Leila Amgoud
email: amgoud@irit.fr

Florence Dupin De Saint-Cyr

A new semantics for ACL based on commitments and penalties ⋆

Keywords: Agent communication languages, Commitments, Penalties

In complex multi agent systems, the agents may be heterogeneous and possibly designed by different programmers. Thus, the importance of defining a standard framework for agent communication languages (ACL) with a clear semantics has been widely recognized. The semantics should be verifiable, clear and practical. Most classical proposals (for instance, mentalistic semantics) fail to meet these objectives. This paper proposes a logic-based semantics which is social in nature. The basic idea is to associate with each speech act a clear meaning in terms of a commitment induced by that speech act, and a penalty to be paid in case that commitment is violated. A violation criterion based on the existence of arguments is then defined per speech act. We show that the proposed semantics satisfies some key properties that ensure that the approach is well-founded. The logical setting makes the semantics verifiable. Moreover, it is shown that the new semantics is practical since it captures the dynamic of dialogues, and shows clearly how isolated speech acts can be connected for building dialogues.

Introduction

When building multi-agent systems, we take for granted the fact that the agents which make up the system will need to communicate and to engage in the different types of dialogues identified by Walton and Krabbe in [START_REF] Walton | Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning[END_REF], using a communication language (ACL). The definition of an ACL from a syntactic point of view (the different speech acts 1 that agents can perform during a dialogue) poses no problems. The situation is different when semantics is taken into account. Given that agents in a multi-agent system may be independently designed by different programmers, a clear understanding of semantics is essential. Indeed, any speech act should have a unique interpretation. Moreover, it should be verifiable, i.e. it should be possible to check whether a system conforms to a particular ACL or not [START_REF] Wooldridge | Semantic issues in the verification of agent communication languages[END_REF]. Although a number of significant agent communication languages have been developed, for instance [START_REF] Alberti | Logic based semantics for an agent communication language[END_REF][START_REF] Amgoud | An argumentation-based semantics for agent communication languages[END_REF][START_REF] Finin | KQML as an agent communication language[END_REF][START_REF] Fipa | ACL message structure specification[END_REF][START_REF] Colombetti | A commitment-based approach to agent speech acts and conversations[END_REF][START_REF] Singh | An ontology for commitments in multiagent systems: toward a unification of normative concepts[END_REF][START_REF] Singh | A social semantics for agent communication languages[END_REF], obtaining a suitable formal semantics for ACLs which satisfies the above objectives remains one of the greatest challenges of multi-agent theory.

There are mainly three categories of semantics: mentalistic semantics, protocolbased semantics and social ones. A mentalistic semantics, used for instance in KQML [START_REF] Finin | KQML as an agent communication language[END_REF] and FIPA [START_REF] Fipa | ACL message structure specification[END_REF], is based on a notion of speech act close to the concept of illocutionary act as developed in speech act theory [START_REF] Austin | How to do things with words[END_REF][START_REF] Searle | Foundations of illocutionary logic[END_REF]. The basic idea behind this semantics is to define the conditions under which a given speech act can be played. Unfortunately, the conditions are based on the mental states (beliefs and intentions) of the interacting agents. This makes the semantics not verifiable as shown in [START_REF] Wooldridge | Semantic issues in the verification of agent communication languages[END_REF], and consequently violates one of the important properties of a semantics. In the second category of semantics, the notion of dialogue protocol plays a crucial role when defining the meanings of speech acts. In [START_REF] Alberti | Logic based semantics for an agent communication language[END_REF][START_REF] Pitt | A protocol based semantics for an agent communication language[END_REF], for instance, the meaning of a speech act is given in terms of the allowed responses to that speech act by a protocol. Thus, the meaning of the same speech act may change from one protocol to another. This makes this kind of semantics not global and not suitable. The most popular category of semantics is the social one. In this kind of approach, as developed in [START_REF] Colombetti | A commitment-based approach to agent speech acts and conversations[END_REF][START_REF] Singh | Agent communication languages: Rethinking the principles[END_REF][START_REF] Singh | A social semantics for agent communication languages[END_REF], primacy is given to the interactions among the agents. The semantics is based on social commitments. A commitment is an engagement taken by an agent, called the debtor of the commitment, toward a set of agents, called the creditors of the commitment. Thus, by uttering speech acts, commitments are induced and need to be satisfied by their debtors. For example, by affirming a data, the agent commits on the truth of that data. After a promise, the agent is committed to carrying it out. While this approach overcomes the limitation of the mentalistic approach by being verifiable, itsuffers from some weak points. In fact, the concept of commitment is ambiguous and its semantics is not clear. According to the performative act, the semantics of the commitment differs. Another important drawback of this approach is the fact that it is not practical. Indeed, it is not clear how such an approach can be used in order to capture the dynamics of agents interactions, or how isolated speech acts can be connected for building complete and coherent dialogues.

This paper is a substantially expanded and revised version of our previous works [START_REF] Amgoud | A semantics for agent communication languages based on commitments and penalties (a preliminary report)[END_REF][START_REF] Amgoud | Towards ACL semantics based on commitments and penalties[END_REF].The basic idea behind our semantics is to clarify the origin of each commitment and the link between a speech act and the induced commitment. Indeed, each speech act has a goal in a dialogue. For instance, behind a question, one expects an answer. Hence, during a dialogue, as soon as a speech act is uttered, a commitment for achieving its goal is created. Depending on the speech act, the debtor of the commitment may be either the sender of the move, or its hearer. In the case of a question, by uttering such a speech act, a commitment for giving an answer is created, and the debtor is the hearer. Note that this does not mean at all that the hearer should necessarily give an answer. A dialogue protocol may impose such a condition, but the problem of dealing with protocols is beyond the scope of this paper. Once the goal of each speech act is clearly stated, and the commitments induced from them are specified, we propose to associate with each commitment a penalty to be paid in case that commitment is violated by its debtor. This notion of penalty allows us to check at any step of a dialogue whether new commitments are created, and whether commitments are fulfilled or withdrawn. Thus, the semantics associates with each speech act a meaning in terms of the commitment induced by it, and a penalty to be paid in case that commitment is violated. The new semantics is grounded on a computational logic framework, thus allowing automatic verification of compliance by means of proof procedures. More precisely, a violation criterion based on the existence of arguments is defined per speech act. From a syntactic point of view, utterances are stored in commitment stores as in [START_REF] Mackenzie | Question-begging in non-cumulative systems[END_REF]. Each agent is supposed to be equipped with a commitment store visible to all agents. The contribution of this paper can be summarized in four main points: 1. To clarify the origin of each commitment induced from a speech act. Moreover, the link between the two notions is established. 2. To propose a new semantics in terms of commitments to be satisfied and a penalty that needs to be paid if the commitments are violated. A violation criterion is given for each speech act. All the criteria are based on what has been exchanged during a dialogue (and not on what is in the bases of the agents), and this makes the semantics verifiable. 3. To propose a simple alternative of commitment-based semantics. Instead of using more complicate logics such temporal logic for handling commitment, we propose here the use of a simple penalty logic. This makes the semantics simple. 4. Contrarily to existing social semantics that focus only on isolated speech acts, and do not worry about how these semantics can be integrated in a concrete dialogue system, this paper proposes a semantics that is defined on the basis of moves uttered during a dialogue. This ensures that the proposed semantics is practical.

The paper is organized as follows: Section 2 introduces the logical language used throughout the paper. Section 3 introduces the basic concepts of our semantics. Namely, it introduces the different speech acts that will be studied, defines the notion of commitment as well as the notion of penalty. Finally, it defines for each speech act a violation criterion for its associated commitment. Section 4 studies the logical properties of the new semantics. The semantics is then illustrated through two examples in Section 5. Section 6 compares our approach with existing approaches of ACL and Section 7 is devoted to some concluding remarks and perspectives. All the proofs are given in an appendix at the end of the document.

The logical language

Throughout the paper, let us consider a propositional language L. ⊢ denotes classical inference and ≡ logical equivalence. A knowledge base Σ is a set of formulas of L. Arguments can be built from any knowledge base Σ. By argument we mean a reason of believing a piece of information, or of making a choice, etc. In argumentation literature, different definitions of an argument have been proposed. In what follows, we will opt for the one suggested by Simari and Loui in [START_REF] Simari | A mathematical treatment of defeasible reasoning and its implementation[END_REF].

Definition 1 (Argument) An argument is a pair (S, c) where c is a formula of L and S ⊆ Σ such that:

1. S is consistent, 2. S ⊢ c, 3. S is minimal for set inclusion among the sets satisfying 1) and 2)

S is called the support of the argument and c its conclusion. Arg(Σ) denotes the set of all the arguments that can be built from a knowledge base Σ.

Arg(L) denotes then the set of all arguments that can be built from the logical language L. Given that a knowledge base Σ may be inconsistent, arguments may be conflicting too. In [START_REF] Amgoud | Inferring from inconsistency in preference-based argumentation frameworks[END_REF], different conflict relations between arguments have been studied.

In what follows we will use the relation "Undercut" which is the most suitable in our case.

Definition 2 (Undercut) Let A 1 = (S 1 , c 1), A 2 = (S 2 , c 2) ∈ Arg(Σ). A 1 undercuts A 2 if ∃ h 2 ∈ S 2 such that c 1 ≡ ¬ h 2 .
Since arguments are conflicting, it is important to know among all these arguments which are the good ones in order to be able to decide which conclusion to infer from Σ. In [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], Dung has presented a powerful argumentation framework that takes as input a set of arguments and the different conflicts which may exist between them, and returns among all the arguments the "good" ones, called the acceptable arguments. This notion of acceptability will not be presented here since it is not required for the definition of our semantics.

Let A = {ag 1 , . . . , ag n } be a set of variables denoting agents identifiers. Each agent is assumed to have a role allowing it to have the control over a subset of formulas in L. By having a control over a formula, we mean that the agent is allowed to alter the truth value of that formula.

Role : A -→ 2 L
The roles are supposed to be visible to all the agents. Thus, each agent is aware about the formulas that it can control, and also the formulas under the control of each interacting agent. The roles are thus not private.

A communication language is based on a set of speech acts. Let S denote that set. From S and L, different moves can be built and uttered during a dialogue. Let M denote the set of all the possible moves that can be built from S and L.

An example of a move is Question:φ where φ encodes "the sky is blue". This move means that one asks whether the sky is blue or not. Here Question is a speech act and φ is a propositional formula which can be either true or false.

Note that the exchanged information is assumed to be consistent. The reason is that we consider that agents are rational (i.e., they cannot assert absurdities).

Semantics

The basic idea behind our semantics is that each speech act has a goal in a dialogue. For instance, by asking a question, one expects to get an answer from its receiver, by making a promise one expects to see that promise realized in the future. Another important speech act in dialogues is Assert, through which agents exchange knowledge. The goal of Assert is to explicit the truth value of the exchanged information. For instance, by uttering the move Assert(φ) where φ stands for "the weather is beautiful", one may think that the sender believes φ, and it is ready to defend this position if challenged. Thus, during a dialogue, when a given speech act is uttered through a move, a kind of commitment for achieving the goal of that speech act is created. As we will see later, depending on the speech act, the debtor of the commitment may be either the sender or the receiver of the move in which the speech act is involved.

Our semantics associates with each speech act a meaning in terms of the commitment induced by that speech act, and a penalty to be paid by the agent concerned by the commitment in case that commitment is violated. For each speech act, we define a criterion pointing out when the corresponding commitment is violated. These criteria are all based on the existence of arguments. Note that penalties are computed in the same way for each agent and must have a unique understanding (if it is money then the money unit must be the same for each agent). The various moves uttered during a dialogue are stored in commitment stores which are visible to all agents.

Speech acts

We consider the following set of basic speech acts that are used in the literature (for instance [START_REF] Amgoud | Modelling dialogues using argumentation[END_REF][START_REF] Amgoud | Arguments, dialogue, and negotiation[END_REF][START_REF] Gordon | The pleadings game[END_REF][START_REF] Parsons | Agents that reason and negotiate by arguing[END_REF][START_REF] Prakken | On dialogue systems with speech acts, arguments, and counterarguments[END_REF][START_REF] Zabala | Beliefs, reasons and moves in a model for argumentation dialogues[END_REF]) for modeling the different types of dialogues identified by Walton and Krabbe in [START_REF] Walton | Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning[END_REF]. Most of these speech acts are studied in existing ACL semantics. S = {Assert, Argue, Declare, Question, Request, Challenge, Promise}.

Assert allows agents to inform each other about the state of the world. Its goal is then to explicit an information and to defend it against any attack. Thus, the debtor of the commitment is the sender of the speech act. This speech act is considered as an assertive act according to the classification of Searle [START_REF] Searle | Speech acts[END_REF]. Moves using this speech act have the following form: Assert:x where x is a proposition (x ∈ L) like "the weather is beautiful" or "it is my intention to hang a mirror".

Argue allows agents to support their claims by arguments. The goal of this speech act is to defend the claim supported by the argument. Thus, this argument is expected to be defended by its sender during a dialogue. Here again, the debtor of the induced commitment is the sender. This act is also an assertive one according to the classification of Searle [START_REF] Searle | Speech acts[END_REF]. A move involving this speech act is defined as follows: Argue:x, where x is an argument (x ∈ Arg(L)) (i.e., a pair (Support, conclusion) where the support is itself a set of propositions and the conclusion is a proposition).

Declare allows to change the state of the world. Indeed, a move involving this speech act brings about a state of affairs that makes its content true. Such a move is defined as Declare:x, where x is a proposition, thus x ∈ L. Examples of declarations are "the auction is open", and "John and Mary are husband and wife". This speech act is a declarative act according to the classification of Searle [START_REF] Searle | Speech acts[END_REF]. Its goal is then to change the state of the world. However, the agent who makes a move using this speech act should have the necessary authority to make such a change. For instance, during an auction, only the auctioneer is allowed to open the auction. It is then clear that the debtor of the induced commitment is the sender of the speech act.

Question is an act that incites the agent which receives it to give an answer. This act is considered as directive acts according to the classification of Searle [START_REF] Searle | Speech acts[END_REF]. A move involving this act is defined as Question:x, where x is a proposition, thus x ∈ L. Through such a move, an agent asks for the truth value of x. Then, the debtor of the induced commitment is the receiver of the move involving this speech act.

Request like a question, a request incites the agent which receives it to give an answer. Through a move Request:x, with x is a proposition (x ∈ L), an agent asks another agent to alter its value to true. Request:x has then a character more imperative than Question:x which does not ask the other agent to act on the world but only to give some information. A Request is used when an agent cannot, or prefers not, to achieve one of its goals alone. For instance, if the agent ag 2 utters Request:ag 2 is paid then it means that ag 2 asks for being paid. As for a question, after a request one expects that its receiver will change the value of the content x.

Challenge is used when an agent wants to get an explanation or an argument in favor of a given information. Its goal is then to incite its receiver to present an argument. Of course, during a dialogue, an agent which receives a challenge is not obliged to answer with an argument unless the protocol enforces it to do so. Note that the commitment concerns the receiver of the speech act. The move involving a challenge is defined as follows: Challenge:x where x is a proposition, i.e., x ∈ L.

Promise is a commissive act according to Searle [START_REF] Searle | Speech acts[END_REF]. Its aim is to allow an agent to commit itself to some future course of action. Thus, one expects that this agent will respect its promise in the future. The expression Promise:x means that the agent is committed to make x true in the future, with x ∈ L. For example, if an agent ag 1 utters Promise:φ, where φ stands for "agent ag 2 will be paid", then ag 1 commits itself to ensure that ag 2 will be paid in the future.

In addition to the above speech acts, we will consider another act called Retract which does not belong to the different categories of speech acts defined by Searle.

It can be seen as a meta-level act allowing agents to withdraw commitments already made. Allowing such a move makes it possible for the agents to have a kind of non-monotonic behavior (i.e., to change their points of view, to revise their beliefs, etc.) without being sanctioned. Syntactically, Retract : m is a move with m being itself a move, i.e., m ∈ M.

Commitments

A commitment is a directed obligation from one agent, called the debtor, to another, called creditor, about the truth of a given fact or to perform certain actions in the future. A commitment is seen as an 'obligation' since the debtor of the commitment is constrained to respect this commitment. Contrarily to the mental states of an agent that are private, i.e., they are not visible to the other agents involved in the dialogue, the commitments of that agent are public.

In the scientific literature, one can find proposals where the semantics of an ACL is defined in terms of commitments. Examples of these are the semantics proposed by Colombetti [START_REF] Colombetti | A commitment-based approach to agent speech acts and conversations[END_REF], and the one given by Singh [START_REF] Singh | Agent communication languages: Rethinking the principles[END_REF][START_REF] Singh | A social semantics for agent communication languages[END_REF]. Colombetti and Singh argued that agents are social entities, involved in social interactions, so they are committed to what they say. The basic idea is that an agent is committed to a given statement as soon as it reveals this statement during a dialogue. It is worth noticing that an agent which presents a statement does not necessarily agree upon that statement. Consequently, commitments are different from the agents private mental states like beliefs. This notion allows us to represent agent dialogues as observed by the participants and by an external observant, and not on the basis of the internal agents states.

In recent inter-agent communication approaches, the notions of dialogue games and (social) commitments are central. One rather influential dialogue game is DC, proposed by Hamblin [START_REF] Hamblin | Fallacies[END_REF] in the course of analysing the fallacy of questionbegging. DC provides a set of rules for arguing about the truth of a proposition. Each player has the goal of convincing the other, and can assert or retract facts, challenge the other player's assertions, ask whether something is true or not, and demand that inconsistencies be resolved. Associated with each player is a commitment store, which holds the commitments of the players during the dialogue.

Commitments here are the information given by the players during the dialogue.

There are then rules which define how the commitment stores are updated. Take for instance the assertion, it puts a propositional statement in the speaker's commitment store. What this basically means is that, when challenged, the speaker will have to justify his claim. But this does not presuppose that the challenge will come at the next turn in the dialogue.

For our purpose, we adopt this representation. Note that in this paper we are not interested in modeling the reasoning of agents, we only consider what is said by each agent. The idea is to provide a semantics for each speech act without worrying about the mental states of agents.

Each agent is supposed to be equipped with a commitment store, accessible to all agents, that will contain the utterances made during the dialogue and that commit the agent. Thus, a commitment store keeps tracks of two kinds of speech acts:

-Speech acts made by the agent itself such as assertions, promises and declarations. Recall that commitments induced from these speech acts commit the speaker, i.e., the sender of the speech act. -Speech acts received from other agents, such as requests, challenges and questions. For instance if an agent ag i makes a request r to another agent ag j , the request (r) is stored in the commitment store of ag j . Hence, ag j is said committed to answer to it. Recall that commitments induced from these speech acts commit their receivers.

Note that in [START_REF] Amgoud | An argumentation-based semantics for agent communication languages[END_REF][START_REF] Mcburney | Posit spaces: a performative theory of e-commerce[END_REF] more structured commitment stores have been proposed. However, for the purpose of our semantics, only the above simple distinction is needed.

Definition 4 (Commitment store) A commitment store CS i associated with an agent ag i is a pair CS i = A i , O i with:

-A i ⊆ {m ∈ M|Act(m) ∈ {Assert, Argue, Declare, Promise}}. -O i ⊆ {m ∈ M | Act(m) ∈ {Question, Request, Challenge}}.
A dialogue evolves from one step to another as soon as a move is uttered. In what follows, CS s i denotes the commitment store of agent i at step s. A commitment store is supposed to be empty at the beginning of a dialogue (i.e., at step 0). Hence, for any agent ag i , CS 0 i = ∅. Then, each move uttered during a dialogue is stored in a commitment store except the move retract. Indeed, this last does not commit neither its sender nor its receiver to anything. Its role is to retract some previously stated moves. Given a set X of moves, X i denotes the moves of X that are uttered from step 0 to step i. Let us now introduce two functions PROP and PROP P that return sets of formulas as follows:

Definition 5 Let X ⊆ M.
-PROP(X) is defined recursively by:

PROP(X 0) = ∅ PROP(X s) =        PROP(X s-1) ∪ {x} if m = Assert:x PROP(X s-1) ∪ S if m = Argue:(S, c) PROP(X s-1) ⋄ x if m = Declare:x PROP(X s-1)
else where m is the move uttered at step s in X s and ⋄ is an update operator described below.

-PROP P (X) = {x ∈ L such that ∃Promise:x ∈ X}.
The above definition computes the set of formulas that represent the state of the world (according to what has been uttered during the dialogue). Note that Questions, Challenges and Requests are not considered in the definition since they don't describe the state of the world. Formulas that appear in assertions and arguments are directly taken into account. However, things are different with the formulas related to a move Declare. Indeed, by definition, after Declare:x the world evolves in such a way that x becomes true. Consequently, one has to update the whole set of propositions previously uttered. For that purpose, an update operator [START_REF] Katsuno | On the difference between updating a knowledge base and revising it[END_REF][START_REF] Winslett | Updating Logical Databases[END_REF], denoted by ⋄, is needed. Several update operators have been introduced in the literature. The choice of the precise one to be used in our semantics is beyond the scope of this paper.

The notion of penalty

It is natural to associate with each commitment a penalty that sanctions agents when the commitment is violated. The need of cumulating sanctions when several violations have occurred is a reason for using a penalty based framework, in which additivity is crucial. Our basic idea is to adapt the penalty logic framework, proposed in [START_REF] Dupin De Saint-Cyr | Penalty logic and its link with Dempster-Shafer theory[END_REF] for handling inconsistency in knowledge bases, to the case of handling commitments and their violation in our ACL semantics. Let us first recall the principles of penalty logic. A penalty knowledge base is a multi-set of pairs ϕ i , α i where ϕ i is a propositional formula, and α i is a cost to be paid in case the formula ϕ i is violated. This cost is a strictly positive number or may be infinite, thus it is an element of IN * ∪ {+∞}. When α i = +∞, this means that it is forbidden to violate the formula ϕ i . Given a penalty knowledge base KB, it is possible to compute the penalty to be paid for getting the base KB consistent. This amounts to remove the less important formulas from KB knowing that removing a formula ϕ i induces a penalty α i . More precisely, the penalty of a consistent subset T of KB is the sum of costs of the formulas that are not in T :

C(T) = ϕi∈KB\T α i
Note that when the penalty knowledge base KB is consistent, its associated penalty will be equal to zero.

In what follows, the above concepts and definitions will be adapted in order to capture the semantics of speech acts. For that purpose, we first need to define the penalty knowledge base in the ACL context. As said before, each interacting agent ag i is equipped with a commitment store CS i keeping track of moves that commit this agent ag i . Each move m j in CS i may sanction the agent if this agent violates the commitment induced by the speech act Act(m j). Thus, for each commitment store, one can define its corresponding penalty base defined as follows:

P CS i = { m j , α j |m i ∈ CS i and α j ∈ IN ⋆ ∪ {+∞}}
The value α j denotes the cost of the commitment induced by Act(m j). The question now is where does this value come from? Does is depend on the whole move (i.e., the speech act and its content) or only on the speech act? In what follows, the cost is supposed to depend only on the speech act. Indeed, each speech act in S is supposed to have a cost which is a strictly positive integer or the infinity:

Cost : S -→ IN ⋆ ∪ {+∞}.
Thus, α j = Cost(Act(m i)). Different speech acts may have different values. This captures the idea that some speech acts are more important than others. For instance, violating a promise may be more costly than not answering a question. Of course, this can be extended to the case where penalty depends also on the content of moves since a speech act is generally accompanied by some content. However, for the sake of simplicity, we consider here the simple case, and leave the notion of content for further research. The penalty associated with each commitment store is computed as follows:

Definition 6 (Penalty) Let CS i = A i , O i be a commitment store, and

X ⊆ A i ∪ O i . The penalty associated with X w.r.t. CS i is c(X) = m∈X Penalty(m) Penalty(m) = Cost(Act(m)) if the commitment m is violated in A i 0 otherwise
Since a commitment store is empty at the beginning of a dialogue, its initial penalty is equal to 0. Moreover, at any step, the penalty of a given commitment store can be computed in a very simple way as shown in the next section.

Violation criteria

As shown before, a penalty is to be paid if a commitment is violated. This section presents in details when commitments induced from each speech act of S are violated. Subsequently, we suppose that the agent ag i utters the move to the agent ag j .

1. Assert: x During a dialogue, an agent can assert that a given propositional formula is true. This agent is not allowed to contradict itself during all the dialogue otherwise it will have to pay a penalty (except if it retracts that proposition). Indeed, a move assert: x is violated if the A i part of the commitment store of the agent ag i makes it possible to find an argument with a conclusion ¬x. Formally:

Definition 7 A move Assert:x is violated iff ∃(S, ¬x) ∈ Arg(PROP(A i)).
In order to avoid any form of wishful thinking, in the above definition, the promises made by the agent are not taken into account when checking the violation of an assert move, even if they are stored in the A i part of the commitment store. Indeed, promises may not be satisfied yet by the agent.

Argue:x

During a dialogue, an agent can provide an argument x in favor of some conclusion. Then, this agent is not allowed to contradict itself in the sense that it cannot produce an undercutter against x. Definition 8 A move Argue:x is violated iff ∃(S ′ , y) ∈ Arg(PROP(A i)) such that (S ′ , y) undercuts2 x.

As for assert moves and for the same reason, promises are not taken into account when looking for counter arguments.

Declare:x

During a dialogue, an agent can modify the state of a certain proposition x by declaring it true. The move Declare:x commits the honesty of the agent which carries it out in the sense that the agent should be empowered to modify the value of x. This capacity is defined by the role of the agent. For instance, it is not allowed for a simple citizen to marry people. Moreover, an agent can really modify this value only if there is no argument against performing that action. Formally:

Definition 9 A move Declare:x is violated iff x ∈ Role(ag i) or ∃(S, ¬y) ∈ Arg(Prop(A i))
with y ∈ Precond(x)

where Precond : L → 2 L is a function that gives for any formula ϕ the preconditions for setting ϕ to true and that verifies:

Precond(⊥) = {⊥} and Precond(⊤) = ∅.
The definition of Precond is beyond the scope of this paper. In the rest of the paper, it is supposed to be given. For example, in order to open an auction, one should check whether the buyers are present. If a formula can never be set to true then the function Precond returns {⊥}. When, there is no pre-condition for setting the formula to true, the function returns ∅.

4. Question:x During a dialogue, an agent may receive questions from other agents to which it is committed to answer either positively or negatively. The absence of any argument in favor of x or ¬x in the part A j of the commitment store of the agent that receives the move means that the agent has not given any answer.

Definition 10 A move Question:x is violated iff -∄ (S, x) ∈ Arg(PROP(A j)) and -∄ (S, ¬x) ∈ Arg(PROP(A j)).

Again, promises are not considered when building arguments. Note that we check the existence of an argument in favor of x or ¬x instead of just the existence of a proposition equivalent to x or to ¬x in A j . The reason is that the question can be answered implicitly via other assertions of the agent. In this setting, it is not possible to answer "I don't know" to a question. But, this could be easily handled by introducing a new speech act Desinform.

Request : x

An agent is expected to give a positive or a negative answer to any request it receives from other agents.

Definition 11 A move Request:x is violated iff -∄ (S, x) ∈ Arg(PROP(A j) ∪ PROP P (A j)) and -∄ (S ′ , ¬x) ∈ Arg(PROP(A j) ∪ PROP P (A j)).

Note that to check whether a request is violated or not, we look for an argument in favor of x in both PROP(A j) and PROP P (A j). The reason is that a request can get an answer in two ways: either through a promise ensuring that in the future the requested proposition will be set to true or to false, or because it is already stated (either by declarations or assertions) to true or false.

6. Challenge:x Agents are committed to provide arguments for any challenged proposition, otherwise their commitment is violated.

Definition 12 A move Challenge:x is violated iff ∄ (S, x) ∈ Arg(PROP(A j)) with S ≡ {x}.
Let us take the example of an agent which asserts x, after which the other agent makes a challenge on x. It is clear that the argument ({x}, x) can be built from Arg(PROP(A j)), however this is not an answer to the challenge. In order to avoid such problem, the above definition requires that the argument presented after a challenge should be different from x.

Promise : x

During a dialogue, an agent may make promises to other agents. This agent should pay a penalty in case it does not respect this promise. This can be checked on the part A i of its commitment store. Indeed, if an argument in favor of proposition x can be built then the promise is honored otherwise it is considered violated.

Definition 13 A move Promise:x is violated iff ∄(S, x) ∈ Arg(PROP(A i)).

Retract:m

Agents may decide to retract some previously uttered moves. The aim of this move is to allow agents to revise their beliefs without being sanctioned. The speech act Retract is different from the other elements of S since it does not induce any commitment, thus Penalty(Retract:m) = 0. Moreover, after such a move the commitment store is updated as follows: Definition 14 Let CS s i be the commitment store of an agent ag i at step s. A move Retract(m) at step s + 1 has the following effect:

CS s+1 i = CS s i \ {m}
with m ∈ CS s i . According to the above definitions, it is clear that a commitment is considered as violated as soon as the corresponding speech act is uttered in a dialogue. This indicates that a commitment is created. When, that commitment is fulfilled or withdrawn the penalty of the commitment store decreases. Note also that time is handled implicitly in our semantics. Indeed, a commitment store is defined in such a way that at each "step" of the dialogue; it is possible to compute the set of moves that have been uttered. Thus, it is possible to check at each step which are the commitments that are created, which ones are fulfilled, etc.

Summary

A summary of the semantics of the various speech acts is given in Table 1.

Properties

The aim of this section is to show that the proposed semantics satisfies some key and desirable properties. The first property ensures that the semantics sanctions only bad behaviors of agents, and that any bad behavior is sanctioned.

Proposition 1 -If c(CS i) > 0, then ∃ m ∈ CS i such that m is violated. -If ∃ m ∈ CS i such that m is violated, then c(CS i) > 0.
A quite obvious property, that follows directly from the definition of a commitment store and from the definitions of the different violation criteria, states that the cost of a commitment store is independent of the syntax of the contents of the moves.

Proposition 2 (Syntax independence) ∀m, m ′ ∈ M, if Act(m) = Act(m ′) and PROP({m}) ≡ PROP({m ′ }), then c({m}) = c({m ′ }).
Another important result is the fact that if the total penalty of part A i is null then all the stated information is consistent.

Proposition 3 (Consistency)

If m∈Ai Penalty(m) = 0 then PROP(CS i) is consistent.

Before introducing other interesting properties, we first need to define a notion of independency. For this purpose, we will use a notion of novelty introduced by Greiner and Genesereth in [START_REF] Greiner | What's new? a semantic definition of novelty[END_REF], and analyzed more deeply in the propositional case by Marquis and Lang in [START_REF] Marquis | Novelty revisited[END_REF][START_REF] Lang | Conditional independence in propositional logic[END_REF]. Indeed, in [START_REF] Lang | Conditional independence in propositional logic[END_REF] the novelty of a propositional formula ϕ with respect to another formula ψ in a given context is defined by the fact that ϕ allows to built a minimal abductive explanation of ψ or ¬ψ, while this is not possible in the same context without ϕ. Considering that a minimal abductive explanation is an argument, this leads to propose the following definition.

Intuitively, a formula ϕ is new for ψ in a context Σ, if ϕ allows to deduce new arguments for ψ or for ¬ψ. This means that ϕ is linked to ψ in the context Σ. When this is not the case, this means that ϕ does not allow to deduce new arguments neither for ψ nor for ¬ψ. In that case, we say that ϕ is independent from ψ. Note that this relation is not symmetric.

Definition 15 (Novelty) Let ϕ, φ be two propositional formulas, and Σ a set of formulas.

ϕ is new for φ w.r.t. Σ iff:

• ∃ (S, φ) ∈ Arg(Σ ∪ {ϕ}) and (S, φ) ∈ Arg(Σ), or • ∃ (S, ¬φ) ∈ Arg(Σ ∪ {ϕ}) and (S, ¬φ) ∈ Arg(Σ) ϕ is said to be independent from φ w.r.t. Σ otherwise.

This above definition allows us to define a notion of independency between two moves given a dialogue. Namely, two moves m 1 and m 2 are independent if m 2 has no influence on m 1 . This means that the content of the first move should be independent from the properties of the second move. When one of the two moves is based on a declarative speech act (Declare in our case), the preconditions of this move should be independent from the properties of the other move.

Definition 16 (Move independency) Let X ⊆ M be a set of n moves and let m be a move uttered at step s ≤ n (m = X s), let m ′ be a new move uttered at step n + 1.

m ′ is independent from m given X if -when Act(m) = Declare then Content(m) is independent from PROP(m ′) given PROP(X) ∪ PROP P (X) -when m = Declare : x then Precond(x) is independent from Content(m ′)
given PROP(X) ∪ PROP P (X)

Note that in the above definition, we consider the independency between the content of the first move and the formulas of the second move. This is because we must check if the last move has influenced the commitment induced by the first move. The commitment of the first move depends on its content with respect to the information exchanged during the dialogue. The set PROP contains the formulas that are asserted or argued, hence they may influence the state of knowledge. The content of the move maybe of no interest with respect to this state of knowledge when the speech act is a question or a challenge.

Lemma 1. Let X ⊆ M be a set of n moves and let m be a move uttered at step s ≤ n (m = X s), let m ′ be a new move uttered at step n + 1.

If m ′ is independent from m w.r.t. X and if Act(m ′) ∈ {Declare, Retract} then for all x ∈ Content(m) ∀S ⊆ L, (S, x) ∈ Arg(PROP(X ∪ {m ′ })) (S, ¬x) ∈ Arg(PROP(X)) ⇔ (S, ¬x) ∈ Arg(PROP(X ∪ {m ′ }))
This lemma claims that when two moves are independent, if there are no arguments against or in favor of the content of the first move then the arrival of the second move will not change it. This lemma allows to settle the following property about the evolution of the violation of a move when an independent move is uttered. Namely, the violation status does not change when an independent move is uttered.

Proposition 4 Let CS i be a commitment store obtained after n steps, m be a move already uttered in CS i , and let m ′ ∈ M be a move uttered at step n + 1.

If m ′ is independent from m w.r.t. CS i and if Act(m ′) ∈ {Declare, Retract} then m is violated in CS i ⇔ m is violated in CS i ∪ {m ′ }.
This proposition is only valid with a second move which is not a Declare, in order to extend this result we have to impose that the update operator should be independency compatible.

Definition 17 An update operator ⋄ is independency compatible iff for every formulas ϕ, ψ, and every set of formulas Σ,

if ϕ is independent to ψ w.r.t. Σ then Σ ⊢ ψ ⇔ Σ ⋄ ϕ ⊢ ψ
Proposition 5 Let CS i be a commitment store obtained after n steps, m be a move already uttered in CS i , and let m ′ ∈ M be a move uttered at step n + 1.

If the update operator associated to Declare is independency compatible and if m ′ is independent from m w.r.t.

CS i and if Act(m ′) = Retract then m is violated in CS i ⇔ m is violated in CS i ∪ {m ′ }.
Proposition 4 implies that if two formulas are independent w.r.t. the formulas of a commitment store, then the penalty of two moves conveying these formulas is decomposable. Formally:

Corollary 51 (Independence) Let CS i be a commitment store obtained after n steps, m be a move already uttered in CS i , and let m ′ ∈ M be a move uttered at step n + 1.

If m is independent from m ′ w.r.t. CS i , and Act(m) ∈ {Declare, Retract} then c({m, m ′ }) = c({m}) + c({m ′ })

Proposition 5 allows to extend this property for Declare moves when the associated update operator is independency compatible.

Illustrative examples

In this section we present two dialogues between agent ag 1 and agent ag 2 using the semantics presented in this paper. We suppose that the dialogue sequences presented below are allowed by a given protocol. Our analysis focuses only on agent ag 1 . We will show that in the first dialogue, ag 1 behaves very well, so it has no penalty to pay at the end of the dialogue. Whereas in the second dialogue, ag 1 violates some of its commitments, and is expected to pay a penalty.

Example 1

In this example, we will show how the commitment store of an agent ag 1 evolves during a dialogue with another agent ag 2 . In what follows, the expression ag 2 → ag 1 means that agent ag 2 addresses a move to agent ag 1 . At the beginning of the dialogue, the commitment store is as follows:

A 1 O 1 ∅ ∅ c(CS 1) = 0 ag 2 → ag 1 :
Give me a nail please. (ag2n stands for "ag 2 has the nail")

A 1 O 1 ∅ Request:ag2n c(CS 1) = Cost(Request) ag 1 → ag 2 : No. A 1 O 1 Assert:¬ag2n Request:ag2n c(CS 1) = 0 ag 2 → ag 1 : Why not? A 1 O 1 Assert:¬ag2n Request:ag2n Challenge:¬ag2n c(CS 1) = Cost(Challenge)
ag 1 → ag 2 : Because I want to hang a mirror (hm for "hang a mirror") and thus I need this nail (nn for "need a nail"). I cannot give you a nail if I need it.

A 1 O 1 Assert:¬ag2n
Request:ag2n Argue:({hm, hm → nn, nn → ¬ag2n}, ¬ag2n) Challenge:¬ag2n c(CS 1) = 0 In this dialogue the agent ag 1 has an exemplary behavior since after each move, the penalties associated with its commitment store are canceled. That means that it does not contradict itself (regarding its assertion and its argument), and that it answers to the request and to the challenge made by ag 2 .

Example 2 Let us study the following dialogue between two agents ag 1 and ag 2 : ag 2 → ag 1 : Do you think that Newspapers can publish (pub) the information X.

A 1 O 1 ∅ Question:pub c(CS 1) = Cost(Question) ag 1 → ag 2 : No. A 1 O 1 Assert:¬pub Question:pub c(CS 1) = 0 ag 2 → ag 1 : why? A 1 O 1 Assert:¬pub Question:pub Challenge:¬pub c(CS 1) = Cost(Challenge)
ag 1 → ag 2 : Because X concerns the private life of A (pri) and A does not agree to publish it (agr). In the above example, the agent ag 1 answers the question and the challenge it received, thus there is no penalty to pay for those moves. However, this agent has presented an argument a = <{pri, ¬agr, pri ∧ ¬agr → ¬pub}, ¬pub>, and accepted its undercutter b = <{min, min → ¬pri}, ¬pri>. Consequently, the set PROP(CS i) is inconsistent, and this makes it possible to even construct an undercutter c = <{pri, min → ¬pri}, ¬min> for the argument b. The agent has then to pay twice the cost of an Argue move. Note, however that from PROP(CS i) it is not possible to construct an argument whose conclusion is pub. This means that the agent is still coherent w.r.t. its assertion (¬pub). Thus, there is no cost to pay for the assert move.

Related work

As already said in the introduction, there are mainly three families of approaches to ACL semantics:

1. mentalistic semantics 2. protocol-based semantics

commitment-based semantics

The first standard agent communication languages are KQML [START_REF] Finin | KQML as an agent communication language[END_REF] and FIPA-ACL [START_REF] Fipa | ACL message structure specification[END_REF]. Both languages have been given a mentalistic semantics. The semantics is based on a notion of speech act close to the concept of illocutionary act as developed in speech act theory [START_REF] Searle | Speech acts[END_REF]. Such semantics assumes, more or less explicitly, some underlying hypothesis, in particular, that agents are "sincere" and "cooperative". While this may be well fitted for some special cases of interactions, it is obvious that negotiation dialogues are not cooperative. Another more important limitation of this approach is the fact that it is not verifiable since it is based on agents mental states. Our semantics does not refer at all to the mental states of the agents. Moreover, it treats another speech act, namely Argue, which allows agents to exchange arguments.

The approach developed by Pitt and Mamdani in [START_REF] Pitt | A protocol based semantics for an agent communication language[END_REF] and Alberti et al. in [START_REF] Alberti | A social ACL semantics by deontic constraints[END_REF] is based on a notion of protocol. A protocol defines what sequences of moves are conventionally expected in a dialogue. The meaning of a speech act equates to the set of possible following answers. This turns out to be too rigid in several circumstances. Current research aims at defining flexible protocols, which rely more on the state of the dialogue, and less on dialogue history. This state of dialogue is captured by the notion of commitment. Moreover, the meaning of a speech act is not unique since it may change from one protocol to another.

The social semantics developed in [START_REF] Colombetti | A commitment-based approach to agent speech acts and conversations[END_REF][START_REF] Singh | A social semantics for agent communication languages[END_REF] are the most closest to our work. In these works, semantics is based on social commitments brought about by performing a speech act. For example, by affirming a data, an agent commits on the truth of that data. After a promise, the agent is committed carrying it out. In his work, Singh has proposed a formal language based on CTL, and a formal model in which the notion of commitment is described by using an accessibility relation. In the same line of research, Colombetti and Verdicchio have proposed a logical model of commitments using CTL* [START_REF] Verdicchio | A logical model of social commitment for agent communication[END_REF]. A number of predicates in order to represent events and actions have been introduced. While these models are expressive enough, we think that they suffer from the following drawbacks:

1. The definition of commitments complicates the agent architecture in the sense that it needs an ad hoc apparatus. Commitments are introduced especially for modeling communication. Thus, agents should reason not only on their beliefs, desires, etc, but also on commitments. In our approach, we didn't introduce any new language for encoding or handling commitments. The only thing needed to define the meaning of each speech act is classical logic, simple commitment stores, and a procedure based on the existence of arguments for checking whether commitments are violated or not. Note that, arguments are also used by agents during a dialogue for justifying their claims. Thus, they are not particularly introduced for handling commitments. In sum, the reasoning models of agents (i.e., the models defined for reasoning about its beliefs and desires) are sufficient for capturing the semantics of an ACL, there is no need to introduce a new model. 2. The level at which communication is treated is very abstract, and there is a considerable gap to fill in order to bring the model down to the level of implementation, i.e., to be used in practical dialogues. Our semantics handles very well the dynamics of dialogue. It takes as input a dialogue expressed in terms of moves stored in commitment stores. 3. The concept of commitment itself is ambiguous and its semantics is not clear.

In [START_REF] Colombetti | A commitment-based approach to agent speech acts and conversations[END_REF][START_REF] Singh | A social semantics for agent communication languages[END_REF], for example, by affirming a data, an agent commits on the truth of that data. The meaning of the commitment here is not clear. It may be that the agent can justify the data or can defend it against any attack, or that the agent is sincere. In this paper we have proposed for each speech act a clear, intuitive, simple and unambiguous semantics. This was possible thanks to the notion of goal of a speech act.

Another semantics which is considered as hybrid has been proposed in [START_REF] Amgoud | An argumentation-based semantics for agent communication languages[END_REF]. This semantics is a novel combination of an agent-internal reasoning level and an agent-external commitment level within a single two-level framework. Like our approach, contents of moves are supposed to be stored in a structured commitment store. The meaning of each speech act is given by a pre-condition that should be satisfied before uttering a move involving that speech act, and a postcondition with specifies how the commitment store is updated after the move.

The pre-condition refers to the mental states of agents. It is expressed in terms of the existence or the absence of arguments. Consequently, this approach is not verifiable. Another important weakness of that approach is that it is not clear when commitments are fulfilled or violated. The semantics presented in this paper answers clearly these two questions via the penalty value associated to each commitment store.

Conclusion and perspectives

This paper has introduced a new simple and verifiable ACL semantics. The interpretation of each speech act equates to the penalty to be paid in case the commitment induced by that speech act is violated. In this semantics, a violation criterion is given for each considered speech act. Note that in order to add a new speech act, one needs simply to define a new violation criterion associated with it. This semantics is based on propositional logic, and the violation criteria amount to compute arguments. Our semantics satisfies interesting properties that show its well-foundedness. It also offers other advantages regarding dialogue protocols. For instance, one does not need to specify the different moves allowed after each move in the protocol itself. Agents only need to minimize the penalty to pay at the end of the dialogue. This give birth to very flexible protocols. Protocols can also be simplified by extending our semantics by rules which were generally defined in the protocol itself. For instance, in the semantics, we can sanction agents which repeat the same move several times during a dialogue. Another rule which can be removed from the protocol is that of turn taking. One can imagine that agents can make several moves per turn but they have to pay a penalty for that. In doing so, the protocols are more flexible and consequently, the agent's strategies become very rich. An extension of this work to first order logic is under study. Another interesting extension would be to handle explicitly time in order to be able to deal with deadlines for instance. Moreover, the notion of penalty may play a key role in defining agent's reputation and trust degrees. It is clear that an agent that pays a lot of penalties during dialogues may lose its credibility, and will no longer be trusted. Examining more deeply penalties can help to figure out agents profiles: cooperative agent, consistent agent, thoughtful agent (i.e., agent which respects its promises)... Another possible refinement consists of introducing granularity in the definition of the function Cost. The basic idea is to take into account the content of moves when defining their costs. This captures the idea that, for instance, some asserted propositions are more important than others. For example, affirming that the weather is beautiful can be less important than affirming that the president is dead.

Hence, we have proven that if m is an assertion or an argumentation then PROP(CS i ∪ {m}) is inconsistent implies that m is necessarily violated. Using proposition 1, we get that c(A i ∪ {m}) = 0 which is contradictory with our assumption. For the case where m = Declare:x, we show that PROP(CS i ∪{m}) can not be inconsistent. Hence, in all cases, if c(A i ∪ {m}) = 0 then PROP(CS i ∪ {m}) is consistent. So, by induction the result is true for any set A i . 2

Lemma 1 Let X ⊆ M be a set of n moves and let m be a move uttered at step s ≤ n (m = X s), let m ′ be a new move uttered at step n + 1.

If m ′ is independent from m w.r.t. X and if Act(m ′) ∈ {Declare, Retract} then for all x ∈ Content(m) ∀S ⊆ L, (S, x) ∈ Arg(PROP(X)) ⇔ (S, x) ∈ Arg(PROP(X ∪ {m ′ })) (S, ¬x) ∈ Arg(PROP(X)) ⇔ (S, ¬x) ∈ Arg(PROP(X ∪ {m ′ }))
Proof. Since m ′ is neither a Retract nor a Declare move, then by definition of PROP, we have PROP(X ∪ {m ′ }) ⊆ PROP(X) ∪ PROP({m ′ }). Let x ∈ Content(m) then ∀S ⊆ L, if (S, x) ∈ Arg(PROP(X)) then (S, x) is an argument built from a greater set, i.e., (S, x) ∈ Arg(PROP(X ∪ {m ′ })). Now if we suppose that (S, x) ∈ Arg(PROP(X)) but that (S, x) ∈ Arg(PROP(X∪{m ′ })) it would mean that PROP({m ′ }) is new for x w.r.t. PROP(X). This contradicts the initial independence assumption. Hence (S, x) ∈ Arg(PROP(X)) ⇔ (S, x) ∈ Arg(PROP(X ∪{m ′ })). The same reasonning holds for an argument (S, ¬x).

Proposition 4 Let CS i be a commitment store obtained after n steps, m be a move already uttered in CS i , and let m ′ ∈ M be a move uttered at step n + 1.

If m ′ is independent from m w.r.t. CS i and if Act(m ′) ∈ {Declare, Retract} then m is violated in CS i ⇔ m is violated in CS i ∪ {m ′ }.

Proof. Note that for all m and for all m ′ whose speech act is not Retract we have (PROP P (CS i)) ⊆ (PROP P (CS i ∪ {m ′ })) (since m ′ is not a declarative move).

-(⇒) Let us suppose that m is violated in CS i , then there are 7 possibilities for m (not 8 since the retract move can not be violated): m = Assert:x it means that ∃ (S, ¬x) ∈ Arg(PROP(CS i)), hence, using Lemma 1, (S, ¬x) ∈ Arg(PROP(CS i ∪ {m ′ })), so m is also violated in CS i ∪ {m ′ }. m = Argue:(S, c) it means that ∃(S ′ , y) ∈ Arg(PROP(CS i) ∪ {m}) such that (S ′ , y) undercuts (S, c), this argument (S ′ , y) belongs to a greater set Arg(PROP(CS i) ∪ {m ′ }), hence m is also violated in CS i ∪ {m ′ }. m = Declare:x it means that either:

-(1)x ∈ Role(ag i) -or (2) ∃(S, ¬y) ∈ Arg(Prop(CS i)) with y ∈ Precond(x).

For the case (1) it implies that m is also violated in CS i ∪ {m ′ } since the roles can not evolve during the dialog. For the case (2), (S, ¬y) belongs also to the greater set Arg(Prop(CS i ∪ {m ′ })). Hence, m is violated in CS i ∪ {m ′ } in the two cases. m = Challenge:x it means that ∄ (S, x) ∈ Arg(PROP(CS i)) with S ≡ x.

Using Lemma 1, we get ∄ (S1, x) ∈ Arg(PROP(CS i ∪ {m ′ })). Hence, m is also violated in CS i ∪ {m ′ }. m = Question:x it means that (4) ∄ (S, x) ∈ Arg(PROP(CS i)) and (5) ∄ (S, ¬x) ∈ Arg(PROP(CS i)). Using Lemma 1 we get from (4) and (5) that ∄ (S2, x) ∈ Arg(PROP(CS i ∪ {m ′ })) and ∄ (S3, ¬x) ∈ Arg(PROP(CS i ∪ {m ′ })). So m is also violated in CS i ∪ {m ′ }. m = Request:x it means that ∄ (S, x) ∈ Arg(PROP(CS i) ∪ PROP P (CS i) and ∄ (S ′ , ¬x) ∈ Arg(PROP(CS i) ∪ PROP P (CS i)). Using Lemma 1, we get similarly as in the previous case that m is also violated in CS i ∪ {m ′ } m = Promise:x it means that ∄(S, x) ∈ Arg(PROP(CS i)), using Lemma 1, we get that ∄(S, x) ∈ Arg(PROP(CS i ∪ {m ′ })) and thus that m is also violated in CS i ∪ {m ′ }. -(⇐) Let us assume that m is violated in CS i ∪ {m ′ }, there are also 7 possibilities for m: m = Assert:x it means that ∃ (S, ¬x) ∈ Arg(PROP(CS i ∪ {m ′ })), if (S, ¬x) ∈ Arg(PROP(CS i)) then it would mean that PROP({m ′ }) is new for x w.r.t. PROP(CS i) which contradicts the initial independence assumption. Hence, (S, ¬x) ∈ Arg(PROP(CS i)), so m is also violated in CS i . m = Argue:(S, c) it means that ∃(S ′ , y) ∈ Arg(PROP(CS i) ∪ {m ′ }) such that (S ′ , y) undercuts (S, c), the initial independence assumption implies that (S ′ , y) should also belongs to Arg(PROP(CS i)), so m is also violated in CS i . m = Declare:x it means that either:

-(1)x ∈ Role(ag i) -or (2) ∃(S, ¬y) ∈ Arg(Prop(CS i) ∪ {m ′ }) with y ∈ Precond(x).

For the case (1) it implies that m is also violated in CS i ∪ {m} since the roles can not evolve during the dialog. For the case (2), we use again the initial independence assumption between m and m ′ which implies that (S, ¬y) belongs also to Arg(Prop(CS i)). Hence, m is violated in CS i in the two cases. m = Challenge:x it means that ∄ (S, x) ∈ Arg(PROP(CS i ∪ {m ′ })) with S ≡ x. This implies that it does not exist such an argument in a subset of this set, i.e., in Arg(PROP(CS i)). So, m is also violated in CS i . m = Question:x it means that ∄ (S, x) ∈ Arg(PROP(CS i ∪ {m ′ })) and ∄ (S, ¬x) ∈ Arg(PROP(CS i ∪ {m ′ })). Hence it does not exist an argument for or against x in the smaller set Arg(PROP(CS i)). So m is also violated in CS i . m = Request:x it means that ∄ (S, x) ∈ Arg(PROP(CS i ∪{m ′ })∪PROP P (CS i ∪ {m ′ })) and ∄ (S ′ , ¬x) ∈ Arg(PROP(CS i ∪ {m ′ }) ∪ PROP P (CS i ∪ {m ′ })).

A similar proof as in the previous case gives that m is also violated in CS i . m = Promise:x it means that ∄(S, x) ∈ Arg(PROP(CS i ∪{m ′ })) hence ∄(S, x)

∈ Arg(PROP(CS i)). m is also violated in CS i .

Proposition 5 Let CS i be a commitment store obtained after n steps, m be a move already uttered in CS i , and let m ′ ∈ M be a move uttered at step n + 1.

If the update operator associated to Declare is independency compatible and if m ′ is independent from m w.r.t. CS i and if Act(m ′) = Retract then m is violated in CS i ⇔ m is violated in CS i ∪ {m ′ }.

Definition 3 (-

 3 Move) If a ∈ S and either x ∈ L with x ⊢ ⊥, or x ∈ Arg(L) then m = a:x is a move. The function Act returns the speech act (Act(m) = a), -The function Content returns the content of the move (Content(m) = x).

A 1 O 1 ag 1 → ag 2 :

 112 Assert:¬pub Question:pub Argue:({pri, ¬agr, Challenge:¬pub pri ∧ ¬agr → ¬pub}, ¬pub) c(CS 1) = 0 ag 2 → ag 1 : But A is a minister (min) and information about ministers are public. A 2 O 2 Argue:({min, min → ¬pri}, ¬pri) ∅ c(CS 2) = 0 Yes, you are right. A 1 O 1 Assert:¬pub Question:pub Argue:({pri, ¬agr, Challenge:¬pub pri ∧ ¬agr → ¬pub}, ¬pub) Argue:({min, min → ¬pri}, ¬pri) c(CS 1) = 2 × Cost(Argue)

Table 1 .

 1 The semantics of the speech acts

	Move	Stored in	Violated if	Penalty
	Assert:x	Ai	∃ (S, ¬x) ∈ Arg(PROP(Ai))	Cost(Assert)
	Argue:(S, c)	Ai	∃(S ′ , y) ∈ Arg(PROP(Ai)) such that (S ′ , y) undercuts (S, c)	Cost(Argue)
			-x ∈ Role(agi)	
	Declare:x	Ai	-or ∃(S, ¬y) ∈ Arg(PROP(Ai))	Cost(Declare)
			with y ∈ Precond(x).	
	Question:x	Oj	∄ (S, x) ∈ Arg(PROP(Aj)) and ∄ (S, ¬x) ∈ Arg(PROP(Aj))	Cost(Question)
	Request:x	Oj	∄ (S, x) ∈ Arg(PROP(Aj) ∪ PROPP (Aj)) and ∄ (S ′ , ¬x) ∈ Arg(PROP(Aj) ∪ PROPP (Aj))	Cost(Request)
	Challenge:x	Oj	∄ (S, x) ∈ Arg(PROP(Aj)) with S ≡ {x}	Cost(Challenge)
	Promise:x	Ai	∄(S, x) ∈ Arg(PROP(Ai))	Cost(Promise)
	Retract:x not stored None	0

See Definition 2 in Section 2.

Appendix

Proposition 1

Proof. It comes directly from the definition of the cost of a commitment store: c(CS i) = m∈CSi s.t. m is violated in CSi Cost(Act(m)) and from the fact that

Proof. Since violation conditions are based on the existence of arguments and since the roles of agents are also syntax independent, we get: For any commitment store CS i , -for all argument (S, x) and (S ′ , y) such that S ≡ S ′ ,

Proof. We reason by induction on the set A i . If A i is empty then this property is verified. We suppose this property verified for a given set A i . And show that it is verified for A i ∪ {m}, ∀m ∈ M such that Act(m) ∈ {Assert, Argue, Declare}.

For this purpose, we suppose that c(A i ∪ {m}) = 0 (it means, by definition, that c(A i) = 0 and by induction hypothesis that PROP(CS i) is consistent) and we suppose that PROP(CS i ∪ {m}) is inconsistent. Let us consider every possible m:

where h ∈ S. A fortiori, (S ′ , ¬h) ∈ Arg(PROP(CS i ∪{m}). Hence S is undercut by S ′ so m is violated in A i ∪{m}. m = Declare:x Since PROP(CS i) is consistent by hypothesis, and also is x, and since ⋄ is an update operator verifying Winslett or Katsuno and Mendelzon postulates, then by using postulate M B4 of Winslett (or its equivalent U 3 in Katsuno and Mendelzon) we get that PROP(CS i) ⋄ {x} should also be consistent. Hence the assumption that PROP(CS i ∪ {m}) is inconsistent is absurd.

Proof. The previous proof stated that for all m and m ′ , if Act(m ′) ∈ {Declare, Retract} then PROP(CS i)) ⊆ (PROP(CS i ∪ {m ′ })).

Let us consider m ′ = Declare : x ′ , we have

If m is not a declare move, then the independence assumption implies that x ′ is independent of Content(m) w.r.t. PROP(CS i), then, since ⋄ is independency compatible, we have: (S, x) ∈ Arg(PROP(CS i) ⇔ (S, x) ∈ Arg(PROP(CS i) ⋄ x ′) and the same for (S, ¬x). Hence the violation of m in CS i is equivalent to the violation of m in CS i ∪ {m ′ }. Now, if m = Declare : x, then the independence assumption implies that x ′ is independent of Precond(x) w.r.t. PROP(CS i), then, since ⋄ is independency compatible, x ′ is also independent of Precond(x) w.r.t. PROP(CS i) ⋄ x ′ . Hence the result.