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Chirality effects in jet-cooled cyclic dipeptides  

Ariel Pérez-Mellor, Anne Zehnacker 

Abstract Jet-cooled bichromophoric cyclic dipeptides built on a diketopiperazine 

(DKP) ring are studied by combining conformer-specific vibrational spectroscopy 

with quantum chemical calculations. The dependence of the c-LL and c-LD dipep-

tides structure upon relative absolute configuration, L or D, of the residues is inves-

tigated for two residues, phenylalanine (Phe) and tyrosine (Tyr). A folded-extended 

structure is systematically observed for all systems, like in solution or in the solid. 

This structure is stabilized by NH…π and CH…π interactions and shows limited 

stereoselectivity; the only difference between c-LL and c-LD is the nature of the 

CH…π interaction, Cα…π in c-LD and Cβ…π in c-LL, and a stronger NH…π inter-

action in c-LD. For all studied species, the electronic excitation and the charge in 

the radical cation, are localized on the extended ring. The c-LL diastereomer of 

cyclo di-tyrosyl stands out by the existence of a stacked structure, in which for-

mation of an OH…O hydrogen bond stabilizes parallel aromatic rings orientation. 

In this structure, the electronic excitation and the major part of the charge in the 

cation, are localized on the H-bond donor. The OH…O H-bond is possible in c-LL 

and not c-LD, which explains the high stereoselectivity. 

Keywords Chirality - Diketopiperazine - DKP- Laser spectroscopy - Supersonic 

expansion 
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1. Introduction  

Dipeptides with aromatic residues such as phenylalanine (Phe) or tyrosine (Tyr) 

spontaneously undergo intramolecular peptide bond formation in the solid phase, 

with concomitant loss of water.[1,2] The cyclic dipeptide formed thereby is called 

diketopiperazine (DKP). DKP formation sometimes is an unwanted reaction, as in 

overheated sweetener aspartame.[3,4] However, many DKP peptides with aromatic 

residues have beneficial medicinal applications as antivirals, antiparasitics, anti-

cancer therapy[5-7] or as catalysts.[8,9] 

The condensed-phase structures of aromatic DKP dipeptides are very diverse. 

Supramolecular assemblies can form, thanks to the conjunction of hydrophobic in-

teractions between non-polar residues and NH…O=C hydrogen bonds between two 

DKP rings. Long ladder-like structures built on the repetition of a double NH…O=C 

hydrogen bond motif are observed in cyclo diphenylalanine of natural chirality 

L.[10] Tyr containing dipeptides spontaneously cyclize to DKP nanotubes while the 

linear diphenylalanine dipeptide does to DKP nanofibrils and nanowires.[11] De-

termining the DKP monomer structure helps to understand the interactions that 

shape these nanostructures. Unless rare exceptions like cyclo diglycine,[12,13] the 

peptide ring is non planar. Its conformation results from a compromise between the 

steric hindrance due to the substituents and the planarity of the amide bond. It ranges 

from pseudo boat or chair to intermediate twisted shapes.[14,15] 

Most of the structural studies conducted so far for determining the substituents 

geometry rest either on NMR in solution or X-ray experiments in the solid. Bulky 

residues such as Phe or Tyr adopt a flagpole position of the substituent.[16,17] Ste-

ric hindrance is increased by the presence of two bulky substituents. In the cyclo 

diphenylalanine crystal, one of them is folded over the DKP ring in a flagpole po-

sition while the second one is extended.[18,19] 

In what follows, we will focus on cyclo diphenylalanine and cyclo dityrosine, 

noted in short c-Phe-Phe and c-Tyr-Tyr. The chirality of the residues will be denoted 

by L and D. The notation c-LD or c-LL will be used for discussing the common 

aspects of Phe and Tyr containing dipeptides. Both c-LPhe-LPhe and c-LTyr-LTyr 

have been studied by NMR in polar or protic solvents.[16] The results seem to point 

at rather symmetrical structures. However, electronic circular dichroism has sug-

gested that c-LTyr-LTyr structures with almost parallel rings coexist with fully ex-

tended structures in solution.[20] We have undertaken the study of DKP dipeptides 

in different environments, either in the solid state by vibrational circular dichroism 

(VCD), protonated in a room-temperature ion trap, or under supersonic expansion 

conditions).[21-25] The aim of this study is to understand the factors that determine 

the structural differences between the molecule with residues of natural chirality L 

and that containing one D residue. This work is part of our recent studies on chirality 

effects in cyclic systems at low temperature.[26-29] We will describe here the spec-

troscopic properties of jet-cooled c-Phe-Phe and c-Tyr-Tyr, which are both built 

from two aromatic residues. c-Phe-Phe will serve as a model system in which the 
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interaction between the two aromatic residues is mainly due to dispersion. In c-Tyr-

Tyr, the presence of the hydroxyl on the aromatic rings may cause additional inter-

actions such as OH…O or OH…π hydrogen bond.  

The presence of the DKP ring limits the conformational freedom to the motions 

of the aromatic substituents. These two molecules are therefore good model systems 

for studying the localization of the electronic excitation in a bichromophoric system 

in a constrained geometry.[30-35] The question of the localization of the excitation 

can also be raised for vibrations and DKP dipeptides allow probing the coupling 

between vibrational modes in a system of well-defined geometry. The studied cyclic 

dipeptides are shown in Fig. 1. 

 

Fig. 1 Scheme of the DKP dipeptides, with atom numbering. The chiral centers are indi-

cated by *. c-Phe-Phe: R = H and c-Tyr-Tyr: R = OH 

2. Methodology 

2.1. Experimental Methods 

The experimental set-up rests on a supersonic expansion equipped with a home-

made laser desorption source and a time-of-flight mass spectrometer.[36,37] Argon 

was used as a carrier gas for sufficient cooling of the studied dipeptide. The adia-

batic expansion obtained thereby results in fast efficient cooling of the internal de-

grees of freedom and kinetic trapping of the most stable conformers present at room 

temperature. The potential energy surfaces of the studied dipeptides is expected to 

show several minima separated by energy barriers and the conformational temper-

ature describing the isomer population distribution is closer to room temperature 

rather than to the low rotational or vibrational temperature achieved in the jet.[38]  

Mass-resolved S0-S1 spectra were obtained by one-color resonance-enhanced 

two-photon ionization (RE2PI) spectroscopy. Vibrational spectra were obtained us-

ing the IR-UV double resonance technique, in the ν(NH) and ν(OH) stretch re-

gion.[39,40] Fixing the UV probe on the main vibronic bands of the electronic spec-

trum and scanning the IR pump in the 3m region allowed for the measurement of 

mass-resolved conformer-selective vibrational absorption spectra, as dip spectra in 

the UV probe-induced ion current. 
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The IR pulse was triggered 80 ns before the UV pulse for recording the IR spec-

trum of the neutral molecules in their electronic ground state and 50 ns after for the 

ion. A homemade active baseline subtraction scheme was used for monitoring the 

IR absorption as the difference in ion signal produced by successive UV laser pulses 

(one without and one with the IR laser present). Additional double-resonance ex-

periments were performed by setting the IR to the vibrational transitions observed 

in the vibrational spectrum and scanning the UV probe. They did not reveal new 

UV absorptions, which indicates that all the conformers were detected. 

The dipeptides described here bear two identical chromophores and one can raise 

the question of the localization of the electronic transition. To answer this question, 

we followed the approach successfully used by Leutwyler’s and Zwier’s group. It 

rests on the symmetry breaking arising from the presence of a single 13C atom in 

natural isotopic abundance (~20% for molecules of this size). The RE2PI spectrum 

of the singly 13C substituted isotopologue reflects the convolution of the exciton 

splitting and the site splitting due to the dissymmetry.[41-43] It corresponds to the 

average of the differences in the zero-point energies (ZPE) between all 12C mole-

cules and those containing one 13C. Statistically, the probability for the 13C to be 

located one of the aromatic rings (12 carbon atoms) is much larger than that of being 

located on the peptide ring (4 carbon atoms). We can therefore assume that the two 

bands of the doublet correspond to the excitation of the all 12C ring and of that con-

taining13C.  

The peptides under study were purchased from Novopep Limited (Shanghai - 

China) and used without further purification.  

2.2. Theoretical Methods 

DKP cyclic dipeptides display a complex conformational landscape due to the 

possible orientation of the aromatic substituents. The potential energy surface of c-

LPhe-LPhe and c-LPhe-DPhe was explored using the OPLS-2005 force field com-

bined with the advanced conformational search implemented in the MacroModel 

program of the Schrödinger package.[44] The potential energy surface of c-LTyr-

LTyr and c LTyr-DTyr was then manually explored, starting from the six local min-

ima obtained for c-Phe-Phe. All local minima found thereby were fully optimized 

within the frame of the DFT theory using the dispersion-corrected functional 

B3LYP-D3[45,46] associated with  the Pople 6-311++g(d,p) split-valence basis 

set.[47] This level of theory satisfactorily accounts for the vibrational spectroscopy 

of similar systems at an acceptable calculation cost.[48,21,24] In particular, inclu-

sion of dispersion is important for aromatic bichromophoric species.[45,46] The 

charge distribution was obtained from the Natural Bond Orbital (NBO) analy-

sis.[49] The electronic excited state energies were calculated by the time-dependent 

DFT (TD-DFT) method for the first ten singlet excited states, at the WB97XD/aug-

cc-pVDZ level of theory. This level satisfactory describes the electronic excited 
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states of aromatic molecules.[50,51] The vertical ionization energy was calculated 

at the unrestricted-DFT/B3LYP level.  

Optimization of the radical cation was performed at the same level of theory as 

the neutrals by removing an electron from the calculated neutral forms, which re-

flects the vertical ionization process. 

The vibrational frequencies were first calculated within the frame of the har-

monic approximation at the same level of theory. The absence of imaginary fre-

quency was checked for all local minima found. The structural differences between 

diastereoisomers are often subtle[36,52] and the definite assignment of the observed 

structures rests on a reliable comparison between observed and simulated spectra in 

the region of 3m. To this end, one can resort to several strategies. The most com-

monly used is to use tabulated or empirical scaling factors to account for anharmon-

icity and basis set incompleteness.[53] Better agreement between experimental and 

simulated spectra is obtained when using mode-dependent scaling factors based on 

an extensive library of similar systems.[54,55] An additional  difficulty comes from 

the fact that combination bands or overtones of the amide I and II modes, i.e. (CO) 

and (NH), appear in this region.[56] Description of the vibrational modes beyond 

the harmonic approximation is therefore desirable. An efficient but computationally 

expensive approach is full anharmonic calculations using the variational perturba-

tion theory.[57-59] To circumvent the computational cost, one can also limit the 

calculations to relevant selected modes. It gives similar results if the modes are 

carefully selected. Another compromise between accuracy and computational cost 

is to define the scaling factor as the slope of the linear regression between harmonic 

and anharmonic frequencies, for all the computed structures of a given molecule. 

This results in different scaling factors for different spectral ranges. For example, 

full harmonic calculations were performed for the model system cyclo tyrosyl pro-

line.[23] The scaling factor for the fingerprint, the ν(CH), and the ν(NH)/ν(OH) 

region is 0.977, 0.957, 0.953, respectively. The scaling factors are usually similar 

for molecules of similar structure: in the case of cyclo Phe-Phe, the scaling factor 

defined from the ration between mode-selected anharmonic frequencies and har-

monic ones is 0.952 in the ν(OH) and ν(NH) stretch region. 

In what follows, we will use the full anharmonic frequencies calculations for the 

most stable structures of c-Phe-Phe. In parallel, anharmonic frequencies including 

only ν(OH) and ν(NH) stretches were computed for all the structures of c-Phe-Phe 

and c-Tyr-Tyr. In the case of c-Phe-Phe, the agreement between full or selected 

modes calculation and the experiment is excellent. Less satisfactory agreement is 

obtained for c-Tyr-Tyr, probably because the modes included in the calculations are 

not sufficient. We will therefore use the harmonic frequencies scaled by 0.952 for 

the latter. The harmonic frequencies given in the text and tables include the scaling 

factor. All calculations were performed with the Gaussian 09 package.[60] 
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3. Results and Discussion 

3.1. Nomenclature of the Studied Systems 

The DKP ring has limited conformational mobility; the most important parame-

ters defining the dipeptides geometry are related to the orientation of the aromatic 

substituent relative to the amide bond (Fig. 2). Three geometries are minima of the 

potential energy surface: two gauche geometries, g+ and g- correspond to dihedral 

angles τ1 (N C1 C5 C6) and τ2 (N C3 C12 C13) of ~ 60° and -60° for the L residue, 

respectively, with opposite sign of the angles for the D residue. The trans t geometry 

corresponds to τ1 and τ2 angles of ~ 180°. For c-Tyr-Tyr, an additional parameter 

describes the orientation of the tyrosine hydroxyls relative to the DKP ring, I and II 

(see Fig. 2). For each benzyl substituent orientation, the number of isomers is thus 

multiplied by four in c-Tyr-Tyr relative to c-Phe-Phe. The nomenclature used in 

what follows starts with “c-” for the cyclic nature of the peptide, followed by the 

orientation of the substituent g+, g-, or t.  L or D in subscript denotes the configura-

tion of each residue. In the case of c-Tyr-Tyr, it is followed by I or II for the tyrosyl 

OH positions. 

 
 

Fig. 2 Nomenclature for the aromatic substituent conformation in a D residue (left) or an 

L residue (right). In all the schemes, the substituent is in g+ conformation. The two other 

possible orientations are indicated by the corresponding letters t and g-. Nomenclature for 

the hydroxyl substituent orientation: anticlockwise (type I) orientation of the hydroxyl group 

in a Newman projection or clockwise orientation (type II) 

3.2. Symmetry Properties 

Particular symmetry properties arise from the fact that the DKP dipeptides stud-

ied here are made of two identical residues, as it is the case for the simple model 

cyclo diglycine. The latter is not chiral and possesses Ci symmetry because the DKP 
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ring is planar.[12] In the systems studied here, the presence of substituents is the 

cause of dissymmetry. First, the DKP ring becomes out of plane to accommodate 

the bulky aromatic rings, which has consequences on the symmetry of the system. 

In contrast with planar cyclo diglycine for which the two H atoms are in equivalent 

positions, the substituents of the Cα carbons now occupy distinct positions, axial 

and equatorial.[61]  

From the stereochemical point of view, chirality is introduced by substituting the 

Cα atoms (C1
α and C3

α) by benzyl (c-Phe-Phe) or hydroxybenzyl (c-Tyr-Tyr). The 

molecules therefore exist as four stereoisomers. In c-LL, the two substituents are 

both in equatorial or axial positions. The DKP ring itself may belong to the C2 or 

C1 (no symmetry) point group. All the C1 or C2 conformations are chiral and their 

enantiomer is their mirror image, c-DD. 

In c-LD, one of the substituents is in equatorial, and the other is in axial position. 

As the two residues have opposite chirality, c-LD can be seen at first sight as a meso 

compound, which is not chiral. The DKP ring may have Ci symmetry, or no sym-

metry (C1). Indeed, Ci conformers are not chiral, for example cyclo D-alanyl-L-

alanine has planar DKP ring and Ci symmetry.[13] In contrast, C1 geometries are 

chiral because the two aromatic substituents have non-equivalent orientations. This 

happens when dissymmetry is brought about by the interaction between the two 

residues. This type of chirality is transient at room temperature but is frozen under 

supersonic expansion conditions. The dissymmetric structures therefore exist as 

pairs of non-superimposable mirror images under supersonic jet conditions, c-LD 

and c-DL. We will limit the discussion to the former in what follows. As will be 

seen later, all local minima of c-LD are non-symmetrical. The non-chiral Ci struc-

tures are transition states. This contrasts with c-LL for which some of the local min-

ima belong to the C2 symmetry point group, as described in what follows. 

3.3. Theoretical Results 

3.3.1 Calculated Structure in the Ground Electronic State 

 

The calculated structures are separated into six families resulting from the com-

bination of the g+, g-, and t orientations of the aromatic substituents, defined by the 

angles τ1 and τ2 introduced above. We will limit the discussion to the most stable 

families, shown in Fig. 3. We will also discuss the pseudo equatorial or pseudo axial 

position of the benzyl substituents. The orientation of the tyrosine OH increases the 

number of conformers in c-Tyr-Tyr, without modifying neither the energetics nor 

the spectroscopy, except in the stacked conformation described below. This is rem-

iniscent of the amino acid tyrosine whose conformers due to hydroxyl rotation can-

not be discriminated by their IR signature [62,63]. This is why we will discuss the 

calculated structures in terms of families that include the four OH orientations.  
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c-𝑔+ 𝑔−  (“Folded-Extended”) structures: This geometry is asymmetric, with the 

substituents in dissymmetric orientations: the g+  aromatic ring is folded over the 

amide bond and g−  is extended out of the DKP ring, which results to stabilizing 

combination of CH…π and NH…π interactions. The DKP geometry is in a twisted 

boat conformation. The c-gL
+gL

− structure of c-LL is stabilized by a C12H…π inter-

action and a weak NH…π interaction. Both substituents, in particular the folded 

one, are in pseudo-axial position. For the c-gL
+gD

− conformer of c-LD, the pseudo 

axial folded L residue acts as an acceptor in the C3H…π interaction, while the ex-

tended D residue is equatorial and acts as the donor. Whatever the chirality, the 

pseudo axial orientation of the folded substituent is of prime importance as it allows 

formation of the secondary CH…π and NH…π interactions. 

The “folded-extended” geometry c-g+ g−  is the most stable structure in all sys-

tems. It is more stable by 1.3 kcal/mol and contributes by more than 90% to the total 

population of c-LPhe-LPhe. The energetic advantage is slightly less (0.95 kcal/mol) 

for c-LPhe-DPhe but is still large enough for c-g+ g−   to be the only one present in 

the jet. The energy of the four c-gL
+gL

− conformers is the same within 0.3 kcal/mol 

in c-Tyr-Tyr and they are probably all present in the supersonic expansion. Alto-

gether, c-gL
+gD

− conformers account for 80% of the population of c-LTyr-DTyr. 

However, c-LTyr-LTyr stands out as c-gL
+gL

−  conformers only amount to ~60% of 

the total population, a point to which we shall return later.  

The c-g+ g−  (“Folded-Extended”) structures show little dependence upon chirality 

of the residues. However, the fact that both residues have identical or opposite chi-

rality changes the nature of the CH…π interaction. In c-LD, due to the equatorial 

nature of the extended g- substituent, there is a CαH…π interaction in c-gL
+gD

− while 

two axial substituents in c-LL result to CβH…π interaction in c-gL
+gL

−. In addition, 

the NH…π interaction is slightly stronger in c-gL
+gD

− as indicated by the N2H…π 

distance, shorter in c-gL
+gD

− than in c-gL
+gL

− by ~0.06 Å. 

c-𝑔− 𝑔−  (“Fully-Extended”) structures: They have C2 symmetry in c-LL, thus, 

the two benzyl substituents are equivalent. In c-gL
−gL

−, both aromatic rings, in axial 

position, are fully extended. The equivalent structure in c-LD, c-gL
−gD

−, only shows 

minor differences in the position of the phenyl rings related to the fact that one 

residue is in axial and the other in equatorial position. Fully extended structures are 

higher in energy by at least 1.8 kcal/mol in all the systems and will not be discussed 

further. Their relative energy illustrates the importance of correctly including 

dispersion, as expected in a system with two strongly polarizable aromatic rings. 

Non-inclusion of dispersion stabilizes the extended structures that become the most 

stable, which is in contradiction to the experimental results. 
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Fig. 3 Structures of c-Phe-Phe and cTyr-Tyr. The relative energy is given in parentheses in 

kcal/mol 

c-𝑔𝑆
+𝑔𝑆

+(“Stacked”) structures: They also belong to the C2 symmetry point 

group for c-LL. The equatorial position is favored over axial as it releases the re-

pulsion arising from parallel benzene rings. Still, c-gSL
+ gSL

+  lies 3 kcal/mol higher in 

energy than the most stable form in c-LPhe-LPhe. Indeed, dispersion is the only 
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stabilizing interaction there and cannot counterbalance the expected repulsion be-

tween the benzene rings. In c-LPhe-DPhe, c-gL
+gL

+  is not a stacked geometry be-

cause the two substituents cannot be both in equatorial position. The geometry with 

maximum interaction between the aromatic rings is c-gL
+tD . Its relative energy ex-

ceeds 2 kcal/mol for c-Phe-Phe and c-Tyr-Tyr and we will not discuss it further. 

The energetics of the stacked structures are completely different in c-LTyr-LTyr. 

The stacked c-gL
+gL

+ geometry facilitates the interaction between the two hydroxyls, 

which stabilizes this structure. For example, the Gibbs energy of c-gLI
+ gLI

+  is as low 

as 0.2 kcal/mol. In contrast with the other structures, the orientation of the OHs 

slightly influences the energetics. In c-gLI
+ gLI

+ , the two OH groups show antiparallel 

orientation of their electric dipoles and mostly interact through dipole-dipole inter-

action, as described for amide stacking in γ-peptides.[64] c-gLI
+ gLII

+  differs from c-

gLI
+ gLI

+  by the parallel orientation of the two OH that favors OH…O hydrogen bond 

formation. It is interesting to note that the dipole-dipole interaction is competitive 

with the hydrogen bond formation and that these two structures are almost isoener-

getic. However, c-gLI
+ gLII

+  reproduces the experimental better than c-gLI
+ gLI

+ , as de-

scribed later. 

Interestingly, the most stable conformer of c-LL is always more stable than the 

most stable conformer of c-LD, by 0.4 kcal/mol for c-Phe-Phe and 2.0 kcal/mol for 

c-Tyr-Tyr. 

3.3.2 Calculated Structure in the Cation 

Optimization of the cation of c-Phe-Phe indicates charge localization on the ni-

trogen atoms. For this reason, the NH stretches are shifted down in energy and not 

observed experimentally. We have therefore focused on c-LTyr-LTyr and 

c-LTyr-DTyr. The calculated structures of their cations are shown in  

Fig. 4.  Starting points for the optimization are the most stable neutral “folded-

extended” structures c-gLII
+ gLI

−  and c-gLI
+ gDI

− , and the “stacked” geometry of c-LTyr-

LTyr, c-gLI
+ gLII

+ , reflecting the vertical ionization process. For the “folded-extended” 

structure, the main difference relative to the neutral is that the g−  conformation of 

the extended benzyl is not stable in the ion. Instead, the g−  aromatic ring undergoes 

rotation towards a t conformation. This leads to the cion-g
+ t structure. Indeed, the 

NH…π interaction in the neutral becomes repulsive in the ion and is replaced by an 

interaction between the amide CO and the positively charged aromatic ring. 

The geometry of the stacked conformer c-gLI
+ gLII

+  is not much modified upon ioni-

zation, except the OH…O distance, which is considerably shorter in the ion (1.94 

vs. 2.23 Ǻ). The stronger H-bond associated with this shorter distance stabilizes the 

hydrogen-bonded form cion-gLI
+ gLII

+  by 2.7 kcal/mol relative to c-gLII
+ tLI. 

The NBO charges distribution, given in  

Fig. 4, is very dissymmetrical. In the folded - extended structures, cion-g+t, most 

of the charge is on the extended gLI
+  benzyl. Then, the (OH) stretch frequency of 
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the folded tyrosyl is similar to that in the neutral. The rest of the charge is mainly 

borne by CαH groups. Interestingly, the amide bonds are neutral.  

The charge of the hydrogen-bonded cation cion-gLI
+ gLII

+  is distributed on both ar-

omatic rings. Still, it is dissymmetric, being 0.654 on the H-bond donor vs. 0.232 

on the acceptor. Thus, the (OH) stretch frequency of the H-bond acceptor is less 

shifted relative to the neutral than that of the donor. We will keep these remarks in 

mind when discussing the vibrational spectroscopy of the cation. 

 

 
 

Fig. 4 Calculated structure of the c-Tyr-Tyr cations, together with the charges on the 

aromatic rings and the CαH groups. Only charges larger than 0.1 are indicated 

3.4. Experimental Results 

3.4.1 Electronic Spectroscopy 

The electronic spectra are shown in  

Fig. 5 and Fig. 6. That of c-Phe-Phe ( 

Fig. 5) shows a simple vibronic pattern, almost identical for c-LPhe-Lhe and c-

LPhe-DPhe. It shows an intense origin located at very similar energies, 37603 cm-1 

and 37600 cm-1 for c-LPhe-LPhe and c-LPhe-DPhe, respectively, in the region of 

the phenylalanine monomer.[65-67] It is followed by a strong Hertzberg-Teller al-
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lowed transition at 532 and 529 cm-1 for c-LPhe-LPhe and c-LPhe-DPhe, respec-

tively. Almost no other vibronic activity is observed. These spectra indicate similar 

rigid structures for the two diastereomers. 

 
 

Fig. 5 RE2PI Electronic spectrum of a) c-LPhe-LPhe b) c-LPhe-DPhe. The inset shows 

the comparison between the origin recorded at the mass of all 12C c-Phe-Phe and at the mass 

of a single 13C c-Phe-Phe. The 13C spectrum is multiplied by 5. The calculated frequencies 

are labelled by n. 26 is the Herzberg-Teller allowed mode. The bands probed by the UV 

laser for measuring the IR spectra are indicated by *. Adapted from Ref.24 (licence 

4551230911971) with permission from Elsevier  

 
 

Fig. 6. RE2PI electronic spectrum of a) c-LTyr-LTyr b) c-LTyr-DTyr. The bands probed 

by the UV laser for measuring the IR dip spectra are indicated by their frequency. Adapted 

and reproduced from Ref. 22 with permission from the Royal Society of Chemistry 
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As observed for c-Phe-Phe, the spectrum of c-Tyr-Tyr appears in the region of 

the amino acid monomer. However, it contrasts strongly with that of c-Phe-Phe. 

c-LTyr-DTyr only shows a featureless absorption with two maxima at 35500 and 

35800, which is assigned to a species denoted Bc-LD (Fig. 6). The spectrum of c-

LTyr-LTyr shows similar broad maxima, at ~35600 and 35800 cm-1, assigned to a 

species denoted Bc-LL, and superimposed with narrow lines, with an origin at 35274 

cm-1, assigned to a species denoted Ac-LL. We exclude that the broad absorption 

arises from non-radiative processes in the electronic excited state because the spec-

tra of cold tyrosine or protonated tyrosine are well resolved.[68,69,63] A more 

likely hypothesis is spectral congestion and/or insufficient cooling due to OH isom-

erism. 

3.4.2 Vibrational spectroscopy and assignment 

c-𝒈+ 𝒈−  Structures: Identical IR-UV spectra are obtained whatever the band 

probed in the RE2PI spectrum of c-LPhe-LPhe or c-LPhe-DPhe, which indicates 

the presence of a single conformer under supersonic jet conditions. c-LPhe-LPhe 

and c-LPhe-DPhe show similar spectroscopic signatures with a triplet at 3393- 

3407- 3416 cm-1 for c-LPhe-LPhe and at 3386 - 3417- 3424 cm-1 for c-LPhe-DPhe. 

The different frequencies for the ν(NH) stretch point at dissymmetric structures. We 

will therefore discard the C2 structures for the assignment and focus on the most 

stable “folded-extended” c-gL
+gL

− and c-gL
+gD

−, structures. Fig. 7 shows the compar-

ison between the experimental spectra and those resulting from the anharmonic fre-

quencies calculations for c-g+ g− . The band at 3416 (c-LPhe-LPhe) or 3417 cm-1 

(c-LPhe-DPhe) is assigned to the free ν(NH) stretch of the g+ extended benzyl, per-

fectly reproduced by the anharmonic calculations at 3411 cm-1 (c-gL
+gL

−) and 3412 

cm-1 (c-gL
+gD

−).  

The lower-energy band at 3393 cm-1 (c-gL
+gL

−) or 3386 cm-1 (c-gL
+gD

−) is assigned 

to the ν(NH) stretch of the g- folded benzyl, involved in the NH…π interaction. The 

downshift of the frequency is very well reproduced by the anharmonic calculations 

that yield 3392 cm-1 for (c-gL
+gL

−) and 3387 cm-1 for (c-gL
+gD

−). 

For all systems studied here, a third band appears in the ν(NH) stretch region, 

the intensity of which decreases more rapidly than that of the others when reducing 

the laser power. It can be explained by taking into account overtones or combination 

bands involving the ν(CO) stretch and the β(NH) bend. In c-gL
+gL

− the two ν(CO) 

stretches are uncoupled and calculated at different frequencies, the lower-energy 

band at 1705 cm-1 corresponds to the CO of the amide interacting with the folded 

benzyl and the high-energy ν(CO) at 1713 cm-1 to the other one. Anharmonic cal-

culations predict active ν(CO) overtones at 3395 cm-1 and 3410 cm-1, in the vicinity 

of the ν(NH) stretch. They could be responsible for the band at 3407 cm-1. 

 In contrast, the two ν(CO) modes are strongly coupled in c-gL
+gD

−, and result in 

a  forbidden symmetric mode at 1714 cm-1 and a strongly allowed asymmetric mode 

at 1716 cm-1. Anharmonic calculations predict an intense combination band of the 
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two ν(CO) stretches at 3413 cm-1, in resonance with the free ν(NH). It could be re-

sponsible for the band at 3424 cm-1. Such intense combination bands or overtones 

have been observed already in dipeptides, including those built on the diketopiper-

azine ring[70] or β sheets models.[56]  

 

  

Fig. 7 Comparison between the IR-UV spectra and those of the structures to which they 

are assigned for c-Phe-Phe (left) and c-Tyr-Tyr (right). a) c-LL experimental spectra b) cal-

culated spectra for c-LL. c) c-LD experimental spectra. d) calculated spectra for c-LD. 

Adapted and reproduced from Ref. 22 with permission from the Royal Society of Chemistry. 

Adapted and reprinted Ref.24 (licence 4551230911971) with permission from Elsevier  

Similar vibrational spectra are observed in the ν(NH) stretch region when setting 

the probe on the broad absorption observed in the RE2PI spectra of c-LTyr-LTyr 

and c-LTyr-DTyr. Again, the IR spectrum of each diastereomer does not depend on 

the probe position; again, c-LTyr-LTyr and c-LTyr-DTyr show similar spectro-

scopic signatures in the region of ν(NH), with three congested bands at 3400, 3412, 

and 3424 cm- 1 for c-LTyr-LTyr and a doublet at 3394- 3432 cm-1 accompanied by 

a shoulder at 3417 cm-1for c-LTyr-DTyr. The spectra of c-Tyr-Tyr only differ from 

that of c-Phe-Phe by the presence of a narrow band at 3656±1 cm- 1, characteristic 

of a free ν(OH) stretch. The spectra of Bc-LL and Bc-LD can be interpreted in terms of 

“folded-extended structures” identical to those calculated for c-Phe-Phe. They com-

pare well to that simulated for the c-g+ g−  structures, in particular, the most stable 

of them c-gLII
+ gLI

−  and c-gLI
+ gDI

−  shown in Fig. 3. The sharp bands at 3656 cm- 1 is 

the superposition of the two free ν(OH). The assignment of the triplet in the 3400- 

3412 cm-1  range parallels that described for cyclo Phe-Phe. We therefore assign the 

broad absorption to the superposition of c-gL
+gSL

−  structures differentiating only by 

the tyrosyl OH orientation. 

The major difference between the two diastereoisomers, for both c-Tyr-Tyr and 

c-Phe-Phe, is the energy difference between the bound and free ν(NH) stretches, 

which is always larger in c-LL than c-LD (experimental value of 23 cm-1 vs. 31 cm-1 

for c-Phe-Phe and 12 vs. 38 cm-1 for cycloTyr-Tyr. This difference reflects the 
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stronger NH…π interaction in cLD. It should be noted that scaled harmonic fre-

quencies satisfactorily account for the frequency gap between c-LL and c-LD, for 

both studied molecules.  

c-𝑔+ 𝑔+  Structures: The IR-UV spectrum of c-LTyr-LTyr recorded with the 

probe at the origin or any of the narrow transitions transition is shown in Fig. 7. 

Compared to the spectra described above, the free ν(OH) stretch is slightly shifted 

down in energy (3648 cm-1). The doublet at 3409 and 3428 cm-1 is similar to those 

described for ν(NH) in the other systems and points at a dissymmetric structure with 

non- equivalent benzyls. Last, the intense peak at 3554 cm-1 appears in the range of 

bound ν(OH) stretches. This spectral pattern is very well reproduced by that calcu-

lated for c-gLI
+ gLII

+ , which is the only structure that reproduces the feature at 3554 

cm-1 assigned to the bound OH. The band at 3648 cm-1 is assigned to the free ν(OH) 

calculated at 3649 cm-1, which is slightly shifted down in energy due to its role as a 

hydrogen bond donor. The band at 3409 cm-1 is assigned to the strong asymmetric 

ν(NH) stretch overlapped with the weak symmetric combination, calculated at 

3413/3414 cm-1. Finally, the band at 3428 cm-1 is assigned to an overtone or com-

bination band. 

3.5. Localization of the Electronic Transition 

3.5.1 Experimental spectra 

c-LPhe-LPhe: The 00
0 transition of singly 13C-substituted c-Phe-Phe, shown in 

the inset  of  

Fig. 5, is split by ~ 4 cm-1. This splitting is the convolution of the exciton splitting 

due to the coupling between the locally excited states and the site splitting due to 

the dissymmetry of the molecule and the non-equivalence of the benzyl rings. Be-

cause of the relatively large distance between the chromophores, the exciton split-

ting is smaller than the experimental resolution in similar systems such as 1,3-di-

phenoxymethane[43] or bis-phenoxymethane[30] and is negligible. The different 

intensities within the doublet confirm that c-LPhe-DPhe is not a symmetrical con-

formation. The observed spectrum is therefore characteristic of a bichromophoric 

system with non-equivalent subunits and well-localized transitions. Indeed, the 

change in electron density between S0 and S1 electronic states (vertical transition) 

reflects the localized character of the excitation, both in c-Phe-Phe and c-Tyr-Tyr 

(see Fig. 8). The changes in electron density are mainly located on a single benzene 

ring, pointing at the localization of the transition. 
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3.5.2 Simulated spectra 

Optimization of the first electronic excited state and simulation of the S0→S1 

transition of the c-gL
+gL

− conformer of c-LPhe-LPhe, introducing both Franck-Con-

don and Hertzberg terms, confirms the experimental findings. After shifting down 

the calculated origin by ~2230 cm-1 to scale it on the experimental value, excellent 

agreement between simulated and experimental vibronic patterns is obtained, as 

shown in  

Fig. 5 The intense band at +532 cm-1 is assigned to the Hertzberg-Teller allowed 

transition, akin to ν6 of benzene. 

 

 
 

Fig. 8 Difference in electron density between S0 and S1 in the structures corresponding to 

the experiment for the folded-extended forms of a) c-LPhe-LPhe c-𝑔𝐿
+𝑔𝐿

− b) c-LTyr-LTyr c-

𝑔𝐿𝐼𝐼
+ 𝑔𝐿𝐼

−  c) c-LTyr-DTyr c- 𝑔𝐿𝐼
+ 𝑔𝐷𝐼

−  and the stacked structure of d) c-LTyr-LTyr c-𝑔𝐿𝐼
+ 𝑔𝐿𝐼

+ . The 

electron density isovalue is 0.004 a.u. The electron density difference is coded in blue for an 

increase upon electronic excitation and red for a decrease. The S0→S1 energy is given in 

parentheses for the different conformers of c-Tyr-Tyr 

The geometry of the S1 state is very close to that of the ground state, apart from a 

minor rotation of the gS
− extended residue. This minor change manifests itself by 

the presence of a weak vibrational progression built on a 25 cm-1 mode, assigned to 

the ν1 (36 cm-1) mode involving this rotation. 

c-LTyr-LTyr: The same 13C experiments were not possible for c-Tyr-Tyr because 

of weak intensity and spectral congestion. Instead, we have compared the calculated 

vertical S0-S1 energies for the conformers to which the experimental spectrum is 

assigned (see Fig. 8). The order of the calculated S0-S1 energies, c-gLI
+ gLII

+  < c-gL
+gD

− 

< c-gL
+gL

−, is in qualitative agreement with the experiment. In particular, the 35274 
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cm-1 band assigned to the origin of c-gLI
+ gLII

+  is shifted down in energy relative to 

the origin of the tyrosine conformers ( 35491 to 35650 cm-1).[63] This is reminiscent 

of the S0-S1 transition of the dipeptide tyrosyl-glycine, which is red-shifted by ~400 

cm-1 relative to tyrosine when the hydroxyl group is not free.[71]  

In all the c-g+ g−  structures, for c-Phe-Phe and c-Tyr-Tyr alike, the S0-S1 transi-

tion is of ππ* nature and is localized on the extended g−  aromatic ring. IR spectros-

copy of the electronic excited state [72,73] has been proposed recently as a tool for 

determining the localization of the energy.[74] The systems studied here should 

show two families of NH stretches, localized on the locally excited aromatic ring or 

not, with frequencies characteristic of the ground and electronic excited states. 

However, the lifetimes are not long enough for this experiment to be possible with 

ns lasers. It would be interesting to perform this experiment on DKP peptides with 

chromophores with longer S1 lifetimes.  

3.6. Localization of the Charge in the Cation 

The double resonance spectrum of the c-LPhe-LPhe radical cation does not show 

any transition, probably because the (NH) stretches are shifted down out of the 

accessible frequency range. The double resonance spectrum of the c-LTyr-LTyr 

cation is recorded with the UV probe set at the same positions as for the neutral 

ground state. The obtained spectra do not depend on the position of the probe. Mon-

itoring the depletion of the parent at m/z 326 or the intensity of the fragment result-

ing from Cα-Cβ cleavage at m/z 220 also leads to the same spectra. This observation 

indicates that the measured spectra are due to structures populated after intramolec-

ular vibrational energy redistribution (IVR). The same independence of the spec-

trum upon the probe wavelength is observed for c-LTyr-DTyr. The experimental 

spectra shown in Fig. 9 is analyzed in what follows at the light of the charge density 

calculations described in Section 3.2.2. 

c-LTyr-DTyr: The experimental spectrum (Fig. 9) shows excellent agreement 

with that simulated for cion-gLI
+ tDI and reflects the dissymmetry of the phenol rings, 

which was apparent from the charge distribution (Section 3.3.2). The band at 3642 

cm-1 corresponds to the free (OH) of the neutral gLI
+  ring calculated at 3638 cm-1. 

The intense band at 3572 cm-1 is assigned to the free (OH) of the charged tDI ring, 

calculated at 3586 cm-1. This value is close to that observed for the cyclo Ltyrosyl-

Lproline radical cation (3563 cm-1), where the charge is necessarily localized on 

Tyr.[23] It is also close to that of the phenol:argon cation (3535 cm-1).[75] Lastly, 

the weak band at 3410 cm-1 is assigned to the two (NH) stretches calculated at 

identical values (3400 cm-1). The NH… interaction observed in the neutral is ab-

sent in the cation, which makes the two NH equivalent with identical (NH) stretch 

frequencies, close to that of the (NH) of the neutral ground state, due to the very 

small charges on the two NH. 
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c-LTyr-LTyr: The spectrum of c-LTyr-LTyr is more complex than that of 

c-LTyr-DTyr and is accounted for by the contribution of two structures. The first 

one, cion-gLII
+ tLII, is similar to that described for c-LTyr-DTyr. The only difference 

relative to c-LTyr-DTyr is a small redshift (7 cm-1) of the free (OH) of the neutral 

gLII
+  ring, observed at 3635 cm-1 and calculated at 3630 cm-1. The free (OH) of the 

“charged” tLII ring appears at a similar value (3569 cm-1) as in c-LTyr-DTyr within 

the experimental error and is calculated at 3590 cm-1. The (NH) stretches are also 

slightly shifted down in frequency (3394 cm-1) relative to c-LTyr-DTyr. The second 

structure, cion-gLI
+ gLI

+ , is the hydrogen-bonded structure. As the hydrogen bond also 

influences the frequency of the donor, the free (OH) is slightly shifted down in 

energy (3619 cm-1) relative to that of cion-gLII
+ tLII and is calculated at 3613 cm-1. The 

large intensity of the band at 3394 cm-1 is explained by the superposition of the 

intense bound (OH) of cion-gLI
+ gLI

+ , superimposed with the (NH) stretches of 

cion-gLII
+ tLII and cion-gLI

+ gLI
+ , all calculated at 3399  3 cm-1. Lastly, the free (OH) 

stretch shows a shoulder at its low-energy side that may be assigned to a hot band, 

as often observed in photo-cations of cyclic molecules.[28]  

 
Fig. 9 Experimental and simulated spectrum of the ionic state of a) c-LTyr-LTyr and b) 

c-LTyr-DTyr together with corresponding calculated structures. The relative Gibbs energy 

is given in parentheses in kcal/mol. Adapted and reproduced from Ref. 22 with permission 

from the Royal Society of Chemistry 

The potential energy surface of the cation reflects that of the neutral: IVR popu-

lates one conformer only for c-LTyr-DTyr, while two different structures are ob-

served for c-LTyr-LTyr, despite their energy difference. Interestingly, the stereo-
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selectivity is preserved in the cation. This contrast with other cyclic systems bearing 

two chiral centers. In molecules where chirality is due to an asymmetric nitrogen 

atom, the nitrogen becomes planar upon ionization because it bears the positive 

charge.[28] As the results, the effects of stereochemistry are lost. Opening of the 

cycle upon ionization also results in a loss of stereochemical effects.[27] 

4. Conclusion and Perspectives 

Compared to the linear peptides, DKP peptides are rigid structures, with only 

one conformation of the DKP ring and the substituent orientation for the two dia-

stereomers of c-Phe-Phe and for c-LTyr-DTyr, and two for c-LTyr-LTyr. This con-

trasts with the parent amino acids, with 6 conformers for jet-cooled phenylalanine 

and 12 for tyrosine.[67,63] None of the structure found is symmetrical. The asym-

metry of the c-g+ g−  conformers is due to the different orientation of the two aro-

matic rings that are folded and extended respectively. As a result, the molecule can-

not be seen like a meso compound and c-gL
+gD

−  is mirror image to c-gD
+gL

−. Going 

from one enantiomer to the other only requires large amplitude motions inverting 

the folded and extended positions. At room temperature, interconversion is easy and 

the two transient enantiomers cannot be distinguished, unless embedded in special 

environments like a chiral liquid crystal, in which NMR experiments should dis-

criminate between them.[76,77] 

It should be noticed too that folded-extended structures are systematically found 

in many neutral DKP peptides, in condensed or in the gas phase, unless one intro-

duces an interaction stronger than the NH…π or CH……π that are responsible for 

the folded-extended structures.[23,25,21,19] In the case of c-LTyr-LTyr reported 

here, the interaction is an OH…O hydrogen bond. Future perspectives would be to 

modulate this interaction by changing the distance between the donor and the ac-

ceptor, for example by replacing one tyrosine by homo tyrosine. Adding a solvent 

molecule for bridging the two hydroxyls would be interesting too.[78,79] We have 

reached the same conclusion concerning the predominance of folded-extended 

structures for protonated DKP peptides isolated in a room-temperature ion trap. It 

would be interesting to test this hypothesis further by resorting to cryogenic ion 

traps for isolating the most stable structures of DKP dipeptides and studying the 

relationship between their structure and their photoreactivity. Indeed, cryogenic ion 

traps coupled with IR or UV laser spectroscopy have proven to be a powerful tool 

for studying chiral recognition in clusters of chiral molecules.[80,81] 

Both experimental and theoretical results point out at the localization of the elec-

tronic excitation, and most of the charge for the cation, on one aromatic ring. The 

coupling between the two moieties is therefore limited. However, more coupling 

effects between the two chromophores should be observed in electronic circular di-

chroism.[82,83] 
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Finally, calculations indicate that the c-LL structure is more stable than the c-

LD, for both studied molecules. Although one cannot draw general conclusions 

from two systems only, this observation agrees well with the so-called homochiral-

ity of life. 
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