Olga Permiakova

Thomas Burger
email: thomas.burger@cea.fr

Sketched Stochastic Dictionary Learning for large-scale data and application to high-throughput mass spectrometry

Keywords: Dictionary learning, Stochastic gradient descent, Compressive statistical learning, Nesterov accelerated gradient descent, Computational mass spectrometry, Matrix factorization

come

Introduction

Finding a linear decomposition of an observed signal x ∈ R s is essential for many applications, as it provides a way to exhibit its elementary constitutive patterns, as well as to denoise it. Formally, this task amounts to finding a vector of coefficients c = (c 1 , . . . , c K) ∈ R K , referred to as code, such that:

x = c 1 • d 1 + • • • + c K • d K + , (1)
where D = {d 1 , . . . , d K } ∈ R s×K is a matrix referred to as dictionary, composed of K s-dimensional column vectors (the dictionary atoms), and where represents the (hopefully small) part of x that is not explained by D. While many solutions to this problem are already available when D is known, the decomposition of a signal, which potential constitutive elementary patterns are unknown (referred to as blind source separation), is much more difficult. As a result, despite being almost 30 years old [START_REF] Jutten | Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture[END_REF], this problem still focuses investigations.

According to compressive sensing theory [START_REF] Donoho | Compressed sensing[END_REF], a good dictionary is such that any signal can be precisely approximated using few dictionary atoms only, i.e., only a restricted number of c k are non-null in Decomposition [START_REF] Jutten | Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture[END_REF]; and the fewer the better. As emphasized in [START_REF] Elad | Sparse and redundant representations: from theory to applications in signal and image processing[END_REF], this type of representations, referred to as sparse representations, are widespread in many real-life applications: image denoising [START_REF] Li | Group-sparse representation with dictionary learning for medical image denoising and fusion[END_REF], super resolution [START_REF] Yang | Image super-resolution via sparse representation[END_REF], compression [START_REF] Lustig | Sparse mri: The application of compressed sensing for rapid mr imaging[END_REF], etc.

The oldest strategies to decompose signals have used Riesz bases as dictionaries (e.g., Fourier, wavelet or curvelet bases [START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF]). Their mathematical properties have made the decomposition straightforward, yet, for highly complex real-life signals, sparse representations have generally been achievable only at the price of an important unexplained residue . In fact, it has since then been established [START_REF] David L Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF] that sparse representations were easier to obtain when Decomposition (1) involved an overcomplete dictionary, i.e. a dictionary which size exceeds the signal dimensionality K > s. However, finding an overcomplete dictionary yields two (related) difficulties: First, the corresponding matrix D is not full-rank, which can potentially lead to numerical issues. Second, Decomposition (1) may not be unique, so that additional constraints are usually necessary to lead to a well-posed problem and a practically satisfactory solution. To overcome them, it has been proposed to extract elementary patterns from a set of signals akin to that for which a decomposition is sought, and to form an overcomplete dictionary with these patterns. This approach, referred to as dictionary learning, has been demonstrated to lead to dictionaries that are of real practical interest, for three reasons: First, they capture well the specificities of the data [START_REF] Bruno | Emergence of simple-cell receptive field properties by learning a sparse code for natural images[END_REF]. Second, they allow for even sparser representations. Third, their atoms are easier to relate to physical signals and thus to interpret [START_REF] Lv | Sparse representation of whole-brain fmri signals for identification of functional networks[END_REF]. Concretely, learning a dictionary from a set of observed signals X ∈ R s×N , is related to finding a decomposition of X into a product of two low rank matrices [START_REF] Hoyer | Non-negative matrix factorization with sparseness constraints[END_REF]. The effectiveness of this matrix factorization approach has been illustrated in many applications, such as medical signal modeling and analysis [START_REF] Lv | Sparse representation of whole-brain fmri signals for identification of functional networks[END_REF], natural image processing [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF], audio and video processing [START_REF] Mark D Plumbley | Sparse representations in audio and music: from coding to source separation[END_REF]. In this article, we aim to apply dictionary learning to another type of data: those resulting from the high-throughput mass spectrometry analysis of complex biological samples.

Mass spectrometry (MS) coupled with liquid chromatography (LC) is a commonly used analytical chemistry technique, which has witnessed an increasing popularity in the last decade [START_REF] Thomas E Angel | Mass spectrometry-based proteomics: existing capabilities and future directions[END_REF], due to its application to omics biology. Notably, it has become the method of choice for proteome, metabolome and lipidome investigations. Despite increasing resolution and cycle speed, the LC-MS pipeline is still challenged by the complexity of classical biological samples: Concretely, the number of biomolecules to identify and quantify remains larger than the measurement capabilities. To increase the sample coverage, relying on multiplexed measurements [START_REF] John D Chapman | Multiplexed and data-independent tandem mass spectrometry for global proteome profiling[END_REF] (that is, recording a single signal for several biomolecules which intensities are summed up, see Figure 1a) has become increasingly popular. However, interpreting the resulting data requires a subsequent demultiplexing step which intuitively translates (see Figure 1b) into solving a blind source separation problem [START_REF] Peckner | Specter: linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics[END_REF].

To tackle it, we follow the line of [START_REF] Rapin | Application of non-negative matrix factorization to lc/ms data[END_REF], which proposes to denoise simple LC-MS data by relying on a matrix factorization formulation. Practically, the LC-MS data can easily be formatted into a matrix: Broadly, the LC can be seen as a way to serialize the analytes into the MS, so as to avoid that too many of them are concomitantly analyzed. Thus, if the mass spectra produced over time are stored as vectors of high dimensionality (N ≈ 10 5) and stacked as matrix rows, the matrix columns can be interpreted as chromatograms (a.k.a. elution profiles, see Figure 1c). A chromatogram is a vector that represents an analyte's flow rate outputted from the LC toward the MS. This flow rate being a physical signal discretized at a relatively high frequency (which explains why s lies between 10 3 and 10 4) its smoothness can be leveraged. Notably, we have formerly established [START_REF] Permiakova | Chickn: Extraction of peptide chromatographic elution profiles from large scale mass spectrometry data by means of wasserstein compressive hierarchical cluster analysis[END_REF] it can be used to extract meaningful chemical patterns through cluster analysis. In this work, we propose to learn a dictionary of chromatograms to subsequently improve the decomposition of LC-MS data, with a sparsity level related to the number of biomolecules which measurements have been multiplexed.

Extracting a meaningful dictionary from LC-MS data comes along with numerous challenges. First, the dictionary atoms must be interpretable as chromatograms (i.e. smooth, non-negative, slightly heavy right-tailed waveforms, see Figure 1). Second, owing to the number of analytes in a classical sample (up to tens of thousands), which largely exceeds the chromatographic signal dimensionality, the dictionary must be highly overcomplete. Third, LC-MS data are already rather big and their size is ever-increasing due to the constant improvement of MS resolution and cycle speed. Therefore, processing them in a time compliant with the various constraints of a standard analytical platform is a computational challenge that requires scalable solutions. We hereby describe a new approach meeting these constraints. From a methodological viewpoint, our contribution essentially lies in an original formulation of the dictionary learning problem which leverages recent developments in compressive learning. This framework aims to design algorithms which operate on a so-called data sketch in place of the original input data (which can be disposed of once the sketch has been computed).

The main interest of this methodology is to enable data compression (making the sketch coarser or finer) according to the desired trade-off between accuracy and computational load. Adapting this framework to improve dictionary learning yields a difficulty: computing the codes for each data point requires having access to the entire input data. As this intrinsically limit the computational gain of the sketching procedure, we propose to rely on a stochastic gradient descent algorithm to minimize the dictionary learning objective function. In spite of this, relying on a data sketch to extract dictionary atoms remains particularly appealing. As both tasks aim at extracting salient patterns from the data, the later can leverage the distributions captured by the former. A combination of above ideas yields a new method referred to as Sketched Stochastic Dictionary Learning (SSDL). According to our experimental validation, this method improves the state-of-the-art to extract a set of meaningful patterns from LC-MS data with a small computational footprint.

The article is structured as follows: Section 2 gathers the related works, including standard dictionary learning formulation, presentation of stateof-the-art methods and summary of background knowledge that are instrumental to a clear exposure of SSDL. Then Section 3 presents SSDL. Finally, Section 4 is dedicated to experimental validations on LC-MS data.

Related works 2.1 Notations

In the rest of the article, matrices are noted with capital letters like A or X and vectors with lowercase ones, like a or x (however, both types of letters may also be used for integers, sets, etc.). The j th column (respectively, row) of matrix X is denoted X :,j (respectively, X j,:), or possibly x j if the corresponding vector has been previously defined. Following the same line, the (j, k) th element of X is denoted X j,k . The pseudo-inverse of matrix A is denoted as A † and its transpose is A . On the other hand, A t denotes the t th iteration of the computation of A. By abuse of notation, t + 1 2 is used to refer to an intermediate step of iteration t. The imaginary number (√ -1) is denoted as i and z ∈ C is the complex conjugate of z ∈ C, i.e., z = Re(z) + i • Im(z) and z = Re(z) -i • Im(z). Finally, ||.|| p is the L p norm, [.] m j=1 represents the construction of a vector from its m components, ∇ is the gradient operator and E is expectation one.

Classical dictionary learning strategies

Let X = {x 1 , . . . , x N } ∈ R s×N be a data matrix. The classical formulation of dictionary learning reads as the following joint optimization problem:

min C∈R K×N D∈S 1 N N k=1 x k -c k • D 2 2 + λ • c k 1 (2
)
where C is a matrix gathering all code vectors c k ; where λ is the regularization parameter of a LASSO penalty (Least Absolute Shrinkage and Selection Operator, [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]), which controls the representation sparsity; and where S is the convex set where dictionary atoms can be picked up. It has been proven in [START_REF] David | Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[END_REF] that solving the minimization problem of Eq. (2) leads to sparse representations. Moreover, this problem being convex with respect to C and D separately, most methods to solve it rely on an alternative minimization scheme (i.e., minimization of Eq. (2) with respect to one variable while the other is fixed): min

C∈R K×N 1 N N k=1 x k -c k • D 2 2 + λ • c k 1 (3) min D∈S 1 N N k=1 x k -c k • D 2 2 (4)
The first sub-problem (Eq. 3), which consists in computing the code matrix for a given dictionary, is referred to as sparse coding. It can be solved using LASSO [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], LARS (least-angle regression, [START_REF] Efron | Least angle regression[END_REF]), iterative shrinkage thresholding [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] or other numerical schemes relying on descent paradigms [START_REF] Gilboa | Efficient dictionary learning with gradient descent[END_REF][START_REF] Liu | Blockwise coordinate descent schemes for efficient and effective dictionary learning[END_REF]. However, the specificity of any dictionary learning approach essentially lies in the technique used to solve Eq. (4), i.e., the dictionary update. For example, Engan et al. [START_REF] Kjersti Engan | Method of optimal directions for frame design[END_REF] rely on an analytical solution to re-compute the dictionary at each iteration: D = X • C † , where C † is the pseudo-inverse of the code matrix. Alternatively, K-SVD [START_REF] Aharon | K-svd: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF] updates each dictionary atoms independently by performing singular value decomposition. Finally, dictionary learning can also be tackled in the Bayesian [START_REF] Fedorov | Multimodal sparse bayesian dictionary learning applied to multimodal data classification[END_REF][START_REF] Joseph | On the convergence of a bayesian algorithm for joint dictionary learning and sparse recovery[END_REF][START_REF] Yang | Sparse bayesian dictionary learning with a gaussian hierarchical model[END_REF] or optimal transport [30] frameworks.

Large-scale dictionary learning techniques

Stochastic or online learning [START_REF] Bottou | Large-scale machine learning with stochastic gradient descent[END_REF][START_REF] Slavakis | Online dictionary learning from big data using accelerated stochastic approximation algorithms[END_REF] is an efficient and broadly used technique to train a dictionary from a large dataset. It consists in updating the dictionary and calculating the code at each iteration of the minimization procedure, by relying on a randomly selected subset of signals only (possibly, a single one). As working on a small subset drastically reduces the computational time of both sub-problems, multiple passes through the data (called epochs) can be used until convergence. We have singled out two online dictionary learning methods to benchmark against our approach: MODL (Massive Online Dictionary Learning, [START_REF] Mensch | Stochastic subsampling for factorizing huge matrices[END_REF][START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF]) and IcTKM (Iterative Compressed-Thresholding and K-Means, [START_REF] Schnass | Compressed dictionary learning[END_REF]). The former is the state-ofthe-art approach, and it demonstrates excellent computational performance on extremely large datasets. The latter is a recently published method which underlying mathematics are conceptually related to those leveraged in the present work, making the comparison worth of interest. More precisely, MODL minimizes Objective Functions (3) and (4): Sparse coding is achieved using LARS algorithm, while coordinate gradient descent is applied to update dictionary atoms. Formally, at the t th iteration, the dictionary atoms are recomputed as follows:

d t k = d t-1 k - 1 A t kk • D t-1 • A t :,k -B t :,k , (5)
where auxiliary matrices A t and B t are defined as

A t = 1 t t k=1 c k • c k ∈ R K×K and B t = 1 t t k=1 x k • c k ∈ R s×K ;
and where A t :,k and B t :,k denote the k th columns of matrices A t and B t respectively. Using these auxiliary matrices allows to gather the statistics about the signals x 1 , . . . , x t and codes c 1 , . . . , c t observed at previous iterations without explicitly storing them in memory. This strategy provides low memory consumption and computational cost, at least for small K. MODL is compliant with positiveness constraints on both the dictionary and code matrices, as required by LC-MS data (see Section 1). Finally, MODL embeds an optional dimensionality reduction step based on random projections [START_REF] Bingham | Random projection in dimensionality reduction: applications to image and text data[END_REF].

Although IcTKM reformulates dictionary learning as a constrained minimization problem, it also proposes a solution based on alternate minimization. Instead of a regularization parameter, the sparsity level Λ IcT KM is directly defined through a constraint on the number of non-zero elements in the columns of the codes. Sparse coding is solved using Iterative Thresholding [START_REF] Blumensath | Iterative thresholding for sparse approximations[END_REF]. The dictionary update is carried out by computing the K-residual means (following the known equivalence between clustering and matrix fac-torization [START_REF] Ding | On the equivalence of nonnegative matrix factorization and spectral clustering[END_REF]). Concretely, each dictionary atom d k is updated by averaging the data vectors x j with non-null code coefficients C kj . To speed up the computations, IcTKM relies on fast Johnson-Lindenstrauss transform [START_REF] Ailon | The fast johnson-lindenstrauss transform and approximate nearest neighbors[END_REF].

Scaling-up by sketching

The method proposed in this article borrows two important features from the large-scale machine learning literature and adapt them to the dictionary learning context. The first one is the compressive statistical learning framework [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF]. Its seminal idea is to summarize the data collection into a complex vector of fixed size, referred to as the data sketch, so that the algorithm complexity does not depend on the data size anymore. Concretely, the data sketch is constructed by sampling the characteristic function of the empirical data distribution P (X):

SK(X) = E x∼P (X) e iw j x m j=1 , (6)
where w j ∈ R s is one of m vectors of frequencies (m being an applicationdependent parameter). The w j 's are randomly sampled from some predefined distribution; usually, a normal distribution with null mean and standard deviation estimated on the Fourier transform of a data subset, see [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF].

Starting from this theoretical ground, the main challenge is to adapt the machine learning method of interest so that it operates on the data sketch rather than on the original data. The authoring team has demonstrated both the practical interest and the efficiency of this approach on various problems, including Gaussian mixture estimation [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF] and data clustering [START_REF] Keriven | Compressive k-means[END_REF]. However, to the best of our knowledge, there is no dictionary learning method based on this framework. Our second cornerstone is Nesterov accelerated gradient descent method (NAGD, see [START_REF] Yurii | A method for solving the convex programming problem with convergence rate o (1/kˆ2)[END_REF] as well as its more recent formulation [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF]). Conceptually, it is akin to classical gradient descent, however, it includes an additional term, the momentum, denoted as η (a weighted average of the gradient vectors computed in the previous iterations). Adding this momentum term makes quadratic convergence possible in the deterministic cases [START_REF] Yurii | A method for solving the convex programming problem with convergence rate o (1/kˆ2)[END_REF]. The NAGD update rule reads:

D t+ 1 2 = D t + α • η t η t+1 = α • η t -γ • ∇ D f D t+ 1 2 D t+1 = D t + η t+1 (7)
where f is the function to minimize; where α is the momentum weight; where γ defines the length of each gradient step (the learning rate); and where D t+ 1 2 is referred to as the ahead. Recently, NAGD scheme has attracted great interest for stochastic optimization: Its convergence under convex and smooth optimization has been heavily documented [START_REF] Assran | On the convergence of nesterov's accelerated gradient method in stochastic settings[END_REF][START_REF] Kulunchakov | A generic acceleration framework for stochastic composite optimization[END_REF], but scarce results are so far available for non-convex cases. Despite, it is of practical interest, as when correctly tuned, it outperforms the classical stochastic method [START_REF] Bottou | Large-scale machine learning with stochastic gradient descent[END_REF].

SSDL method 3.1 Objective function

As SSDL follows a classical alternate minimization scheme, the dictionary update and the code computation objective functions can be separated. The former differs from the classical dictionary update (Eq. 4), as we propose to include the sketching operator of Eq. (6). As for the code computations, we have modified Eq. (3) to fit the stochastic learning framework. Concretely, at each iteration, the code matrix is computed only for a data subset selected uniformly at random, denoted X = {x 1 , . . . , xn } ∈ R s×n , where n < N :

C * = arg min C∈R K×n 1 n n k=1 xk -D • c k 2 2 + λ • c k 1 , (8)
Then SSDL looks for a dictionary D such that the data sketch SK(X) is as close as possible to the sketch of the decomposition SK(D • C *):

min D∈S F (D, C *), with F (D, C *) = SK(X) -SK(D • C *) 2 2 (9)
Since the sketching procedure amounts to sampling an empirical characteristic function, D does not only represent the observed data, but to some extent, its underlying distribution. Therefore, the dictionary resulting from this procedure can be expected to generalize well to other data with similar distribution. This behavior should moreover be strengthened by an adequate tuning of the frequency generation procedure [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF] as it aims to capture only the most relevant features and eliminate noise. Finally, it is also of interest in a stochastic learning context: despite the use of a random sampling procedure on the training set, the optimizer can also rely on the complete data summary provided by the data sketch. These changes in the objective functions lead to several advantages: First, the stochastic minimization is fully efficient, as the additional computations it requires are immaterial on small data batches. Second, the gradient of Eq. (9) does not contain the term D • A, where the computational footprint of matrix A = n k=1 c k • c k ∈ R K×K could be important for highly overcomplete dictionary. Finally, the data sketch SK(X) is computed once, at the algorithm initialization (afterwards the data sketch remains unchanged) and this initial computation parallelizes well in case of extremely large datasets.

Minimization

At each iteration of SSDL, the dictionary is updated by performing one gradient step as in Nesterov scheme [START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF], with the gradient of Objective function [START_REF] Bruno | Emergence of simple-cell receptive field properties by learning a sparse code for natural images[END_REF] reading:

∇ d SK(X) -SK(D • C *) 2 = ∇ d z • z = 2 ∇ d Re(z) • Re(z) + ∇ d Im(z) • Im(z) = 2 • ∇ d q • q ∈ R s , (10)
where

z = SK(X) -SK(D • C *) ∈ C m , q = [Re(z), Im(z)] ∈ R 2m
is a vector obtained by stacking the real and imaginary parts of the complex vector z and

∇ d q = δ δd Re(z) 1 , . . . , δ δd Re(z) m , δ δd Im(z) 1 , . . . , δ δd Im(z) m ∈ R s×2m (11) with δ δd Re(z) j = - δ δd Re(SK j (D • C *)) = 1 n n k=1 C * k • sin w j • D • C * :,k • w j (12a) δ δd Im(z) j = - δ δd Im(SK j (D • C *)) = - 1 n n k=1 C * k • cos w j • D • C * :,k • w j (12b)
and with SK j (respectively, Re(z) j , Im(z) j) being the j th coordinate of the sketch vector (respectively the real and imaginary part vectors). However, the dictionary update of SSDL differs from the general Nesterov scheme. First, to ensure the positivity of the dictionary atoms, the Compute SK(X) from X following [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF] 3: t = 0, η 0 = 0 4: Repeat until convergence:

5:
Construct a data batch Xt ∈ R s×n .

6:

Sparse coding:

C t = min C∈R K×n 1 n n k=1 xk t -D t • c k 2 2 + λ • c k 1 7:
Dictionary update:

8:

D t+ 1 2 = max(D t + α • η t , 0) 9: γ t = γ 0 (1+(t-1)•ν) 10: η t+1 = α • η t -γ t • ∇ D F (D t+ 1 2 , C t)
11:

D t+1 = P S D t + η t+1 , where P S (•) is a Euclidean projection on convex set S = {d ∈ R K + | d 2 ≤ 1}
ahead dictionary is projected on R s×K + (see Alg. 1, Line 8). Second, SSDL uses a decaying learning rate (see Alg. 1, Line 9):

γ t = γ 0 (1 + (t -1) • ν) . (13
)
This is motivated by the following fact: using a large γ far away from the minimum and progressively decreasing it allows to accelerate the convergence. As a drawback, it requires to tune an additional parameter, ν (the decay speed). The last difference relies in the Euclidean projection on

S = {d ∈ R K + | d 2 2
≤ 1}, which is included after the dictionary update (see Alg. 1, Line 11) to avoid too small scalars in the code matrix C. The complete pseudocode of SSDL is presented in Alg. 1.

Implementation and complexity

SSDL is implemented in R language. The gradient vector calculation is implemented in C++ and it is wrapped to R using the Rcpp package [START_REF] Eddelbuettel | Seamless R and C++ Integration with Rcpp[END_REF] and parallelized using the RcppParallel package [START_REF] Jj Allaire | Rcppparallel: Parallel programming tools for "rcpp[END_REF]. The sparse coding problem is addressed by the glmnet R function from the glmnet package [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], which is parallelized using the mclapply R function from the parallel package [START_REF] Schmidberger | State-of-the-art in parallel computing with r[END_REF]. The File-backed Big Matrix (FBM) class of the bigstatsr [START_REF] Privé | Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr[END_REF] package is used to store and to manipulate the matrices that are too large to be memory allocated. The SSDL code is made available on gitlab https://gitlab.com/Olga.Permiakova/ssdl as well as on the CRAN (Comprehensive R Archive Network): https://cran.r-project. org/web/packages/SSDL/index.html.

A global theoretical complexity algorithm would be fragile, as each compared method does not necessarily need the same number of iterations to converge. However, it is possible to compare the computational complexity of a single iteration. Concretely, the two steps of IcTKM have the following complexity:

• Compressed thresholding: O s r IcT KM KN ,
• Projections in the dictionary update: O N Λ 3

IcT KM , where r IcT KM is the so-called reduction parameter (see Section 4.3). Contrarily to IcTKM, for which each iteration traverses the entire input data, MODL and SSDL process a single batch per iteration. The complexity of MODL reads:

• Gram matrix computation and dictionary update by coordinate descent:

O s r M ODL K 2 ,
• Auxiliary matrices computation:

O s r M ODL Kn M ODL , • Code computation: O Kn M ODL τ 2
M ODL , where τ M ODL is the sparsity level resulting from tuning regularization parameter λ M ODL ; r M ODL is MODL reduction parameter; and n M ODL is MODL batch size (see Section 4.3). Finally, SSDL complexity reads:

• Sparse coding: O (sKn) ,

• Dictionary update: O (mKs) + O (mKn) ,

• Euclidean projection: O (sK) .

However, it should be noted that the computational complexity of a single SSDL iteration does not account for the initial data sketching, which complexity is O(msN). As a result, one expects SSDL to be efficient only when the data are large enough to require a sufficient amount of batch-wise iterations (see Section 4.4). Finally, the total complexity per iteration are summarized in Table 1.

Algorithm Single iteration complexity

IcTKM O s r IcT KM KN + O N Λ 3 IcT KM MODL O s r M ODL + τ 2 M ODL Kn M ODL + s r M ODL K 2 SSDL O ([s + m] Kn + mKs)
Table 1: Summary of the IcTKM, MODL and SSDL complexities for a single iteration.

4 Experimental validation

Methodology of evaluation

The validation of SSDL relies on a proteomic dataset hereafter referred to as the Ecoli dataset. It has resulted from the LC-MS analysis of a sample of Escherichia coli bacteria, see Section 4.2, as well as [START_REF] Permiakova | Chickn: Extraction of peptide chromatographic elution profiles from large scale mass spectrometry data by means of wasserstein compressive hierarchical cluster analysis[END_REF] for a more comprehensive description. SSDL capabilities to extract a dictionary from the Ecoli dataset are compared to those of MODL and IcTKM, both in terms of execution time and of dictionary atom quality. The machine used to benchmark SSDL, IcTKM and MODL has the following characteristics: HP Pavilion g6 Notebook PC with Intel (R) Core (TM) i5-3230M CPU @ 2.60GHz, 8 Gb of RAM, 4 cores, and installed with a dual boot featuring Ubuntu 04/18/4 LTS (for SSDL and MODL) and Windows 8 (for IcTCK, as running its code requires a Matlab license). The execution time indicated below are defined as follow: For SSDL, it corresponds to the difference between the times at the beginning and at the end of the learning step provided by Sys.time R function. For MODL, the execution time is defined similarly but results from the tic/toc python functions. Finally, IcTKM matlab code provides the execution duration in terms of CPU time.

Data description and data preprocessing

A full description of the Ecoli dataset as well as of its acquisition pipeline is available in [START_REF] Permiakova | Chickn: Extraction of peptide chromatographic elution profiles from large scale mass spectrometry data by means of wasserstein compressive hierarchical cluster analysis[END_REF]. An important feature of this pipeline is that the basic elements that are analyzed are peptides (i.e., protein fragments). As described in Section 1, the matrix columns contain discrete chromatographic profiles obtained during the elution of the sample's peptides in liquid chromatography, while the rows represent mass spectra acquired at different time stamps. The chemical properties of LCs are so that peptides with low masses are usually eluted at the beginning of the analysis, and heavy ones at the end. This leads to a specific matrix structure with high intensity peaks distributed along the diagonal, and with many zeros in the corners. This eases the data processing as it makes it possible to split the data matrix horizontally into several slightly overlapping slices, for which dictionaries can be independently trained. Then, since each slice contains a different set of peptides, the entire dictionary can be formed by concatenating the dictionaries from all the slices, which significantly reduces the computational cost.

The learning procedure being the same for all the slices, we report the experiments for a single one. We focus on a data slice of 718 rows acquired between 10 and 30 minutes (amongst the two hours that lasted the complete LC-MS analysis, i.e., a quarter of the entire dataset). We have chosen this specific slice as for chemical reasons, it contains the highest density of MS peaks; making it the hardest part to extract a dictionary from. The resulting data matrix made of 74,193 columns (chromatographic profiles) has finally been sub-sampled uniformly at random from 718 to 256 rows.

Parameter tuning

SSDL method has eight parameters: the dictionary size K, the regularization parameter λ, the sketch size m, the batch size n, the initial learning rate γ 0 , the decay parameter ν, the momentum weight α and the number of epochs T . In addition, SSDL requires an initial dictionary D 0 , but it can easily be defined by a random selection from the data. Similarly, three epochs (T = 3) are practically sufficient to reach convergence on the Ecoli dataset.

Among the remaining seven parameters, a number of them should be tuned according to the specificities of the LC-MS pipeline and of the analyzed sample. Notably, the dictionary size must be consistent with the number of distinct peptides that are expected to be found. In our case, E. Coli being well studied, the number of peptides identified by a conventional mass spectrometry analysis is known to lie somewhere between 12,000 and 15,000, depending on the instrument and its tuning [START_REF] Permiakova | Chickn: Extraction of peptide chromatographic elution profiles from large scale mass spectrometry data by means of wasserstein compressive hierarchical cluster analysis[END_REF]. Thus, for a single slice broadly covering a quarter of the dataset, a suitable dictionary size can be estimated to lie between 3,000 and 3,750. However, to understand the effect of the dictionary size on the SSDL execution time, we also report smaller values of K. Notably, we hereafter discuss the influence of the batch size (see Figure 3a) in various scenarios with K = {384; 768; 1, 536; 2, 304; 3, 072; 3, 712}. The regularization parameter λ should be tuned so that the number of non-zero elements in the codes broadly amounts to the multiplexing level of the MS acquisitions. With these regards, it can be assumed [START_REF] Eidhammer | Computational methods for mass spectrometry proteomics[END_REF] that on data such as those produced, chromatograms with more than 20 peaks are not sufficiently resoluted: they either correspond to noise, or to chemical species which disentanglement stands beyond the analytical power of the instrument. Thus, it is necessary to propose a practical strategy to find among various values of λ, the one that leads to the desired sparsity level. Concretely, we propose to consider a set of λ values on a logarithmized grid (e.g., λ ∈ {0; 0.001; 0.01}), and for each of these values, to compute the code C 0 using the initial dictionary D 0 . Figure 2a depicts the distribution of the number of non-zero elements in each column of C 0 for each λ: According to our expectations, λ = 0.001 is adapted to the Ecoli dataset. Although approximate, this approach appears to be sufficiently fast to be practically used by practitioners on their LC-MS dataset.

The tuning of the other five parameters is not as intuitive for a practitioner (sketch size, batch size, initial learning rate, decay parameter, and momentum weight). To mimic real conditions of application, it must therefore be carried out by means of a classical grid search. Let us focus on the sketch size m first: in general, increasing it allows revealing more details about the data distribution, but at the cost of a longer execution time. To illustrate this trade-off, Figure 2b displays the objective function value in function of different values of sketch size (m = {256; 1, 024; 4, 096; 8, 192}). We observe that at some point, increasing m no longer reduces the objective function value (the lines depicting m = 4, 096 and m = 8, 192 superimpose), so that the additional computational time does not worth it. Hereafter, m is fixed to 4,096.

Naturally, using larger batches (parameter n) leads to a better approximation of the decomposition sketch SK(D • C *) in Eq. (9); yet, from a computational viewpoint the trade-off is not obvious: with larger batches, fewer iterations are required, but each iteration is more computationally demanding. As during preliminary experiments (not shown), we have considered various powers of 2 as batch sizes (2 10 = 1, 024; 2 11 = 2, 048; 2 12 = 4, 096; 2 13 = 8, 192; 2 14 = 16, 384; 2 15 = 32, 768), with hardly any impact on SSDL convergence, we henceforth focus on the execution time. Figure 3a depicts SSDL execution time as a function of the dictionary size K for different batch size tests. Figure 3b illustrates SSDL execution time averaged across the different possible values of K. Overall, SSDL execution time mostly amounts to that of sparse coding, and thanks to our parallelized implementation (see Section 3.3), the dictionary update time hardly depends on n for n ≥ 4, 096.

The remaining three parameters (initial learning rate γ 0 , decay parameter ν and momentum weight α) influence the convergence speed. Let us compare the 27 combinations resulting from the following tunings: γ 0 = {0.05; 0.1; 0.2}, ν = {0; 0.01; 0.1} and α = {0; 0.5; 0.9}. The tests with ν = 0 correspond to the case of constant learning rate. Three momentum weight values α = {0; 0.5; 0.9} represent three scenarios, respectively: (1) the momentum is not involved in the dictionary update (i.e., the classical stochastic mini-batch method), (2) the gradient and the momentum have equivalent weights; and (3) the momentum has the majority impact (situations where α > 0.9 should not be considered as too high a momentum can be detrimental to the optimality of the solution [START_REF] Smith | A disciplined approach to neural network hyperparameters: Part 1 -learning rate, batch size, momentum, and weight decay[END_REF][START_REF] Liu | A diffusion approximation theory of momentum sgd in nonconvex optimization[END_REF]). The results are presented in Figure 4. At first glance and irrespective of the other parameters, the fastest convergence is given by α = 0.9. Moreover, there is an important gap in the convergence rate of the classical stochastic mini-batch scheme and the momentum based Nesterov scheme which advocates for α = 0.9. Furthermore, the higher the initial learning rate γ 0 , the lower the final value of the objective function. However, setting the initial learning rate to 0.2 leads to too large fluctuations in the objective function, as illustrated on the rightmost part of Figure 4. In this case, a large decay parameter ν = 0.1 can correct for this. We also observe that using a decaying learning rate when the initial learning rate γ 0 is smaller than 0.2 does not improve the convergence rate, and even slows it down sometimes. Finally, the following tuning is retained: α = 0.9, γ 0 = 0.2 and ν = 0.1. MODL is driven by five parameters: the reduction parameter r, the batch size n M ODL , the dictionary size K, the regularization parameter λ M ODL and the number epochs T M ODL . The last three parameters being the same as for SSDL, they are set to the same values. As for the batch size, it is fixed to a value equal to that of the dictionary size K, as recommended in [START_REF] Mensch | Stochastic subsampling for factorizing huge matrices[END_REF]. Finally, two scenarios are compared for the reduction level r: (1) the direct application of MODL to the original slice of 718 rows with r = 3 (referred to as M ODL 718,r=3); and (2) the application of MODL after sub-sampling the slice down to 256 rows with r = 1 (referred to as M ODL 256,r=1).

The parameters of IcTKM are selected following the recommendations of [START_REF] Schnass | Compressed dictionary learning[END_REF]: random projector based on discrete Fourier transform, sparsity level Λ IcT KM set to the same value as expected for SSDL and reduction parameter r IcT KM = 5 (the highest value according to [START_REF] Schnass | Compressed dictionary learning[END_REF], Table 1, based on the sparsity level and data dimension). As preliminary tests have highlighted the important computational load of IcTKM, we combine this dimensionality reduction with our subsampling to 256 rows, and the associated results are denoted as those of IcT KM 256,r=5 . As for algorithm termination, instead of a number of epochs, IcTKM requires to fix the number of iterations. On our data, 32 of them seem sufficient to near the convergence plateau. Finally, concerning the initialization required for all the considered methods, dictionary D 0 is defined by a random selection from the data.

Results

Our comparisons focus on the execution time as well as on the quality of the resulting dictionaries with respect to the expectations listed in Section 1. Figure 5a depicts the execution time of MODL 256,r=1 , MODL 718,r=3 , IcTKM 256,r=5 and SSDL (which for the symmetry is denoted as SSDL 256 with respect to the data preprocessing described in Section 4.2) depending on the dictionary size K = {384; 768; 1, 152; 1, 536; 1, 920; 2, 304; 2, 688; 3, 072; 3, 712}, see Section 4.3. Other SSDL 256 parameters are: λ = 0.001, m = 4, 096, n = 16, 384, γ 0 = 0.2, ν = 0.1, α = 0.9, T = 3.

Despite the combination of both dimensionality reduction methods, IcTKM 256,r=5 is the slowest approach. MODL is more computationally efficient than SSDL for small dictionaries (broadly, less than 1,000-1,500 atoms for MODL 256,r=1 and less than 768 for MODL 718,r=3), but it does not easily scale up to too large dictionaries. As a result, for datasets resulting from the LC-MS analysis of highly complex biological samples, SSDL is more efficient: Concretely, for a single slice of Ecoli dataset, for which K ∈ [3000, 3750]), SSDL 256 test is two times faster than MODL 256,r=1 , three times than MODL 718,r=3 and four times than IcTKM 256,r=5 .

Concerning the dictionary quality, as discussed in Section 1, the dictionary atoms must have shapes akin to that of real chromatographic profiles: positive and smooth signals with a Gaussian like, yet slightly asymmetric, shape. Figure 6 illustrates with several examples, the type of dictionary atoms obtained by SSDL 256 (first row), MODL 256,r=1 (second row) and IcTKM 256,r=5 (third row). Since IcTKM method does not allow to impose any positiveness or smoothness constraints, the obtained dictionary atoms cannot be interpreted as peptide chromatograms, hereby hampering their use for processing multiplexed acquisitions. In contrast, both SSDL and MODL provide dictionary atoms with the expected chromatogram shape. Of course, both SSDL and MODL also provides atoms that cannot be interpreted as single chromatogram: for instance, the fourth dictionary atom in the first row of Figure 6 contains many well-separated peaks; and the 2. However the distributions are also heavy-tailed, with a significant proportion of less smooth atoms (total variation norm lying between 3 and 10). In contrast, the total variation norm distribution for SSDL 256 does not exceed 6, and indicates that a larger proportion of the atoms are smoother than their MODL counterparts. Overall, SSDL provides with a smaller computational time, dictionaries that are more suited to LC-MS data than those produced with MODL and IcTKM.

Conclusions

Extracting meaningful patterns from LC-MS data is challenging, because of the multiple constraints attached to their production method: First, the corresponding matrix can be of very large size, especially when resulting from last generation high resolution instruments, hereby requiring scalable approaches. Second, the extracted patterns must have the physical interpretation of a chromatogram and their number must be consistent with the number of analytes potentially detected in the analyzed sample (up to several thousands). In this article, we have introduced a new dictionary learning method, referred to as Sketched Stochastic Dictionary Learning (SSDL), which combines the latest trends of compressive statistical learning, as well as of online learning and of stochastic optimization, while being compliant with all the aforementioned constraints. This is notably the reason why, compared to state-of-the-art methods, it provides more meaningful dictionaries at a smaller computational cost. Beyond the specificities of LC-MS data, SSDL is also of interest from a more fundamental viewpoint, as to the best of our knowledge, it is the first dictionary learning method that can directly operate on a data sketch (a controlled-sized proxy of the data distribution in the Fourier domain). As future work, we will consider embedding random projection based dimensionality reduction techniques, hereby enabling the processing of entire datasets in a single batch; as well as eventually, the processing of datasets acquired on longer time frames with longer elution columns. From a more applicative viewpoint, SSDL will unleash an efficient and convenient handling of highly multiplexed data acquisitions. Such acquisitions are already an important research direction in proteomics for the depth of analysis they potentially enable, however to date the associated data processing challenges have prevented their widespread use; a hurdle that SSDL will help to overcome.

Figure 1 :

 1 Figure 1: The multiplexing process in LC-MS data measurements is additive (a) so that the demultiplexing operation amounts to a matrix factorization (b) as LC-MS data can be easily formatted into a matrix (c).

Algorithm 1

 1 Sketched Stochastic Dictionary LearningInput: Data matrix X ∈ R s×N ; Initial dictionary D 0 ; Initial learning rate γ 0 ; Decay parameter ν; Momentum weight α; Batch size n; Regularization weight λ. 1: Initialization:

Figure 2 :

 2 Figure 2: (a) Tuning of the regularization parameter λ. The distribution of the number of non-zero coefficients for different values of the regularization parameter λ. The coefficients are computed using the initial dictionary D 0 . Vertical dotted lines indicate the mode of each distribution. (b) Value of the objective function of the dictionary update with respect to the number of iterations, with different sketch sizes.

Figure 3 :

 3 Figure 3: SSDL execution time for different batch size values. (a) The SSDL execution time as a function of the dictionary size and of the batch size. (b) Total average execution time as a function of the batch size as well as average execution time for each step among: data sketch computation (green); dictionary update (yellow); and sparse coding (blue).

Figure 4 :

 4 Figure 4: SSDL method convergence depending on the learning rate, the momentum weight, and the decay parameter. Sub-figures correspond to different initial learning rate tests (the smallest on the left and the biggest on the right). Each sub-figure depicts the dictionary update objective function F (D, C *) as a function of the number of iterations for different parameter value combinations. Different colors depict the three momentum weight scenarios, and different line types illustrate different values of the decay parameter. Batch size is fixed at 16,384. The regularization parameter λ is equal to 0.001.

Figure 5 :

 5 Figure 5: (a) The execution time (logarithmic scale) of SSDL, MODL, Ic-TKM tests as a function of the dictionary size K. The execution time of all methods consists in the execution time spent on the sparse coding and the dictionary update. However, for SSDL (resp. IcTKM) it also includes the data sketch computation time (resp. the random projection operator construction time). (b) The distribution of the dictionary atom total variation for MODL 256,r=1 (purple), MODL 718,r=3 (red) and SSDL 256 (light blue) resulting dictionaries (with K = 3, 712).

Acknowledgments

The authors would like to thank Anne-Marie Hesse and Alexandra Kraut for carrying out the mass spectrometry experiments that provided the data on which this paper is based, as well as Virginie Brun, Yohann Couté and Christophe Bruley for supports and fruitful discussions.

Financial disclosure

This work was supported by grants from the French National Research Agency: ProFI project (ANR-10-INBS-08), GRAL project (ANR-10-LABX-49-01), DATA@UGA and SYMER projects (ANR-15-IDEX-02) and MIAI @ Grenoble Alpes (ANR-19-P3IA-0003).

Data Accessibility

The data that support the findings of this study are openly available in figshare public repository at http://doi.org/10.6084/m9.figshare.13589621.

Method

second one in the second row of Figure 6 displays what appears to be an overlap of various chromatograms. However, this is simply a consequence of the biological complexity of the analyzed sample, which may require more resoluted instruments as well as, possibly, further improvements in blind source separation.

To obtain a more precise and more exhaustive comparison of MODL and SSDL dictionaries, displaying the total variation distributions is insightful: Since the dictionary atoms have a unitary L 2 norm, chromatogram-like atoms should have a total variation smaller than 2. Considering the total variation of the j th atom of dictionary D reads

we can compare the histograms of the three T V (j) j∈[1,K] distributions derived from learning D with MODL 256,r=1 , MODL 718,r=3 and SSDL 256 . The result is depicted on Figure 5b, with density plots practically obtained using the geom density function of ggplot2 R package (default parameters). It appears that the dictionaries extracted with both MODL 256,r=1 and MODL 718,r=3 contain many atoms with a total variation norm around

Author contributions

Olga Permiakova designed the method, implemented the R package, carried out the computational experiments, analysed the results and drafted the manuscript. Thomas Burger designed the method, directed the work, participated to the result analysis and drafted the manuscript. All authors proofread the manuscript and approved its final version.

Conflict of interest

The authors declare no potential conflict of interests.