perturbations as well as a visual feedback
delay of 500 ms. We summarize and discuss the results in the
IV section before concluding in the IV section.

II. METHODS

We consider an operator teleoperating a fixed-base robotic
manipulator using a haptic device. In such a scenario, the
challenge is to properly transfer the operator’s position, force,
stiffness, to the robot so that the overall system feels as
transparent as possible. We model the operator’s Cartesian
arm impedance as a mechanical mass-spring-damper system,
following equation (1):

FO = K∆xO +D∆ẋO +M∆ẍO, (1)

where FO ∈ R6 is the resulting force imposed on the human
operator (through our haptic device) , K, D and M are the
positive-definite 6×6 matrices of stiffness, damping and mass,
and ∆xO = xO

r −xO ∈ R6 is the error between the reference
and measured positions. Here the O superscript stands for
Operator (i.e., the human leader).

The operator’s spatial state
[
xO
r ẋ

O
r ẍ

O
r

]
is obtained using

the encoder readings from the haptic device. The estimation
of his/her arm’s impedance parameters

[
K D M

]
is however

not trivial. Several solutions have been proposed [18], [20],
[21], [23] but all require additional and potentially intrusive
hardware. To cope with this issue, we propose a method to
estimate in real time the operator’s arm impedance parameters
as well as the operator’s ’desired states’ or reference using
only the data available from the haptic device. We rely on
known properties of the human motor system to facilitate these
estimations. These parameters can then be transferred to the
robot’s impedance controller, to better mimic the operator’s
behavior and increase the system transparency.



The whole procedure we use in our methods is described
in Fig. 2. We will start by describing the reference estimation
procedure in II-A, then how we extract the impedance param-
eters from the haptic device signals in II-B, and finish with a
description of the robot controller in II-C.

A. Reference Estimation

Human movements are enabled by the simultaneous modu-
lation of trajectory, force and impedance [24], [25]. However,
the modulation of each one has properties determined by the
human body sensory and mechanical constraints [26]. Here,
we utilize one of these properties with regards to perturbation
regulation; it has been shown that humans compensate for
lower frequency perturbations by using a synchronized and
opposing ’reciprocal activation’ i.e., a feedforward force. On
the other hand, as the perturbation frequency increases, they
increase ’co-contraction’ – hence impedance – to compensate
for perturbations, relying completely on impedance above a
certain frequency threshold [27]. This is because while human
generated forces (in the absence of impacts) can contain
frequencies of over 10 Hz, the frequency of the controllable
movements are much lower. While the threshold frequencies
change depending on the limb in question, they decrease with
the size of the limb. For the wrist, reciprocal activations fall to
almost 20% of their values with a frequency of 3.5Hz [27].
Thus here we hypothesized 3Hz to be a suitable frequency
threshold given that the perturbations disturb the whole arm
in our setup.

The above observations provides us with two intuitions that
help us with the reference and impedance estimation of the
operator. First, because the reference trajectory is a component
of the feedforward forces by the human operator, the lower
frequency components of the operator states are more likely to
represent his reference. And second, for impedance estimation,
we should consider the high frequency components of both the
operator states and operator forces, because higher frequency
components are more likely to be a result of impedance and
not feedforward forces or reference changes.

We therefore split the observed variable on the operator side
into two components:[

xO
r ẋ

O
r ẍ

O
r

]
= LPF3(

[
xO ẋO ẍO

]
) (2)[

xO
p ẋ

O
p ẍ

O
p F

O
p

]
= HPF3(

[
xO ẋO ẍO FO

]
). (3)

In these equations, the r subscript denotes the reference
whereas the perturbed component of the spatial state, denoted
by subscript p, will be used for impedance estimation, as we
explain in the next section. LPF3 and HPF3 are respectively
low and high pass filters with cutoff frequency 3 Hz.

B. Impedance Estimation Procedure

The objective of the impedance estimation is to derive
K and D from (1), knowning force FO generated by
the haptic device, spatial state

[
xO ẋO ẍO

]
, reference state[

xO
r ẋ

O
r ẍ

O
r

]
given by (2) and a priori effective cartesian mass

M . We consider the mass of the operator to be constant,
under the assumption that his/her body and arm posture do

not change significantly during operation. M was taken to be
equal to 1Kg in line with human arm reach modelling studies
[24]

Then from (1), we estimate K and D using least squares
fit over a window of n consecutive samples:

A = (F −MẌ)J†O, (4)

with:

A =
[
K D

]
(5)

F =
[
FO

p . . .F
O

pn

]
(6)

Ẍ =
[

¨xO
p . . . ¨xO

pn

]
(7)

JO =

[
∆xO

p . . .∆x
O
pn

∆ ˙xO
p . . .∆ ˙xO

pn

]
, (8)

and J†O denotes the Moore-Penrose pseudo-inverse of JO.

C. Robot control

We consider a serial robot with k degrees of freedom
obeying the following dynamic model:

H(q)q̈ +C(q, q̇)q̇ + g(q) = τ ∗ + τ ext (9)
H(q)q̈ + τ dyn = τ ∗ + τ ext. (10)

In these equations, H(q) ∈ Rk×k is the inertia matrix,
C(q, q̇)q̇ ∈ Rk embeds Coriolis and centrifugal effects,
g(q) ∈ Rk are the joint torques induced by gravity, τ ∗ ∈ Rk

is the torque command and τ ext ∈ Rk the external torques
applied to the robot. τ dyn are the torques induced by
Coriolis, centrifugal and gravitational forces

Since the goal of the controller is to realize Cartesian forces
at the robot’s end-effector, one simple way to compute τ ∗

would be to use:

τ ∗ = J>RF
R∗ + τ dyn (11)

where JR ∈ R6×k is the Jacobian matrix associated with the
end-effector and FR∗ = FR + FO ∈ R6 is the force to be
realized. This is made up of two components.

The first component is our impedance controller:

FR = αK∆xR + βD∆ẋR + FI. (12)

While the R subscript represents the robot, FR is the com-
mand force of the robot and xR, ẋR are the movement and
velocity of the robot relative to the reference from the operator
(respectively xOr and ẋOr ); α is a scaling parameter on the
human stiffness and β a scaling parameter on the human
damping. FI = mRẍR represents an approximated Cartesian
inertia compensation term.

The second component, FO is a pseudo interaction force
that is used in Sect. III (Experiment 2) to simulate force
perturbations from an assisted patient.

However, this approach does not ensure that the robot
mechanical limits are respected. To cope with this issue, we
use a quadratic programming approach including the joint
position, velocity and torque limits, to ensure admissibility



Fig. 3. Experiment 1, validation of our stiffness estimation. The participant held the Virtuose haptic device in the presence of perturbations and was provided
with a feedback of the estimated stiffness by our algorithm. He was required to match his stiffness to target values displayed on the screen, represented here
by cyan rectangle area in the estimation plot. We compared his stiffness changes in X (left), Y (middle), and Z (right), with the EMG recorded on four
muscles and the total rectified EMG, representative of the arm impedance level. Note that the EMG just served the purpose of validating the correctness of
the stiffness changes estimated by our algorithm an will not be used in our system for robot control.

of the torque control inputs. The problem is formulated as
follows:

minimize
τ , q̈

||τ − J>RFR∗||22

subject to τ = Hq̈,

τ ′min ≤ τ ≤ τ ′max,

q̈min ≤ q̈ ≤ q̈max.

(13)

In this equation: q̈min and q̈max are k× 1 vectors computed to
include also the joint position and velocity limits (as in [28]),
τ ′min and τ ′max are k×1 vectors accounting for the joint torque
mechanical limits

[
−τmax τmax

]
with the Coriolis, centrifugal,

gravity and external torques removed:

τ ′min = −τmax − τ dyn − τ ext (14)
τ ′max = τmax − τ dyn − τ ext. (15)

Once a solution to (13) is found, the joint torque command to
be sent to the robot is:

τ ∗ = τ + τ dyn. (16)

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

We used three experiments to verify our stiffness estimation
procedure and the tele operated assistance system. The setup
is depicted in Fig. 1. It consisted of a 7DOF robot arm Franka
Panda [29] and a haptic feedback device Haption Virtuose 3D
[30] which can feedback 3 linear forces. We utilized a HTC
Vive Pro HMD [31] with a 360 degree camera to make the
operator see the task from the same point of view as if the
robot was his/her own arms, i.e. as if the robot was embodied
[32]. To verify the correctness of the impedance estimator, we
recorded Electromyography (EMG) in Experiment-1, with the
Delsys Trigno wireless EMG.

During the experiments, the stiffness estimated from the
perturbations was smoothed by a Butterworth low pass filter
at 0.5 Hz (second order). On the other hand, we could not use
the damping parameters calculated on the human operator and
had to use the critical damping value calculated relative to the
stiffness as D = 2

√
KM (with Mass =1 Kg). We found that,

probably due to the lack of an accurate mass compensation on
our robot, the human calculated damping parameters were not
sufficient to ensure stable performance. For security reasons,
we also limited the robot stiffness values between 100 N/m
and 10000 N/m for each Cartesian axis.

B. Experiment 1: Verification of our stiffness estimation

We started by verifying the correctness and resolution of
our stiffness estimation. Unfortunately, for the ground truth,
we had to rely on muscle activation, hence electromyography
(EMG), which as mentioned before suffers from various
limitations related to movements. To overcome them, we
asked the participant to maintain a static arm posture while
being disturbed by force perturbations from the haptic device.
Furthermore, we chose to make the perturbations repetitive
(albeit at a high frequency of 3.5 Hz, so that the participant
could not compensate via feedforward forces). The measures
ensured that a constant muscle activation (hence a specific
EMG level) would represent a constant impedance at the
hand. In this scenario, the participants were provided with
a feedback of the estimated stiffness on a computer screen
(see inset of Fig. 3) while we asked them to maintain their
stiffness at different target levels. We recorded EMG from four
muscles in the arm (Biceps Brachii, Triceps Brachii Lateral
Head, Flexi Carpi Radialis and Extensor Carpi Radialis) that
were expected to contribute to the task space stiffness of
the hand in our task (see plots in Fig. 3). While the EMG
levels do not directly give the absolute impedance of the hand,



the total EMG level (represented by the smooth envelope in
Fig. 3) is known to correlate with the impedance, and stiffness
(assuming the damping correlates with the stiffness at the
hand) of the hand. We could observe different muscle pairs
activating when the participants controlled their hand stiffness
in the X (left column of Fig. 3), Y (middle column) and Z
(right column), while the total EMG was found to co-vary
with our estimated stiffness in each case.

C. Experiment 2: Controller verification during tele-
assistance

Next, in Experiment-2, we verified how our controller
performed in an assistance task and how the behavior differed
when the robot impedance was kept constant. Experiment 2
had three conditions. In each condition, a ‘operator’ assistant
guided a robot, while it helped a patient draw a line with a pen
through a maze (starting with the light green semi-circles and
defined by the black walls, fig 4). We did not have a real patient
in the task. The patient’s perturbations were simulated by force
perturbations imposed on the robot, and the pen was held by
the robot’s two-fingers gripper. The type of perturbations and
hence the impedance adaptations required by the operator were
varied across the three conditions (fig 4 A, B and C). Parameter
α was set to 30 in Eqn. (12).

A) One-dimensional (Y) perturbations (Fig. 4A): We started
with patient perturbations only along the Y dimension, perpen-
dicular to the required pen direction. The perturbations were
sinusoidal, with a Frequency of 3.5 Hz and 10N amplitude.
The operator was able to control his impedance (red traces) to
regulate the movement of the robot through the maze (blue
traces). The Y displacement in time is also plotted (green
trace).

B) Adaptive vs Fixed impedance (Fig. 4B): Different human
assistance task require different impedances. A task requiring
the human-operator to both guide (in direction) and assist
(against perturbation) a patient requires higher impedances
(like in our above experiment), but when the guidance is
expected from the patient, better assistance is possible when
the impedance of the robot is low. This variation is not possible
if we use a fixed impedance on the robot. To show this,
in Experiment-1B we created a scenario where the human
operator assists according to guidance from the patient (again
simulated by forces on the robot). Experiment 1B required the
human operator to close his eyes and guide the robot, while a
second experimenter applied a programmed push on the robot
(9 Newton force pulse in y-direction applied for 200 ms) in
either direction to guides the human operator away from an
obstacle he would otherwise collide with. This scenario was
repeated 12 times for the 2 directions X 2 impedance settings
(K=6000 N/m) of adaptive (estimated from the operator)X 3
repetitions (see Fig. 4B). The human operator was unaware of
which impedance setting and which direction of perturbation
came in each trial. We calculated the absolute mean jerk in
the y-direction in the trials and observed that the mean jerk in
the 2 seconds after force perturbation was significantly higher
for the fixed impedance condition) see bar graph in Fig. 4B).

D. Experiment 3: Controller stress test

Finally in Experiment-3 we made a stress test of the
impedance estimation and the human- in loop controller.
We introduced two changes in the task of Experiment-2A.
First, the operator was subjected to 2-dimensional random
perturbations and he had to adjust his impedance in two axes
during the task. Second, the operator visual feedback was
subjected to a delay of 500 ms.

The results are shown in Fig. 4C. Though the operator found
the task quite difficult, especially because of the visual delay,
crucially we could verify that we could measure and modulate
the robot impedance in two dimensions. The X-Y stiffness
values during the task are plotted as stiffness ellipses which
represent the estimated force for unit displacement in every
direction. Note that the Eigen direction of the stiffness ellipses
remain the same (while they change only in magnitude)
because in this study we assume the task space Kx and Ky

to be independent, and we do not consider the off diagonal
terms in Eqn. (5).

IV. DISCUSSION

In this study, we presented a human guided impedance
controller during teleoperation. We designed the controller
envisaging use in assistive scenarios, where a human phys-
iotherapist or caregiver guides a follower robot to help elderly
patients. These scenarios are characterized by perturbations
from the individual and hence we propose to estimate the
human impedance directly from the perturbations. For this
purpose, we propose a methodology for online impedance
estimation, and online reference estimation from the human
operator.

As mentioned in the experiments, we were unable to use the
damping calculated from the human operator on our robot.
We found these values too low, relative to the stiffness, to
ensure stable robot behavior. This comes as no surprise, given
the different inertias of human arm and robot. Ideally our
controller, in which the robot forces are fed to the operator and
the operator movements are sent to the robot, should impose
the human arm dynamics on the robot, therefore theoretically
ensuring that the human damping ratios are sufficient for the
robot. In practice though, this is possible only if the mass
of the robot is well compensated for, which is not a trivial
challenge. From human studies we know that human damping
increases monotonically with stiffness, and there is still no
evidence to show that humans can learn to modulate or control
their damping independently from stiffness [24], [26]. Given
these observations, tuning the damping separately, like we did
in our experiment, seems to be a quick and sufficient solution
for assistive tasks. However, further studies are required to
clarify this issue.

Human interactive behaviors are enabled by simultaneous
adaptations of force, trajectory and impedance. These adapta-
tion are both predictive, to ensure stability when an interaction
starts, as well as reactive, to maintain the stability during
perturbations in a task. The method we propose here is specific
for the measurement of reactive impedance and is arguably



Fig. 4. Experiment 2, Assistance task. In the assistance task the operator was asked to guide the robot with a pen through a maze (starting with the light green
semi-circle and defined by the black walls) while remaining inside the walls. Force perturbations on the robot simulated the disturbances from an assisted
elderly individual. We performed the two experiments. Experiment 2A) The perturbations were in one dimension (Y) and the operator had to guide the robot
while regulating his y- impedance to keep the robot within the walls. 2B) The operator was blind folded and asked to assist a simulated patient (simulated
by the forces on our robot) while being haptically guided by the patient to avoid an obstacle. The operator worked in trials where the robot impedance was
prefixed at 6000 N/m (upper panel) or estimated from the operator (lower panel). The operator did not have prior knowledge of the condition or the direction
of guidance. The average magnitude of y-jerk, observed between 0.5 seconds and 2 seconds after the guidance force was initiated, was significantly higher
in case of the fixed impedance trials (p < 0.045, 2 sample T-test). Error bars represent standard error. C) Experiment-3 served as a stress test for our system
in which we introduced perturbations in two dimensions and there was a 500 ms delay in the visual feedback provided to the operator. The stiffness ellipses
calculated in the x-y space are shown in red and connected (with a thin red line) to the position in space where they were calculated.

better than muscle activation (EMG or grip force) based
impedance estimations in the presence of perturbations (as
discussed in the introduction). On the other hand, muscle
activation based techniques are the only ones available for
impedance estimations before the start of a movement, and
in the absence of sufficient external perturbations. Robust
impedance estimation in real world tasks therefore requires us
to develop an integrated estimation framework in which the
predictive impedance changes can be measured using muscle

activation (via EMG or grip force) and the reactive changes
are estimated using the perturbations, like we propose here in
this study.

CONCLUSION

In conclusion, here we presented a methodology for
impedance control during teleoperation with estimation and
transfer of the reference and impedance from the human
operator, to the robot. We provide a method of online hu-
man impedance estimation using the perturbations inherent in



the task. This first work provided the first step towards an
assistive teleoperated system for possible human assistance
in the future. We are now working to update and improve
the estimation of damping from the human operator, and
integrating with prediction methods for the compensation of
delays typical in a teleoperated system.
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