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1. Introduction
Geophysical systems are generally described by nonlinear mathematical models. These models often in-
volve partial differential equations like the Navier-Stokes equations, and embed sub-models describing var-
ious processes, such as sub-grid turbulent mixing or biological processes (e.g., growth and interactions of 
living organisms). The resulting models are costly to develop and to run, bringing together scientists from 
different disciplines. Moreover, the resulting model predictions remain sensitive to various forms of uncer-
tainty (Arhonditsis & Brett, 2004; Foley, 2010; Lermusiaux et al., 2006; Palmer et al., 2005). One of them lies 
in the uncertainty generated by the model parameters.

Some parameters are well-quantified physical or physiological constants (e.g., earth acceleration), others 
are empirical constants (e.g., macroscopic description of unresolved smaller scales) that have to be tuned 
based on empirical observations. Observations provide constraints to identify parameter values leading to 
predictions that best fit data. Identifying those optimal parameter values by optimal control theory (Li-
ons, 1968) is of interest for many geophysical applications (Plessix, 2006).

Abstract Geophysical models make predictions relying on parameter values to be estimated from 
data. However, existing methods are costly because they require either many runs of the complex 
geophysical model or to implement an adjoint model. Here, we propose an alternative approach based on 
optimal control theory which is the simultaneous perturbations stochastic approximation (SPSA). This 
gradient-descent method is generic and easy to implement, and its computational cost does not increase 
with the number of parameters to optimize. This study aims at highlighting the potential of SPSA for 
parameter identification in geophysical models. Through the example of vertical turbulent mixing in 
the upper ocean, we show with twin experiments that the method could successfully identify parameter 
values that minimize model-data discrepancy. The efficient and easy-to-get results provided by SPSA in 
this study should pave the way for a broader use of parameter identification in the complex and embedded 
models commonly used in geophysical sciences.

Plain Language Summary Predictions on the past and future state of geophysical systems 
are made through mathematical models, which rely on numerous constant values (parameters) to 
be calibrated from prior knowledge and available data. Fine-tuning those parameter values is one of 
the major means of improving the accuracy of model predictions. To achieve that goal for complex 
geophysical models in which multiple scales and processes are nested, existing methods are limited 
by either (a) an important computational cost or (b) an important cost in terms of development 
and implementation of an adjoint model. Here, we highlight a method from optimal control theory, 
called simultaneous perturbations stochastic approximation (SPSA). This generic method is easy to 
implement, and its computational cost is comparatively low. To show the potential of SPSA for parameter 
identification in geophysical science, we apply it to the example of wind-induced turbulent mixing near 
the ocean surface. Using the approach of twin experiments, we show that the method can successfully 
tune the parameter values to minimize the discrepancy between model predictions and empirical data. 
The efficient and easy-to-get results provided by SPSA in this study pave the way for a broader use of 
parameter identification in the complex models commonly used in geophysical sciences.
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In geophysical models, the high numerical cost of a single model run is problematic for parameter iden-
tification. Therefore, an optimization by trials and errors, or with stochastic optimization methods like 
simulated-annealing (Zhigljavsky & Zilinskas, 2008), genetic algorithms (Mitchell, 1998), and Monte-Carlo 
algorithms in Bayesian statistics (McElreath, 2015), cannot be considered as appropriate solutions as they 
require many model runs to be efficient (Table 1).

Less model runs are required by the descent algorithm. The local steepest descent strategy relies on the 
gradient of the cost function—function quantifying the model-data discrepancy—with respect to param-
eters. This gradient can be estimated by finite difference approximation, which is easy to implement by 
perturbating systematically the model parameters one by one, and start it again each step of the descent 
algorithm. Unfortunately, this requires an increasing number of model runs as the number of parameters to 
optimize increases, and becomes rapidly prohibitive for a large number of dimensions of parameter space. 

To overcome those limitations, algorithms based on an adjoint model 
have been introduced since the pioneering works of Lions  (1968). An 
adjoint is a code of complexity similar to that of (but closely linked to) 
the model, which gives the gradient of a cost function with respect to the 
control parameters (model parameters, or initial or boundary conditions) 
(Plessix, 2006).

This adjoint is obtained by calculations by hand (Leredde et al.,  1999) 
or by Automatic Differentiation (Heimbach et al.,  2005). As for the fi-
nite difference method, an assumption of local linearity is made as the 
adjoint is the adjoint of the local tangential linear approximation of the 
model. This can induce some limitations if the mapping between mod-
el results and parameters becomes too nonlinear and by this way gen-
erating inaccuracies in the gradient of the cost function (Talagrand & 
Courtier, 1987). Presently, a certain number of circulation models used 
by oceanographers are indeed developed with these optional adjoint 
modules. Nevertheless, this is far from being a general rule (see Table 2 
for few examples).

In this context, another promising approach seems to be the Simultane-
ous Perturbations Stochastic Approximation (SPSA; Spall,  1998,  2012), 
which is as generic and easy to implement as the finite difference ap-
proximation, but uses a cheap approximation of the cost function gra-
dient regardless of the number of parameters to be optimized. At this 
stage, it is important to emphasize that our goal is to identify optimal 
parameter values that are intended to be held constant during the entire 
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Type Method Pros Cons

Trials-errors Easy, only model runs. Needs many runs, unlikely to succeed 
without a methodology.

Stochastic, global Simulated-annealing Generic, easy to implement, noisy data. Needs many runs, even for a few 
parameters.

Genetic algorithms Generic, many parameters, noisy data. Needs many runs, hard to tune.

Hamiltonian Monte-Carlo Generic, Bayesian framework. Needs many runs.

Local gradient descent Adjoint Cheap to run, explicit gradient, many 
parameters.

Linked to the model (i.e., model-
dependent), sensitive to non-linearities.

Finite difference Generic, easy to implement, almost exact 
gradient.

Number of runs proportional to the 
number of parameters.

Simultaneous Perturbation Stochastic 
Approximation

Generic, easy to implement, cheap to run, 
many parameters, less noise-sensitive.

Approximated gradient.

Table 1 
Overview of Parameter Identification Methods, and Their Pros and Cons if Applied to Complex Geophysical Models That Are Costly to Program and Run

Model Boundary conditions Initial conditions
Other 

parameters

ADCIRCa No No No

CROCOb No No No

Delft3Dc No No No

FVCOMd No No No

MARSe No No No

MITgcmf Yes Yes Yes

NEMOg Yes Yes Yes

POMh Yes Yes Yes

ROMSi Yes Yes No
ahttp://adcirc.org/. bhttps://www.croco-ocean.org/documentation/. chttps://
oss.deltares.nl/web/delft3d/manuals. dAlleged from the description on 
http://fvcom.smast.umassd.edu/fvcom/. ehttps://wwz.ifremer.fr/mars3d/
content/download/77020/file/2009_11_22_DocMARS_GB.pdf. 
fhttps://mitgcm.readthedocs.io/en/latest/related_projects/related_pro-
jects.html.ghttps://ljk.imag.fr/membres/Franck.Vigilant/Documents/
ReferenceManual-UserGuide-NEMOTangentandAdjointModels.pdf. 
hPeng et al. (2007). iMoore et al. (2004).

Table 2 
Inventory of the Main General Circulation Models With Mention of the 
Existence or Absence of an Adjoint Code
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model simulation. This method is different from the one achieved by the popular data assimilation methods 
based on (Ensemble) Kalman Filter (KF or EnKF), which are of considerable interest to increase the pre-
dictive accuracy of hindcasts and forecasts. Indeed, these techniques assimilate sequentially observational 
information during the course of model simulation as new data become available, to improve the predicted 
system state or evolving estimates of model parameters (Evensen, 2009; Sun et al., 2016). Conversely, our 
inverse approach is based on the whole data set available from the observation period to optimize parameter 
values at once.

The SPSA method was proposed by Spall (1998, 2012) and has been used in the fields of engineering and 
optimal control, but this promising approach has not yet received the attention it deserves in geophys-
ical sciences. The only recent exceptions we are aware of are an application to estimate bottom friction 
(Boutet, 2015) and another one to optimize the parameters of the gain matrix of a reduced-rank Kalman 
filter (Hoang & Baraille, 2011). Therefore, our purpose in this study is to present the potential of the SPSA 
method to estimate empirical parameter values in an embedded geophysical model. To achieve this goal, 
we use as an example a model of turbulent closure in the ocean, the Turbulent Kinetic Energy (TKE) model 
(Gaspar et al., 1990). Indeed, parameters identification for turbulent closure schemes in ocean circulation 
models is an open issue in modern oceanography (Dekeyser et al., 2004; Leredde et al., 1999, 2002). The TKE 
model, when used, is classically embedded into three-dimensional (3D) ocean circulation models that solve 
hydrodynamic and hydrological fields such as NEMO (Madec et al., 2017). For the sake of simplicity of our 
proof-of-concept, we embed it into a one-dimension vertical (1DV) hydrodynamical model forced by real 
momentum and radiative fluxes at the sea surface and applied at the DYFAMED station in the Mediterrane-
an Sea. This study is part of a logical sequence where we apply SPSA to various types of geophysical prob-
lems: the parametrization of a biological model of Ordinary Differential Equations advected by Lagrangian 
methods (Messié et al., 2020), the optimization of boundary conditions for coastal hydrodynamics modeling 
(Koenig et al., 2020), and here the parametrization of a model of turbulent closure embedded inside a 1DV 
hydrodynamical model.

The study is organized as follows. Next section introduces the optimization method and presents its compu-
tational advantages for optimizing a large number of parameters through a pedagogical example. Moving 
to our example of geophysical application, Section 3 presents the 1DV model with TKE closure scheme 
and formulates the optimization problem to solve a two-parameters example. Pushing forward, Section 4 
presents our statistical results on the method's ability to optimize eight empirical parameters of the TKE 
model. These results and the method are discussed in Section 5 through the lens of its practical use in mod-
eling of complex geophysical systems, before concluding with ongoing perspectives of application of SPSA 
in geophysical sciences.

2. Optimization Method
2.1. Gradient Descent With Nesterov Momentum

The optimization consists in identifying the set of control parameters θ that minimizes a cost function  J θ , 
which quantifies model-data discrepancy. The lower  J θ  is, the closer model predictions are to data.

Optimal parameter values optθ  minimize the cost function, with J J
opt opt:=   being positive due to data 

noise. To find the optimal parameter values, we use a gradient descent algorithm. Gradient descent is an 
iterative procedure starting from an arbitrary initial guess of the parameter values (0)θ :

        ( ) .kak 1 k kθ θ z (1)

The gain parameter ( )ka , also called learning rate in machine learning, scales the step made at each iteration. 

This step is made in the direction indicated by the Nesterov momentum  kz , which has the same dimension 
as the gradient of the cost function  J θ . Nesterov momentum is a variant of momentum based on (a) the 

direction of the last step made (i.e., its previous value  k 1z ), and (b) the gradient of the cost function at the 

point where we would arrive if we repeat a step in that direction (      ( )( )kJ ak k 1θ z ):
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         ( ) ( ) ( ) .k kJ ak 1 k 1kz z θ z (2)

Momentum is initialized with  ( ) 01z , meaning that the algorithm starts with an empty memory. The 
momentum coefficient     0,1  tunes the level of memory of the algorithm. A properly tuned momentum 
speeds up the convergence, like a ball rolling down a hill: It accumulates momentum while heading in the 
same direction, slows down when reaching the other side of a valley, and again accelerates while following 
the bottom of the valley to reach its lowest point. The algorithm anticipates by estimating the gradient at 
the point where we would arrive if we keep going in the direction of the last step, rather than at the current 
location in the parameter space. This anticipation allows the algorithm to deal more smoothly with abrupt 
changes in the gradient, like when the bottom of a valley is reached (Sutskever et al., 2013). The algorithm 
continues until the desired level of convergence (    tolJ Jθ ) or the arbitrary maximum number of itera-
tions ( maxk ) is reached. Note that many other alternative stopping criteria can also be considered. The esti-
mated optimal parameters θ̂ are the ones giving the lowest  J θ  among all iterations, namely the ones such 
as    tolJ Jθ  if this stopping criterion is used.

Spall (1998) argued that the gain parameter ( )ka  should decrease at each optimization step following a de-
creasing sequence that has to be parameterized with some constraints, to ensure convergence. However, 
preliminary tests showed that a constant value ( )ka a performs equally well in our case, and we kept this 
simpler solution for our study. The only constraints are that a should be large enough to avoid making too 
many unnecessary steps, but still small enough to prevent the algorithm to diverge.

2.2. Gradient Estimation

The cost function gradient  J θ  can be estimated by model runs giving cost function evaluations for differ-
ent parameter values. A classical approach is the centered finite difference algorithm:

                                           






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1 1

( )

( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) 0
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0
( ) ( ) 1( ) ,

2 0
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0

2

k k k k k k
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k k k k k k
k ki i

ik

k k k k k k
p p

k

J c J c
c

J c J cJ
c

J c J c

c

θ δθ θ δθ

θ δθ θ δθθ δθ

θ δθ θ δθ 

 (3)

where ( ) 0kc  is a stepsize and iδθ  a vector of zeros, except for its thi  element which equals 1. For each 
parameter, the model is run two times to estimate the effect of a change in this parameter. Therefore, eval-
uating the gradient with respect to p parameters requires 2 p model runs.

The number of model runs is a limiting resource in optimization, especially for geophysical models. Thus, 
the approach of SPSA proposed by Spall (1998, 2012) in optimal control is interesting as it approximate the 
gradient  ( )( )kJ θ  by  ( )( )kJ θ , which is calculated with only 2 model runs by altering all the parameters 
together:

 
 
 

    
    

 
 
  






( )
1

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( )

( ) ( )( ) ,
2

k

k k k k
k k

ik

k
p

J c J cJ
c

k k
k kΔ Δ Δ Δθ θθ (4)

where elements   ( ) 1k
i  are randomly drawn with equal probability (Bernoulli law). Spall (1998) argued 

that the stepsize ( )kc  should follow a decreasing sequence to ensure convergence. However, our preliminary 
tests showed that a small constant value ( )kc c performs equally well and we kept this simpler solution.
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The SPSA approximates the gradient by a directional derivative. Spall  (1998) argued that “one properly 
chosen simultaneous random change in all the variables in a problem provides as much information for 
optimization as a full set of one-at-a-time changes of each variable” (p. 448). Figure 1 compares the speed 
of convergence of SPSA and finite difference algorithms to find the minimum opt 0θ  of a p-dimensional 
quadratic cost function     2

1
p
i iJ θ  for different numbers of parameters p (  0.002a ,  0.01c ,   0.6,  

tol 710J , (0) 1θ ). For small numbers of parameters (2 and 8), the loss of accuracy of the SPSA method 
does not change the speed of convergence in terms of number of optimization steps (Figures 1a and 1b). 
The SPSA can even be a bit faster than finite difference “by-chance” due to randomness in the algorithm, 
but it can also be a bit slower for the same reason. For larger numbers of parameters (32 and 128), the loss 
of accuracy of the SPSA method implies that more optimization steps are required to achieve the same level 
of convergence (Figures 1c and 1d). Indeed, as the gradient estimation by SPSA is made alongside a random 
subspace of dimension 1, more optimization steps are required to make the successive averaging of those 
one-dimensional estimates by Nesterov momentum converging toward a satisfying approximation of the p
-dimensional gradient. Despite this need of more optimization steps to counterbalance the gradient approx-
imation when the number of parameters increases, SPSA method performs increasingly better than finite 
difference in terms of number of cost function calculations required by the method to reach the minimum 
(Figures 1e–1h). Indeed, for p parameters, the relative gain of using SPSA to estimate a gradient is rough-
ly a factor p. This gain is more important for optimization than the small loss in accuracy of the gradient 
approximation.

The informed reader may notice some resemblance between SPSA and Stochastic Gradient Descent (SGD) 
methods used in deep learning (Bottou, 2010, 2012). Indeed, both methods rely on stochastic sampling to 
deal with the respective dimensionality challenge in their field of application. For SGD, the dimensionality 
challenge is the huge amount of data available to train a neural network, the numerical cost of estimating 
the cost function (prediction-observation discrepancy) being proportional to the size of the training data set 
as each input data corresponds to a run of the neural network. Therefore, SGD methods rely on estimates 
of the gradient of the cost function using only a random subset of available data. Conversely, for SPSA, the 
dimensionality challenge is the number of parameters, which increases the numerical cost of estimating 
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Figure 1. Example comparing 10 stochastic minimizations performed by simultaneous perturbations stochastic approximation (blue, line: median, shaded 
area: range from minimum to maximum) with a deterministic minimization by finite difference (red), with different numbers of parameters to optimize (2, 8, 
32, and 128). For each number of parameters, the decrease of the cost function is presented as a function of the number of optimization steps (a–d) and as a 
function of the number calculations of the cost function  J θ  (e–h).
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the gradient of the cost function by finite differences. Therefore, SPSA method relies on estimates of the 
gradient alongside a subset of the parameter space to require less model runs.

Moving forward from this pedagogical example, we now ask whether the previous conclusion still holds 
for a complex geophysical model or not. An optimization problem for parameter identification is usually 
more complicated than the convex quadratic function used above. On the one hand, the non-linearity of 
the model can increase the effect of the loss of accuracy of the gradient approximation. On the other hand, 
each calculation of the cost function implies to run the model with new parameters, making the benefit of 
requiring less model runs with SPSA even more valuable.

3. An Example of Complex Geophysical Model: A 1DV Model at DYFAMED 
Station
3.1. The Model

The one-dimension hydrodynamical model used in this study is extensively described in Gaspar et al. (1990). 
This model solves the conservation equations for heat, salinity, and momentum:


  

 
  

sol

0
,

p

T F I T w
t c z z

 (5)

 
 

 

,S S w

t z
 (6)

 
 





 


,wf

t z
U Uk U (7)

where T  and S are respectively the temperature and the salinity of water, and  ( , )u vU  and w the horizontal 
and vertical velocities of water, respectively. For each of those quantities, we use Reynold's decomposition 
  T T T  (same for S, U and w), where T  is the average value that can be modeled (we assume no convec-

tion with  0w ) and T  are the turbulent fluctuations that are not resolved by the model. 0 is a reference 
value of density   and pc  is the specific heat of seawater; solF  is the downward flux of sunlight absorbed at 
the sea surface and ( )I z  the fraction of solF  reaching depth z in the water column; f  is the Coriolis parameter; 
and k the vertical unit vector. Heat, salt, and momentum turbulent fluxes at the sea surface are detailed in 
Gaspar et al. (1990).

The parameterization of turbulent vertical fluxes relies on the concept of eddy diffusivity:

  
     


    

 
, , ,h s m

T ST w K S w K w K
z z z

UU (8)

where mK , sK  and hK  are the eddy diffusivities, respectively for momentum, salt, and heat. These diffusiv-

ities are related to the turbulent kinetic energy (hereafter abridged TKE)     2 2 20.5( )e u v w  through:

  minmax , ,m m k kK K c l e (9)

  ,m
s h

t

KK K
Pr (10)

where kc  is a constant to be determined, minmK  is a minimal value for mK , kl  a mixing length and tPr  the tur-
bulent Prandtl number. The conservation equation for the TKE writes:


    

 


        
e

e eK w b w
t z z z

UU (11)
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where  ratioe mK K K  stands for the eddy diffusivity of TKE (with ratioK  
the dimensionless ratio between TKE and momentum diffusivities), 

   0 0( ) /b g  for buoyancy, g for gravity and   for TKE dissipation. 
The latter is parameterized as follows:




 
3/2

,ec
l

 (12)

where c  is a constant and l  is a characteristic dissipation length com-
puted (together with kl ) from the TKE and the Brunt-Väisälä frequency 

  2 /N b z. At the sea surface, e  is a function of wind stress   ( , )x yτ  
and has a minimum value of min0e  ( mine  elsewhere in the water column, 
with min min0e e ). This writes:


 



     
 

2 2

( 0) min
0

max , x y
ze e c (13)

where c  is a constant to implicitly consider non-modeled processes (e.g., 
waves, Langmuir cells) that may affect TKE creation near the ocean sur-
face. More details on the turbulent closure scheme and parameter values 
are given in Gaspar et al. (1990).

The mesh grid includes 42 vertical levels of variable size (from 1 m near 
the sea surface to 300 m near the sea bottom). Atmospheric forcings (i.e., 
sensible and latent heat fluxes, short- and long-wave radiations, and wind 

stress) used in this study for the 1DV model are the same as those used by Hamon et al. (2016) in the 3D sim-
ulation for the Mediterranean basin. They correspond to the atmospheric forcings calculated at DYFAMED 
station (  43 25  North, 7 52  East) in the Ligurian Sea, and are available every 3 h.

3.2. The Optimization Problem

We selected eight parameters that may be tuned in practical applications of the TKE model, listed in Table 3. 
Three of them ( kc , c , c ) are empirical descriptions of lower scale processes that are not explicitly resolved 
by the model, two others ( tPr , ratioK ) are ratios between the different diffusivities, and the three last parame-
ters ( minmin ,mK e , min0e ) are minimal values for quantities associated with TKE. In the original settings of the 
model, these parameters are set to reference values based on common assumptions in the literature (  1tPr , 
 ratio 1K  meaning m eK K ), lab experiments that are simplistic in comparison to the complex dynamics of 
the ocean surface, or even—especially for minimal values—based on an empirical tuning so that the model 
reproduces “reasonably well” observed oceanographic data (Gaspar et al., 1990). Therefore, these reference 
values form a good starting point but they may be tuned in model applications to better fit data, without loss 
of interest for the underlying theory behind the model.

To test the optimization method, we conduct twin experiments. The first experiment is a 1-year model simu-
lation (year 1980 with corresponding atmospheric forcings and solar irradiance) performed using parameter 
values from Table 3 as a reference (Figure 2). Model outputs are used to generate pseudo-data that are used 
in the second experiment to attempt to recover the reference parameter values. This classical procedure of 
twin experiments allows to assess the efficiency of the optimization method as we know a priori the optimal 
parameter values that should be found with the pseudo-data set.

Pseudo-data are generated by adding a white Gaussian noise to temperature (T ), salinity (S), and horizontal 
current (u and v) predictions. The added noise has a zero mean and its standard deviation is set to mimic 
the typical values of measurement uncertainty in actual in-situ instruments: 0.01 C for temperature, 0.01 
for salinity and 10.01 .m s  for each direction of horizontal current (Thomson & Emery, 2014). An example 
of resulting pseudo data is shown in Figures 3a and 3b. Pseudo data are constructed from a low-frequency 
sampling of the numerical solution provided by the model. Therefore, the pseudo-data set shall be regarded 
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Parameter Value Unit Meaning

kc 0.1 – Eddies diffusivity constant

c 0.7 – Turbulent dissipation constant

minmK 5310 2 1m .s Minimal value for moment diffusivity

mine 6210 2 2m .s Minimal value for TKE

min0e 410 2 2m .s Minimal value for TKE at surface

tPr 1 – Prandtl number

ratioK 1 – Ratio between TKE and momentum 
diffusivities

c 3.75 – Constant to compute surface TKE 
from wind stress

Abbreviation: TKE, turbulent kinetic energy.

Table 3 
Model Parameters and Reference Values, From Gaspar et al. (1990)
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as a data set collected every 3 h by in-situ instruments on a mooring line. This sampling frequency is far 
below the one of actual instruments (data every minute or few seconds), making our virtual setup more 
pessimistic than what could be realistically achieved in the field.

So, we have access to n observations (here pseudo-observations) of horizontal current, temperature and 
salinity at each time and depth predicted by model outputs. We denote obs

iu  the i-est observation of u (same 
notation for v, T  and S). Each observation can be compared with model prediction  pred

iu θ  at the same time 
and depth (Figures 3c and 3d), which depends on θ the set of p model parameters that we intend to opti-
mize. Parameters are expressed in different units and are of different orders of magnitude. To ensure a simi-
lar treatment for all parameters, we scale them by a scaling value, which can be a commonly accepted value 
from the literature or an order of magnitude. For our twin experiments, we use the reference parameter 
values (Table 3) as scaling values, resulting in the scaled parameter vector at the optimal parameter values 
being equal to 1. In addition, to avoid a distortion between scales and ease our graphical representations, we 
take θ equals to the 10log  of the scaled parameters. As a consequence, the optimal set of parameters is given 
by  opt

10log ( )1 0θ , this choice having no effect on the results.

Model-data discrepancy is quantified by the cost function:

       

     



 

 

 

 
    

 
   

      
   

 

 
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1 1
1/2 1/2
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,
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i i
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i i

J u u v v

T T S S

θ θ θ
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 (14)
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Figure 2. Reference simulation used as example in our study. For readability, only the upper water column is shown (deeper part not affected by atmospheric 
forcing).



Journal of Advances in Modeling Earth Systems

ALDEBERT ET AL.

10.1029/2020MS002245

9 of 17

Figure 3.
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where   100uv  and    1T S  are chosen to have variations of similar magnitude for both u, v, S and T . 
Evaluating the cost function  J θ  requires to run the model once. If θ contains few parameters, a map of the 
cost function as a function of parameter values can be computed, an example with two parameters is shown 
in Figure 3e. Note that the map of the cost function in Figure 3e is costly to estimate—here 10000 model 
runs—and is not required for optimization, we show it here just to ease the presentation of the method 
applied to the TKE model with two parameters to optimize.

Starting from the same parameter values, both finite difference and SPSA algorithms converge to the op-
timal parameter values (Figure 3f) that make the closest model predictions to observed data (Figures 3g 
and  3h). On average, the stochastic optimization performed by SPSA converges to the global minimum 
( tolJ  has been set to 1.44, corresponding to a tolerance of 0.01, since in this case J J

optopt
: ( ) .  1 43 is 

the minimum of the cost function, obtained with the reference parameter values) in the same number of 
steps as the deterministic finite difference, with the same tuning for both algorithms (  0.01a ,  0.01c ,  
and   0.8). It is worth noting here the role of Nesterov momentum, which allows the finite difference 
algorithm to move forward like a ball rolling down a hill rather than by small incremental steps, making 
it converging along a faster and smoother trajectory. The same effect is also observed with the SPSA, with 
Nesterov momentum also playing an important role in averaging the successive gradient approximations, 
thus stabilizing the algorithm.

Finally, the strength of SPSA appears when looking at the computational cost. Even with two parameters 
to optimize, the SPSA uses 3 model runs per optimization step (an additional run computes the cost func-
tion at the new parameter values) whereas the finite difference uses 5 model runs, which saves 40% of the 
computational cost. For p parameters, the relative gain of using SPSA is roughly p. With eight parameters to 
optimize in the next section, SPSA can be expected to be eight times faster to run.

4. Optimizing All Parameters Together at Low Numerical Cost
4.1. Strategy to Evaluate SPSA Efficiency

For this exercise of optimizing the eight parameters together, we doubled the previously used standard 
deviation of our added noise (now 0.02 C for temperature, 0.02 for salinity and 10.02 .m s  for currents), to 
include in a simplistic way the uncertainty in the physical process itself, like the non-homogeneity of cur-
rents inside the mesh cells of an Acoustic Doppler Current Profiler, or geophysical fluctuations that are not 
resolved by the model.

Based on preliminary tests, we adjusted the SPSA parameters (  0.003a ,  0.01c , and   0.8) to ensure 
the algorithm convergence. To test the method ability to optimize our example model, we conducted 100 
repetitions of the optimization procedure, each one starting from a random initial guess of the parameter 
values. All the initial parameter sets for each optimization procedure are taken as equally distant (Euclidean 
norm) to the optimum parameter set opt 0θ . Therefore, the initial parameter sets correspond to points in 
the parameter space that all lie on a sphere centered around optθ  and that are randomly drawn following a 
uniform probability distribution (Marsaglia, 1972, method 2). The sphere radius is set to IC 1d , meaning 
that the initial parameter values will be up to 10 times smaller or larger than the optimal value.

For each of the 100 repetitions of the optimization procedure, a new set of pseudo-data is generated by 
adding a different random white Gaussian noise (see Section 3.2) to ensure the genericity of our results 
obtained by twin experiments. Also, we did not impose any tolerance tolJ  and specified only max 1000k  as 
stopping criterion to ease comparisons between our 100 repetitions. Only the SPSA method is applied, as 
both preliminary tests and intuition based on results from Figure 1 indicated that the finite difference algo-
rithm takes too much computational time to converge when applied to the geophysical model.
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Figure 3. Sketch of the optimization problem. Data (a, b) (here pseudo-data to test the optimization method) and a model to attempt to describe data (c, 
d). Model-data discrepancy is minimized by an optimization procedure that tunes model parameters: evolution of parameters and map of the cost function 
(e), corresponding decrease of the cost function  J θ  relatively to its value at optimum optJ  (f). Here, one finite difference gradient descent (red) and 10 
simultaneous perturbations stochastic approximation runs (blue) starting from the same first guess are shown. The obtained parameter values lead to model 
predictions that are closer to observed data (g, h).
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4.2. Results

Results for 100 repetitions of the optimization of the eight parameters are summarized in Figure 4 and 
Table 4 (last column). First of all, the method decreases the cost function value close to the noise level 
J J

optopt
: ( )  , defined as the cost function at the known optimal parameter values and which is posi-

tive due to the noise in pseudo-data. A decrease of 1–2 orders of magnitude of  J θ  is obtained in a 100 
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Figure 4. Statistics over 100 optimizations by simultaneous perturbations stochastic approximation of eight parameters of the Turbulent Kinetic Energy model: 
decrease of the cost function  J θ  relatively to its value at optimum optJ  (a), and evolution of the eight parameter values (b–i) classified in three qualitative 
evolutions. All axes are in log-scale. Results are summarized by quantile intervals ( 5% 95% in green, 25% 75% in red) and the median (solid curve), and 
the optimal value to find for the parameters (b–i) is indicated by the dotted line. (b)–(i) The right-hand-side inset with a blue curve shows the sensitivity of the 
cost function to the parameter, estimated by a non-parametric local regression predicting the cost function value as a function of the parameter value (span 
parameter set to 0.75), based on all the cost function evaluations performed during the 100 optimizations. A convex (flat) curve corresponds to a high (low) 
sensitivity of the cost function—that is, model predictions—to the parameter, and explains why the optimal parameter value can be estimated with a high (low) 
accuracy, independently of the optimization method we use.
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optimization steps, costing 300 model runs (Figure 4a). Pushing forward the optimization to 1,000 optimi-
zation steps leads to a small additional decrease of  J θ  lower than an order of magnitude, as the remaining 
potential gain after 100 optimization steps is small. In this part of the optimization, the effect of noise in 
pseudo-data combined with the stochastic component of SPSA appears in the “random-like” oscillations of 
cost function evolution. Last, the 95% quantile (over the 100 repetitions) of cost functions stays merely con-
stant after a 100 optimization steps. This result is due to the 15% of our optimizations that ended up being 
stuck into a local minimum or a plateau, a phenomenon on which we will come back later.

Each parameter has a different effect on model predictions and therefore on the cost function value. The 
cost function will significantly increase if a parameter that governs model predictions deviates from its 
optimal value. Therefore, the accuracy in parameter estimation is related to the near-optimum curvature of 
the cost function in the direction defined by this parameter. Based on this curvature, the eight parameters 
in our example can be grouped into three qualitative types.

First, the two constants of the TKE model kc  and c  (Figures 4b and 4c) govern the model predictions con-
sidered in the cost function. Indeed, these parameters are recovered with a high accuracy, 90% of estima-
tions falling in  [0.092, 0.106]ˆkc  and   [0.58, 0.77]ĉ  (5% and 95% quantiles). Based on the optimization 
trajectories, we can estimate the effect of each of these parameters on the cost function. This effect is shown 
in the right-hand-side inset in Figures 4b and 4c. It indicates that the cost function is strongly convex and 
rises rapidly in both directions for each parameter, making the corresponding parameter easy to optimize 
with high accuracy.

Second, some parameters have on the opposite a little effect on model predictions and are estimated with a 
large uncertainty, usually spanning one order of magnitude (Figures 4g–4i). Such parameters are the Prandtl 
number (  [0.24, 3.82]tPr ), the minimal value for TKE at the surface (    4 2 2

min0 [0.22, 3.14] 10 m .se ) and 
the constant linking TKE at the surface with wind stress (   [1.0,13.2]ĉ ). For each parameter, the cost func-
tion looks flat in both directions, making the search of its minimum value a difficult task and explaining the 
low accuracy in parameter estimation.

Third, some parameters are a mix of the previous ones, they have little effect on model predictions in one 
direction and strongly affect model predictions in the other one (Figures 4d–4f). As a consequence, the 
confidence interval in the estimation of those parameters is asymmetrical, presenting a large uncertainty 
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Optim. Noise = 0.005 Noise = 0.01 Noise = 0.02

Param. Value Average Confidence Average Confidence Average Confidence

kc 11.0010 10.9910  1 1[0.9410 ,1.0410 ] 10.9810  1 1[0.9210 ,1.0510 ] 10.9910  1 1[0.9210 ,1.0610 ]

c 17.0010 16.8910  1 1[6.0910 , 7.7110 ] 16.7510  1 1[5.8510 , 7.7210 ] 16.8710  1 1[5.7010 , 7.9310 ]

minmK 53.0010 52.6910  5 5[0.7810 , 3.0410 ] 52.7010  5 5[0.8710 , 3.0410 ] 52.7010  5 5[0.7810 , 3.0310 ]

min0e 41.0010 41.0510  4 4[0.1910 , 2.8710 ] 41.1810  4 4[0.2410 , 2.7710 ] 41.3710  4 4[0.2210 , 3.1410 ]

mine 62.0010 62.3010  6 6[0.6010 , 5.2410 ] 62.4310  6 6[0.5210 , 5.3010 ] 62.3710  6 6[0.5710 , 5.4610 ]

tPr 1.00 1.81 [0.21, 5.15] 1.45 [0.20, 4.78] 1.42 [0.24, 3.82]

ratioK 1.00 0.93 [0.48,1.28] 0.85 [0.37,1.27] 0.91 [0.31,1.41]

c 3.75 5.17 [0.77,12.88] 5.12 [0.80,15.19] 4.80 [0.99,13.19]

Note. Results presented in Figure 4 are the ones obtained with the highest tested noise level (0.02). Meaning and unit 
for each parameter can be found in Table 3. Confidence interval are defined by the 5%  and 95% quantiles of the 
results obtained in our 100 repetitions of the optimization procedure.

Table 4 
Optimal Values and Optimization Results for the Eight Parameters Simultaneously Optimized, Depending on the Noise 
Level in Pseudo-Data
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toward lower values (half an order of magnitude). Two of these parameters are minimal thresholds, for the 
momentum diffusivity (    5 2 1

min [0.76, 3.ˆ 03] 10 m .smK ) and TKE (    6 2 2
min [0.57, 5.47] 10 m .se ) respec-

tively, the last parameter being the ratio between TKE and momentum diffusivities ( ratio [0.31,1.41]K̂ ). For 
each parameter, the cost function looks flat on one side and steep on the other side. This makes the search 
of the lowest point a difficult (easy) task if the initial guess is on the flat (steep) side.

Now, we would like to elaborate a bit further on the minimum momentum diffusivity min
ˆ

mK . In this pa-
rameter direction, the cost function presents a small hump (Figure 4d) that traps some of the optimization 
trajectories starting at lower values (15% of our repetitions of the optimization procedure). These trajectories 
end near a local minimum (also associated with an overestimated value for mine ) where the cost function 
value is larger than its optimal value of about 0.1.

All those previous results, namely on how accurately each parameter value is estimated, do not seem to be 
affected by the level of noise in the pseudo-data (Table 4, Figures S1 and S2). Lower noise levels than the 
one we used previously lead to the same results in terms of model sensitivity and accuracy of parameter 
estimation. Somewhat counter-intuitively, the increase of noise level did not significantly increase the scat-
ter in parameter estimation. This scatter in a parameter estimation seems mostly driven by the constraints 
imposed by the parameter on model predictions rather than by the level of noise in data.

As the level of noise in the pseudo-data has little effect on the optimization results, the level of noise has also 
little effect on the resulting predictive error and predictive uncertainty. The predictive error (relatively to 
the reference simulation) after optimization has a null median value (Figure 5). The predictive error varies 
between model simulations based on the 100 optimal parameter sets. The previously discussed parametric 
uncertainty results on a predictive uncertainty (defined here as the 95% confidence interval of the predictive 
error) that is, of the same magnitude as the noise introduced in pseudo data to mimic measurement errors 
in real data, except for the temperature. The temperature in the 0–10 m layer during summer is on average 
slightly underestimated by less than 1°C, with a 95% confidence interval spanning up to 6°C near the sur-
face (Figures S3–S8). At this time of the year, the radiative warming is maximal which magnifies the uncer-
tainty in the temperature diffusivity. One possible explanation is that it results from the strong uncertainty 
on the optimization of the Prantl number. Therefore, the resulting predictive uncertainty would be lower 
in any optimization attempt that will not optimize the Prantl number and set it to its commonly accepted 
value of 1, or narrow the authorized range within which the Prantl number can be optimized. A related ex-
planation would also be that the weighting of the state variables used in the cost function in our particular 
example strongly favors the optimization of the current prediction in comparison to the temperature.

5. Discussion
The main point to be highlighted is that the level of difficulty in determining a given parameter is more like-
ly dictated by the shape of the cost function rather than by the optimization method itself (see the previous 
section). Any optimization method is likely to present similar scatters in the estimation of parameters that 
poorly constrain model predictions. The strength of SPSA is its low numerical cost, allowing to optimize 
many parameters together even for models that are costly to run. For “small models” like the one used 
here, this low numerical cost allows Monte-Carlo repetitions, like repeating the optimization starting from 
different initial guesses of the parameter values. These repetitions allow not only (a) to have a confidence 
interval in our estimation of parameter values, but (b) to have greater odds of finding a global minimum 
instead of a (sub-optimal) local one, and (c) to conduct a global sensitivity analysis of the model to its pa-
rameters at the same time. This sensitivity analysis provides an overview of the predictive uncertainty that 
arises from the uncertainty in the value of each parameter. Therefore, we learn on which crucial parameters 
we should focus our measurement and calibration efforts, whereas those of lower importance can be set to 
a commonly accepted value in the literature.

The geophysical example we used here, though limited to the optimization of eight model parameters to 
ease the presentation of the method, focuses on its ability to deal with nonlinear embedded models. SPSA 
method is indeed suitable for embedded and coupled models since it does not require additional effort to 
take the embedding/coupling into account. Furthermore, the SPSA method can be used to optimize larger 
numbers of model parameters, but also boundary and initial conditions, and external forcings. Indeed, the 
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existing literature on SPSA in optimal control applications (Spall, 1998, 2012) and our pedagogical example 
minimizing a convex cost function (128 parameters) both show that the method can handle optimization 
problems with hundreds of parameters. In a related study involving the same variant of SPSA method, we 
optimized eight constants describing a mixture of biological parameters, initial conditions, and external 
forcing, in a nonlinear growth-advection model (coupling Lagrangian simulations with a biological mod-
el of ODEs) describing phytoplankton blooms triggered by island inputs (Messié et al., 2020). In another 
study, the same SPSA method successfully optimized the boundary conditions of a two-dimensional tidal 
model in a lagoon, discretized into 794 control parameters (tide amplitude and phase in 397 boundary cells) 
(Koenig et al., 2020). There, we also propose a combination of SPSA with successive spline approximations 
(resulting in 66 parameters to be optimized) to ensure the desired local continuity constraints for the bound-
aries. This approach can also be used for the common need of optimizing initial conditions. While initial 
conditions were assumed to be known in our example, they can therefore be estimated together with the 
parameter values through the SPSA method.

If the system exhibits deterministic chaos, like with weather prediction, the predicted system state needs to 
be regularly corrected with data to limit the exponentially growing uncertainty coming from the sensitivity 
to initial condition. This job is usually performed by Ensemble Kalman Filters or Ensemble Variational 
methods (3D-EnVar, 4D-EnVar), which include knowledge from data to refine the model prediction during 
the simulation (Buehner et al., 2013; Evensen, 2009). To perform a parameter identification with SPSA on 
a chaotic system, a possibility might be to use one of the above-mentioned methods each time a model 
simulation is run with a given set of parameters (e.g., one model run includes EnKF data assimilation to 
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Figure 5. Statistics on the predictive uncertainty resulting from the 100 optimizations by Simultaneous Perturbations Stochastic Approximation of eight 
parameters of the Turbulent Kinetic Energy model. Each panel presents the predictive error for the model's state variables (T , S, u, v), computed from 
the optimizations performed for three different levels of noise in the pseudo-data (100 optimizations per noise level). Results from the optimizations are 
summarized in the form of boxplots computed from model predictions at each vertical cell and time step. Boxplots quantiles: median (horizontal bar), 25% and 
75% (box), 2.5% and 97.5% (whiskers), minimum and maximum (points).
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counterbalance the sensitivity to initial condition). In that case, the cost function to minimize would be a 
weighted sum of the model-data discrepancy and of the amount of system state correction performed by the 
data assimilation method. Indeed, one main issue would be to assess the relative gains in predictive accura-
cy that can be achieved respectively thanks to parameter optimization and system state correction. Such an 
idea needs to be tested and its numerical cost to be evaluated.

The low cost of an SPSA optimization (in regards to the number of parameters to optimize) and its generic-
ity (negligible implementation cost) form an interesting combination for the scientific exploratory process, 
as we experienced here and in Messié et al. (2020). Indeed, any change in the optimization problem to solve 
only requires small programming efforts as it does not require to develop an adjoint numerical code, and 
the reasonable computational cost allows to test many of such changes. In addition, if any new knowledge 
suggests to modify the model, for instance, by adding some new variables and/or processes—especially if 
the model has biological components—again only little effort is needed to adapt the interface between the 
model and the optimization method. The same reasoning holds if one wants to change the cost function to 
focus on improving different model outputs. Finally, the low computational cost of SPSA allows multiple 
attempts to tune or even improve the optimization method itself.

The optimization method we used here is only one of the multiple variants of SPSA that exist. These variants 
are based on the same general spirit of estimating a gradient by perturbating all the parameters together. 
Besides that, all refinements that may be imagined for gradient descent algorithms can be implemented. 
To bound the parameter space to explore to remain within an acceptable range, both strong and weak con-
straints can be implemented (Hartl et al., 1995). If one needs to speed up the convergence of the algorithm, 
there are multiple solutions. First, momentum effect can be used, in its Nesterov variant (like here) or in its 
classical version without anticipation (Spall & Christion, 1994; Sutskever et al., 2013). Despite its use has 
been the exemption rather than the rule in the SPSA literature, momentum is of considerable interest to sta-
bilize the algorithm by averaging the successive gradient estimations, as emphasized throughout the present 
study. Second, there is a second-order SPSA that estimates the Hessian of the cost function, but there is a 
trade-off to find between the benefit of this new information and the uncertainty in the Hessian estimation 
with only 4 model runs (Zhu & Spall, 2002). Third, a line-search algorithm can adapt the step-size, but it 
increases the risk to converge only in a local minimum (Armijo, 1966). If one needs to optimize many param-
eters, it might help to work alternatively on—carefully defined–subsets of the whole parameter set using the 
cluster-SPSA (Tympakianaki et al., 2015). In the same spirit, one may favor some model parameters by using 
different SPSA coefficients for each model parameter, which is the reverse of our scaling that ensured the 
same treatment for all of them. Finally, if one deals with a cost function presenting many local minima, SPSA 
can be coupled with a Memetic Gradient Search to perform a global optimization (Li et al., 2008).

Finally, the application of SPSA to our example provides valuable solutions for optimal control of turbulent 
closure schemes (Dekeyser et al., 2004). First of all, our estimations are robust to the noise level, which only 
slightly increases the scatter in parameter estimation. This scatter seems mostly driven by the fact that some 
parameters have little effect on the cost function, whatever the level of noise, as these parameters poorly 
affect model predictions. Some of those parameters are involved in processes occurring near the sea surface, 
and have little effect on our cost function which encompasses the whole vertical domain. Using a cost func-
tion that focuses on near-surface data would allow to better estimate such parameters. Other parameters 
that are poorly estimated in an asymmetrical way are the minimal thresholds that only have to be sufficiently 
small. The last two parameters that poorly constrain model outputs are the Prandtl number and the ratio 
between moment and TKE diffusivities. This is an interesting result since, if the value of the Prandtl number 
is quite well-known at small scale, namely the scale of turbulence (i.e., a few centimeters), this is far less true 
at the scales explicitly resolved by circulation models (a few meters or tens of meters in the vertical direction). 
Hence, the 1DV model is not really sensitive to the value of the Prandtl number in that case. However, any 
refinement of these simple assumptions might be of little interest as our results indicate that they will have 
almost no effect on model predictions. Finally, the two constants kc  and c  of the TKE model can be estimated 
with a high accuracy. This is of special interest as these values are estimated from laboratory experiments and 
comparisons of model predictions with observations (Gaspar et al., 1990). Therefore, the proposed approach 
of optimization by SPSA provides an easy way to adjust these empirical constants to any oceanographic spe-
cific case, or even to find a reference value over a large range of observational in-situ data.
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6. Conclusion
In this study, we presented the SPSA method coming from optimal control theory (Spall, 2012) to estimate 
the parameter values in complex embedded models in geophysical sciences. We illustrated the method by 
conducting twin experiments on the example of a turbulent closure scheme in a 1DV hydrodynamical mod-
el. As a result, parameters that mostly constrain model predictions are estimated with a high accuracy. 
On the opposite, some parameters are well estimated on average, but with poor confidence levels. Such 
parameters have little influence on the cost function which is flat regarding their variations—and this is 
independent from the minimization technique which is used—so they do not require calibration efforts and 
can be set to a commonly accepted value. Given the number of parameters to optimize simultaneously, all 
those results were obtained at a low numerical cost. This allows to optimize models that are costly to run 
without constructing an adjoint model. As the SPSA algorithm can be easily applied to any model, it allows 
the scientist to change the optimization problem to solve by changing either the model, and/or the cost 
function and/or the available data if required during the course of the scientific exploratory process. Finally, 
the method is fast enough to allow repetitions and to perform a sensitivity analysis. For all those reasons, we 
believe that SPSA method has a great potential for identifying parameters in the complex embedded models 
we use in geophysical sciences. As examples, recent applications are the optimization of (a) boundary con-
ditions for tides modeling in a lagoon (Koenig et al., 2020), and (b) biological parameters, initial conditions, 
and external forcing in a growth-advection model describing phytoplankton blooms triggered by a delayed 
island effect in the Pacific Ocean (Messié et al., 2020).

Data Availability Statement
No empirical data were used. All the information regarding the 1DV model with TKE closure scheme and 
the simulation set-up are both (a) described in Gaspar et al. (1990) and Hamon et al. (2016) and (b) summa-
rized in the present study. The computational effort required for all the simulation and optimization runs 
can be achieved on a desktop or laptop computer.
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