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For a prime p, let F q 2 be the finite field of q 2 elements where q = p m and m ≥ 1 is an integer. In this paper, we study constacyclic and skew constacyclic codes of length n over a class of finite commutative non-chain rings

we show that a (skew) Λ-constacyclic code of length n is a direct sum of (skew) Λ i -constacyclic codes of length n over F q 2 . Also, we derive the necessary and sufficient conditions for such codes (constacyclic and skew constacyclic) to contain their Hermitian duals. By applying the Hermitian construction on the Gray images of dual containing codes, many MDS and new quantum codes with parameters better than the best-known codes are constructed.

Introduction

Constacyclic codes form one of the most studied and fascinating classes of codes. Their rich algebraic properties offer easy encoding and decoding methods. Also, their duality properties have been successfully applied in the construction of quantum error-correcting codes. In fact, after the discovery of first quantum code in 1995 by Shor [START_REF] Shor | Scheme for reducing decoherence in quantum memory[END_REF], a large amount of quantum codes have been obtained based on the structure of constacyclic codes [START_REF] Chen | Application of constacyclic codes to quantum MDS codes[END_REF][START_REF] Islam | Quantum codes obtained from constacyclic codes[END_REF]. Besides, many new quantum codes by using cyclic codes over different finite commutative rings [START_REF] Dertli | On quantum codes obtained from cyclic codes over A 2[END_REF][START_REF] Gao | On Quantum codes from cyclic codes over the ring Fq + v 1 Fq + • • • + vrFq[END_REF][START_REF] Islam | Quantum codes from the cyclic codes over Fp[u, v, w]/ u 2 -1, v 2 -1, w 2 -1, uv -vu, vwwv, wu -uw[END_REF][START_REF] Islam | Quantum codes from the cyclic codes over Fp[v, w]/ v 2 -1, w 2 -1, vw-wv[END_REF][START_REF] Islam | Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring[END_REF][START_REF] Kai | Quaternary construction of quantum codes from cyclic codes over F 4 + uF 4[END_REF][START_REF] Qian | Quantum codes from cyclic codes over finite ring[END_REF][START_REF] Sari | On quantum codes from cyclic codes over a class of nonchain rings[END_REF] are reported in the literature. In that context, finite commutative non-chain rings are most studied alphabets. In 2018, (1 -2v)-constacyclic codes over F q + uF q + vF q + uvF q in [START_REF] Li | Quantum codes from (1 -2v)-constacyclic codes over the ring Fq + uFq + vFq + uvFq[END_REF], u-constacyclic codes over F p +uF p , u 2 = u in [START_REF] Gao | u-Constacyclic codes over Fp + uFp and their applications of constructing new non-binary quantum codes[END_REF], constacyclic codes over F p +vF p +v 2 F p , v 3 = v in [START_REF] Ma | Constacyclic codes over the ring Fp+vFp+v 2 Fp and their applications of constructing new non-binary quantum codes[END_REF] are studied to obtain quantum codes. Later in 2019, Ma et al. [START_REF] Ma | New non-binary quantum codes from constacyclic codes over Fq[u, v]/ u 2 -1, v 2v, uv -vu[END_REF] determined many new quantum codes from constacyclic codes over the non-chain ring F q [u, v]/ u 2 -1, v 2 -v, uv-vu . Recently, Islam et al. [START_REF] Islam | New quantum codes from constacyclic codes over the ring R k,m[END_REF] considered a new class of non-chain rings R k,m = F p m [u 1 , u 2 , . . . , u k ]/ u 2 i -1, u i u j -u j u i 1≤i =j≤k , (k, m ≥ 1) and studied constacyclic codes to explore quantum codes with better parameters. Further, Alahmadi et al. [START_REF] Alahmadi | New quantum codes from constacyclic codes over a non-chain ring[END_REF] studied constacyclic codes over the family of non-chain rings R m = F p [u]/ u m -1 whereas Islam and Prakash [START_REF] Islam | New quantum codes from constacyclic and additive constacyclic codes[END_REF] studied these codes over a non-chain ring F q [u, v]/ u 2 -γu, v 2 -δv, uv = vu = 0 (γ, δ ∈ F * q ) and obtained many new quantum codes from them. Therefore, the above literature leads to conclude that constacyclic codes over non-chain rings are one of the richest sources of good quantum codes. Hence, it makes sense to study these codes over different and new non-chain rings in that context. Towards this end, we consider the class of non-chain rings A q,r = F q 2 [u 1 , u 2 , . . . , u r ]/ u 2 i -γ i u i , u i u j = u j u i = 0 where 1 ≤ i = j ≤ r, γ i ∈ F * q 2 , where q is a prime power and r ≥ 1 is an integer. Note that for r = 2, it is a non-chain ring that appeared in [START_REF] Islam | New quantum codes from constacyclic and additive constacyclic codes[END_REF] with Euclidean inner product, however, here we investigate with Hermitian inner product.

Linear codes acted upon noncommutative rings (skew polynomial rings) have been studied intensively for the last two decades. In 2007, Boucher et al. [START_REF] Boucher | Skew cyclic codes[END_REF] introduced the notion of skew cyclic code (a generalization of cyclic code) by using the skew polynomial ring F q [x; θ], where θ is an automorphism on F q . From the application point of view, they have provided many codes with parameters better than previously best-known codes [START_REF] Boucher | Skew cyclic codes[END_REF][START_REF] Boucher | Skew constacyclic codes over Galois rings[END_REF]. Later, skew constacyclic codes over Galois rings were introduced in [START_REF] Boucher | Coding with skew polynomial rings[END_REF]. Subsequently, skew codes have been studied over many finite chain and non-chain rings. For instance, we can cite the rings F 2 +vF 2 , v 2 = v in [START_REF] Abualrub | θ-cyclic codes over F 2 +vF 2[END_REF], F p +vF p , v 2 = v in [START_REF] Gao | Skew cyclic codes over Fp + vFp[END_REF], F q + vF q , v 2 = v in [START_REF] Gao | Skew constacyclic codes over the ring Fq + vFq[END_REF][START_REF] Gursoy | Construction of skew cyclic codes over Fq + vFq[END_REF], F q + uF q + vF q where u 2 = u, v 2 = v, uv = vu = 0 in [START_REF] Ashraf | Skew cyclic codes over Fq +uFq +vFq[END_REF][START_REF] Islam | A note on constacyclic codes over Fq + uFq + vFq[END_REF], F q +uF q +vF q +uvF q where u 2 = u, v 2 = v, uv = vu in [START_REF] Islam | Skew cyclic and skew (α 1 + uα 2 + vα 3 + uvα 3 )-constacyclic codes over Fq + uFq + vFq + uvFq[END_REF][START_REF] Yao | Skew cyclic codes over Fq + Fq + vFq + uvFq[END_REF]. On the other hand, skew constacyclic codes over finite commutative chain rings were studied in [START_REF] Jitman | Skew constacyclic codes over finite chain rings[END_REF]. Like codes over commutative rings, quantum codes can also be constructed from dual containing skew cyclic and constacyclic codes. In fact, after the derivation of dual containing properties of such codes, the Hermitian construction (Lemma 2) provides quantum codes. It is well known that the number of quantum codes directly depends on the richness in the factorization of the polynomial x n ± 1 (see Theorem 6 and Theorem 12). As a skew polynomial ring is not constrained by the unicity of factorization, it is logical to study skew codes in the context of quantum code construction. To do so, some articles [START_REF] Bag | Quantum codes from skew constacyclic codes over the ring Fq[u, v]/ u 2 -1, v 2 -1, uv -vu[END_REF][START_REF] Li | FqR-linear skew constacyclic codes and their application of constructing quantum codes[END_REF][START_REF] Ozen | Skew quasi cyclic codes over Fq + vFq[END_REF] have studied skew constacyclic codes over non-chain rings and obtained many new quantum codes. Due to the strong motivation discussed above, we have studied skew constacyclic codes over a class of non-chain ring R e,q = F q [u]/ u e -1 in [START_REF] Prakash | New quantum codes from skew constacyclic codes over a class of non-chain rings Re[END_REF] and explored many better codes compared to the best-known codes. Recently, the work of [START_REF] Islam | New quantum codes from constacyclic codes over the ring R k,m[END_REF] has extended to skew constacyclic codes in [START_REF] Verma | New quantum codes from skew constacyclic codes[END_REF] and obtained several superior quantum codes.

In continuation of that line of work, in the present paper we extend our study to skew constacyclic codes over A q,r = F q 2 [u 1 , u 2 , . . . , u r ]/ u 2 i -γ i u i , u i u j = u j u i = 0 . Note that for r = 2, γ 1 = γ 2 = 1, skew constacyclic codes are studied in [START_REF] Islam | A note on constacyclic codes over Fq + uFq + vFq[END_REF]. First, we derive the structural properties of skew Λ-constacyclic codes where Λ is a unit in A q,r . Then by applying the Hermitian construction on the Gray images of dual containing skew Λ-constacyclic codes, we determine many better quantum codes compared to the best-known codes in the literature. It is important to mention that for 3 ≤ n ≤ q, there always exists (see, [START_REF] Grassl | On optimal quantum codes[END_REF]) a quantum MDS code with parameters [[n, n -2d + 2, d]] q where 1 ≤ d ≤ n 2 + 1. Therefore, in this paper, we try to obtain those quantum codes whose lengths are larger than q. Two primary contributions of the paper are 1. It derives Λ-constacyclic codes and their Hermitian duals of length n over A q,r , and presents many new quantum codes with better parameters. 2. The paper investigates the algebraic properties of skew Λ-constacyclic codes of length n over A q,r and their successful application to construct quantum codes. In this case, we also validate the novelty of obtained codes by comparing them with the best-known codes.

Preliminary

Let A q,r :=

F q 2 [u 1 , u 2 , . . . , u r ]/ u 2 i -γ i u i , u i u j = u j u i = 0 where 1 ≤ i = j ≤ r, γ i ∈ F * q 2 ,
q is prime power and r ≥ 1 is an integer. Thus A q,r is a class of finite commutative rings (with unity). Moreover, A q,r has another representation A q,r = F q

2 + u 1 F q 2 + • • • + u r F q 2 ,
where u 2 i = γ i u i , u i u j = u j u i = 0. So, it is a non-chain semi-local Frobenius ring with r + 1 maximal ideals. For instance, there are three maximal ideals u 1 + u 2 , γ 1 -u 1 and γ 2 -u 2 in the non-chain ring A q,2 , see [START_REF] Islam | New quantum codes from constacyclic and additive constacyclic codes[END_REF]. Define the r + 1 ring elements

κ 0 = r i=1 1 - u i γ i
, and κ j = u j γ j for i ≤ j ≤ r.

Then following easy but useful results show that the κ i s form a fundamental system of idempotents of A q,r :

1. κ 0 + κ 1 + • • • + κ r = 1, 2. κ i κ j = 0, for i = j and κ 2 i = κ i for all i, 3. A q,r = κ 0 A q,r ⊕ κ 1 A q,r ⊕ • • • ⊕ κ r A q,r ∼ = κ 0 F q 2 ⊕ κ 1 F q 2 ⊕ • • • ⊕ κ r F q 2 .
In the light of above discussion, we conclude that every element a ∈ A q,r has a unique representation a = κ 0 a 0 + κ 1 a 1 + • • • + κ r a r , where a i ∈ F q 2 . In addition, a is a unit in A q,r if and only if a i ∈ F * q 2 , for all i. Now, we recall some basic facts and results. A non-empty subset C of A n q,r is said to be a linear code of length n if it is an A q,r -submodule of A n q,r , and each member of C is called codeword. For a codeword s = (s 0 , s 1 , . . . , s n-1 ) ∈ C, the Hamming weight w H (s) is defined as the number of nonzero places in s. Also, the Hamming distance between two codewords s = (s 0 , s 1 , . . . , s n-1 ), and t = (t 0 , t 1 , . . . , t n-1 ) is given by d H (s, t) = w H (s-t). In this way, the Hamming distance for a linear code C is defined by d H (C) = min{d H (s, t) : s = t, s, t ∈ C}. The Hermitian inner product between two codewords s and t is s, t h = n-1 i=0 s i t q i . Therefore, the dual C ⊥ h = {s ∈ A n q,r : s, t h = 0, for all t ∈ C} is also a linear code over A q,r . Further, C is said to be self-

dual if C = C ⊥ h , self-orthogonal if C ⊆ C ⊥ h and dual containing if C ⊥ h ⊆ C.
Let GL r+1 (F q 2 ) denotes the group of all (r + 1) × (r + 1) invertible matrices over F q 2 . For a matrix M ∈ GL r+1 (F q 2 ) satisfying M M T = αI r+1 , where α ∈ F * q 2 , consider the Gray map (see, [START_REF] Gao | On Quantum codes from cyclic codes over the ring Fq + v 1 Fq + • • • + vrFq[END_REF][START_REF] Islam | New quantum codes from constacyclic codes over the ring R k,m[END_REF] for similar mapping) ϕ : A q,r -→ F r+1 q 2 defined by ϕ(a) = (a 0 , a 1 , . . . , a r+1 )M where a = r i=0 κ i a i ∈ A q,r . Then ϕ is a linear bijection and can be extended over A q,r componentwise. Now, as in [START_REF] Islam | New quantum codes from constacyclic codes over the ring R k,m[END_REF], we define the Gray weight of a ∈ A q,r as w G (a) = w H (ϕ(a)). The Gray

weight for s = (s 0 , s 1 , . . . , s n-1 ) ∈ C is w G (s) = n-1 i=0 w G (ϕ(s i )) and the Gray distance for C is d G (C) = min{w G (s) : 0 = s ∈ C}.
In this way, it is seen that ϕ is a linear isometric map from A n q,r (Gray distance) to F n(r+1) q 2 (Hamming distance). The map ϕ preserves the orthogonality of a linear code over A q,r as shown in the next result. The proof of result being analogous to ( [START_REF] Gao | On Quantum codes from cyclic codes over the ring Fq + v 1 Fq + • • • + vrFq[END_REF], Theorem 5) is omitted here.

Theorem 1 Let C be a dual containing linear code of length n over A q,r . Then ϕ(C) is also a dual containing linear code of length n(r + 1) over

F q 2 . Moreover, ϕ(C) is a self-dual code if C is self-dual.
Let C be a linear code of length n over A q,r . Define C i := {s i ∈ F n q 2 | there exists s 0 , s 1 , . . . , s i-1 , s i+1 , . . . , s r ∈ F n q 2 such that r i=0 κ i s i ∈ C} for 0 ≤ i ≤ r. Then C i is a linear code of length n over F q 2 , and C can be written as C = r i=0 κ i C i . In this case, the generator matrices of C and ϕ(C) are

M =      κ 0 M 0 κ 1 M 1 . . . κ r M r      and ϕ(M ) =      ϕ(κ 0 M 0 ) ϕ(κ 1 M 1 ) . . . ϕ(κ r M r )      , respectively, where M i is a generator matrix of C i for 0 ≤ i ≤ r. Moreover, C ⊥ h = r i=0 κ i C ⊥ h i and hence C is a self-dual code if and only if C i is a self-dual code for 0 ≤ i ≤ r.

Constacyclic codes and associated quantum codes

Here, following [START_REF] Chen | Application of constacyclic codes to quantum MDS codes[END_REF], we recall some basic facts. Let gcd(n, q) = 1, Λ ∈ F * q 2 and ord q 2 (Λ) = l. Then there exists a primitive ln-th root of unity w in some extension of F q 2 such that w n = Λ. Thus,

x n -Λ = n-1 i=0 (x -w 1+il ). Let Σ = {1 + il : 0 ≤ i ≤ n -1}
and for each t ∈ Σ, C t be a q 2 -cyclotomic coset mod ln containing t, defined by C t = {t, tq 2 , . . . , tq 2(m-1) } where m is the smallest positive integer such that tq 2m ≡ t (mod ln).

Let f (x) = i∈D (x -w i ). Then f (x) is a factor of x n -Λ and C = f (x) is a Λ-constacyclic code of length n over F q 2 with defining set D and dimension n -|D|. It is evident that C ⊥ h is a Λ -q -constacyclic code with defining set D ⊥ = {t ∈ Σ : -qt (mod rn) / ∈ D}. Definition 1 Let Λ ∈ A q,r be a unit. Then a linear code C is said to be a Λ-constacyclic code of length n if τ Λ (s) = (Λs n-1 , s 0 , . . . , s n-2 ) ∈ C whenever s = (s 0 , s 1 , . . . , s n-1 ) ∈ C. The operator τ Λ is called Λ-constacyclic shift. In particular, for Λ = 1, it is cyclic and for Λ = -1, it is a negacyclic code. Let Λ = λ 0 + u 1 λ 1 + • • • + u r λ r be a unit in A q,r such that Λ = r i=0 κ i Λ i . Then Λ 0 = λ 0 , Λ i = λ 0 + γ i λ i are units in F q 2 , for 1 ≤ i ≤ r. In this case, Λ -1 = r i=0 κ i Λ -1 i .
Here, for such a unit Λ, we study Λ-constacyclic codes of length n over A q,r . Later on, these codes help to obtain quantum codes. Now, we identify each codeword s = (s 0 , s 1 , . . . ,

s n-1 ) ∈ C to a polynomial s(x) = s 0 + s 1 x + • • • + s n-1 x n-1 ∈ Aq,r[x] x n -Λ under the corresponding s = (s 0 , s 1 , . . . , s n-1 ) -→ s(x) = s 0 + s 1 x + • • • + s n-1 x n-1 .
As a result, we have the following theorem.

Theorem 2 Let C be a linear code of length n over A q,r . Then C is a Λ-constacyclic code if and only if it is an ideal of Aq,r[x]
x n -Λ under the above identification. The cyclicity of a code over the ring translates into cyclicity of its component codes over the base field.

Theorem 3 Let C = r i=0 κ i C i be a linear code of length n over A q,r . Then C is a Λ-constacyclic code if and only if C i is a Λ i -constacyclic code of length n over F q 2 for 0 ≤ i ≤ r. Proof Let C = r i=0 κ i C i be a Λ-constacyclic code of length n. Let s i = (s i 0 , s i 1 , . . . , s i n-1 ) ∈ C i for 0 ≤ i ≤ r. Take a j = r i=0 κ i s i j for 0 ≤ j ≤ n -1. Then a = (a 0 , a 1 , . . . , a n-1 ) ∈ C, and hence τ Λ (a) = (Λa n-1 , a 0 , . . . , a n-2 ) ∈ C. Also, τ Λ (a) = r i=0 κ i τ Λi (s i ) ∈ C = r i=0 κ i C i . Therefore, τ Λi (s i ) ∈ C i for 0 ≤ i ≤ r. Thus, C i is a Λ i -constacyclic code of length n over F q 2 , for 0 ≤ i ≤ r. Conversely, let C i be a Λ i -constacyclic code of length n over F q 2 , for 0 ≤ i ≤ r. Let a = (a 0 , a 1 , . . . , a n-1 ) ∈ C where a j = r i=0 κ i s i j for 0 ≤ j ≤ n -1. Then s i = (s i 0 , s i 1 , . . . , s i n-1 ) ∈ C i and hence τ Λi (s i ) ∈ C i for 0 ≤ i ≤ r. Therefore, τ Λ (a) = r i=0 κ i τ Λi (s i ) ∈ r i=0 κ i C i = C. In this way, C is a Λ-constacyclic code of length n over A q,r . Theorem 4 Let C = r i=0 κ i C i be a Λ-constacyclic code of length n over A q,r . Then C = r i=0 κ i f i (x) = f (x) where x n -Λ i = f i (x)h i (x) in F q 2 [x]. Moreover, f (x) is a factor of x n -Λ. Proof Let C = r i=0 κ i C i be a Λ-constacyclic code of length n. Then, by Theorem 3, C i is a Λ i - constacyclic code of length n over F q 2 for 0 ≤ i ≤ r. In other words, C i is a principally generated ideal of F q 2 [x] x n -Λi . Let C i = f i (x) such that x n -Λ i = f i (x)h i (x) for 0 ≤ i ≤ r. Then C = κ 0 f 0 (x), κ 1 f 1 (x), . . . , κ r f r (x) . Let f (x) = r i=0 κ i f i (x). Then f (x) ⊆ C. On the other hand, κ i f i (x) = κ i f (x) ∈ f (x) for 0 ≤ i ≤ r. Hence, f (x) ⊆ C. Now, combining both sides, we conclude that C = f (x) . Further, [ r i=0 κ i h i (x)]f (x) = r i=0 κ i h i (x)f i (x) = r i=0 κ i (x n -Λ i ) = x n -Λ. This implies that f (x) is a factor of x n -Λ.

Corollary 1 The ring

Aq,r[x]

x n -Λ is a principal ideal ring.

Theorem 5 Let C = r i=0 κ i C i be a Λ-constacyclic code of length n over A q,r , where C i = f i (x) such that x n -Λ i = f i (x)h i (x) in F q 2 [x]. Then C ⊥ h = r i=0 κ i C ⊥ h i is a Λ -q -constacyclic code such that C ⊥ h = r i=0 κ i h * i (x) where h * i (x) is the reciprocal polynomial of h i (x), for i = 0, 1, . . . , r. Proof Let C = r i=0 κ i C i be a Λ-constacyclic code of length n over A q,r . By Theorem 3, we have C i is a Λ i -constacyclic code of length n over F q 2 for 0 ≤ i ≤ r. Therefore, C ⊥ h i is a Λ -q i -constacyclic code of length n, for 0 ≤ i ≤ r. Since Λ -q = r i=0 κ i Λ -q i and C ⊥ h = r i=0 κ i C ⊥ h i , by Theorem 3, we conclude that C ⊥ h is a Λ -q -constacyclic code of length n. In addition, let C ⊥ h i = h * i (x)
, where h * i (x) is the reciprocal polynomial of h i (x) for 0 ≤ i ≤ r. Therefore, by Theorem 4, we have

C ⊥ h = r i=0 κ i h * i (x) .
Let C q be a complex Hilbert space of dimension q. Then the n-fold tensor product (C q

) ⊗n = C q ⊗ C q ⊗ • • • ⊗ C q n times
is also a q n -dimensional Hilbert space. We recall that a q-ary quantum code of length n is a K-dimensional subspace of (C q ) ⊗n denoted by [[n, k, d]] q where d is the minimum distance and k = log q K. Every quantum code with parameters [[n, k, d]] q satisfies the quantum singleton bound k + 2d ≤ n + 2, and is known as a quantum MDS (maximum-distance-separable) code when that bound is attained. Here, we obtain quantum codes (Theorem 7) from dual containing Λ-constacyclic codes of length n over A q,r . Before that, we develop the necessary and sufficient conditions (Theorem 6) of these codes to contain their duals. The next result (Lemma 1) recalls the same conditions for constacyclic codes over F q 2 . Lemma 1 Let Λ ∈ F * q 2 such that l = ord q 2 (Λ)|(q + 1) and C be a Λ-constacyclic code with defining set D. Then C ⊥ h ⊆ C if and only if D ∩ D -q = {0} where D -q = {-qa (mod ln) : a ∈ D}.

This condition for dual containment translates at the component level as follows.

Theorem 6 Let C = r i=0 κ i C i be a Λ-constacyclic code of length n over A q,r . Also, let D i be the defining set of C i and

l i = ord q 2 (Λ i )|(q + 1) for 0 ≤ i ≤ r. Then C ⊥ h ⊆ C if and only if D i ∩ D -q i = {0} for 0 ≤ i ≤ r. Proof Let C ⊥ h = r i=0 κ i C ⊥ h i ⊆ C = r i=0 κ i C i . Since C i is a q 2 -ary linear code such that κ i C i ≡ C (mod κ i ) for 0 ≤ i ≤ r, we have C ⊥ h i ⊆ C i for 0 ≤ i ≤ r. Then, by Lemma 1, we have D i ∩D -q i = {0} for 0 ≤ i ≤ r. Conversely, let D i ∩ D -q i = {0} for 0 ≤ i ≤ r. Then, by Lemma 1, C ⊥ h i ⊆ C i , for 0 ≤ i ≤ r. Thus, C ⊥ h = r i=0 κ i C ⊥ h i ⊆ r i=0 κ i C i = C.
We recall the Hermitian construction of quantum codes from classical codes.

Lemma 2 [START_REF] Ketkar | Nonbinary stabilizer codes over finite fields[END_REF] (Hermitian Construction) Let C be an [n, k, d] q 2 linear code of length n such that C ⊥ h ⊆ C. Then there exists a quantum code with parameters

[[n, 2k -n, ≥ d]] q .
The consequence for constacyclic codes over A q,r is as follows. Proof Let C be a Λ-constacyclic code of length n such that κ i C i be a Λ-constacyclic code of length n over A q,r and D i be the defining 

C ⊥ h ⊆ C. Since ϕ(C ⊥ h ) = (ϕ(C)) ⊥ h , we have (ϕ(C)) ⊥ ⊆ ϕ(C). Therefore, ϕ(C)
set of C i such that l i = ord q 2 (Λ i )|(q + 1) for 0 ≤ i ≤ r. If D i ∩ D -q i = {0} for 0 ≤ i ≤ r, then there exists a quantum code with parameters [[n(r + 1), 2k -n(r + 1), ≥ d H ]] q . Proof If D i ∩ D -q i = {0} for 0 ≤ i ≤ r,

New quantum codes and comparison

Example 1 Let r = 2, q = 9 and 16 and n = 8. Then Λ 0 = Λ 1 = Λ 2 = w 16 and l i = ord q 2 (Λ i ) = 5|10 = q + 1. Now, we calculate 81(= q 2 )-cyclotomic coset modulo 40(= ln). In fact, let D 0 = {1} (mod 40), D 1 = {6} (mod 40), and Example 2 Let r = 2, q = 7 and

A 9,2 = F 81 [u 1 , u 2 ]/ u 2 1 -γ 1 u 1 , u 2 2 -γ 2 u 2 , u 1 u 2 = u 2 u 1 = 0 . Let Λ = w
D 2 = {11} (mod 40). Then D -9 0 = {31}, D -9 1 = {26}, D -9 2 = {21}. Let F * 81 = w . Then f 0 (x) = x -w 2 , f 0 (x) = x -w 12 , f 2 (x) = x -
A 7,2 = F 49 [u 1 , u 2 ]/ u 2 1 -γ 1 u 1 , u 2 2 -γ 2 u 2 , u 1 u 2 = u 2 u 1 = 0 . Let n = 12 and Λ = -1 + 2γ -1 1 u 1 . Then Λ 0 = -1, Λ 1 = 1, Λ 2 = -1
, and l 0 = 2, l 1 = 1, l 2 = 2 where l i = ord 49 (Λ i ). Now, from 49-cyclotomic coset modulo 24 and 12, let D 0 = {1} (mod 24), D 1 = {1} (mod 12) and D 2 = {5} (mod 24). Then D -7

0 = {17}, D -7 1 = {5}, D -7 2 = {13}. In this way, f 0 (x) = x -w 2 , f 1 (x) = x -w 4 , f 2 (x) = x -w 10 are factors of x 12 -Λ i whose defining sets are D i , for i = 0, 1, 2, respectively. Therefore, C = 2 i=0 κ i f i (x) is a Λ-constacyclic code of length 12 over A 7,2 . Let M =   2 1 2 5 2 1 1 2 5   ∈ GL 3 (F 49 )
satisfying M M T = 2I 3 . Then the Gray image ϕ(C) is a [START_REF] Ma | New non-binary quantum codes from constacyclic codes over Fq[u, v]/ u 2 -1, v 2v, uv -vu[END_REF][START_REF] Li | FqR-linear skew constacyclic codes and their application of constructing quantum codes[END_REF][START_REF] Ashraf | Skew cyclic codes over Fq +uFq +vFq[END_REF] linear code over F 49 . Further, D i ∩ D -7 i = {0} for i = 0, 1, 2. Therefore, by Theorem 6, C ⊥ h ⊆ C. Consequently, by Theorem 7, we have a quantum code [[36, 30, ≥ 3]] 7 . It has same length and distance but larger dimension compared to the best-known code [ [START_REF] Ma | New non-binary quantum codes from constacyclic codes over Fq[u, v]/ u 2 -1, v 2v, uv -vu[END_REF][START_REF] Islam | Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring[END_REF][START_REF] Ashraf | Skew cyclic codes over Fq +uFq +vFq[END_REF]] 7 given by [START_REF] Edel | Some good quantum twisted codes[END_REF]. Therefore, our code has better code rate than the best-known code. Moreover, the obtained code satisfies n -k + 2 -2d = 2.

Example 3 Let r = 3, q = 11 and 16 are factors of x 15 -Λ i whose defining sets are D i for i = 0, 1, 2, 3, respectively. Thus, C = Example 4 Let C = r i=0 κ i C i be a Λ-constacyclic code of length n over A q,r where gcd(n, q) = 1 and l i = ord q 2 (Λ i )|(q +1) . Let C i = f i (x) where D i is a defining set of f i (x) such that D i ∩D -q i = {0}. Therefore, by Theorem 6, we have C ⊥ h ⊆ C. We compute the Gray images of such constacyclic codes under the map ϕ using the matrices M 1 , M 2 , M 3 in Table 1 (for r = 2) and M 4 in Table 3 (for r = 3), where

A 11,3 = F 121 [u 1 , u 2 , u 3 ]/ u 2 1 -γ 1 u 1 , u 2 2 -γ 2 u 2 , u 2 3 -γ 3 u 3 , u 1 u 2 = u 2 u 1 = u 2 u 3 = u 3 u 2 = u 3 u 1 = u 1 u 3 = 0 . Let n = 15 and Λ = -1 + 2γ -1 2 u 2 + 2γ -1 3 u 3 . Then Λ 0 = Λ 1 = -1, Λ 2 = Λ 3 =
* 121 = w , then f 0 (x) = x -w 4 , f 1 (x) = x -w 12 , f 2 (x) = x -w 8 , f 3 (x) = x -w
M 1 =   2 1 2 -2 2 1 1 2 -2   ∈ GL 3 (F q ), satisfying M 1 M T 1 = 9I 3 , for q = 5, 7, 13, 17, M 2 =   w 2w 7 1 2w 7 1 w 1 w 2w 7   ∈ GL 3 (F 9 ), satisfying M 2 M T 2 = I 3 , M 3 =   w w 4 2 w 4 2 w 2 w w 4   ∈ GL 3 (F 81 ), satisfying M 3 M T 3 = (2w 2 + w)I 3 , M 4 =     -1 1 1 1 1 1 1 -1 1 -1 1 1 1 1 -1 1     ∈ GL 4 (F q ), satisfying M 4 M T 4 = 4I 4 .
Finally, by Theorem 7, we obtain new quantum codes [[n, k, ≥ d]] q which have better parameters compared to the best-known codes [[n , k , d ]] q . Moreover, in Table 2 (resp. Table 4), we enlist the units and q 2 -cyclotomic cosets for the construction of Λ-constacyclic of Table 1 (resp. Table 3). It is worth mentioning that all obtained codes in Table 1 and 3 satisfy the condition n -k + 2 -2d = 2. Therefore, all these codes are close to quantum MDS codes. In Table 1 and3, to represent the generator polynomial f i (x), we write the coefficients of the power of x in decreasing order. For example, we write 1w 46 w 36 to represent the polynomial x 2 + w 46 x + w 36 . Moreover, in third column of Table 4, we use the following notations:

A 1 = w 16 -(1 + w 16 )γ -1 1 u 1 -(1 + w 16 )γ -1 2 u 2 -(1 + w 16 )γ -1 3 u 3 , A 2 = -1 + (1 + w 12 )γ -1 1 u 1 + (1 + w 12 )γ -1 2 u 2 + (1 + w 12 )γ -1 3 u 3 , A 3 = w 6 -(1 + w 6 )γ -1 2 u 2 -(1 + w 6 )γ -1 3 u 3 A 4 = -1 + 2γ -1 2 u 2 + 2γ -1 3 u 3 . Table 1: New quantum codes [[n, k, ≥ d]] q satisfying n -k + 2 -2d = 2 Label (n, q) [f 0 (x), f 1 (x), f 2 (x)] ϕ(C) [[n, k, ≥ d]]q [[n , k , d ]]q
Table 4: List of units and q 2 -cyclotomic cosets used in Table 3 Label 5 Skew constacyclic codes and associated quantum codes

(n, q) Λ (Λ 0 , Λ 1 , Λ 2 , Λ 3 ) (l 0 , l 1 , l 2 , l 3 ) [D 0 , D 1 , D 2 , D 3 ] [D -q 0 , D -q 1 , D -q 2 , D -q 3 ] 1 (16, 9) 1 (1, 1, 1, 1) (1,
In this section, we extend our study to noncommutative structure (skew polynomial ring). Let us define an automorphism θ : F q 2 -→ F q 2 given by θ(a) = a q , for all a ∈ F q 2 . Now, we extend the above map over the ring A q,r by Θ(r) = r i=0 κ i θ(a i ) where r = r i=0 κ i a i ∈ A q,r . Evidently, Θ is an automorphism on A q,r of order 2. The set

A q,r [x; Θ] = {f (x) = f 0 +f 1 x+• • •+f n-1 x n-1 : f i ∈ A q,r
for all i} is a ring under the usual addition of polynomials and multiplication subject to the condition (ax i )(bx j ) = aΘ i (b)x i+j . Clearly, it a noncommutative ring (unless Θ is identity), called skew polynomial ring. Let n be an even integer. Then A q,r,n =

Aq,r[x;Θ] x n -Λ
is a ring and x n -Λ is a two sided ideal in A q,r [x; Θ]. But, if n is an odd integer, then A q,r,n fails to be a ring. However, in both cases, A q,r,n is a left A q,r [x; Θ] module under the scalar multiplication defined by f

(x)(r(x) + x n -Λ ) = f (x)r(x) + x n -Λ where f (x), r(x) ∈ A q,r [x; Θ].
Definition 2 [START_REF] Islam | A family of constacyclic codes over F p m [v, w]/ v 2 -1, w 2 -1, vw -wv[END_REF] Let Λ be a unit in A q,r . Then a linear code C of length n over A q,r is a skew Λ-constacyclic code if and only if τ Λ,Θ (s) = (ΛΘ(s n-1 ), Θ(s 0 ), . . . , Θ(s n-2 )) ∈ C whenever s = (s 0 , s 1 , . . . , s n-1 ) ∈ C. For Λ = 1, it is skew cyclic and for Λ = -1, it is a skew negacyclic code over A q,r .

Similar to the commutative case, skew Λ-constacyclic codes also afford a polynomial representation under the correspondence s = (s 0 , s 1 , . . . , s n-1 ) -→ s(x) = s 0 + s

1 x + • • • + s n-1 x n-1 ∈ A q,r,n .
In fact, a linear code C is a skew Λ-constacyclic if and only if it is a left A q,r [x; Θ]-submodule of A q,r,n , where every codeword is a polynomial in A q,r of degree at most n -1. Now, we discuss the algebraic structure of skew Λ-constacyclic codes (Theorem 8 and Theorem 10) and their Hermitian duals (Theorem 11). These structures are useful to construct quantum codes from them subsequently.

Theorem 8 Let C = r i=0 κ i C i be a linear code of length n over A q,r . Then C is a skew Λ- constacyclic code if and only if C i is a skew Λ i -constacyclic code of length n over F q 2 for 0 ≤ i ≤ r. Proof Let C = r i=0 κ i C i be a skew Λ-constacyclic code of length n over A q,r . Let s i = (s i 0 , s i 1 , . . . , s i n-1 ) ∈ C i for 0 ≤ i ≤ r. Let a j = r i=0 κ i s i j for 0 ≤ j ≤ n -1. Then a = (a 0 , a 1 , . . . , a n-1 ) ∈ C and hence τ Λ,Θ (a) = (ΛΘ(a n-1 ), Θ(a 0 ), . . . , Θ(a n-2 )) ∈ C. Now, τ Λ,Θ (a) = r i=0 κ i τ Λi,θ (s i ) ∈ C. Therefore, τ Λi,θ (s i ) ∈ C i for 0 ≤ i ≤ r. This implies that C i is a skew Λ i -constacyclic code of length n over F q 2 for 0 ≤ i ≤ r.
On the other hand, let C i be a skew Λ i -constacyclic code of length n over F q 2 for 0 ≤ i ≤ r. Let a = (a 0 , a 1 , . . . , a n-1 ) ∈ C where a j = r i=0

κ i s i j for 0 ≤ j ≤ n -1. Then s i = (s i 0 , s i 1 , . . . , s i n-1 ) ∈ C i , and hence τ Λi,θ (s i ) ∈ C i for 0 ≤ i ≤ r. Therefore, τ Λ,Θ (a) = r i=0 κ i τ Λi,θ (s i ) ∈ C. Thus, C is a skew
Λ-constacyclic code of length n over A q,r .

Theorem 9 [START_REF] Gao | Skew constacyclic codes over the ring Fq + vFq[END_REF] Let C be a skew Λ-constacyclic code of length n over

F q 2 . Then C = f (x) is a left F q 2 [x; θ]-submodule of F q 2 [x; θ]/ x n -Λ , where f (x) is a right divisor of x n -Λ.
Theorem 9 gives the structure of skew Λ-constacyclic code over the finite field F q 2 . Here, we derive the algebraic properties of these codes over A q,r by using Theorem 9 in the next result.

Theorem 10 Let C = r i=0 κ i C i be a skew Λ-constacyclic code of length n. Then C = r i=0 κ i f i (x) = f (x) where x n -Λ i = h i (x)f i (x) in F q 2 [x; θ]. Moreover, f (x) is a right divisor of x n -Λ. Proof Let C = r i=0
κ i C i be a skew Λ-constacyclic code of length n. Then, by Theorem 8, we have C i is a skew Λ i -constacyclic code of length n over F q 2 for 0 ≤ i ≤ r. Following Theorem 9, let

C i = f i (x) where x n -Λ i = h i (x)f i (x) for 0 ≤ i ≤ r. Therefore, κ 0 f 0 (x), κ 1 f 1 (x), . . . , κ r f r (x) are generators of C. Let f (x) = r i=0 κ i f i (x). Then f (x) ⊆ C. Again κ i f i (x) = κ i f (x) ∈ f (x) for 0 ≤ i ≤ r. Hence, C ⊆ f (x) , and C = f (x) . Further, r i=0 κ i h i (x) f (x) = r i=0 κ i h i (x)f i (x) = r i=0 κ i (x n -Λ i ) = x n -Λ. Thus, f (x) is a right divisor of x n -Λ. Corollary 3 Every left A q,r [x; Θ]-submodule of A q,r,n = Aq,r[x;Θ]
x n -Λ is principally generated.

We recall from [START_REF] Jitman | Skew constacyclic codes over finite chain rings[END_REF] that for a skew Λ-constacyclic code of length n over F q 2 given by C = f (x) where

x n -Λ = h(x)f (x), its dual code C ⊥ h is a skew Λ -1 -constacyclic code given by C ⊥ = h(x) , where h(x) = θ(h t ) + θ 2 (h t-1 )x + • • • + θ t (h 1 )x t-1 + θ t+1 (h 0 )x t if h(x) = h 0 + h 1 x + • • • + h t x t .
Now, we derive the analogue results of skew Λ-constacyclic codes over the ring A q,r as below.

Theorem 11 Let C = r i=0 κ i C i be a skew Λ-constacyclic code of length n over A q,r , where

C i = f i (x) such that x n -Λ i = h i (x)f i (x) in F q 2 [x; θ] for i = 0, 1, . . . , r. Then C ⊥ h = r i=0 κ i C ⊥ h i is a skew Λ -1 -constacyclic code such that C ⊥ h = r i=0 κ i h i (x) . Proof Let C = r i=0
κ i C i be a skew Λ-constacyclic code of length n over A q,r , where

C i = f i (x) such that x n -Λ i = h i (x)f i (x) in F q 2 [x; θ]. Then C i is a skew Λ i -constacyclic code of length n over F q 2 for 0 ≤ i ≤ r. Therefore, C ⊥ h i is a skew Λ -1 i -constacyclic code of length n such that C ⊥ h i = h i (x) for 0 ≤ i ≤ r. As Λ -1 = r i=0 κ i Λ -1 i , then by Theorem 8, we conclude that C ⊥ h = r i=0 κ i C ⊥ h i is a skew Λ -1
-constacyclic code of length n over A q,r . Further, by Theorem 10, we have

C ⊥ h = r i=0 κ i h i (x) .
It is evident that under the Hermitian construction, quantum codes can be constructed once there are some dual containing linear codes. Therefore, we first need to develop the necessary and sufficient conditions for the existence of such codes. Note that ord( Θ ) = 2. Therefore, a skew Λ-constacyclic code of odd length n is equivalent to a Λ-constacyclic code of length n over A q,r (similar way of Theorem 22 in [START_REF] Islam | Skew cyclic and skew (α 1 + uα 2 + vα 3 + uvα 3 )-constacyclic codes over Fq + uFq + vFq + uvFq[END_REF]). Consequently, non-commutativity of the multiplication is no longer valid. Also, quantum codes from Λ-constacyclic codes are well studied in Section 3. Therefore, we investigate these codes in the other case, i.e., when n is an even integer. In fact, when n is even, the dual containing property of a skew Λ-constacyclic code over F q 2 is presented by Lemma 3. We therefore extend this property for a skew Λ-constacyclic codes over A q,r (Theorem 12). Finally, utilizing these structures, we construct quantum codes by Theorem 13. Lemma 3 ([33], Lemma 6) Let C be a skew Λ-constacyclic code of even length n over F q 2 such that C = f (x) where x n -Λ = h(x)f (x) and Λ = ±1. Then C ⊥ h ⊆ C if and only if x n -Λ is a right divisor of h(x)h(x).

Theorem 12 Let C = r i=0 κ i C i be a skew Λ-constacyclic code of even length n over A q,r where

C i = f i (x) such that x n -Λ i = h i (x)f i (x) in F q 2 [x; θ] and Λ i = ±1 for 0 ≤ i ≤ r. Then C ⊥ h ⊆ C if and only if x n -Λ i is a right divisor of h i (x)h i (x), for 0 ≤ i ≤ r. Proof Let C ⊥ h ⊆ C. Therefore, C ⊥ h = r i=0 κ i C ⊥ h i ⊆ r i=0 κ i C i = C. As C i is a q 2 -ary linear code such that κ i C i ≡ C (mod κ i ), for 0 ≤ i ≤ r, C ⊥ h ⊆ C i for 0 ≤ i ≤ r. Then by Lemma 3, x n -Λ i is a right divisor of h i (x)h i (x), for 0 ≤ i ≤ r.
Conversely, let x n -Λ i be a right divisor of h i (x)h i (x), for 0 ≤ i ≤ r. Then by Lemma 3,

C ⊥ h i ⊆ C i for 0 ≤ i ≤ r. Therefore, C ⊥ h = r i=0 κ i C ⊥ h i ⊆ r i=0 κ i C i = C. Theorem 13 Let C = r i=0 κ i C i be a skew Λ-constacyclic code of length n over A q,r where C i = f i (x) such that x n -Λ i = h i (x)f i (x) in F q 2 [x; θ] and Λ 2 i = ±1 for 0 ≤ i ≤ r. Also, let ϕ(C) has the parameters [n(r + 1), k, d H ] and x n -Λ i be a right divisor of h i (x)h i (x), for 0 ≤ i ≤ r. Then there exists a quantum code [[n(r + 1), 2k -n(r + 1), ≥ d H ]] q . Proof Let x n -Λ i be a right divisor of h i (x)h i (x), for 0 ≤ i ≤ r. Then by Theorem 12 we have C ⊥ h ⊆ C. Therefore, (ϕ(C)) ⊥ h = ϕ(C ⊥ h ) ⊆ ϕ(C). Hence, ϕ(C) is a dual containing linear code with parameters [[n(r + 1), k, d H ] over F q 2 . Now, by Lemma 2, there exists a quantum code [[n(r + 1), 2k -n(r + 1), ≥ d H ]] q .
6 New quantum codes and comparison Example 5 Let r = 3, q = 3, n = 8 and

A 3,3 = F 9 [u 1 , u 2 , u 3 ]/ u 2 i -γ i u i , u i u j = u j u i = 0 i =j=1,2,3 . Let Λ = 1 -2γ -1 2 u 2 -2γ -1 3 u 3 and C be a skew Λ-constacyclic code of length 8 over A 3,3 . Then Λ 0 = Λ 1 = 1, Λ 2 = λ 3 = -1.
Hence, C 0 , C 1 are skew cyclic codes and C 2 , C 3 are skew negacyclic codes of length 8 over F 9 , respectively. Now, under the automorphism θ : F 9 -→ F 9 defined by θ(a) = a 3 for all a ∈ F 9 , we have

x 8 -1 = (w 5 x 7 + x 6 + wx 5 + 2x 4 + w 5 x 3 + x 2 + wx + 2)(wx + 1) = h 0 (x)f 0 (x) ∈ F 9 [x; θ], x 8 -1 = (w 7 x 7 + x 6 + w 3 x 5 + 2x 4 + w 7 x 3 + x 2 + w 3 x + 2)(w 3 x + 1) = h 1 (x)f 1 (x) ∈ F 9 [x; θ], x 8 + 1 = (w 3 x 6 + w 2 x 4 + wx 2 + 1)(w 5 x 2 + 1) = h 3 (x)f 3 (x) ∈ F 9 [x; θ]. Then C = f (x) = 3 i=0 κ i f i (x)
, where f 0 (x) = wx + 1, f 1 (x) = w 3 x + 1 are right divisors of x 8 -1 and f 2 (x) = 1, f 3 (x) = w 5 x 2 + 1 are right divisors of x 4 + 1, respectively. Again, h 0 (x) = w 5 x 7 + x 6 + wx 5 + 2x 4 + w 5 x 3 + x 2 + wx + 2, h 0 (x) = 2x 7 + w 3 x 6 + x 5 + w 7 x 4 + 2x 3 + w 3 x 2 + x + w 7 , h 0 (x)h 0 (x) = (w 3 x 6 + w 7 x 4 + w 3 x 2 + w 7 )(x 8 -1), h 1 (x) = w 7 x 7 + x 6 + w 3 x 5 + 2x 4 + w 7 x 3 + x 2 + w 3 x + 2, h 1 (x) = 2x 7 + wx 6 + x 5 + w 5 x 4 + 2x 3 + wx 2 + x + w 5 , h 1 (x)h 1 (x) = (wx 6 + 2wx 4 + wx 2 + 2w)(x 8 -1),

h 2 (x) = x 8 + 1, h 2 (x)h 2 (x) = h 2 (x)(x 8 + 1)
.h 3 (x) = w 3 x 6 + w 2 x 4 + wx 2 + 1, h 3 (x) = x 6 + wx 4 + w 2 x 2 + w 3 , h 3 (x)h 3 (x) = (w 3 x 4 + wx 2 + w 3 )(x 8 + 1).

In this way, x 8 -1 is a right divisor of both h 0 (x)h 0 (x) and h 1 (x)h 1 (x), and also x 8 + 1 is a right divisor of h 2 (x)h 2 (x) and h 3 (x)h 3 (x). Consequently, by Theorem 12, we have C ⊥ h ⊆ C. Now, let

M =     2 1 1 1 1 1 1 2 1 2 1 1 1 1 2 1     ∈ GL 4 (F 9 ),
Remark 2 Let r = 3, n = 2, q = 3, Λ = 1 and the automorphism θ : F 9 -→ F 9 , we have the factorization x 2 -1 = (w 2 x + 2)(w 2 x + 1) = h 0 (x)f 0 (x) ∈ F 9 [x; θ] = (w 6 x + 2)(w 6 x + 1) = h 1 (x)f 1 (x) ∈ F 9 [x; θ] = (w 5 x + w)(wx + w 3 ) = h 2 (x)f 2 (x) ∈ F 9 [x; θ] = (w 7 x + w 3 )(w 3 x + w) = h 3 (x)f 3 (x) ∈ F 9 [x; θ]. Since x 2 -1 is a right divisor of h i (x)h i (x), by Theorem 12, C ⊥ h ⊆ C, where C = κ 0 f 0 (x) + • • • + κ 3 f 3 (x) is a skew cyclic code of length 2 over A 3,3 . In this way, by applying Theorem 13 on its Gray image ϕ(C), we obtained a quantum code [[8, 0, ≥ 4]] 3 , which is better than the known code [[8, 0, 3]] 3 in [START_REF] Edel | Some good quantum twisted codes[END_REF].

On the other hand, if we consider the factorization of x 2 -1 over F 9 [x], we see that there does not exist any factor satisfying Theorem 6; in other words, there does not exist any dual containing code, given the factorization of x 2 -1. Therefore, it is not possible to construct a quantum code for r = 3, n = 2, q = 3, Λ = 1. Again, it is easy to see that there does not exist any dual containing codes for the factorization of x 2 + 1 over F 9 [x] and hence, it is not possible to construct a quantum code in this case too. In conclusion, we must say that the quantum code [[8, 0, ≥ 4]] 3 can be constructed by using the concept of skew polynomial ring but not a commutative structure for r = 3. This example explains the advantage of skew cyclic codes over classical cyclic codes. In fact, it is one of the major motivations of studying skew codes in the context of quantum code.

Remark 3 From [START_REF] Grassl | On optimal quantum codes[END_REF] it is well known that for 3 ≤ n ≤ q, there exists a quantum MDS code with parameters [[n, n -2d + 2, d]] q where 1 ≤ d ≤ n 2 + 1. Therefore, here we attempt to construct new quantum codes of length n where n ≥ q + 1. In fact, all obtained codes in Tables 1, 3 and 5 are satisfying n ≥ q + 1.

Conclusion

In this paper, we first studied Λ-constacyclic codes and then extended to skew Λ-constacyclic codes of length n over A q,r . From an application point of view, we determined many quantum codes via these codes by using Hermitian construction. Also, we have shown the novelty of our obtained codes by comparing them with the best-known codes available in the literature.

Theorem 7

 7 Let C = r i=0 κ i C i be a Λ-constacyclic code of length n over A q,r and ϕ(C) has the parameters [n(r + 1), k, d H ]. If C ⊥ h ⊆ C, then there exists a quantum code with parameters [[n(r + 1), 2k -n(r + 1), ≥ d H ]] q .

Corollary 2

 2 is a dual containing (Hermitian) linear code with parameters [n(r + 1), k, d H ]. Now, by Lemma 2, there exists a quantum code with parameters [[n(r + 1), 2kn(r + 1), ≥ d H ]] q . Let C = r i=0

  then by Theorem 6, we have C ⊥ h ⊆ C. Now, the result follows by Theorem 7.

4  9 i=

 49 w 22 are factors of x 8 -w 16 whose defining sets are D i , for i = 0, 1, 2, respectively. Therefore, C =2 i=0 κ i f i (x) is a Λ-constacyclic code of length 8 over A 9,2 . Now, let ∈ GL 3 (F 81 )satisfying M M T = (2w 2 + w)I 3 . Thus, the Gray image ϕ(C) has the parameters[START_REF] Islam | Quantum codes obtained from constacyclic codes[END_REF][START_REF] Islam | Skew cyclic and skew (α 1 + uα 2 + vα 3 + uvα 3 )-constacyclic codes over Fq + uFq + vFq + uvFq[END_REF][START_REF] Bag | Quantum codes from skew constacyclic codes over the ring Fq[u, v]/ u 2 -1, v 2 -1, uv -vu[END_REF]. Since D i ∩ D -{0} for i = 0, 1, 2, by Theorem 6, we have C ⊥ h ⊆ C. Thus, by Theorem 7, there exists a quantum code with parameters [[24, 18, ≥ 4]] 9 . It is a quantum MDS code satisfying n -k + 2 -2d = 0.

1 = 2 = 3 =

 123 1 and l 0 = l 1 = 2, l 2 = l 3 = 1, where l i = ord 121 (Λ i ) for i = 0, 1, 2, 3. Now, among 121-cyclotomic cosets, let D 0 = {1} (mod 30), D 1 = {3} (mod 30), D 2 = {1} (mod 15), D 3 = {2} (mod 15). Then D -11 0 = {21}, D -11 {27}, D -11 {4}, D -11 {8}. If

F

  

3 i=0κ 11 i=

 311 i f i (x) is a Λ-constacyclic code of length 15 over A 11,3 . Let GL 4 (F 121 ) satisfying M M T = I 4 . Therefore, the Gray image ϕ(C) is a [60, 56, 4] linear code over F 121 . Also, D i ∩ D -{0} for i = 0, 1, 2, 3. By Theorem 6, we have C ⊥ h ⊆ C. Finally, by Theorem 7, we have an associated quantum code [[60, 52, ≥ 4]] 11 , which has lager minimum distance than the best-known code [[60, 52, 3]] 11 obtained in[START_REF] Ma | New non-binary quantum codes from constacyclic codes over Fq[u, v]/ u 2 -1, v 2v, uv -vu[END_REF]. In addition, our code satisfies n -k + 2 -2d = 2.
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Table 2: List of units and q 2 -cyclotomic cosets used in Table 1 Label 

satisfying M M T = 4I 3 . Thus, the Gray image ϕ(C) is a dual containing [START_REF] Ketkar | Nonbinary stabilizer codes over finite fields[END_REF][START_REF] Islam | New quantum codes from constacyclic and additive constacyclic codes[END_REF][START_REF] Ashraf | Skew cyclic codes over Fq +uFq +vFq[END_REF] linear code over F 9 . Also, by Theorem 13, there exists a quantum code [[32, 24, ≥ 3]] 3 , which has better code rate than the known code [ [START_REF] Li | FqR-linear skew constacyclic codes and their application of constructing quantum codes[END_REF][START_REF] Islam | Quantum codes from the cyclic codes over Fp[u, v, w]/ u 2 -1, v 2 -1, w 2 -1, uv -vu, vwwv, wu -uw[END_REF][START_REF] Ashraf | Skew cyclic codes over Fq +uFq +vFq[END_REF]] 3 given by [START_REF] Edel | Some good quantum twisted codes[END_REF]. In addition, our obtained code [[32, 24,

κ i f i (x) be a skew Λ-constacyclic code of length n over A q,r such that ord( Θ )|n and x n -Λ i = h i (x)f i (x) for 0 ≤ i ≤ r. Also, let x n -Λ i be a right divisor of h i (x)h i (x) for 0 ≤ i ≤ r. Hence, by Theorem 12, C ⊥ h ⊆ C. Now, by Theorem 13, we obtain quantum codes in Table 5. In fact, Table 5 includes some better codes [[n, k, ≥ d]] q (in seventh column) compared to the best-known codes [[n , k , d ]] q (in eighth column). To compute the Gray images ϕ(C) (in sixth column), we used the matrices given in Example 4 for r = 2, 3 and

satisfying M M T = 2I 2 for r = 1. In order to make the table precise, we write their generator polynomials (f 0 , f 1 , . . . , f r ) in which each polynomial is represented by a string containing their coefficients in decreasing order. For example, we write the string w 5 ww to present the polynomial w 5 x 2 + wx + w. Also, in Table 5 we have used the following notations:

] 3 are best-known record holder codes appeared in Ezerman et al. [START_REF] Ezerman | Good stabilizer codes from quasi-cyclic codes over F 4 and F 9[END_REF].

Table 5: New quantum codes from dual containing skew Λ-constacyclic codes of length n over A q,r (r, n) [START_REF] Dertli | On quantum codes obtained from cyclic codes over A 2[END_REF][START_REF] Boucher | Skew cyclic codes[END_REF][START_REF] Ashraf | Skew cyclic codes over Fq +uFq +vFq[END_REF]] 3 [START_REF] Ezerman | Good stabilizer codes from quasi-cyclic codes over F 4 and F 9[END_REF] (1, 8) [START_REF] Gao | Skew constacyclic codes over the ring Fq + vFq[END_REF][START_REF] Calderbank | Quantum error correction via codes over GF (4)[END_REF][START_REF] Ashraf | Skew cyclic codes over Fq +uFq +vFq[END_REF]] 5 [START_REF] Edel | Some good quantum twisted codes[END_REF] (1, 8) 25 -1 + 2γ -1 1 u 1 (-1, 1) (w 3 01, w 3 11) [START_REF] Gao | Skew constacyclic codes over the ring Fq + vFq[END_REF][START_REF] Dertli | On quantum codes obtained from cyclic codes over A 2[END_REF][START_REF] Bag | Quantum codes from skew constacyclic codes over the ring Fq[u, v]/ u 2 -1, v 2 -1, uv -vu[END_REF] 25 [[16, 8, ≥ 4]] 5

[ [START_REF] Gao | Skew constacyclic codes over the ring Fq + vFq[END_REF][START_REF] Boucher | Skew constacyclic codes over Galois rings[END_REF][START_REF] Bag | Quantum codes from skew constacyclic codes over the ring Fq[u, v]/ u 2 -1, v 2 -1, uv -vu[END_REF]] 5 [START_REF] Edel | Some good quantum twisted codes[END_REF] (1, 10) 25 -1 + 2γ -1 1 u 1 (-1, 1) (w 8 w1, w 4 1) [START_REF] Gursoy | Construction of skew cyclic codes over Fq + vFq[END_REF][START_REF] Gao | u-Constacyclic codes over Fp + uFp and their applications of constructing new non-binary quantum codes[END_REF][START_REF] Ashraf | Skew cyclic codes over Fq +uFq +vFq[END_REF] 25 [[20, 14, ≥ 3]] 5 [[22, 12, 3]] 5 [START_REF] Edel | Some good quantum twisted codes[END_REF] (2, 10) 25 -1 + 2γ -1 2 u 2 (-1, -1, 1) (w 2 1, w 8 w1, w 8 11) [START_REF] Jitman | Skew constacyclic codes over finite chain rings[END_REF][START_REF] Islam | Quantum codes from the cyclic codes over Fp[v, w]/ v 2 -1, w 2 -1, vw-wv[END_REF][START_REF] Bag | Quantum codes from skew constacyclic codes over the ring Fq[u, v]/ u 2 -1, v 2 -1, uv -vu[END_REF] 25 [[30, 20, ≥ 4]] 5 [ [START_REF] Jitman | Skew constacyclic codes over finite chain rings[END_REF][START_REF] Gursoy | Construction of skew cyclic codes over Fq + vFq[END_REF][START_REF] Ashraf | Skew cyclic codes over Fq +uFq +vFq[END_REF]] 5 [START_REF] Ma | Constacyclic codes over the ring Fp+vFp+v 2 Fp and their applications of constructing new non-binary quantum codes[END_REF]