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Abstract

The paper describes a logical framework for handling uncertain spatial information,
and merging it when it comes from multiple sources. For this purpose, we use a
simple logical formalization for spatial ontologies and for property ontologies rela-
tive to different universes of discourse (these ontologies only involve subsumption
and mutual exclusiveness relations), since spatial information typically associates
properties to sets of parcels that are themselves described in terms of the spatial
and/or property vocabularies appearing in the ontologies.

Apart from the ontological information describing relations between labels, we
propose to represent a piece of spatial information as a pair, called “attributive for-
mula”, associating a property formula to a set of parcels (represented by a spatial
formula). A set of inference rules is given in order to be able to reason from these
attributive pairs. Then, we examine how uncertainty can be encoded in attributive
information, using possibilistic logic in a reified manner with respect to parcels.
Another important issue pointed out in this paper is that there are two ways to link
a property to an area, a first meaning is that the property is true everywhere in the
area, a second meaning is that the property is at least true somewhere in the area.
This distinction is necessary in order to be able to use both ontological informa-
tion (which can be encoded by “everywhere” attributive-formulas) and attributive
information (which contain the two kinds of attributive-formulas).

Lastly, the paper studies how information fusion problems can be handled in the
context of spatial data. The problems encountered do not come only from the un-
certainty and the possible inconsistency of information as in any information fusion
situations, but also from the fact that sources may use different space partitions
and may not explicitly specify the somewhere or everywhere reading associated to
the information.
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1 Introduction

The management of multiple source, symbolic or numerical, information raises
different types of representation, reasoning, and fusion problems due to the
uncertainty and the heterogeneity of information [7]. The spatial distribution
of information in geographical information systems [2,19,27] adds new features
to these problems. Spatial information may involve numerical as well as sym-
bolic attributes whose evaluation may use different vocabularies according to
the sources. The sources may also use different space partitions. Moreover,
there may exist possible dependencies between the pieces of information per-
taining to parcels that are close for instance. Spatial information fusion issues
may more generally take place in a variety of information handling problems
such as the management of multiple source spatial databases systems, the pre-
diction or the detection of changes over time of land-cover parameters (e.g.,
[32]), or in best location decision problems using multiple information sources
and multiple criteria.

Dealing with spatial data requires relatively powerful representation languages.
Geographic representation may privilege object-based or location-based views;
see, e.g. [22] for a discussion. Besides, a need is the ability to express structured
information about the vocabulary used. Ontologies are often used for repre-
senting this kind of information [19]. The fusion of ontology-based geospatial
information has been already considered, generally focusing on the problem
raised by the heterogeneity of vocabularies used by different sources. In partic-
ular, Duckham and Worboys [17] has proposed a method for fusing ontologies
on the basis of the instance-level information given by each source and pro-
jected on a product partition of the partitions used by the sources. It results in
an integrated taxonomy lattice where some new labels can be built as the meet
of labels of the different ontologies when necessary. The handling of uncertain
instance-level information is also discussed in this setting. In the geographical
context, fusion may also focus on more specific problems such as data match-
ing on the basis of distances and similarity between toponyms, see, e.g. [24] for
an approach using Shafer theory of evidence. In this paper, we are not dealing
with ontology integration, nor with data matching, but rather, we discuss the
problems raised by the merging of information provided by different sources
using different space partitions, and expressed with more or less precise labels
belonging to the same (possibly integrated) ontology.

There exist very few authors using a formal logic approach for handling ge-
ographical information, up to some noticeable exceptions such as Papini et
al. [32]. In the following, we also use a logical framework for processing on-
tological information and “attributive formulas” linking a set of parcels to a
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property statement. The simple type of ontology that we consider can be logi-
cally expressed by three and only three kinds of information about vocabulary
symbols, namely, 1) a label can be a sub-category of another label, 2) a label
is the reunion of its sub-labels, 3) labels referring to the most specific classes
are mutually exclusive two by two.

Another need when dealing with spatial information is to be able to take
into account any spatial information even if it is imprecise or pervaded with
uncertainty [21]. This is why we allow for “uncertain attributive formulas”
linking a set of parcels to a property associated with a certainty degree. An
(uncertain) attributive formula allows us to express that for any parcel of a
given set of parcels, (we are sure at least at a given level that) a property is
true. We also provide the possibility to express that at least one parcel in a
set of parcels has a given property. Moreover it is also useful to distinguish
between statements that hold everywhere on set of parcels, or maybe only
somewhere in a parcel.

A very preliminary version [10] of this paper focused on an informal discus-
sion of the problems raised by the handling of uncertain spatial information
possibly referring to several property ontologies. The present paper makes a
step forward by providing a logical framework for handling spatial information
and ontological information. Another step is made by handling the merging
of spatial information in the general setting of logical information fusion.

In such a spatial data representational language, even if ontological infor-
mation and attributive formulas can be expressed in the same formalism, it
is important to distinguishing cautiously their “somewhere” or “everywhere”
readings when processing them. Indeed, we show that while inheritance rela-
tions coming from an ontology can safely be integrated to a spatial knowledge
base expressed by attributive formulas, terminological mutual exclusiveness
relations between labels cannot. Their integration is possible if their precise
reading (everywhere, or somewhere) is explicited or if a strong hypothesis is
made, namely that an elementary parcel cannot satisfy two terminologically
mutually exclusive properties (hence, e.g., forbidding a parcel to contain both
“Orchards” and “Cereals”).

The paper is organized in the following way. Section 2 discusses issues related
to the representational needs in the spatial information domain. In section
3, we describe a simple way to logically represent ontological information (in
our restricted sense). In the fourth section we introduce the notion of an “at-
tributive formula” as a reified formula where a property is attached to a set
of parcels, with the meaning that each parcel has this property. Then “uncer-
tain attributive formulas” are defined, and finally, the explicit precision of the
“somewhere” or “everywhere” reading associated to an attributive formula is
introduced. Section 5 first recalls the basis of information fusion in a possi-
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bilistic setting, and then shows how to integrate its principles in the context of
“attributive formulas” representing spatial information. It is illustrated on a
spatial information fusion example, inspired from [28]. Section 6 discusses the
problem of reformulating spatial information in terms suitable for a user, and
then briefly introduce two potential extensions of the representation language.
The first extension allows us to represent the fact that a property holds on a
given percentage of a parcel. The second extension would allow us to represent
“positive” information stating what is known as being “guaranteed possible”,
together with classical (”negative”) information that states what is impossible
or excluded, when dealing with imprecision or uncertainty.

2 The representational needs

A specific aspect of spatial information is that information is associated to
parcels that are geographically identified (the parcels are usually defined through
partitions of the territory). This means that information is of the type “property-
object”, where the objects are here parcels or sets of parcels. Moreover, in-
formation may be numerically or symbolically expressed. It is often the case
that the symbolic labels used are referring to a hierarchy of concepts rather
than belonging to an unstructured set. Lastly, both numerical and symbolic
information may be pervaded by several forms of uncertainty and imprecision.

2.1 Ontology of properties

As just said, the attribute values or properties associated to parcels may be not
just elements of an attribute domain, but may be symbolic labels taken from
a vocabulary organized in an ontology. We use the term ontology here, in the
weak technical sense of a graph structure between concepts, where the arrows
encode specialization/subsumption relations. For instance, Figure 1 provides
an example of (a part of) an ontology about land cover (where arrows refer to
generalization relations).

Observe that an ontology may neither have, in general, a tree structure (con-
nected and with no simple cycle), nor a lattice structure (which requires that
each pair of nodes has a unique least upper bound and a unique greatest lower
bound). The ontology of Figure 1 is not a lattice since, for instance, there is no
greatest lower bound of {Woods, Agricultural areas}, indeed there are two ele-
ments, namely “Ornamental trees” and “Orchards” which are maximal among
the labels that are lower than “Woods” and “Agricultural areas”, but none of
them is greater than the other.
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Land cover

Water Vegetation ...

Rivers Lakes Agr.
areas

Woods Meadows ...

Rice plant. Cereals Orchards Orn. trees ... ...

⊥

Fig. 1. Example of a fragment of an ontology

2.2 Ontology of parcels

In the partition of a territory, particular subsets of parcels may have names.
The inclusion relation between sets of parcels can be also represented by an
ontology, as for properties. However, one may further assume here that, even if
several spatial ontologies may coexist (due to the existence of several points of
view in the way the geographical space can be portioned in a meaningful way),
all these ontologies share the same set of elementary parcels. See Figure 2 that
exhibits two spatial ontologies Gs and Gs′, where in each case, the leaves, i. e.
our elementary parcels, are the parcels p1, . . . , p6. A similar assumption seems
more difficult to do for “property” ontologies, used by different sources.

2.3 Uncertainty in spatial information

In the field of spatial information, as in other fields, information may be im-
precise, pervaded with uncertainty or be inconsistent. Spatial information may
take different classical formats.

• In a relational data base style, each object, i.e., a parcel here, is described
in terms of attributes, and is thus associated with a set of attribute values.

• More simply in formal concept analysis [31,20], a relation specifies the links
between objects and properties. This enables us to describe sets of objects
both in extension and in intention, through a set of characteristic prop-
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Gs Gs′

p1 p23

p4 p56

p14 p2 p3

p5 p6

⊤

p1 p23 p4 p56

p2 p3 p5 p6

⊥

⊤

p14 p2 p3 p5 p6

p1 p4

⊥

Fig. 2. Two space ontologies

erties. Then a pair (extension, intention) whose components are referring
to each other in a bi-univoque way formally defines a concept. However,
the vocabulary is often insufficient for describing any subset of objects in a
non-ambiguous way, or conversely given a set of properties there may be no
proper set of objects that satisfy them and only them.

• The two previous types of representation can be encoded using fragments
of first order logic, where constants can either represent objects or attribute
values.

When uncertainty takes place, attribute values of objects may become ill-
known, and then represented by distributions over possible values or over
logical interpretations. In the case of relational database representations, the
distributions are defined on the attribute domains, in formal concept analysis
the distributions are defined on a yes-no domain referring to the fact that
the object has, or not, the property. In the logical formalism, the formulas
become associated to certainty levels that act as constraints on underlying
distributions over interpretations.

For instance, one may know that a parcel is covered either by “cereals” or
by “meadows”, where the two categories are mutually exclusive. Such a dis-
junctive value is not allowed in standard relational databases, or in standard
formal concept analysis, while it raises no problem in a logical representation.
Moreover, in case of imprecise information (as in the above example), it might
be useful to represent that some alternatives are more possible or likely than
others. Disjunction may apply also to non mutually exclusive categories, as
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in the expression “cereals or vegetation” whose intended meaning could be
as such “it is likely to be cereals, although any other vegetation might be
possible”.

Since we are dealing with spatial information, there may be some ambiguity
on the way attribute values or properties apply to the parcels: they may apply
either to the whole parcel or only to a sub-part of it. For instance, if it is known
that a parcel is covered by “rocks” and “sand” then it may mean that a part
of the parcel is covered by “rocks” and another part by “sand”. In such a case
it may be interesting to make the representation more precise by associating
to the logical conjunction of the categories some additional information about
the percentage of the parcel respectively covered by “rocks” or by “sand”.

3 A logical encoding of taxonomic information

Let L be a propositional logical language built on a vocabulary V where
the usual propositional connectives are denoted by ∧, ∨, → (representing the
logical “and”, “or”, and material implication respectively). In the following,
we introduce the logical encoding that we associate to an ontology.

Although description or terminological logics [1] have been developed, as
tractable fragments of first order logics, for encoding ontologies, we use a sim-
plified propositional encoding of the intuitive notion of ontology [30] in this
paper, which is sufficient for handling fusion problems of symbolic information
expressed by means of category labels.

Definition 1 An ontology is a graph G = (X,U) where X ⊆ L is a set of
formulas (each of these formulas encodes a category referred to in the ontology)
and U is a set of directed edges or arcs. Each arc (ϕ, ψ) ∈ U represents the
fact that ϕ is a subclass of ψ. An ontology is connected, without circuit and it
admits one and only one source (vertex without predecessor) equal to ⊥ and
one and only one sink (vertex without successor). Moreover all the subclasses
that have ⊥ as predecessor are mutually exclusive two by two. These subclasses
are called leaves. Each class which is not a leave nor ⊥ is equivalent to the
union of all its predecessors.

The levels of the ontology are defined inductively as: Level 0 (L0) is the set
of vertices that have no predecessor, Level i is the set of vertices that have no
predecessor in G \ (L0 ∪ . . . Li−1) and so on.

Example 1 The ontology of Fig.1 have four levels:
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L0: ⊥

L1: Rivers; Lakes; Rice plantations; Cereals; Orchards; Orn. trees;Meadows

L2: Water; Agricultural areas; Woods

L3: Vegetation

L4: Land cover

Let Γ+(x) and Γ−(x) be the set of successors of x and the set of predecessors
of x respectively. An ontology will be encoded in the following way.

Definition 2 (logical encoding of an ontology) Any graph G = (X,U)
representing an ontology can be associated to a set LG of formulas that hold:

1. ∀(ϕ, ψ) ∈ U , it holds that ϕ→ ψ.

2. ∀ϕ ∈ X \ {L1 ∪ L0}, it holds that ϕ→
∨

ϕi∈Γ−(ϕ) ϕi.

3. ∀ϕ, ψ ∈ L1, it holds that ϕ ∧ ψ → ⊥.

4. ∀(ϕ, ψ) ∈ X ×X, s.t. ϕ ⊢ ψ, it exists a directed path from ϕ to ψ in G.

The first formula expresses that an inclusion relation holds between two cat-
egories. The second is a kind of categorical closed world assumption express-
ing that all the sub-categories of a category appear in the ontology. It is
always possible to satisfy this assumption by adding for each category C a
sub-category “other elements of C”. The third formula expresses that at the
bottom of the hierarchy, sub-categories are mutually exclusive two by two. It
is usually assumed in an ontology that all the inclusion relations are known,
namely, in other words, if there is no directed path between two categories
then there cannot exist an inclusion relation between them. This is expressed
by the last requirement. It expresses that the graph must be complete with
respect to its logical encoding, any implication that holds between two formu-
las of the ontology should be readable in the graph under the form of an arc,
or more generally a path.

From this definition, it follows that ∀ϕ ∈ X, ϕ→
∧

ϕi∈Γ+(ϕ) ϕi. It also follows
that ∀ϕ ∈ X, ϕ → Sink where Sink is the sink of G (since G is connected,
using Property 1 of Definition 2). Another consequence is that the simplest
non-trivial ontology contains at least two nodes different from ⊥ and Sink.
These two nodes are mutually exclusive.

Proposition 1 Given any pair of formulas (ϕ, ψ) ∈ X × X, the logical en-
coding of the ontology G = (X,U) allows us to decide if
- {ϕ ∧ ψ} ∪ LG is consistent or not;
- if ϕ ∪ LG ⊢ ψ or not;
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Example 2 See Figure 1, considering the formulasWater and Ornamental trees,
using the logical encoding LG of the ontology given in Figure 1, we get that
{Water} ∪ LG ⊢ Rivers ∨ Lake ∨RiceP lantations.
Moreover, {Ornamental trees ∧ Rivers} ∪ LG ⊢ ⊥
and {Ornamental trees ∧ Lakes} ∪ LG ⊢ ⊥,
hence {Water ∧ Ornamental trees} ∪ LG ⊢ ⊥.

Similarly, we can establish that Water and V egetation have a common sub-
class since {Water ∧ V egetation} ∪ LG ⊢ Rice plantation.
Hence, LG ⊢Water ∧ V egetation ↔ Rice plantation.

We have only illustrated our view of an ontology for property labels. How-
ever, Definition 2 and Proposition 1 are supposed to apply as well for spatial
ontologies.

4 A representation language for spatial information

The logical representation of spatial information makes use of the following
notations. Let P = {p1, . . . , pn} be a set of symbolic labels attached to el-
ementary parcels in the sense of a spatial ontology Gs encoded by LGs in a
logical language Ls where the formulas of Ls are denoted by Roman letters.
Thus these elementary parcels are supposed to be the leaves of the ontology
Gs. The third condition in the definition of ontologies guarantees their mu-
tual exclusiveness. Besides, we shall consider a set of formulas expressed in a
language Li, called i-formulas that are formulas based on a vocabulary Vi,
denoted by Greek letters. Vi and Vs may be the underlying vocabularies of
ontologies of properties and parcels in the sense of the previous section, but
this aspect will be left aside until section 6.

4.1 Attributive formulas

The core of spatial information is attributive in nature. A piece of spatial
information expresses a link between the description of a parcel and some
property. This attributive link property-parcel should not be confused with
two other basic links that we already encountered: i) link property-property
(reflecting the knowledge encoded in an ontology Gi of properties, or ii) link
parcel-parcel (given by an ontology Gs of parcels).

Since we need to express binary links, our representational language is built on
ordered pairs of formulas of Li×Ls, here denoted (ϕ, p). Such formulas should
be understood as formulas of Li reified by association with a set of parcels
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described by a formula of Ls. In other words, to each formula is attached a set
of parcels, where this formula applies. More precisely, (ϕ, p) expresses that ϕ
is true for each elementary parcels satisfying p. Another understanding would
view (ϕ, p) as the material implication ¬p ∨ ϕ in the language based on the
union of the two vocabularies Vi and Vs. Alternatively, in a first order logic
language view, this may be also understood as ∀x, p(x) → ϕ(x), here p(x)
means “x ∈ p”, equating formula p with the union of elementary parcels x
satisfying p. A pair (ϕ, p) will be called an attributive formula.

Definition 3 (attributive formula) An attributive formula f , denoted by
a pair (ϕ, p), is a formula of the propositional language based on the vocabulary
Vi ∪ Vs where the logical equivalence f ≡ ¬p ∨ ϕ holds and p contains only
variables of the vocabulary Vs (p ∈ Ls) and ϕ contains only variables of the
vocabulary Vi (ϕ ∈ Li).

The intuitive meaning of f = (ϕ, p) is that for the set of elementary parcels
that satisfy p, the formula ϕ is true.

Observe that there exist propositional formulas built on the vocabulary Vi∪Vs

which cannot be put under the attributive form, e.g., a∧p1 where a is a literal
of Vi and p1 a literal of Vs; see also Section 6.1 for further discussions.

The introduction of classical connectives (∧, ∨ and ¬) between attributive
formulas does make sense, since any pair (ϕ, p) is a classical formula. Thus,
formulas such as ¬(ϕ, p) or (ϕ1, p1) ∨ (ϕ2, p2) are allowed.

From the above definition of (ϕ, p) as being equivalent to ¬p ∨ ϕ, several
inference rules straightforwardly follow from classical logic:

Proposition 2 (inference rules on attributive formulas)
1. (¬ϕ ∨ ϕ′, p), (ϕ ∨ ϕ′′, p′) ⊢ (ϕ′ ∨ ϕ′′, p ∧ p′)
2. (ϕ, p), (ϕ′, p) ⊢ (ϕ ∧ ϕ′, p)
3. (ϕ, p), (ϕ, p′) ⊢ (ϕ, p ∨ p′)
4. if p′ ⊢ p then (ϕ, p) ⊢ (ϕ, p′)
5. if ϕ ⊢ ϕ′ then (ϕ, p) ⊢ (ϕ′, p)

Corollary 1 The converse of 2. holds: (ϕ ∧ ϕ′, p) ⊢ (ϕ, p), (ϕ′, p)

Proof : This property is due to 5. 2

Corollary 2 (ϕ, p), (ψ, p′) ⊢ (ϕ ∨ ψ, p ∨ p′)

Proof : Due to 5. and 3. 2
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This corollary allows to deduce the following cutting rule:

(ϕ, p), (¬ψ,¬p) ⊢ (ψ → ϕ,⊤)

Note that (ψ → ϕ,⊤) means here that for each parcel, the implication ψ → ϕ

holds.

Example 3 For instance, let us reason on a set of parcels representing coun-
tries in a given area A. If we know that every Eastern country in A has a
despotic government (despot, east) and if we know that in A there is no oil
exploitation outside Eastern countries (¬oil,¬east) then we could conclude
that oil exploitations lead to despotism in A (oil → despot,⊤), meaning that
this implication is true in each country (of A).

Corollary 3 (ϕ, p), (ψ, p′) ⊢ (ϕ ∧ ψ, p ∧ p′)

Proof : Due to 2. and 4. 2

Example 4 Let us consider the two facts (Cereals, p1) and (Orchards, p1 ∨
p2) where p1 and p2 are two elementary parcels and Cereals and Orchards

are two literals of Vi. Note that (Orchards, p1 ∨ p2) means that Orchards
is true for p1 and for p2, at least. In particular, the second formula entails
(Orchards, p1) and thus we have (Cereals ∧ Orchards, p1).

Assume now that we also have the formula (¬Orchards∨¬Cereals,⊤). This
formula means that for any parcel, Orchards and Cereals are mutually ex-
clusive. Such a piece of information has not to be understood as an encoding
of a terminological knowledge coming from an ontology but as some practical
knowledge stating that there is no parcel containing both cereals and orchards.
Then one can now deduce that (⊥, p1) which expresses inconsistency about the
information pertaining to p1.

Note that the inconsistency in the above example does not affect the informa-
tion (Orchards, p2) pertaining to p2. The reification allows us to keep incon-
sistency local.

Besides, we can observe in the above example that (Orchards, p1 ∨ p2) does
not mean that there are orchards in p1 or in p2. This latter piece of informa-
tion would be expressed by the disjunction (Orchards, p1) ∨ (Orchards, p2).
Similarly, (¬Orchards, p1 ∨ p2) means that neither in p1 nor in p2 there are
orchards, while ¬(Orchards, p1∨p2) means that at least one parcel of {p1, p2}
has no orchards.

The reified attributive formulas considered above are similar to the ones en-
countered in a recent multi-agent extension of possibilistic logic [15]. Here, a
parcel plays the role of an agent. Namely, here instead of representing that
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any agent in a subset has some belief ϕ, we express that ϕ is true for any
elementary parcel in a subset. As in the multi-agent case, this formalism can
be extended in order to handle uncertainty of formulas, as well as existential
quantification on subsets of parcels.

4.2 Uncertain attributive formulas

Our attributive formula-based language is now extended in a possibilistic logic
manner, by allowing uncertainty on properties. Let us recall that a standard
propositional possibilistic formula [12] is a pair made of a logical proposition
(which can be only true or false), associated with a certainty level. More pre-
cisely, the semantic counterpart of a possibilistic formula (ϕ, α) is a constraint
N(ϕ) ≥ α expressing that α is a lower bound on the necessity measure N
[13] of logical formula ϕ, which expresses available knowledge. Possibilistic
logic has been proved to be sound and complete with respect to a seman-
tics expressed in terms of the greatest possibility distribution π underlying
N (N(ϕ) = 1 − supω|=¬ϕ π(ω)). This distribution rank-orders interpretations
according to their plausibility [12] (see section 6.1 for the general expression
of such a distribution π associated with a possibilistic logic base).

Note that a possibilistic formula (ϕ, α) can be viewed at the meta level as
being only true or false, since either N(ϕ) ≥ α or N(ϕ) < α. Thus, this allows
us to introduce possibilistic formula instead of propositional formula inside
our attributive pair, and leads to the following definition.

Definition 4 (uncertain attributive formula) An uncertain attributive for-
mula is a pair ((ϕ, α), p) meaning that for the set of elementary parcels that
satisfy p, the formula ϕ is certain at least at level α.

The inference rules of possibilistic logic [12] straightforwardly extend into the
following rules for reasoning with uncertain attributive formulas:

Proposition 3 (inference rules on uncertain attributive formulas)
1. ((¬ϕ ∨ ϕ′, α), p), ((ϕ ∨ ϕ′′, β), p′) ⊢ ((ϕ′ ∨ ϕ′′,min(α, β)), p ∧ p′)
2. ((ϕ, α), p), ((ϕ′, β), p) ⊢ ((ϕ ∧ ϕ′,min(α, β)), p)
3.A. ((ϕ, α), p), ((ϕ, β), p′) ⊢ ((ϕ,min(α, β)), p ∨ p′)
3.B. ((ϕ, α), p), ((ϕ, β), p′) ⊢ ((ϕ,max(α, β)), p ∧ p′)
4. if p ⊢ p′ then ((ϕ, α), p′) ⊢ ((ϕ, α), p)
5. if ϕ ⊢ ϕ′ then ((ϕ, α), p) ⊢ ((ϕ′, α), p)

The fourth and the third rules (3.B. and 3.A.) correspond respectively to the
fact that either i) we locate ourselves in the parcels that satisfy both p and
p′ and then the certainty level of the formula ϕ can reach the maximal upper
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bound of the certainty levels known in p or in p′, or that ii) we consider any
parcel in the union of the models of p and p′ and then the certainty level is
only guaranteed to be greater than the minimum of α and β.

Note that this representation formalism allows us, in particular, to express
a greater uncertainty about a rather specific label for a parcel than about a
more general label as in the following example.

Example 5 In order to express that parcel p1 has either orchards or orna-
mental trees and more plausibly orchards, we can use the two uncertain at-
tributive formulas with p1: ((Orchards, α1), p1) and ((Ornamental trees ∨
Orchards, α2), p1) where α1 ≤ α2. At the semantic level, this is represented by
the possibility distribution associated with p1:

π(ω) =



























1 if ω |= Orchards,

1 − α1 < 1 if ω |= Ornamental trees ∧ ¬Orchards,

1 − α2 otherwise.

Suppose now, that parcel p2 has almost certainly woods and more plausibly
orchards, knowing that orchards are woods. This can be represented by the
possibility distribution associated with p2:

π(ω) =







































0 if ω |= Orchards ∧ ¬Woods,

1 − α2 if ω |= ¬Orchards ∧ ¬Woods,

1 − α1 if ω |= ¬Orchards ∧Woods,

1 if ω |= Orchards ∧Woods,

This distribution can be syntactically encoded by the three formulas ((¬Orchards∨
Woods, 1),⊤), ((Woods, α2), p2) and ((Orchards, α1), p2), with α2 ≥ α1.

4.3 Existential quantification of parcels

In the previous part of the section, we have considered attributive pairs (ϕ, p)
as formulas expressing that in each parcel satisfying p, ϕ holds. Now, we may
want to express that ϕ holds at least in one parcel satisfying p.

Definition 5 (existential attributive formula) We denote by a pair (ϕ, [p])
the formula expressing that ϕ holds at least in one parcel satisfying p. This for-
mula is logically equivalent to ¬(¬ϕ, p).

13



We can check that the following inference rules hold:

Proposition 4
1. (¬ϕ ∨ ψ, p), (ϕ, [p]) ⊢ (ψ, [p])
2. (¬ϕ ∨ ψ, p), (ϕ ∨ ρ, [p]) ⊢ (ψ ∨ ρ, [p])

Proof : 1. Let us assume that (¬ϕ ∨ ψ, p) and (ϕ, [p]) and that (¬ψ, p).
Then using resolution rule of Property 2.1 with the first and third formulas,
we get (¬ϕ, p). Now, (ϕ, [p]) can be translated into ¬(¬ϕ, p). Hence, we
obtain a contradiction. This means that the hypothesis that (¬ψ, p) holds
when (¬ϕ∨ψ, p) and (ϕ, [p]) holds is absurd. Thus, (¬ϕ∨ψ, p) and (ϕ, [p])
implies (¬(¬ψ, p), i.e., (ψ, [p]).

2. Let us suppose that (¬ϕ∨ψ, p) and (ϕ∨ρ, [p]). By definition, (ϕ∨ρ, [p])
is equivalent to ¬(¬ϕ∧¬ρ, p). Using the contrapositive of Property 2.2, we
get ¬(¬ϕ, p) ∨¬(¬ρ, p), that is equivalent by definition to (ϕ, [p])∨ (ρ, [p]).
Using Property 4.1 between (¬ϕ∨ψ, p) and (ϕ, [p])∨(ρ, [p]), we get (ψ, [p])∨
(ρ, [p]). This is equivalent by definition to ¬(¬ψ, p) ∨ ¬(¬ρ, p). Knowing
that ¬ψ ∧¬ρ ⊢ ¬ψ, using Property 2.5, we get that (¬ψ ∧¬ρ, p) ⊢ (¬ψ, p),
similarly we can obtain that (¬ψ∧¬ρ, p) ⊢ (¬ρ, p). Hence that (¬ψ∧¬ρ, p) ⊢
(¬ψ, p) ∧ (¬ρ, p). By contraposition, we get ¬(¬ψ, p) ∨ ¬(¬ρ, p) ⊢ ¬(¬ψ ∧
¬ρ, p), that is equivalent by definition to (ψ ∨ ρ, [p]). 2

Note that taking ϕ = ⊤ in Proposition 4.1 we obtain that:

If ¬(⊥, p) then (ψ, p) ⊢ (ψ, [p])

which means that if the information about p is not inconsistent, one can
weaken it existentially on parcels.

The above inference rules clearly extend to the case where information is
uncertain. Indeed we have:

((¬ϕ ∨ ψ, α), p), ((ϕ ∨ ρ, β), [p]) ⊢ ((ψ ∨ ρ,min(α, β)), [p])

Moreover, keeping in mind that ((ϕ, α), p) means that at least in the ele-
mentary parcels satisfying p (it may be the case for other parcels also), ϕ is
certain at least at level α, one can as well express that at most in the ele-
mentary parcels satisfying p, ϕ is certain at least at level α, by the expression
¬((ϕ, α), [¬p]). This last expression indeed means that it is not the case that
ϕ is certain at least at level α in the elementary parcels outside p (the mod-
els of ¬p are the elementary parcels that does not satisfy p). Note that the
expression ¬((ϕ, α), [¬p]) is thus equivalent to (¬(ϕ, α),¬p), which precisely
states that ϕ is not at least α-certain for any elementary parcel outside p.
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4.4 Localization of attributive knowledge

We have seen that geographical information systems should handle two kinds
of information : ontological information pertaining to property hierarchies or
to spatial organization on the one hand, and attributive information linking
parcels to properties on the other hand. Still, attributive information itself
may have two different intended meaning, namely when stating (ϕ, p) one
may want to express:

• that everywhere in each parcel satisfying p, ϕ holds as true. For instance,
in such a case, (V egetation, p) cannot be consistent with (Lakes, p) since
“Vegetation” and “Lakes” are mutually exclusive in the ontology of Figure
1.

• that somewhere in each parcel satisfying p, ϕ holds as true. In that case, the
two previous formulas should not be considered as inconsistent, in spite of
the ontology, since in each parcel of p there may exist different areas covered
by “Vegetation” and “Lakes” respectively.

Note that the two above situations should not be confused with still another
case where two distinct mutually exclusive labels such as “Vegetation” and
“Lakes” might be attached to the same area because they are intimately mixed
in this area, as in a “swamp”. This latter case should be handled by adding a
new appropriate label in the ontology.

More formally, viewing an elementary parcel p as a collection of more elemen-
tary objects o, when we assert (ϕ, p, somewhere), it really means that ∃o ∈
p, ϕ(o). If the parcel p is not elementary then the formula (ϕ, p, somewhere)
has to be understood as for all p′ such that p′ ⊢ p, (ϕ, p′, somewhere) holds.
Thus, it should be clear that all the inference rules of Proposition 2, which hold
for the “everywhere” understanding, no longer necessarily hold in the “some-
where” reading. Indeed, the inference rule 2.2 (ϕ, p), (ψ, p) ⊢ (ϕ ∧ ψ, p) is no
longer compatible with this reading of attributive formulas since ∃o ∈ p, ϕ(o)
and ∃o′ ∈ p, ψ(o′) does not entail ∃o′′ ∈ p, ϕ(o′′) ∧ ψ(o′′). More generally, here
are the counterparts of proposition 2 that holds for the “somewhere” reading:

Proposition 5 (inference rules on attributive formulas)
1’. (¬ϕ ∨ ϕ′, p ∧ p′, e), (ϕ ∨ ϕ′′, p′, s) ⊢ (ϕ′ ∨ ϕ′′, p ∧ p′, s)
2’. (ϕ, p, s), (ϕ′, p, e) ⊢ (ϕ ∧ ϕ′, p, s)
3’. (ϕ, p, s), (ϕ, p′, s) ⊢ (ϕ, p ∨ p′, s)
4’. if p′ ⊢ p then (ϕ, p, s) ⊢ (ϕ, p′, s)
5’. if ϕ ⊢ ϕ′ then (ϕ, p, s) ⊢ (ϕ′, p, s) where (ϕ, p, s) stands for all p′ such that
p′ ⊢ p ∃o ∈ p′, ϕ(o), and (ϕ, p, e) for ∀o ∈ p, ϕ(o).

Moreover, we have the following relation between “somewhere” and “every-
where” formulas:
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6’. ¬(ϕ, p,s) ≡ (¬ϕ, p,e)

Moreover, the terminological knowledge encoded by property or spatial on-
tologies also interferes with the “somewhere” and “everywhere” readings of
attributive formulas. Terminological information and attributive information
should be handled separately, not only because they refer to two different types
of information but, more importantly, because terminological distinctions ex-
pressed by mutual exclusiveness of labels do not mean that these distinct
labels cannot be simultaneously true in a given area. For instance, saying that
“Orchards” are not “Meadows” and conversely, does not prevent to have both
“Meadows” and “Orchards” on the same parcel. But it would become forbid-
den if we had the strongly restrictive assumption that the size of the parcels are
adapted to the leaves of the property ontology in such a way that any elemen-
tary parcel cannot be associated to several mutually exclusive properties (of
the same ontology). Under this latter assumption, the “somewhere” and “ev-
erywhere” readings would be equivalent. In other words, mutual exclusiveness
between ontology labels (e.g a↔ ¬b where a and b are propositional symbols
of Vi coming from the same ontology of properties) has not the same meaning
as its counterpart put in an attributive form (a ↔ ¬b,⊤) applied universally
(i.e., with the “everywhere” reading) to each parcel, since it may happen that
for a parcel p, we have (a, p) ∧ (b, p) (with a “somewhere” reading).

This is why it is not possible to mix mutual exclusiveness of terminological
labels of an ontology with attributive knowledge in general. Indeed, ontological
mutual exclusiveness of ϕ and ψ means that ∀o, ϕ(o) ↔ ¬ψ(o). But it does not
prevent from having (ϕ, p)∧ (ψ, p), since the latter means ∃o ∈ p, ϕ(o)∧∃o′ ∈
p, ψ(o′), and, in general, p may contain at least two distinct objects o and o′.

However, subsumption properties can be added to attributive formulas with-
out any problem. Indeed ϕ ⊢ ψ means ∀o, ϕ(o) → ψ(o), and if we have (ϕ, p),
implicitly meaning that ∃o ∈ p, ϕ(o), then we obtain ∃o ∈ p, ψ(o), i.e., (ψ, p).
Thus we can write the subsumption property as (ϕ→ ψ,⊤).

5 Information fusion

Spatial information may be provided by different sources. We assume in the
following that these sources are equally reliable. However these sources may
or may not use the same ontology of properties and the same spatial ontology.
Generally speaking, fusing consistent knowledge bases does not raise any spe-
cial problem since it amounts to infer from the union of the knowledge bases,
i.e, apply inference rules such as the ones of Proposition 2 (or Proposition 3
in case of uncertainty) and Proposition 5 (for the “somewhere” formulas). In
presence of inconsistency, another combination process should be defined and
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used.

In this section, we first provide a short background on information fusion and
its possibilistic logic encoding, before discussing the problems raised by the use
of different ontologies by the sources. Finally, we develop an example where
two sources use the same property ontology for spatial information but dif-
ferent space partitions and express information in the logical representational
language introduced in section 4.

5.1 Background on fusion in possibilistic logic

Suppose we have two pieces of information ϕ and ψ provided by two different
sources. If ϕ and ψ are consistent, the fusion is straightforward and yields
the conjunction ϕ ∧ ψ. If ϕ ∧ ψ ≡ ⊥ then at least one of the two sources
should be wrong. But, if we do not want to throw away all pieces of infor-
mation, one may still assume that one is right, this yielding the disjunction
ϕ ∨ ψ as a result of the fusion. In case of inconsistency, instead of building a
disjunction, another possibility would be to weaken the “everywhere” reading
leading to inconsistency into a “somewhere” reading. In the particular case
of an inconsistency due to a mutual exclusiveness constraint coming from an
ontology, still another way of getting rid of this inconsistency is to introduce
new labels in the ontology which would be compatible with the apparently
conflicting labels (as in the “swamp” example above). This latter option has
been proposed by Doukari and Jeansoulin [11].

In standard possibilistic logic, conflict becomes a matter of degree. Let us
assume that the information provided by the two sources can be represented
by two possibilistic logic bases Σ1 and Σ2 where Σ1 = {(ϕi, αi), i = 1, . . . , m}
and Σ2 = {(ψj , βj), i = j, . . . , n}. Σ1 can be semantically associated with a
possibility distribution [12] π1 such that:

π1(ω) =











1 if ω |= ϕ1 ∧ · · · ∧ ϕm,

1 − max{αi s.t. (ϕi, αi) ∈ Σ1, ω |= ¬ϕi} otherwise

The possibility distribution π2 associated with Σ2 is similarly defined. Thus,
the conjunctive combination Σ1∪Σ2 will be associated with πΣ1∪Σ2

= min(π1, π2).
When ∄ω, s.t. πΣ1∪Σ2

(ω) = 1, this means that ϕ1∧· · ·∧ϕm∧ψ1∧· · ·∧ψn ≡ ⊥.
Let hgt(π) = maxω π(ω) be the height of a possibility distribution π. Then,
the level of inconsistency of Σ1 ∪ Σ2, denoted Inc(Σ1 ∪ Σ2), is defined by
Inc(Σ1 ∪Σ2) = 1−hgt(min(π1, π2)). The subset of all the formulas in Σ1 ∪Σ2

with a certainty level strictly greater than Inc(Σ1 ∪ Σ2) is consistent [12].
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This leads to a renormalized conjunction mode defined by

πrenorm.conj.(ω) =











min(π1(ω), π2(ω)) if min(π1(ω), π2(ω)) < hgt(min(π1, π2))

1 otherwise

Thus, a natural idea underlying so-called adaptive fusion operators for two
possibility distributions π1 and π2, is to look for combination operations pa-
rameterized with the level of inconsistency Inc. These operators are such that
if Inc = 0 the conjunctive min-based combination of the distributions is re-
trieved, and if Inc = 1 the disjunctive max-based combination of the distri-
butions is obtained. Two examples of such a rule are [16]:

πadapt(ω) = max(min(π1(ω),π2(ω))
hgt(min(π1,π2))

,min(max(π1(ω), π2(ω)), hgt(min(π1, π2))))

πmed(ω) = min(max(π1, π2),max(π1, Inc),max(π2, Inc))

The first rule provides a distribution that is always normalized (thus the rule
gets rid of inconsistency). It is not the case of the second one which is just a
median operation.

Besides, the syntactic counterpart of the pointwise combination of two possi-
bility distributions π1 and π2 into a distribution π1 ⊕ π2 by any monotonic 1

combination operator ⊕ such that 1⊕1 = 1, can be easily computed. Namely,
if Σ1 is associated with π1 and Σ2 with π2, a possibilistic base that is seman-
tically equivalent to π1 ⊕ π2 can be computed as [6]:

Σ1⊕2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

{(ϕi, 1 − (1 − αi) ⊕ 1) s.t. (ϕi, αi) ∈ Σ1},

∪ {(ψj , 1 − 1 ⊕ (1 − βj)) s.t. (ψj , βj) ∈ Σ2},

∪ {(ϕi ∨ ψj , 1 − (1 − αi) ⊕ (1 − βj)) s.t. (ϕi, αi) ∈ Σ1, (ψj, βj) ∈ Σ2}.

For ⊕ = min, we get πΣ1∪Σ2
= min(π1, π2) as expected. For ⊕ = max, we get

Σmax(π1,π2) = {(ϕi ∨ ψj ,min(αi, βj)) s.t. (ϕi, αi) ∈ Σ1, and (ψj , βj) ∈ Σ2}.

5.2 Spatial information fusion - A general discussion

Possibilistic information fusion, as just recalled, easily extends to attributive
formulas expressing spatial information. Indeed, each formula (ϕ, p) provided
by a source is equivalent to the conjunction of formulas (ϕ, pi), where the pi’s
correspond to the leaves of the spatial ontology used by this source and pi |= p.

1 ⊕ is supposed to be monotonic in the wide sense for each of its arguments: α⊕β ≥
γ ⊕ δ as soon as α ≥ γ and β ≥ δ.
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In section 3, we have advocated the idea that different spatial ontologies should
at least share the same leaves (called elementary parcels). This last assumption
is justified by the fact that it is always possible, starting from the two spatial
partitions P1 and P2 made by the leaves of two distinct spatial ontologies
Gs1 and Gs2, to build two new refined ontologies whose leaves are the elements
of the refined partition induced by the two initial partitions P1 and P2 (by
taking the non-empty intersection of pairs of elementary parcels of the two
partitions). See Figure 3 for an example of refinement:

P1 P2 ref(P1,P2)

Fig. 3. Example of refinement of P1 and P2

Then, for each elementary parcel pi possibilistic information fusion takes place.
However, if the two sources do not use the same property ontology, an addi-
tional source of knowledge laying bare the links between the two vocabularies
is necessary in order to determine if for a given elementary parcel the sources
are conflicting or not. This is specially important if the fusion principle de-
pends on the existence and the extent of inconsistency between the sources.

Moreover, in case of several property ontologies, it may be the case that even
with the additional source of knowledge linking them, it is not always possible
to find a logical expression expressed in a vocabulary that is equivalent to
another expression in the other vocabulary. In the general case, only approx-
imations can be found, if the result of the fusion should be communicated to
a user in one vocabulary rather than in the other.

Although the ontology-based examples chosen may have suggested that our
approach is dedicated to the processing of symbolic information, it also applies
to the particular case of numerical information. Assume that (θ ≤ x ≤ ρ, p)
denotes the piece of information that for any elementary parcel satisfying p, the
parameter x (e.g., the height of rain for some time period) is in between values
θ and ρ. Then the following entailments directly follow from the inference rules
given in Proposition 2:

(θ ≤ x ≤ ρ, p), (σ ≤ x ≤ τ, p) ⊢ (max(θ, σ) ≤ x ≤ min(ρ, τ), p)

and more generally (provided that the bounds are consistent)

(θ ≤ x ≤ ρ, p), (σ ≤ x ≤ τ, p′) ⊢ (max(θ, σ) ≤ x ≤ min(ρ, τ), p ∧ p′)

(θ ≤ x ≤ ρ, p), (σ ≤ x ≤ τ, p′) ⊢ (min(θ, σ) ≤ x ≤ max(ρ, τ), p ∨ p′)

It is worth noticing that the two above rules are at the basis of C-calculus [9,8]
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p1 p2

p3 p4

⊤

p12 p13 p4

p1 p2 p3

⊥

Fig. 4. Partitioned area and spatial ontology used in the example

for propagating interval-valued parameter estimates associated with elements
of partitions, when refining or coarsening the partitions.

5.3 Illustrative Example

We here consider an example inspired from [28], where two sources report
observations about an area which is partitioned in four elementary parcels
organized into a spatial ontology as pictured in Figure 4. We suppose that
both sources are using the property ontology given in Figure 1. The spatial
ontology given in Figure 4 and the property ontology lead to have the following
formulas that holds:

Spatial formulas Property formulas

(1) p1 → p12,
(2) p1 → p13,
(3) p2 → p12,
(4) p3 → p13,
(5) p12 ∨ p13 ∨ p4,
(6) p12 → p1 ∨ p2,
(7) p13 → p1 ∨ p3,
(8) p1 ∧ p2 → ⊥,
(9) p1 ∧ p3 → ⊥,

(10) p1 ∧ p4 → ⊥,
(11) p2 ∧ p3 → ⊥,
(12) p2 ∧ p4 → ⊥,
(13) p3 ∧ p4 → ⊥,

(14) Meadows → Vegetation,
(15) Agr. areas → Vegetation,
(16) Woods → Vegetation,
(17) Orchards → Woods,
(18) Orchards → Agr. areas,
(19) Water → Land cover,
(20) Vegetation → Land Cover,
(21) Rivers → Water,
(22) Cereals → Agr. areas
(23) Cereals ∧ Orchards → ⊥,
(24) Cereals ∧ Meadows → ⊥,
(25) Woods ∧ Meadows → ⊥
...

The information provided by the two sources is supposed to be the one given
in Figure 5.

Presented as such, the example is ambiguous, because when there are two
labels on a parcel, we do not know if they are connected by a conjunction
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Source 1 Source 2

Agr. areas Orchards

Meadows Woods

Water

Woods

Cereals Rivers

Meadows

Fig. 5. The information given by the sources

(meaning that several labels apply simultaneously to the parcel,) or by a dis-
junction (meaning that one does not know what is the right label, but one of
them applies to the parcel). Similarly, when a label applies to a union of ele-
mentary parcels, one may wonder if the label apply to each elementary parcel
or, maybe to some of them without knowing which of them. Clearly, this leads
to four logical readings of two labels a and b associated with an area covered
by two elementary parcels p1 and p2:

(i.) (a∧ b, p1 ∨ p2). This means that both a and b apply to each of p1 and p2.
(ii.) (a∧ b, p1)∨ (a∧ b, p2). This means that both a and b apply to p1 or both

a and b apply to p2.
(iii.) (a∨b, p1∨p2). This means that a applies to each of p1 and p2 or b applies

to each of p1 and p2.
(iv.) (a ∨ b, p1) ∨ (a ∨ b, p2). This is the most imprecise case where we do

not know what of a or b applies to what of p1 or p2. This last case may
be particularized by adding the mutual exclusiveness constraint ¬(a, p1∨
p2)∧¬(b, p1∨p2) specifying that each label cannot apply to both parcels.

Note that there is another latent ambiguity, when a label is attached to a
parcel, regarding the localization of how the label applies to the parcel. As
discussed in section 4.4, the label may apply everywhere or only somewhere
in the parcel. Observe that in the first above reading if a and b are mutually
exclusive (e.g. “Meadows” and “Agr. areas”) the everywhere understanding is
impossible (if we admit that sources provide consistent information).

A third kind of ambiguity when understanding the example, is about to know
if the “closed world assumption” (CWA) holds or not: does a source provide
the complete list of possible properties of a considered parcel? For instance,
if a source says that a parcel contains “Meadows” and “Cereals” does it ex-
clude that the parcel would also include “Woods”? “Woods” would be indeed
excluded by applying CWA. Note that the application of the “closed world
assumption” may help to induce “everywhere” information from “somewhere”
information. Indeed, if we know that all formulas attached to p are ϕ1, . . .,
and ϕn with a somewhere meaning (i.e., (ϕ1, p, s)∧ . . .∧(ϕn, p, s)), the “closed
world assumption” allows us to jump to the conclusion that (

∨

i=1,n ϕi, p, e).
Since, if the only thing we know about p is that ϕ1, . . . , ϕn hold somewhere,
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the close world assumption entails that if there were another property that
holds somewhere else in p, it would have been already said, hence in p the
only properties that hold are ϕ1, . . . , ϕn.

In the following, we are going to only consider non ambiguous understand-
ings of the example, still illustrating the main points above, under the “closed
world assumption”. Namely we use the following reading of the example:

Source 1 Source 2

(26) (Agr. areas, p13, s)
(27) (Meadows, p13, s)
(28) (Orchards, p2, s)
(29) (Woods, p2, s)
(30) (Water, p4, s)

(31) (Woods, p12, s)
(32) (Cereals, p3, s)
(33) (Meadows, p3, s)
(34) (Rivers, p4, s)

In order to be able to merge pieces of information associated to p13, and p12,
we should project the information on more elementary parcels (here p1 ≡
p12 ∧ p13). Using formula 7: p13 → p1 ∨ p3 and the inference rule 4’ (with
p1 ⊢ p13 and p3 ⊢ p13), and similarly for p12, we obtain the following formulas:

Source 1 Source 2

(35) (Agr. areas, p1, s)
(36) (Agr. areas, p3, s)
(37) (Meadows, p1, s)
(38) (Meadows, p3, s)

(39) (Woods, p1, s)
(40) (Woods, p2, s)

The “closed world assumption” allows us to deduce:

Source 1 Source 2

(41) (Agr. areas ∨ Meadows, p1, e)
(42) (Agr. areas ∨ Meadows, p3, e)
(43) (Orchards ∨ Woods, p2, e)
(44) (Water, p4, e)

(45) (Woods, p1, e)
(46) (Woods, p2, e)
(47) (Cereals ∨ Meadows, p3, e)
(48) (Rivers, p4, e)

Once the above deduction step is performed, one can proceed with the fusion
step. Let us first consider the conjunctive mode. We obtain:
parcel p1: For source 1, we have formulas (35), (37), (41), and for source 2,
(45). The conjunction of (41) and (45) yields (Orchards, p1, e), which in turn
leads to a contradiction with (37).

parcel p2: For source 1, we have formulas (28), (29), (43), and for source 2,
(40). The conjunction of these four formulas is consistent, and yields (Woods,
p2, e) ∧ (Orchards, p2, s).

parcel p3: For source 1, we have formulas (36), (38), (42), and for source 2,
(32), (33),(47). The conjunction of these six formulas is consistent, and yields
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(Cereals ∨ Meadows, p3, e) ∧ (Cereals, p3, s) ∧ (Meadows, p3, s).

parcel p4: For source 1, we have formula (44), and for source 2, (48). The
conjunction of these two formulas is consistent, and yields (Rivers, p4, e).

These conclusions are summarized in the following figure.

⊥ (Orchards, s)

(Woods, e)

(Cereals, s) (Rivers, e)

(Meadows, s)

Source 1 and source 2 are conflicting on p1, hence following Section 5.1, we
are led to perform a disjunction of the two pieces of information, namely
((35)∧ (37)∧ (41))∨ (45). It yields (Vegetation, p1, e) ∧ (Agr. areas ∨ Woods,
p1, s) ∧ (Meadows ∨ Woods, p1, s), taking advantage of the ontology (namely
Vegetation ≡ (Agr. areas ∨ Woods ∨ Meadows) ).

Observe that the conflict between two sources on a parcel may come from
the fact that CWA has been applied to the information of each source prior
the fusion. Thus, one may think of backtracking on the application of CWA
when there is a conflict. Here, on p1, the induction from (Woods, p1, s) stated
by source 2, to (Woods, p1, e) is perhaps too adventurous. It can be checked
that (Woods, p1, s) ∧(35) ∧ (37) ∧ (41) is consistent and gives (Orchards ∨
Meadows, p1, e) ∧ (Orchards, p1, s) ∧ (Meadows, p1, s).

In their treatment of the kind of fusion problem exemplified above, Pham [28]
and Jeansoulin et al. [23] distinguish between pessimistic and optimistic fusion
modes. The “optimistic” fusion is characterized by the facts that the fusion of
the pieces of information associated to the same parcel by two sources is ob-
tained by conjunction. Clearly, this may lead to inconsistency on some parcels.
In such a case the “pessimistic” mode would be the only one to provide consis-
tent results (by assuming disjunction in place of conjunction in the fusion step.
As can be seen, the framework proposed here basically agrees with the prin-
ciples underlying the above-cited approach. However, their proposal relies on
a representation manipulating sets of ontology labels (associated to parcels),
using a specific information containment relation between sets of labels that
extends the inheritance relation of the ontology. Our approach uses i) a pure
logical representation setting (which allows to maintain an explicit distinc-
tion between conjunction and disjunction of labels), ii) distinguishes between
“somewhere” and “everywhere” statements, iii) allows to express CWA (an
assumption apparently made often tacitly), iv) applies the general setting of
logic-based information fusion. The result of the fusion may be more precise
with our approach, thanks to a greater expressivity power of the representa-
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tion framework (e.g., instead of just finding Vegetation on p1, while we found
(Vegetation, p1, e) ∧ (Agr. areas ∨ Woods, p1, s) ∧ (Meadows ∨ Woods, p1,
s) ).

Our logical framework also allows us to have a possibilistic handling of uncer-
tainty, and then a variety of combination operations, which may depend on the
level of conflict between the sources, or on their relative priority [6], can be en-
coded, as recalled in Section 5.1. The uncertainty setting enables us to enrich
the reading of the example. Consider the information given by source 1 on p2,
namely “Orchards, Woods”. As discussed in section 4.2, such an information
may express that p2 is covered by Woods, and plausibly by Orchards. This can
be understood in an “everywhere”, or “somewhere” manner. With the “every-
where” reading, this can be syntactically encoded by the possibilistic formulas
((Woods, 1), p2, e) and ((Orchards, α), p2, e), with α < 1, together with the
ontology information ((¬Orchards∨Woods, 1),⊤). Similarly, the information
given by source 2 on p2 can be encoded as ((Woods, 1), p2, e). Here, there is
no inconsistency, hence ((Woods, 1), p2, e) ∧ ((Orchards, α), p2, e).

Imagine that, now, source 2 says ((Woods, 1), p2, e) and ((Orn.trees, β), p2, e).
The two sources are now partially inconsistent on p2, and it can be checked
that the level of inconsistency of the information provided by the two sources,
about p2, is Inc = min(α, β).

Different fusion modes can be used, corresponding to different attitudes with
respect to a conflict. For instance, one can use a renormalized conjunction
(based on min see section 5.1) that gets rid of the conflict. Namely, the syntac-
tic counterpart of this operator yields, if we assume α > β, ((Woods, 1), p2, e)∧
((Orchards, α), p2, e).

If we choose a disjunctive attitude (based on ⊕ = max see end of section 5.1),
one gets ((Woods, 1), p2, e) ∧ ((Orchards ∨Orn. trees, β), p2, e).

In case we again combine the two previous results obtained with the above
fusion modes, by a product-based conjunction (⊕ =product, see end of section
5.1), one would obtain ((Woods, 1), p2, e)∧ ((Orchards∨Orn. trees, 1− (1−
α)(1−β)), p2, e)∧ ((Orchards, α), p2, e). This is a more refined result, since it
both keeps track of the conflict (stating that among different types of woods,
orchards or ornamental trees are more plausible), and keeping a preference
for the more certain information ((Orchards, α), p2, e) since α > β. Observe
however that 1− (1−α)(1−β)) > α, which makes the statement Orchards∨
Orn. trees more certain.
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6 Summary and further research

6.1 Reformulation of spatial information

In this paper, we have assumed that spatial information is expressed under
the form of an attributive pair (〈property〉, 〈parcel(s)〉). However, it can be
the case that we dispose of pieces of information expressed in a more general
language built on the union of the two vocabularies Vs for the parcels and
Vi for the properties. Indeed, e.g., a parcel may be described by its spatial
ontology name (if any), or in extension by the disjunction of its elementary
parcels, or in intention by a property formula, or more generally by a complex
formula combining property and parcel vocabularies. Generally speaking, we
may distinguish between four kinds of formulas with respect to their possible
expression as attributive pairs :

(1) formulas expressing links between properties (which are true in each par-
cel). These formulas can be rewritten into classical formulas in which
only literals of the vocabulary Vi appear. These rewritten formulas are
i-formulas in the sense used in the beginning of this section. For example,
formulas corresponding to a subsumption property expressed in the on-
tology Gi are i-formulas that can be rewritten as attributive pairs. Note
that a formula translating terminological exclusion between properties
of an ontology Gi may be rewritten as an attributive pair only with an
“everywhere” reading. This is because such an exclusion between proper-
ties may not be true in any elementary parcel in a “somewhere” reading.
More formally, an i-formula ϕ expressing a property that is true for any
parcel, such as terminological subsumption, can be rewritten as the pair
(ϕ,⊤, e).

(2) formulas expressing links between parcels. These formulas can be rewrit-
ten into formulas in which only literals of the vocabulary Vs appear. The
rewritten formulas are called s-formulas. The formulas corresponding to a
space ontology are examples of s-formulas. A s-formula p expresses links
between parcels. Hence, the subsets of parcels where this link does not
hold are impossible places, it means that the formula ⊥ holds in these
impossible parcels, so it can be rewritten into (⊥,¬p).

(3) formulas expressing the attribution of some properties to some geograph-
ical region. These formulas can be rewritten into attributive formulas
(ϕ, p, s) or (ϕ, p, e) where ϕ is a propositional formula representing the
property to be attached to the region and p is the set of elementary
parcels that characterize exactly the region.

(4) there is another more complex kind of formulas that can not be rewritten
into either an i-formula or an s-formula or an attributive formula. It is a
formula combining the property and the parcel vocabularies (for instance,
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a formula representing the Africa countries having oil exploitations).

The fourth case is more difficult. It occurs when there is no subset of elemen-
tary parcels which exactly correspond to a property formula that describes
this subset in a non ambiguous way. In other words, this problem can be
handled when there exists a Galois connection allowing the translation of i-
formulas of interest into s-formulas and conversely. More formally, there is a
Galois connection [25,3] between an i-formula and a s-formula if (ϕ, p) holds
together with its converse (¬ϕ,¬p) (that could be somewhat abusively de-
noted as (p, ϕ)), i.e., all the parcels where ϕ holds satisfy p and all parcels
in p satisfy ϕ. In formal concept analysis [31,20] such a pair is called a con-
cept where ϕ is called the intention and p the extension of this concept. More
precisely, it is well known in formal concept analysis, that a relation defined
on a Cartesian product of properties and objects (here, elementary parcels)
gives birth to a Galois lattice where particular subsets of objects are put in a
one-to-one correspondence with conjunctions of properties (that characterize
these subsets).

A basic issue in spatial information handling is to be able to answer ques-
tions given a knowledge base K that includes a factual base made of a set
of uncertain attributive formulas and of a set of non ontology-based generic
laws (concerning general attribution of properties to spatial entities). K may
be also augmented with ontological information expressing subsumption and
mutual exclusiveness for properties and parcels. When a conclusion such as
((ϕ, α), p, x) or ((ϕ, α), [p], x) (where x stands either for “somewhere” or for
“everywhere”), or any logical combination of such formulas is obtained from
K, it may be the case that the conclusion is not under the most suitably
compact and expressive form, since ϕ and p may be any formulas built from
Vi and Vs respectively. Clearly, reformulations can be only done by exploiting
logical equivalences, such as the ones coming from Galois connections, and
from ontologies. By “compact” and “expressive”, we refer to different extra-
logical issues that amount to reformulate a logical expression. First, the idea
of compacity refers to the idea of preferring the “smallest” logical expression
equivalent to a given one to designate a set of parcels or even a compound
property. Indeed,with respect to the ontologies Gs and Gi, a conjunction may
refer to a particular subclass (e.g. a set of elementary parcels corresponding to
a labeled area, expressed as a disjunction, may be more compactly described
by the label of this area when it exists). Expressiveness rather refers to a user
preference between equivalent logical expressions (given the available knowl-
edge) with respect to the vocabulary used in the expressions. It is in some
sense a matter of focus. These reformulation issues are out of the scope of the
paper. Let us note however that they are similar to the linguistic approxima-
tion problem in approximate reasoning [33], where a proper combination of
linguistic labels has to be found for naming a fuzzy set approximating from
above the result of a sup-min-composition-based inference. They are also rem-
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iniscent of the problem of finding a non ambiguous expression that is easy to
understand for designating an object in a scene [18].

In the two following subsections, we briefly discuss other representation issues
not considered in the section 4, but which may be also of interest for spatial
information.

6.2 Percentage of a parcel

We have already seen that one may have multiple-valued pieces of informa-
tion of the form {(ϕ, p), (ψ, p)} where ϕ and ψ belong to the same ontology.
However, for expressing, e.g. that p is both covered by orchards and cereals,
we may qualitatively express that p is “somewhere” covered by orchards, and
“somewhere” covered by cereals. Then, the information may be augmented
with the respective proportions x and y of the surface of p corresponding to
ϕ and ψ (Orchards and Cereals in our example). Namely, x% of the parcel
is ϕ and y% of the parcel is ψ, where x and y may be more or less precisely
known and x + y ≤ 1. Let us denote by (ϕ, x% p) the fact that ϕ is true
on at least x% of the set of elementary parcels that satisfy p. Then, from
(ϕ, x% p) and (ϕ, y% p′), one can clearly deduce (ϕ, x%.s(p)+y%.s(p′)

s(p)+s(p′)
% p ∨ p′)

provided that p∧p′ ≡ ⊥, where s(p) denotes the surface of parcel p. However,
it is worth noticing that from (ϕ, x% p) and (ψ, y% p), one cannot deduce
(ϕ ∨ ψ, (x+ y)% p) in general, except if one has the further information that
ϕ and ψ are mutually exclusive (then one should have x + y ≤ 1 for consis-
tency reason). Clearly also, from (ϕ, x% p) and (ϕ, y% p′) one cannot deduce
anything on p ∧ p′ without knowing what percentages of p and of p′, p ∧ p′

represents.

6.3 Positive vs. negative information

Generally speaking, there are two ways of interpreting incomplete information
(should it be numerical or symbolic).

• Information can be interpreted “negatively”. Namely, any interpretation
that is not compatible with the stated pieces of information is judged to
be impossible. This kind of information, which is the one usually needed,
can be termed as “exhaustively closed”. For instance, if one states that
there is some part of a parcel p that should be “cereals or meadows”, one
generally means that any other thing is more or less excluded, and this is
encoded by a necessity measure-based possibilistic logic constraint, namely
((Cereals∨Meadows, α), p), where α is the certainty level associated with
the piece of information “cereals or meadows”. In terms of a possibility
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distribution π, this means that the plausibility π(ω) of an interpretation ω

for parcel p is such that:

π(ω) =











1 if ω |= Cereals ∨Meadows,

1 − α if ω |= ¬Cereals ∧ ¬Meadows.

In case “cereals” and “meadows” are perceived as mutually exclusive, π(ω)
will be modified by enforcing π(ω) = 0 if ω |= Cereals ∧Meadows, i.e., by
adding (¬Cereals ∨ ¬Meadows, 1) to the knowledge base.

• However, there exists also a positive type of understanding [14] that focuses
on what is possible for sure (because it has been observed), and does not
refer to what is known to be impossible. This kind of information can be
viewed as an “open” set of values, the piece of information “cereals or mead-
ows” then means that what has been observed in p could be meadows or
cereals, with the implicit assumption that it might be other things. Then
another type of distribution δ should be used, where

δ(ω) =



























1 if ω |= Meadows,

1 if ω |= Cereals,

0 otherwise.

Now, δ(ω) = 0 does not mean (as π(ω) does) that ω is impossible for
parcel p, but just that we have no clue at all for suggesting that ω is possible
for sure. Note that when the clues guaranteeing possibility are not fully
strong then δ(ω) becomes graded between 0 and 1. This second type of
information can also be handled at the syntactic level in a new form of
possibilistic logic [4], which could be also “spatialized” in order to have
attributive formulas corresponding to this new type.

7 Conclusion

After having identified representational needs (references to ontologies, un-
certainty) when dealing with spatial information, a general logical setting has
been proposed. This setting offers a non-ambiguous representation, propagates
uncertainty in a possibilistic manner, and provides also the basis for handling
multiple source information fusion. We have chosen to use a possibilistic rather
a probabilistic modeling of uncertainty for several reason. First the possibilis-
tic representation is qualitative, which seems reasonable when information is
poor. Second the possibilistic setting is particularly suitable for the represen-
tation of states of partial or complete ignorance. Third, the logical handling
of possibilistic uncertainty is particularly simple with possibilistic logic.
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The problem of the approximation of pieces of information expressed in a
given vocabulary into another related vocabulary has been mentioned in sev-
eral places in the paper. This reformulation problem is clearly a line for further
research and a concern that seems closely related to the idea of rough set ap-
proximations [26,29], and also to the exploitation of Galois correspondences
for moving from extensional to intentional descriptions and conversely. An-
other issue of interest would be to allow for uncertain or default inheritance in
ontologies. Note that, since subsumption relations can be easily added to the
pieces of attributive spatial information, it would be possible to make some of
these relations uncertain in our framework.

As discussed along the paper, the handling of spatial information raises general
problems encountered with other types of information such as the represen-
tation of uncertainty or the use of the closed world assumption, as well as
specific problems. Particular representation issues regarding spatial informa-
tion are related to the need of “localizing” properties. First, this requires the
use of two vocabularies referring respectively to parcels and to properties.
Moreover, we have seen that it is often important to explicitly distinguish
between the cases where a property holds everywhere or somewhere into a
parcel. Concerning the fusion of information, it is necessary to merge pieces of
information relative to the same area. This requires to be able to “project” the
available information on a considered area. Moreover, it is also necessary to
handle the “somewhere” and “everywhere” information in the fusion process.

Another important issue, not considered in the paper, is the conjoint use
of pieces of information pertaining to different parcels together with depen-
dency relations (induced by neighboring properties for instance) between these
parcels when merging information. A similar problem is encountered in up-
dating, where the situation at time t + 1 generally depends on situation at
time t. When the information about the ai(p)’s is represented by possibility
distributions, we need to apply the extension principle to f or R, or its syn-
tactic counterpart when dealing with symbolic labels, see [5], for evaluating
a(p).
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