
HAL Id: hal-03324568
https://hal.science/hal-03324568

Submitted on 23 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sketched Stochastic Dictionary Learning for large-scale
data and application to high-throughput mass

spectrometry
Olga Permiakova, Thomas Burger

To cite this version:
Olga Permiakova, Thomas Burger. Sketched Stochastic Dictionary Learning for large-scale data and
application to high-throughput mass spectrometry. Statistical Analysis and Data Mining: The ASA
Data Science Journal, 2021, �10.1002/sam.11542�. �hal-03324568�

https://hal.science/hal-03324568
https://hal.archives-ouvertes.fr

Sketched Stochastic Dictionary Learning for

large-scale data and application to high-throughput

mass spectrometry

Olga Permiakova, Thomas Burger

Univ. Grenoble Alpes, CNRS, CEA, Inserm, ProFI FR2048,
Grenoble, France

thomas.burger@cea.fr

Abstract

Factorization of large data corpora has emerged as an essential
technique to extract dictionaries (sets of patterns that are meaningful
for sparse encoding). Following this line, we present a novel algorithm
based on compressive learning theory. In this framework, the (arbitrar-
ily large) dataset of interest is replaced by a fixed-size sketch resulting
from a random sampling of the data distribution characteristic func-
tion. We apply our algorithm to the extraction of chromatographic
elution profiles in mass spectrometry data, where it demonstrates its
efficiency and interest compared to other related algorithms.

Keywords: Dictionary learning; Stochastic gradient descent; Com-
pressive statistical learning; Nesterov accelerated gradient descent; Com-
putational mass spectrometry; Matrix factorization

1 Introduction

Finding a linear decomposition of an observed signal x ∈ Rs is essential for
many applications, as it provides a way to exhibit its elementary constitutive
patterns, as well as to denoise it. Formally, this task amounts to finding a
vector of coefficients c = (c1, . . . , cK) ∈ RK , referred to as code, such that:

x = c1 · d1 + · · ·+ cK · dK + ε, (1)

where D = {d1, . . . , dK} ∈ Rs×K is a matrix referred to as dictionary,
composed of K s-dimensional column vectors (the dictionary atoms), and

1

where ε represents the (hopefully small) part of x that is not explained
by D. While many solutions to this problem are already available when
D is known, the decomposition of a signal, which potential constitutive
elementary patterns are unknown (referred to as blind source separation), is
much more difficult. As a result, despite being almost 30 years old [1], this
problem still focuses investigations.

According to compressive sensing theory [2], a good dictionary is such
that any signal can be precisely approximated using few dictionary atoms
only, i.e., only a restricted number of ck are non-null in Decomposition (1);
and the fewer the better. As emphasized in [3], this type of representa-
tions, referred to as sparse representations, are widespread in many real-life
applications: image denoising [4], super resolution [5], compression [6], etc.

The oldest strategies to decompose signals have used Riesz bases as dic-
tionaries (e.g., Fourier, wavelet or curvelet bases [7]). Their mathematical
properties have made the decomposition straightforward, yet, for highly
complex real-life signals, sparse representations have generally been achiev-
able only at the price of an important unexplained residue ε. In fact, it
has since then been established [8] that sparse representations were easier
to obtain when Decomposition (1) involved an overcomplete dictionary, i.e.
a dictionary which size exceeds the signal dimensionality K > s. However,
finding an overcomplete dictionary yields two (related) difficulties: First,
the corresponding matrix D is not full-rank, which can potentially lead to
numerical issues. Second, Decomposition (1) may not be unique, so that
additional constraints are usually necessary to lead to a well-posed problem
and a practically satisfactory solution. To overcome them, it has been pro-
posed to extract elementary patterns from a set of signals akin to that for
which a decomposition is sought, and to form an overcomplete dictionary
with these patterns. This approach, referred to as dictionary learning, has
been demonstrated to lead to dictionaries that are of real practical interest,
for three reasons: First, they capture well the specificities of the data [9].
Second, they allow for even sparser representations. Third, their atoms are
easier to relate to physical signals and thus to interpret [10]. Concretely,
learning a dictionary from a set of observed signals X ∈ Rs×N , is related to
finding a decomposition of X into a product of two low rank matrices [11].
The effectiveness of this matrix factorization approach has been illustrated
in many applications, such as medical signal modeling and analysis [10], nat-
ural image processing [12], audio and video processing [13]. In this article,
we aim to apply dictionary learning to another type of data: those resulting
from the high-throughput mass spectrometry analysis of complex biological
samples.

2

Mass spectrometry (MS) coupled with liquid chromatography (LC) is a
commonly used analytical chemistry technique, which has witnessed an in-
creasing popularity in the last decade [14], due to its application to omics bi-
ology. Notably, it has become the method of choice for proteome, metabolome
and lipidome investigations. Despite increasing resolution and cycle speed,
the LC-MS pipeline is still challenged by the complexity of classical bio-
logical samples: Concretely, the number of biomolecules to identify and
quantify remains larger than the measurement capabilities. To increase the
sample coverage, relying on multiplexed measurements [15] (that is, record-
ing a single signal for several biomolecules which intensities are summed up,
see Figure 1a) has become increasingly popular. However, interpreting the
resulting data requires a subsequent demultiplexing step which intuitively
translates (see Figure 1b) into solving a blind source separation problem [16].
To tackle it, we follow the line of [17], which proposes to denoise simple LC-
MS data by relying on a matrix factorization formulation. Practically, the
LC-MS data can easily be formatted into a matrix: Broadly, the LC can
be seen as a way to serialize the analytes into the MS, so as to avoid that
too many of them are concomitantly analyzed. Thus, if the mass spectra
produced over time are stored as vectors of high dimensionality (N ≈ 105)
and stacked as matrix rows, the matrix columns can be interpreted as chro-
matograms (a.k.a. elution profiles, see Figure 1c). A chromatogram is a
vector that represents an analyte’s flow rate outputted from the LC toward
the MS. This flow rate being a physical signal discretized at a relatively high
frequency (which explains why s lies between 103 and 104) its smoothness
can be leveraged. Notably, we have formerly established [18] it can be used
to extract meaningful chemical patterns through cluster analysis. In this
work, we propose to learn a dictionary of chromatograms to subsequently
improve the decomposition of LC-MS data, with a sparsity level related to
the number of biomolecules which measurements have been multiplexed.

Extracting a meaningful dictionary from LC-MS data comes along with
numerous challenges. First, the dictionary atoms must be interpretable as
chromatograms (i.e. smooth, non-negative, slightly heavy right-tailed wave-
forms, see Figure 1). Second, owing to the number of analytes in a classical
sample (up to tens of thousands), which largely exceeds the chromatographic
signal dimensionality, the dictionary must be highly overcomplete. Third,
LC-MS data are already rather big and their size is ever-increasing due to
the constant improvement of MS resolution and cycle speed. Therefore,
processing them in a time compliant with the various constraints of a stan-
dard analytical platform is a computational challenge that requires scalable
solutions.

3

Figure 1: The multiplexing process in LC-MS data measurements is additive
(a) so that the demultiplexing operation amounts to a matrix factorization
(b) as LC-MS data can be easily formatted into a matrix (c).

4

We hereby describe a new approach meeting these constraints. From
a methodological viewpoint, our contribution essentially lies in an origi-
nal formulation of the dictionary learning problem which leverages recent
developments in compressive learning. This framework aims to design al-
gorithms which operate on a so-called data sketch in place of the original
input data (which can be disposed of once the sketch has been computed).
The main interest of this methodology is to enable data compression (mak-
ing the sketch coarser or finer) according to the desired trade-off between
accuracy and computational load. Adapting this framework to improve dic-
tionary learning yields a difficulty: computing the codes for each data point
requires having access to the entire input data. As this intrinsically limit
the computational gain of the sketching procedure, we propose to rely on
a stochastic gradient descent algorithm to minimize the dictionary learning
objective function. In spite of this, relying on a data sketch to extract dictio-
nary atoms remains particularly appealing. As both tasks aim at extracting
salient patterns from the data, the later can leverage the distributions cap-
tured by the former. A combination of above ideas yields a new method
referred to as Sketched Stochastic Dictionary Learning (SSDL). According
to our experimental validation, this method improves the state-of-the-art to
extract a set of meaningful patterns from LC-MS data with a small compu-
tational footprint.

The article is structured as follows: Section 2 gathers the related works,
including standard dictionary learning formulation, presentation of state-
of-the-art methods and summary of background knowledge that are instru-
mental to a clear exposure of SSDL. Then Section 3 presents SSDL. Finally,
Section 4 is dedicated to experimental validations on LC-MS data.

2 Related works

2.1 Notations

In the rest of the article, matrices are noted with capital letters like A or X
and vectors with lowercase ones, like a or x (however, both types of letters
may also be used for integers, sets, etc.). The jth column (respectively,
row) of matrix X is denoted X:,j (respectively, Xj,:), or possibly xj if the
corresponding vector has been previously defined. Following the same line,
the (j, k)th element of X is denoted Xj,k. The pseudo-inverse of matrix A
is denoted as A† and its transpose is A>. On the other hand, At denotes
the tth iteration of the computation of A. By abuse of notation, t + 1

2 is
used to refer to an intermediate step of iteration t. The imaginary number

5

(
√
−1) is denoted as i and z̄ ∈ C is the complex conjugate of z ∈ C, i.e.,

z = Re(z) + i · Im(z) and z̄ = Re(z)− i · Im(z). Finally, ||.||p is the Lp norm,
[.]mj=1 represents the construction of a vector from its m components, ∇ is
the gradient operator and E is expectation one.

2.2 Classical dictionary learning strategies

Let X = {x1, . . . , xN} ∈ Rs×N be a data matrix. The classical formulation
of dictionary learning reads as the following joint optimization problem:

min
C∈RK×N

D∈S

1

N

N∑
k=1

‖xk − ck ·D‖22 + λ · ‖ck‖1 (2)

where C is a matrix gathering all code vectors ck; where λ is the regulariza-
tion parameter of a LASSO penalty (Least Absolute Shrinkage and Selection
Operator, [19]), which controls the representation sparsity; and where S is
the convex set where dictionary atoms can be picked up. It has been proven
in [20] that solving the minimization problem of Eq. (2) leads to sparse rep-
resentations. Moreover, this problem being convex with respect to C and
D separately, most methods to solve it rely on an alternative minimization
scheme (i.e., minimization of Eq. (2) with respect to one variable while the
other is fixed):

min
C∈RK×N

1

N

N∑
k=1

‖xk − ck ·D‖22 + λ · ‖ck‖1 (3)

min
D∈S

1

N

N∑
k=1

‖xk − ck ·D‖22 (4)

The first sub-problem (Eq. 3), which consists in computing the code matrix
for a given dictionary, is referred to as sparse coding. It can be solved using
LASSO [19], LARS (least-angle regression, [21]), iterative shrinkage thresh-
olding [22] or other numerical schemes relying on descent paradigms [23, 24].
However, the specificity of any dictionary learning approach essentially lies
in the technique used to solve Eq. (4), i.e., the dictionary update. For ex-
ample, Engan et al. [25] rely on an analytical solution to re-compute the
dictionary at each iteration: D = X · C†, where C† is the pseudo-inverse of
the code matrix. Alternatively, K-SVD [26] updates each dictionary atoms
independently by performing singular value decomposition. Finally, dictio-
nary learning can also be tackled in the Bayesian [27, 28, 29] or optimal
transport [30] frameworks.

6

2.3 Large-scale dictionary learning techniques

Stochastic or online learning [31, 32] is an efficient and broadly used tech-
nique to train a dictionary from a large dataset. It consists in updating
the dictionary and calculating the code at each iteration of the minimiza-
tion procedure, by relying on a randomly selected subset of signals only
(possibly, a single one). As working on a small subset drastically reduces
the computational time of both sub-problems, multiple passes through the
data (called epochs) can be used until convergence. We have singled out
two online dictionary learning methods to benchmark against our approach:
MODL (Massive Online Dictionary Learning, [33, 34]) and IcTKM (Iterative
Compressed-Thresholding and K-Means, [35]). The former is the state-of-
the-art approach, and it demonstrates excellent computational performance
on extremely large datasets. The latter is a recently published method
which underlying mathematics are conceptually related to those leveraged
in the present work, making the comparison worth of interest. More pre-
cisely, MODL minimizes Objective Functions (3) and (4): Sparse coding is
achieved using LARS algorithm, while coordinate gradient descent is applied
to update dictionary atoms. Formally, at the tth iteration, the dictionary
atoms are recomputed as follows:

dtk = dt−1k − 1

Atkk
·
(
Dt−1 ·At:,k −Bt

:,k

)
, (5)

where auxiliary matrices At and Bt are defined as At = 1
t

∑t
k=1 ck · c>k ∈

RK×K and Bt = 1
t

∑t
k=1 xk ·c>k ∈ Rs×K ; and where At:,k and Bt

:,k denote the

kth columns of matrices At and Bt respectively. Using these auxiliary ma-
trices allows to gather the statistics about the signals x1, . . . , xt and codes
c1, . . . , ct observed at previous iterations without explicitly storing them in
memory. This strategy provides low memory consumption and computa-
tional cost, at least for small K. MODL is compliant with positiveness
constraints on both the dictionary and code matrices, as required by LC-
MS data (see Section 1). Finally, MODL embeds an optional dimensionality
reduction step based on random projections [36].

Although IcTKM reformulates dictionary learning as a constrained min-
imization problem, it also proposes a solution based on alternate minimiza-
tion. Instead of a regularization parameter, the sparsity level ΛIcTKM is
directly defined through a constraint on the number of non-zero elements in
the columns of the codes. Sparse coding is solved using Iterative Threshold-
ing [37]. The dictionary update is carried out by computing the K-residual
means (following the known equivalence between clustering and matrix fac-

7

torization [38]). Concretely, each dictionary atom dk is updated by averag-
ing the data vectors xj with non-null code coefficients Ckj . To speed up the
computations, IcTKM relies on fast Johnson–Lindenstrauss transform [39].

2.4 Scaling-up by sketching

The method proposed in this article borrows two important features from
the large-scale machine learning literature and adapt them to the dictio-
nary learning context. The first one is the compressive statistical learning
framework [40]. Its seminal idea is to summarize the data collection into a
complex vector of fixed size, referred to as the data sketch, so that the al-
gorithm complexity does not depend on the data size anymore. Concretely,
the data sketch is constructed by sampling the characteristic function of the
empirical data distribution P (X):

SK(X) =
[
Ex∼P (X)

(
eiw
>
j x
)]m

j=1
, (6)

where wj ∈ Rs is one of m vectors of frequencies (m being an application-
dependent parameter). The wj ’s are randomly sampled from some prede-
fined distribution; usually, a normal distribution with null mean and stan-
dard deviation estimated on the Fourier transform of a data subset, see [40].
Starting from this theoretical ground, the main challenge is to adapt the
machine learning method of interest so that it operates on the data sketch
rather than on the original data. The authoring team has demonstrated both
the practical interest and the efficiency of this approach on various problems,
including Gaussian mixture estimation [40] and data clustering [41]. How-
ever, to the best of our knowledge, there is no dictionary learning method
based on this framework.

Our second cornerstone is Nesterov accelerated gradient descent method
(NAGD, see [42] as well as its more recent formulation [43]). Conceptually, it
is akin to classical gradient descent, however, it includes an additional term,
the momentum, denoted as η (a weighted average of the gradient vectors
computed in the previous iterations). Adding this momentum term makes
quadratic convergence possible in the deterministic cases [42]. The NAGD
update rule reads:

Dt+ 1
2 = Dt + α · ηt

ηt+1 = α · ηt − γ · ∇Df
(
Dt+ 1

2

)
Dt+1 = Dt + ηt+1

(7)

8

where f is the function to minimize; where α is the momentum weight; where
γ defines the length of each gradient step (the learning rate); and where

Dt+ 1
2 is referred to as the ahead. Recently, NAGD scheme has attracted

great interest for stochastic optimization: Its convergence under convex and
smooth optimization has been heavily documented [44, 45], but scarce results
are so far available for non-convex cases. Despite, it is of practical interest,
as when correctly tuned, it outperforms the classical stochastic method [31].

3 SSDL method

3.1 Objective function

As SSDL follows a classical alternate minimization scheme, the dictionary
update and the code computation objective functions can be separated. The
former differs from the classical dictionary update (Eq. 4), as we propose to
include the sketching operator of Eq. (6). As for the code computations, we
have modified Eq. (3) to fit the stochastic learning framework. Concretely,
at each iteration, the code matrix is computed only for a data subset selected
uniformly at random, denoted X̂ = {x̂1, . . . , x̂n} ∈ Rs×n, where n < N :

C∗ = arg min
C∈RK×n

1

n

n∑
k=1

‖x̂k −D · ck‖22 + λ · ‖ck‖1, (8)

Then SSDL looks for a dictionary D such that the data sketch SK(X) is as
close as possible to the sketch of the decomposition SK(D · C∗):

min
D∈S

F (D,C∗), with F (D,C∗) = ‖SK(X)− SK(D · C∗)‖22 (9)

Since the sketching procedure amounts to sampling an empirical character-
istic function, D does not only represent the observed data, but to some
extent, its underlying distribution. Therefore, the dictionary resulting from
this procedure can be expected to generalize well to other data with similar
distribution. This behavior should moreover be strengthened by an adequate
tuning of the frequency generation procedure [40] as it aims to capture only
the most relevant features and eliminate noise. Finally, it is also of interest
in a stochastic learning context: despite the use of a random sampling pro-
cedure on the training set, the optimizer can also rely on the complete data
summary provided by the data sketch.

These changes in the objective functions lead to several advantages:
First, the stochastic minimization is fully efficient, as the additional com-
putations it requires are immaterial on small data batches. Second, the

9

gradient of Eq. (9) does not contain the term D · A, where the computa-
tional footprint of matrix A =

∑n
k=1 ck · c>k ∈ RK×K could be important for

highly overcomplete dictionary. Finally, the data sketch SK(X) is computed
once, at the algorithm initialization (afterwards the data sketch remains un-
changed) and this initial computation parallelizes well in case of extremely
large datasets.

3.2 Minimization

At each iteration of SSDL, the dictionary is updated by performing one
gradient step as in Nesterov scheme (7), with the gradient of Objective
function (9) reading:

∇d`‖SK(X)− SK(D · C∗)‖2 = ∇d`
(
z · z>

)
= 2

(
∇d`Re(z)> · Re(z) +∇d`Im(z)> · Im(z)

)
= 2 · ∇d`q

> · q ∈ Rs, (10)

where z = SK(X)−SK(D ·C∗) ∈ Cm, q = [Re(z), Im(z)] ∈ R2m is a vector
obtained by stacking the real and imaginary parts of the complex vector z
and

∇d`q
> =

[
δ

δd`
Re(z)1, . . . ,

δ

δd`
Re(z)m,

δ

δd`
Im(z)1, . . . ,

δ

δd`
Im(z)m

]
∈ Rs×2m

(11)
with

δ

δd`
Re(z)j = − δ

δd`
Re(SKj(D · C∗)) =

1

n

n∑
k=1

C∗`k · sin
(
w>j ·D · C∗:,k

)
· wj

(12a)

δ

δd`
Im(z)j = − δ

δd`
Im(SKj(D · C∗)) = − 1

n

n∑
k=1

C∗`k · cos
(
w>j ·D · C∗:,k

)
· wj

(12b)

and with SKj (respectively, Re(z)j , Im(z)j) being the jth coordinate of the
sketch vector (respectively the real and imaginary part vectors).

However, the dictionary update of SSDL differs from the general Nes-
terov scheme. First, to ensure the positivity of the dictionary atoms, the

10

Algorithm 1 Sketched Stochastic Dictionary Learning

Input: Data matrix X ∈ Rs×N ; Initial dictionary D0; Initial learn-
ing rate γ0; Decay parameter ν; Momentum weight α; Batch size n;
Regularization weight λ.

1: Initialization:
2: Compute SK(X) from X following [40]
3: t = 0, η0 = 0
4: Repeat until convergence:
5: Construct a data batch X̂t ∈ Rs×n.

6: Sparse coding: Ct = min
C∈RK×n

1
n

n∑
k=1

‖x̂kt −Dt · ck‖22 + λ · ‖ck‖1
7: Dictionary update:
8: Dt+ 1

2 = max(Dt + α · ηt, 0)
9: γt = γ0

(1+(t−1)·ν)

10: ηt+1 = α · ηt − γt · ∇DF (Dt+ 1
2 , Ct)

11: Dt+1 = PS
(
Dt + ηt+1

)
, where PS(·) is a Euclidean projection on

convex set S = {d ∈ RK+ | ‖d‖2 ≤ 1}

ahead dictionary is projected on Rs×K+ (see Alg. 1, Line 8). Second, SSDL
uses a decaying learning rate (see Alg. 1, Line 9):

γt =
γ0

(1 + (t− 1) · ν)
. (13)

This is motivated by the following fact: using a large γ far away from
the minimum and progressively decreasing it allows to accelerate the con-
vergence. As a drawback, it requires to tune an additional parameter, ν
(the decay speed). The last difference relies in the Euclidean projection on
S = {d ∈ RK+ | ‖d‖22 ≤ 1}, which is included after the dictionary update
(see Alg. 1, Line 11) to avoid too small scalars in the code matrix C. The
complete pseudocode of SSDL is presented in Alg. 1.

3.3 Implementation and complexity

SSDL is implemented in R language. The gradient vector calculation is
implemented in C++ and it is wrapped to R using the Rcpp package [46]
and parallelized using the RcppParallel package [47]. The sparse coding
problem is addressed by the glmnet R function from the glmnet pack-
age [48], which is parallelized using the mclapply R function from the
parallel package [49]. The File-backed Big Matrix (FBM) class of the

11

bigstatsr [50] package is used to store and to manipulate the matrices
that are too large to be memory allocated. The SSDL code is made available
on gitlab https://gitlab.com/Olga.Permiakova/ssdl as well as on the
CRAN (Comprehensive R Archive Network): https://cran.r-project.

org/web/packages/SSDL/index.html.
A global theoretical complexity algorithm would be fragile, as each com-

pared method does not necessarily need the same number of iterations to
converge. However, it is possible to compare the computational complexity
of a single iteration. Concretely, the two steps of IcTKM have the following
complexity:

• Compressed thresholding: O
(

s
rIcTKM

KN
)
,

• Projections in the dictionary update: O
(
NΛ3

IcTKM

)
,

where rIcTKM is the so-called reduction parameter (see Section 4.3). Con-
trarily to IcTKM, for which each iteration traverses the entire input data,
MODL and SSDL process a single batch per iteration. The complexity of
MODL reads:

• Gram matrix computation and dictionary update by coordinate de-

scent: O
(

s
rMODL

K2
)
,

• Auxiliary matrices computation: O
(

s
rMODL

KnMODL

)
,

• Code computation: O
(
KnMODLτ

2
MODL

)
,

where τMODL is the sparsity level resulting from tuning regularization pa-
rameter λMODL; rMODL is MODL reduction parameter; and nMODL is
MODL batch size (see Section 4.3). Finally, SSDL complexity reads:

• Sparse coding: O (sKn) ,

• Dictionary update: O (mKs) +O (mKn) ,

• Euclidean projection: O (sK) .

However, it should be noted that the computational complexity of a sin-
gle SSDL iteration does not account for the initial data sketching, which
complexity is O(msN). As a result, one expects SSDL to be efficient only
when the data are large enough to require a sufficient amount of batch-wise
iterations (see Section 4.4). Finally, the total complexity per iteration are
summarized in Table 1.

12

https://gitlab.com/Olga.Permiakova/ssdl
https://cran.r-project.org/web/packages/SSDL/index.html
https://cran.r-project.org/web/packages/SSDL/index.html

Algorithm Single iteration complexity

IcTKM O
(

s
rIcTKM

KN
)

+O
(
NΛ3

IcTKM

)
MODL O

([
s

rMODL
+ τ2MODL

]
KnMODL + s

rMODL
K2
)

SSDL O ([s+m]Kn+mKs)

Table 1: Summary of the IcTKM, MODL and SSDL complexities for a single
iteration.

4 Experimental validation

4.1 Methodology of evaluation

The validation of SSDL relies on a proteomic dataset hereafter referred to
as the Ecoli dataset. It has resulted from the LC-MS analysis of a sample of
Escherichia coli bacteria, see Section 4.2, as well as [18] for a more compre-
hensive description. SSDL capabilities to extract a dictionary from the Ecoli
dataset are compared to those of MODL and IcTKM, both in terms of exe-
cution time and of dictionary atom quality. The machine used to benchmark
SSDL, IcTKM and MODL has the following characteristics: HP Pavilion g6
Notebook PC with Intel (R) Core (TM) i5-3230M CPU @ 2.60GHz, 8 Gb
of RAM, 4 cores, and installed with a dual boot featuring Ubuntu 04/18/4
LTS (for SSDL and MODL) and Windows 8 (for IcTCK, as running its code
requires a Matlab license). The execution time indicated below are defined
as follow: For SSDL, it corresponds to the difference between the times at
the beginning and at the end of the learning step provided by Sys.time
R function. For MODL, the execution time is defined similarly but results
from the tic/toc python functions. Finally, IcTKM matlab code provides
the execution duration in terms of CPU time.

4.2 Data description and data preprocessing

A full description of the Ecoli dataset as well as of its acquisition pipeline
is available in [18]. An important feature of this pipeline is that the basic
elements that are analyzed are peptides (i.e., protein fragments). As de-
scribed in Section 1, the matrix columns contain discrete chromatographic
profiles obtained during the elution of the sample’s peptides in liquid chro-
matography, while the rows represent mass spectra acquired at different

13

time stamps. The chemical properties of LCs are so that peptides with low
masses are usually eluted at the beginning of the analysis, and heavy ones at
the end. This leads to a specific matrix structure with high intensity peaks
distributed along the diagonal, and with many zeros in the corners. This
eases the data processing as it makes it possible to split the data matrix
horizontally into several slightly overlapping slices, for which dictionaries
can be independently trained. Then, since each slice contains a different set
of peptides, the entire dictionary can be formed by concatenating the dic-
tionaries from all the slices, which significantly reduces the computational
cost.

The learning procedure being the same for all the slices, we report the
experiments for a single one. We focus on a data slice of 718 rows acquired
between 10 and 30 minutes (amongst the two hours that lasted the complete
LC-MS analysis, i.e., a quarter of the entire dataset). We have chosen this
specific slice as for chemical reasons, it contains the highest density of MS
peaks; making it the hardest part to extract a dictionary from. The resulting
data matrix made of 74,193 columns (chromatographic profiles) has finally
been sub-sampled uniformly at random from 718 to 256 rows.

4.3 Parameter tuning

SSDL method has eight parameters: the dictionary size K, the regulariza-
tion parameter λ, the sketch size m, the batch size n, the initial learning
rate γ0, the decay parameter ν, the momentum weight α and the number
of epochs T . In addition, SSDL requires an initial dictionary D0, but it
can easily be defined by a random selection from the data. Similarly, three
epochs (T = 3) are practically sufficient to reach convergence on the Ecoli
dataset.

Among the remaining seven parameters, a number of them should be
tuned according to the specificities of the LC-MS pipeline and of the ana-
lyzed sample. Notably, the dictionary size must be consistent with the num-
ber of distinct peptides that are expected to be found. In our case, E. Coli
being well studied, the number of peptides identified by a conventional mass
spectrometry analysis is known to lie somewhere between 12,000 and 15,000,
depending on the instrument and its tuning [18]. Thus, for a single slice
broadly covering a quarter of the dataset, a suitable dictionary size can be es-
timated to lie between 3,000 and 3,750. However, to understand the effect of
the dictionary size on the SSDL execution time, we also report smaller values
of K. Notably, we hereafter discuss the influence of the batch size (see Fig-
ure 3a) in various scenarios with K = {384; 768; 1, 536; 2, 304; 3, 072; 3, 712}.

14

0.00

0.05

0.10

0.15

0 10 20 30 40 50 60 70

number of non-zero coefficients

d
e

n
s

it
y

0.001

(a)

0.002

0.004

0.006

0 50000 100000 150000 200000

Iteration

1 m
⋅
||
S
K
(X
)
−
S
K
(D

⋅
A
)|
|2

Sketch size

256

1024

4096

8192

(b)

Figure 2: (a) Tuning of the regularization parameter λ. The distribution of
the number of non-zero coefficients for different values of the regularization
parameter λ. The coefficients are computed using the initial dictionary D0.
Vertical dotted lines indicate the mode of each distribution. (b) Value of
the objective function of the dictionary update with respect to the number
of iterations, with different sketch sizes.

The regularization parameter λ should be tuned so that the number of
non-zero elements in the codes broadly amounts to the multiplexing level
of the MS acquisitions. With these regards, it can be assumed [51] that on
data such as those produced, chromatograms with more than 20 peaks are
not sufficiently resoluted: they either correspond to noise, or to chemical
species which disentanglement stands beyond the analytical power of the
instrument. Thus, it is necessary to propose a practical strategy to find
among various values of λ, the one that leads to the desired sparsity level.
Concretely, we propose to consider a set of λ values on a logarithmized grid
(e.g., λ ∈ {0; 0.001; 0.01}), and for each of these values, to compute the code
C0 using the initial dictionary D0. Figure 2a depicts the distribution of the
number of non-zero elements in each column of C0 for each λ: According
to our expectations, λ = 0.001 is adapted to the Ecoli dataset. Although
approximate, this approach appears to be sufficiently fast to be practically
used by practitioners on their LC-MS dataset.

The tuning of the other five parameters is not as intuitive for a prac-
titioner (sketch size, batch size, initial learning rate, decay parameter, and
momentum weight). To mimic real conditions of application, it must there-
fore be carried out by means of a classical grid search. Let us focus on the
sketch size m first: in general, increasing it allows revealing more details

15

about the data distribution, but at the cost of a longer execution time. To
illustrate this trade-off, Figure 2b displays the objective function value in
function of different values of sketch size (m = {256; 1, 024; 4, 096; 8, 192}).
We observe that at some point, increasing m no longer reduces the objective
function value (the lines depicting m = 4, 096 and m = 8, 192 superimpose),
so that the additional computational time does not worth it. Hereafter, m
is fixed to 4,096.

Naturally, using larger batches (parameter n) leads to a better approx-
imation of the decomposition sketch SK(D · C∗) in Eq. (9); yet, from a
computational viewpoint the trade-off is not obvious: with larger batches,
fewer iterations are required, but each iteration is more computationally
demanding. As during preliminary experiments (not shown), we have con-
sidered various powers of 2 as batch sizes (210 = 1, 024; 211 = 2, 048;
212 = 4, 096; 213 = 8, 192; 214 = 16, 384; 215 = 32, 768), with hardly any
impact on SSDL convergence, we henceforth focus on the execution time.
Figure 3a depicts SSDL execution time as a function of the dictionary size
K for different batch size tests. Figure 3b illustrates SSDL execution time
averaged across the different possible values of K. Overall, SSDL execution
time mostly amounts to that of sparse coding, and thanks to our paral-
lelized implementation (see Section 3.3), the dictionary update time hardly
depends on n for n ≥ 4, 096.

The remaining three parameters (initial learning rate γ0, decay param-
eter ν and momentum weight α) influence the convergence speed. Let us
compare the 27 combinations resulting from the following tunings: γ0 =
{0.05; 0.1; 0.2}, ν = {0; 0.01; 0.1} and α = {0; 0.5; 0.9}. The tests with ν = 0
correspond to the case of constant learning rate. Three momentum weight
values α = {0; 0.5; 0.9} represent three scenarios, respectively: (1) the mo-
mentum is not involved in the dictionary update (i.e., the classical stochastic
mini-batch method), (2) the gradient and the momentum have equivalent
weights; and (3) the momentum has the majority impact (situations where
α > 0.9 should not be considered as too high a momentum can be detri-
mental to the optimality of the solution [52, 53]). The results are presented
in Figure 4. At first glance and irrespective of the other parameters, the
fastest convergence is given by α = 0.9. Moreover, there is an important
gap in the convergence rate of the classical stochastic mini-batch scheme
and the momentum based Nesterov scheme which advocates for α = 0.9.
Furthermore, the higher the initial learning rate γ0, the lower the final value
of the objective function. However, setting the initial learning rate to 0.2
leads to too large fluctuations in the objective function, as illustrated on the
rightmost part of Figure 4. In this case, a large decay parameter ν = 0.1

16

10

20

30

384 768 1152 1536 1920 2304 2688 3072 3456
Dictionary size (K)

S
S

D
L

 e
x

e
c

u
ti

o
n

 t
im

e
,

m
in

Batch size (n)

1024

2048

4096

8192

16384

32768

(a)

0

5

10

15

20

1024 2048 4096 8192 16384 32768
Batch size (n)

A
v

e
ra

g
e

 S
S

D
L

 e
x

e
c

u
ti

o
n

 t
im

e
,

m
in

Method step

Sparse code

Dictionary update

Data sketch

(b)

Figure 3: SSDL execution time for different batch size values. (a) The
SSDL execution time as a function of the dictionary size and of the batch
size. (b) Total average execution time as a function of the batch size as well
as average execution time for each step among: data sketch computation
(green); dictionary update (yellow); and sparse coding (blue).

17

γ0 = 0.05 γ0 = 0.1 γ0 = 0.2

50000 100000 150000 200000 250000 50000 100000 150000 200000 250000 50000 100000 150000 200000 250000

5

10

15

20

iteration

||
S
K
(X
)
−
S
K
(D

⋅
C

∗
)|
|2 α

0
0.5
0.9

ν

0
0.01
0.1

Figure 4: SSDL method convergence depending on the learning rate, the
momentum weight, and the decay parameter. Sub-figures correspond to
different initial learning rate tests (the smallest on the left and the biggest on
the right). Each sub-figure depicts the dictionary update objective function
F (D,C∗) as a function of the number of iterations for different parameter
value combinations. Different colors depict the three momentum weight
scenarios, and different line types illustrate different values of the decay
parameter. Batch size is fixed at 16,384. The regularization parameter λ is
equal to 0.001.

18

can correct for this. We also observe that using a decaying learning rate
when the initial learning rate γ0 is smaller than 0.2 does not improve the
convergence rate, and even slows it down sometimes. Finally, the following
tuning is retained: α = 0.9, γ0 = 0.2 and ν = 0.1.

MODL is driven by five parameters: the reduction parameter r, the batch
size nMODL, the dictionary size K, the regularization parameter λMODL and
the number epochs TMODL. The last three parameters being the same as
for SSDL, they are set to the same values. As for the batch size, it is fixed
to a value equal to that of the dictionary size K, as recommended in [33].
Finally, two scenarios are compared for the reduction level r: (1) the direct
application of MODL to the original slice of 718 rows with r = 3 (referred
to as MODL718,r=3); and (2) the application of MODL after sub-sampling
the slice down to 256 rows with r = 1 (referred to as MODL256,r=1).

The parameters of IcTKM are selected following the recommendations
of [35]: random projector based on discrete Fourier transform, sparsity level
ΛIcTKM set to the same value as expected for SSDL and reduction parameter
rIcTKM = 5 (the highest value according to [35], Table 1, based on the
sparsity level and data dimension). As preliminary tests have highlighted the
important computational load of IcTKM, we combine this dimensionality
reduction with our subsampling to 256 rows, and the associated results are
denoted as those of IcTKM256,r=5. As for algorithm termination, instead
of a number of epochs, IcTKM requires to fix the number of iterations.
On our data, 32 of them seem sufficient to near the convergence plateau.
Finally, concerning the initialization required for all the considered methods,
dictionary D0 is defined by a random selection from the data.

4.4 Results

Our comparisons focus on the execution time as well as on the quality of
the resulting dictionaries with respect to the expectations listed in Sec-
tion 1. Figure 5a depicts the execution time of MODL256,r=1, MODL718,r=3,
IcTKM256,r=5 and SSDL (which for the symmetry is denoted as SSDL256

with respect to the data preprocessing described in Section 4.2) depending on
the dictionary sizeK = {384; 768; 1, 152; 1, 536; 1, 920; 2, 304; 2, 688; 3, 072; 3, 712},
see Section 4.3. Other SSDL256 parameters are: λ = 0.001, m = 4, 096,
n = 16, 384, γ0 = 0.2, ν = 0.1, α = 0.9, T = 3.

Despite the combination of both dimensionality reduction methods, IcTKM256,r=5

is the slowest approach. MODL is more computationally efficient than SSDL
for small dictionaries (broadly, less than 1,000-1,500 atoms for MODL256,r=1

and less than 768 for MODL718,r=3), but it does not easily scale up to too

19

3

10

30

100

384 768 1152 1536 1920 2304 2688 3072 3456

Dictionary size (K)

E
x
e
c
u

ti
o

n
 t

im
e
,
m

in

Test

IcTKM256, r=5

MODL256, r=1

MODL718, r=3

SSDL256

(a)

0.0

0.1

0.2

0.3

0.4

0 5 10 15

Total variation

D
e
n

s
it

y

256, r=1

718, r=3

(b)

Figure 5: (a) The execution time (logarithmic scale) of SSDL, MODL, Ic-
TKM tests as a function of the dictionary size K. The execution time of
all methods consists in the execution time spent on the sparse coding and
the dictionary update. However, for SSDL (resp. IcTKM) it also includes
the data sketch computation time (resp. the random projection operator
construction time). (b) The distribution of the dictionary atom total varia-
tion for MODL256,r=1 (purple), MODL718,r=3 (red) and SSDL256 (light blue)
resulting dictionaries (with K = 3, 712).

large dictionaries. As a result, for datasets resulting from the LC-MS analy-
sis of highly complex biological samples, SSDL is more efficient: Concretely,
for a single slice of Ecoli dataset, for which K ∈ [3000, 3750]), SSDL256 test
is two times faster than MODL256,r=1, three times than MODL718,r=3 and
four times than IcTKM256,r=5.

Concerning the dictionary quality, as discussed in Section 1, the dictio-
nary atoms must have shapes akin to that of real chromatographic profiles:
positive and smooth signals with a Gaussian like, yet slightly asymmetric,
shape. Figure 6 illustrates with several examples, the type of dictionary
atoms obtained by SSDL256 (first row), MODL256,r=1 (second row) and
IcTKM256,r=5 (third row). Since IcTKM method does not allow to impose
any positiveness or smoothness constraints, the obtained dictionary atoms
cannot be interpreted as peptide chromatograms, hereby hampering their
use for processing multiplexed acquisitions. In contrast, both SSDL and
MODL provide dictionary atoms with the expected chromatogram shape.
Of course, both SSDL and MODL also provides atoms that cannot be in-
terpreted as single chromatogram: for instance, the fourth dictionary atom
in the first row of Figure 6 contains many well-separated peaks; and the

20

Method IcTKM MODL SSDL

0.0

0.2

0.4

0.6

0.8

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #117

0.0

0.2

0.4

0.6

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #2066

0.00

0.25

0.50

0.75

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #3195

0.0

0.1

0.2

0.3

0.4

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #1306

0.0

0.2

0.4

0.6

0.8

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #1117

0.0

0.1

0.2

0.3

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #3204

0.0

0.2

0.4

0.6

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #126

0.0

0.2

0.4

0.6

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #3700

-0.1

0.0

0.1

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #2407

-0.1

0.0

0.1

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #962

-0.1

0.0

0.1

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #1882

-0.1

0.0

0.1

0.2

0 100 200

Time

In
te

n
s
it
y

Dictionary atom #1524

Figure 6: The examples of the resulting dictionary atoms (with K =
3, 712) obtained by SSDL256 (first row), MODL256,r=1 (second row) and
IcTKM256,r=5 (third row).

second one in the second row of Figure 6 displays what appears to be an
overlap of various chromatograms. However, this is simply a consequence of
the biological complexity of the analyzed sample, which may require more
resoluted instruments as well as, possibly, further improvements in blind
source separation.

To obtain a more precise and more exhaustive comparison of MODL
and SSDL dictionaries, displaying the total variation distributions is insight-
ful: Since the dictionary atoms have a unitary L2 norm, chromatogram-like
atoms should have a total variation smaller than 2. Considering the total
variation of the jth atom of dictionary D reads

TV (j) =

s−1∑
k=1

|Dk+1,j −Dk,j |, (14)

we can compare the histograms of the three TV (j)j∈[1,K] distributions de-
rived from learning D with MODL256,r=1, MODL718,r=3 and SSDL256. The
result is depicted on Figure 5b, with density plots practically obtained
using the geom density function of ggplot2 R package (default parame-
ters). It appears that the dictionaries extracted with both MODL256,r=1

and MODL718,r=3 contain many atoms with a total variation norm around

21

2. However the distributions are also heavy-tailed, with a significant propor-
tion of less smooth atoms (total variation norm lying between 3 and 10). In
contrast, the total variation norm distribution for SSDL256 does not exceed
6, and indicates that a larger proportion of the atoms are smoother than
their MODL counterparts. Overall, SSDL provides with a smaller compu-
tational time, dictionaries that are more suited to LC-MS data than those
produced with MODL and IcTKM.

5 Conclusions

Extracting meaningful patterns from LC-MS data is challenging, because
of the multiple constraints attached to their production method: First, the
corresponding matrix can be of very large size, especially when resulting
from last generation high resolution instruments, hereby requiring scalable
approaches. Second, the extracted patterns must have the physical inter-
pretation of a chromatogram and their number must be consistent with the
number of analytes potentially detected in the analyzed sample (up to sev-
eral thousands). In this article, we have introduced a new dictionary learn-
ing method, referred to as Sketched Stochastic Dictionary Learning (SSDL),
which combines the latest trends of compressive statistical learning, as well
as of online learning and of stochastic optimization, while being compliant
with all the aforementioned constraints. This is notably the reason why,
compared to state-of-the-art methods, it provides more meaningful dictio-
naries at a smaller computational cost. Beyond the specificities of LC-MS
data, SSDL is also of interest from a more fundamental viewpoint, as to
the best of our knowledge, it is the first dictionary learning method that
can directly operate on a data sketch (a controlled-sized proxy of the data
distribution in the Fourier domain). As future work, we will consider embed-
ding random projection based dimensionality reduction techniques, hereby
enabling the processing of entire datasets in a single batch; as well as even-
tually, the processing of datasets acquired on longer time frames with longer
elution columns. From a more applicative viewpoint, SSDL will unleash an
efficient and convenient handling of highly multiplexed data acquisitions.
Such acquisitions are already an important research direction in proteomics
for the depth of analysis they potentially enable, however to date the as-
sociated data processing challenges have prevented their widespread use; a
hurdle that SSDL will help to overcome.

22

Acknowledgments

The authors would like to thank Anne-Marie Hesse and Alexandra Kraut
for carrying out the mass spectrometry experiments that provided the data
on which this paper is based, as well as Virginie Brun, Yohann Couté and
Christophe Bruley for supports and fruitful discussions.

Data Accessibility

The data that support the findings of this study are openly available in
figshare public repository at http://doi.org/10.6084/m9.figshare.13589621.

Author contributions

Olga Permiakova designed the method, implemented the R package, car-
ried out the computational experiments, analysed the results and drafted
the manuscript. Thomas Burger designed the method, directed the work,
participated to the result analysis and drafted the manuscript. All authors
proofread the manuscript and approved its final version.

Financial disclosure

This work was supported by grants from the French National Research
Agency: ProFI project (ANR-10- INBS-08), GRAL project (ANR-10-LABX-
49-01), DATA@UGA and SYMER projects (ANR-15-IDEX-02) and MIAI
@ Grenoble Alpes (ANR-19-P3IA-0003).

Conflict of interest

The authors declare no potential conflict of interests.

References

[1] Christian Jutten and Jeanny Herault. Blind separation of sources, part
i: An adaptive algorithm based on neuromimetic architecture. Signal
processing, 24(1):1–10, 1991.

[2] D. L. Donoho. Compressed sensing. IEEE Transactions on Information
Theory, 52(4):1289–1306, 2006.

23

http://doi.org/10.6084/m9.figshare.13589621

[3] Michael Elad. Sparse and redundant representations: from theory to ap-
plications in signal and image processing. Springer Science & Business
Media, 2010.

[4] Shutao Li, Haitao Yin, and Leyuan Fang. Group-sparse representation
with dictionary learning for medical image denoising and fusion. IEEE
Transactions on biomedical engineering, 59(12):3450–3459, 2012.

[5] Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. Image
super-resolution via sparse representation. IEEE transactions on image
processing, 19(11):2861–2873, 2010.

[6] Michael Lustig, David Donoho, and John M Pauly. Sparse mri: The
application of compressed sensing for rapid mr imaging. Magnetic Res-
onance in Medicine: An Official Journal of the International Society
for Magnetic Resonance in Medicine, 58(6):1182–1195, 2007.

[7] S. G. Mallat. A theory for multiresolution signal decomposition: the
wavelet representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(7):674–693, 1989.

[8] David L Donoho, Michael Elad, and Vladimir N Temlyakov. Stable
recovery of sparse overcomplete representations in the presence of noise.
IEEE Transactions on information theory, 52(1):6–18, 2005.

[9] Bruno A Olshausen and David J Field. Emergence of simple-cell re-
ceptive field properties by learning a sparse code for natural images.
Nature, 381(6583):607–609, 1996.

[10] Jinglei Lv, Xi Jiang, Xiang Li, Dajiang Zhu, Hanbo Chen, Tuo Zhang,
Shu Zhang, Xintao Hu, Junwei Han, Heng Huang, et al. Sparse rep-
resentation of whole-brain fmri signals for identification of functional
networks. Medical image analysis, 20(1):112–134, 2015.

[11] Patrik O Hoyer. Non-negative matrix factorization with sparseness
constraints. Journal of machine learning research, 5(Nov):1457–1469,
2004.

[12] M. Elad and M. Aharon. Image denoising via sparse and redundant
representations over learned dictionaries. IEEE Transactions on Image
Processing, 15(12):3736–3745, 2006.

24

[13] Mark D Plumbley, Thomas Blumensath, Laurent Daudet, Rémi Gri-
bonval, and Mike E Davies. Sparse representations in audio and music:
from coding to source separation. Proceedings of the IEEE, 98(6):995–
1005, 2009.

[14] Thomas E Angel, Uma K Aryal, Shawna M Hengel, Erin S Baker,
Ryan T Kelly, Errol W Robinson, and Richard D Smith. Mass
spectrometry-based proteomics: existing capabilities and future direc-
tions. Chemical Society Reviews, 41(10):3912–3928, 2012.

[15] John D Chapman, David R Goodlett, and Christophe D Masselon. Mul-
tiplexed and data-independent tandem mass spectrometry for global
proteome profiling. Mass spectrometry reviews, 33(6):452–470, 2014.

[16] Ryan Peckner, Samuel A Myers, Alvaro Sebastian Vaca Jacome, Jar-
rett D Egertson, Jennifer G Abelin, Michael J MacCoss, Steven A Carr,
and Jacob D Jaffe. Specter: linear deconvolution for targeted analysis
of data-independent acquisition mass spectrometry proteomics. Nature
methods, 15(5):371, 2018.

[17] Jérémy Rapin, Antoine Souloumiac, Jérôme Bobin, Anthony Larue,
Chistophe Junot, Minale Ouethrani, and Jean-Luc Starck. Application
of non-negative matrix factorization to lc/ms data. Signal Processing,
123:75–83, 2016.

[18] Olga Permiakova, Romain Guibert, Alexandra Kraut, Thomas Fortin,
Anne-Marie Hesse, and Thomas Burger. Chickn: Extraction of peptide
chromatographic elution profiles from large scale mass spectrometry
data by means of wasserstein compressive hierarchical cluster analysis.
BMC Bioinformatics (under revision), 2020.

[19] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society: Series B (Methodological),
58(1):267–288, 1996.

[20] David L Donoho and Michael Elad. Optimally sparse representation in
general (nonorthogonal) dictionaries via l1 minimization. Proceedings
of the National Academy of Sciences, 100(5):2197–2202, 2003.

[21] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al.
Least angle regression. The Annals of statistics, 32(2):407–499, 2004.

25

[22] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM journal on imaging sci-
ences, 2(1):183–202, 2009.

[23] Dar Gilboa, Sam Buchanan, and John Wright. Efficient dictionary
learning with gradient descent. In International Conference on Machine
Learning, pages 2252–2259, 2019.

[24] Bao-Di Liu, Yu-Xiong Wang, Bin Shen, Xue Li, Yu-Jin Zhang, and
Yan-Jiang Wang. Blockwise coordinate descent schemes for efficient
and effective dictionary learning. Neurocomputing, 178:25–35, 2016.

[25] Kjersti Engan, Sven Ole Aase, and J Hakon Husoy. Method of optimal
directions for frame design. In 1999 IEEE International Conference on
Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat.
No. 99CH36258), volume 5, pages 2443–2446. IEEE, 1999.

[26] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algo-
rithm for designing overcomplete dictionaries for sparse representation.
IEEE Transactions on signal processing, 54(11):4311–4322, 2006.

[27] Igor Fedorov, Bhaskar D Rao, and Truong Q Nguyen. Multimodal
sparse bayesian dictionary learning applied to multimodal data classi-
fication. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 2237–2241. IEEE, 2017.

[28] Geethu Joseph and Chandra R Murthy. On the convergence of a
bayesian algorithm for joint dictionary learning and sparse recovery.
IEEE Transactions on Signal Processing, 68:343–358, 2019.

[29] Linxiao Yang, Jun Fang, Hong Cheng, and Hongbin Li. Sparse bayesian
dictionary learning with a gaussian hierarchical model. Signal Process-
ing, 130:93–104, 2017.

[30] Morgan A Schmitz, Matthieu Heitz, Nicolas Bonneel, Fred Ngole,
David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck.
Wasserstein dictionary learning: Optimal transport-based unsupervised
nonlinear dictionary learning. SIAM Journal on Imaging Sciences,
11(1):643–678, 2018.

[31] Léon Bottou. Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

26

[32] Konstantinos Slavakis and Georgios B Giannakis. Online dictionary
learning from big data using accelerated stochastic approximation al-
gorithms. In 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 16–20. IEEE, 2014.

[33] Arthur Mensch, Julien Mairal, Bertrand Thirion, and Gaël Varoquaux.
Stochastic subsampling for factorizing huge matrices. IEEE Transac-
tions on Signal Processing, 66(1):113–128, 2017.

[34] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online
learning for matrix factorization and sparse coding. Journal of Machine
Learning Research, 11(Jan):19–60, 2010.

[35] Karin Schnass and Flavio Teixeira. Compressed dictionary learning.
Journal of Fourier Analysis and Applications, 26(2):1–37, 2020.

[36] Ella Bingham and Heikki Mannila. Random projection in dimension-
ality reduction: applications to image and text data. In Proceedings
of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 245–250, 2001.

[37] Thomas Blumensath and Mike E Davies. Iterative thresholding for
sparse approximations. Journal of Fourier analysis and Applications,
14(5-6):629–654, 2008.

[38] Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of
nonnegative matrix factorization and spectral clustering. In Proceedings
of the 2005 SIAM international conference on data mining, pages 606–
610. SIAM, 2005.

[39] Nir Ailon and Bernard Chazelle. The fast johnson–lindenstrauss trans-
form and approximate nearest neighbors. SIAM Journal on computing,
39(1):302–322, 2009.

[40] Nicolas Keriven, Anthony Bourrier, Rémi Gribonval, and Patrick Pérez.
Sketching for large-scale learning of mixture models. Information and
Inference: A Journal of the IMA, 7(3):447–508, 2018.

[41] Nicolas Keriven, Nicolas Tremblay, Yann Traonmilin, and Rémi Gribon-
val. Compressive k-means. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 6369–6373.
IEEE, 2017.

27

[42] Yurii E Nesterov. A method for solving the convex programming prob-
lem with convergence rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume
269, pages 543–547, 1983.

[43] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In
International conference on machine learning, pages 1139–1147. PMLR,
2013.

[44] Mahmoud Assran and Michael Rabbat. On the convergence of nes-
terov’s accelerated gradient method in stochastic settings. arXiv
preprint arXiv:2002.12414, 2020.

[45] Andrei Kulunchakov and Julien Mairal. A generic acceleration frame-
work for stochastic composite optimization. In Advances in Neural
Information Processing Systems, pages 12556–12567, 2019.

[46] Dirk Eddelbuettel. Seamless R and C++ Integration with Rcpp.
Springer, New York, 2013. ISBN 978-1-4614-6867-7.

[47] JJ Allaire, R Francois, K Ushey, G Vandenbrouck, and M Geelnard.
Rcppparallel: Parallel programming tools for “rcpp”. R package ver-
sion, 4:20, 2016.

[48] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regulariza-
tion paths for generalized linear models via coordinate descent. Journal
of Statistical Software, 33(1):1–22, 2010.

[49] Markus Schmidberger, Martin Morgan, Dirk Eddelbuettel, Hao Yu,
Luke Tierney, and Ulrich Mansmann. State-of-the-art in parallel com-
puting with r. Journal of Statistical Software, 47(1), 2009.

[50] Florian Privé, Hugues Aschard, Andrey Ziyatdinov, and Michael G.B.
Blum. Efficient analysis of large-scale genome-wide data with two R
packages: bigstatsr and bigsnpr. Bioinformatics, 34(16):2781–2787,
2018.

[51] Ingvar Eidhammer, Kristian Flikka, Lennart Martens, and Svein-Ole
Mikalsen. Computational methods for mass spectrometry proteomics.
Wiley Online Library, 2007.

[52] Leslie N. Smith. A disciplined approach to neural network hyper-
parameters: Part 1 – learning rate, batch size, momentum, and weight
decay, 2018.

28

[53] Tianyi Liu, Zhehui Chen, Enlu Zhou, and Tuo Zhao. A diffusion ap-
proximation theory of momentum sgd in nonconvex optimization, 2021.

29

	Introduction
	Related works
	Notations
	Classical dictionary learning strategies
	Large-scale dictionary learning techniques
	Scaling-up by sketching

	SSDL method
	Objective function
	Minimization
	Implementation and complexity

	Experimental validation
	Methodology of evaluation
	Data description and data preprocessing
	Parameter tuning
	Results

	Conclusions

