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Abstract

Background: Deep learning methods have outperformed previous techniques in most computer vision tasks, including
image-based plant phenotyping. However, massive data collection of root traits and the development of associated artificial
intelligence approaches have been hampered by the inaccessibility of the rhizosphere. Here we present ChronoRoot, a
system that combines 3D-printed open-hardware with deep segmentation networks for high temporal resolution
phenotyping of plant roots in agarized medium. Results: We developed a novel deep learning–based root extraction
method that leverages the latest advances in convolutional neural networks for image segmentation and incorporates
temporal consistency into the root system architecture reconstruction process. Automatic extraction of phenotypic
parameters from sequences of images allowed a comprehensive characterization of the root system growth dynamics.
Furthermore, novel time-associated parameters emerged from the analysis of spectral features derived from temporal
signals. Conclusions: Our work shows that the combination of machine intelligence methods and a 3D-printed device
expands the possibilities of root high-throughput phenotyping for genetics and natural variation studies, as well as the
screening of clock-related mutants, revealing novel root traits.
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hardware

Received: 21 December 2020; Revised: 7 June 2021

C© The Author(s) 2021. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/7/giab052/6324285 by guest on 23 August 2021

http://www.oxfordjournals.org
http://orcid.org/0000-0002-6684-5300
http://orcid.org/0000-0001-8478-8808
http://orcid.org/0000-0001-6661-9357
http://orcid.org/0000-0002-9929-287X
http://orcid.org/0000-0003-2182-4351
http://orcid.org/0000-0002-5698-9482
http://orcid.org/0000-0001-9788-5201
http://orcid.org/0000-0002-8500-788X
mailto:thomas.blein@ips2.universite-paris-saclay.fr
http://orcid.org/0000-0001-9788-5201
http://orcid.org/0000-0001-9788-5201
mailto:eferrante@sinc.unl.edu.ar
http://orcid.org/0000-0002-8500-788X
http://orcid.org/0000-0002-8500-788X
http://creativecommons.org/licenses/by/4.0/


2 ChronoRoot: High-throughput phenotyping by deep segmentation networks

Background

Plants are sessile organisms unable to seek out optimal envi-
ronmental conditions for development and survival. Strikingly,
a remarkable developmental plasticity allows plants to com-
plete their life cycle under changing growth conditions [1]. Un-
derstanding plant root plastic growth is crucial to assess how
different populations may respond to the same soil proper-
ties or environmental conditions and to link this developmen-
tal adaptation to their genetic background [2]. Under controlled
conditions, root development is generally observed on the ba-
sis of images of plants growing vertically on the surface of a
semisolid agarized medium. Root system architecture (RSA) is
then characterized by parameterization of a grown plant, which
relies on the combination of a subset of variables such as main
root (MR) length or density and length of the lateral roots (LRs)
[3]. Several semi-automatic tools have been developed to assist
root phenotyping at specific time points [4]. However, tempo-
ral phenotyping is generally hindered by technological limita-
tions, ignoring potentially useful phenotypical parameters that
may be linked to the temporal dynamics of root growth. Here we
present ChronoRoot, a low-cost system based on off-the-shelf
electronics, 3D-printed hardware components, and deep learn-
ing models, allowing high-throughput temporal phenotyping of
Arabidopsis thaliana RSA. Figure 1 illustrates the different com-
ponents of ChronoRoot. Temporal sequences of pictures, auto-
matically snapped, are processed for root segmentation through
a convolutional neural network (CNN) model. We leverage the
latest advances in CNNs for image segmentation and propose
an architecture for RSA delineation that incorporates deep su-
pervision, producing fast and accurate segmentations. The root
extraction workflow is completed by a temporal consistency re-
finement step and a final graph generation process, which gen-
erates a labelled root graph for every image. An exploratory ap-
proach assessing root growth under alternative photoperiods
served to demonstrate that temporal phenotyping performed
by ChronoRoot allows deciphering the evolution of the tradi-
tional RSA parameters throughout time. Moreover, novel pa-
rameters emerged, including architectural features, oscillating
growth speed, and other characteristics derived from spectral
analysis of the growth signals in the Fourier domain. The com-
bination between a low-cost automatic device for image acqui-
sition and machine intelligence methods for image segmenta-
tion gave rise to a powerful tool for root phenomics potentially
applicable to natural variation studies, the characterization of
root-related subtle disorders, and screening for clock-associated
mutants.

Data Description
Plant material and growth conditions

Arabidopsis thaliana ecotype Col-0 seeds were surface sterilized
and stratified at 4◦C for 2 d before being grown under long day
conditions (16 h light, 140 μE m−2 s−1/8 h dark) or continu-
ous light (24 h light, 140 μE m−2 s−1) at 22◦C, on half-strength
Murashige and Skoog media (1/2 MS) (Duchefa, Haarlem, Nether-
lands) with 0.8% plant agar (Duchefa, Haarlem, Netherlands).
Four seeds were used per plate. All the experiments where per-
formed under laboratory conditions according to the local insti-
tutional guidelines.

Datasets

We generated 2 different datasets in this work: the first one was
used to train and evaluate the segmentation performance of the
CNN models, while the second one served as an exploratory use
case, to assess root growth under alternative photoperiods and
provide an example of the novel temporal phenotypical param-
eters that can be extracted with ChronoRoot. Note that all these
images were obtained with the proposed 3D-printed hardware,
and both are available to encourage reproducible research. Im-
portantly, when splitting the training, validation, and test par-
titions, we were careful not to include images corresponding to
the same video on different partitions, to avoid overoptimistic
biased evaluations.

� Dataset used to train and validate the deep learning mod-
els for root segmentation: The dataset used for training con-
sisted of 331 images from 55 videos (on average 6 images
from the same plate at different states of growth); 11 of those
videos were annotated by an expert biologist. The dataset
used for testing consisted of 55 images from 11 different
videos, all annotated by the same expert. The tool used for
the manual annotation was ITK-SNAP [5]. In total, 240 plants
distributed over the 66 videos were used for training/testing
the methods.

� Use case dataset for plant phenotyping under alternative
photoperiods: We used 12 videos for each photoperiod, with
pictures taken every 15 minutes. We took the first 17 days
(1,632 frames), and after processing the videos we proceeded
to discard the results from the first 3 days prior to seed ger-
mination. We selected 25 plants from each photoperiod to
perform the temporal growth analyses.

Analyses

We designed an automatic method to perform RSA delineation
in temporal image sequences of plant roots. Our framework
takes a sequence of images as input and outputs a labelled graph
for each frame, representing the current root growing state.
Graphs are powerful data structures particularly useful to rep-
resent curvilinear shapes like plant roots (details on the graph
generation process are provided in the Methods section). The
main module of the RSA delineation method is a deep CNN that
produces a dense segmentation mask, where every pixel is clas-
sified as belonging to the root or the background. We proposed
different CNN architectures for this task (described in the Meth-
ods section) and compared their performance with state-of-the-
art models using manual annotations produced by expert biolo-
gists. We measured 3 different metrics: (i) Dice coefficient quan-
tifies the overlapping between the prediction and the ground-
truth, (ii) Haussdorf distance indicates the maximum distance
between them, and (iii) the recall (or sensitivity) refers to the
fraction of root pixels retrieved over the total amount of root pix-
els. Quantitative results are included in Table 1. On the basis of
these results, we chose 2 models, depending on whether we aim
at having a faster or more accurate method:

� Fast method: The fastest models are the proposed UNet [6]
variants, requiring up to half a second to process a high-
resolution image using a standard GPU. These models have
lower parameter complexity compared to state-of-the-art ar-
chitectures like SegNet [7] and DeepLab [8], which explains
the lower running time. Among the fast UNet models, we ob-
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Gaggion et al. 3

Figure 1 Main components of ChronoRoot. (1) Open hardware specification (see Supplementary Figures S3-S7 for a detailed description). (2) 3D-printed ChronoRoot
system mounted in a plant growth chamber. (3) Temporal sequence of images acquired by the system are provided as input to the CNN-based segmentation module.
The diagram corresponding to the proposed CNN architecture is included in the center of the figure. (4) The deep learning model produces dense segmentation maps

for all the plants, which are enhanced taking into account the temporal consistency of the results. (5) Independent plants can be selected to be processed individually.
(6,7) The roots are skeletonized and a graph is constructed by traversing the skeleton. Pixels in the skeleton are identified as belonging to the main root (green) or
lateral root (blue). The graph nodes are labelled as being the main root seed and tip (green), lateral root tip (red), or bifurcation (yellow).

Table 1. Quantitative evaluation for the different CNN architectures compared in this work

Dice, mean ± SD Recall, mean ± SD
Hausdorff distance, mean ± SD

(mm) No.
Parameters

Model Threshhold CRF Threshhold CRF Threshhold CRF Time (S)

UNet 0.769 ± 0.048 0.774 ± 0.044 0.871 ± 0.044 0.830 ± 0.056 10.25 ± 7.45 9.39 ± 7.94 0.29 488.212
ResUNet 0.768 ± 0.050 0.770 ± 0.047 0.862 ± 0.046 0.823 ± 0.057 8.83 ± 6.71 7.53 ± 5.91 0.33 505.046
Deeply
Supervised
ResUNet (our)

0.769 ± 0.048 0.772 ± 0.045 0.861 ± 0.044 0.815 ± 0.057 8.14 ± 7.34 6.95 ± 5.42 0.49 532.336

SegNet 0.768 ± 0.043 0.773 ± 0.040 0.862 ± 0.044 0.824 ± 0.053 7.42 ± 6.40 6.81 ± 5.65 1.49 29.460.450
DeepLab 0.666 ± 0.055 0.609 ± 0.079 0.763 ± 0.077 0.600 ± 0.113 7.58 ± 7.79 7.56 ± 7.52 1.86 58.009.410
Ensamble (our) 0.772 ± 0.048 0.774 ± 0.044 0.864 ± 0.044 0.804 ± 0.061 6.68 ± 5.08 6.45 ± 4.98 4.5

We measured the Dice coefficient, recall, and Hausdorff distance for dense root segmentation task. We compared state-of-the-art models (including UNet, ResUNet,

SegNet, and DeepLab) and compared with the proposed Deeply Supervised ResUNet and the ensemble of multiple models and architectures. On the one side, we found
that our Ensemble of Multiple Models and Architectures produced equal or more accurate results than the rest of the models in terms of Dice and Haussdorf, at the
expense of increasing the processing time. On the other side, the proposed Deeply Supervised ResUNet is fast (less than half a second) and shows a significantly lower
value for Hausdorff distance than the other fast models, while keeping equivalently good Dice and Recall.

served that the proposed Deeply Supervised ResUNet (DSRe-
sUNet) shows a significantly lower value for Hausdorff dis-
tance, while keeping equivalently good Dice and Recall. The
proposed DSResUNet architecture (depicted in Fig. 1) com-
bines residual blocks [9] with deep supervision [10], improv-

ing the results of a standard UNet with a minimum increase
in model complexity.

� Accurate method: We proposed to combine all the imple-
mented architectures into a single ensemble method, in-
creasing model diversity by creating an ensemble of multiple
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4 ChronoRoot: High-throughput phenotyping by deep segmentation networks

models and architectures [11]. This ensemble of deep models
increased the running time by a factor of 9 but achieved the
best performance across all metrics, outperforming state-of-
the-art models like SegNet and DeepLab.

ChronoRoot implements both fast and accurate variants, giv-
ing the users the opportunity to decide according to their re-
quirements. In this study, we used the fast method based on
the proposed Deeply Supervised ResUNet model, which offered
a good trade-off between running time and accuracy. We apply
several post-processing steps after segmentation, which are in-
dependent of the CNN model. We first apply a conditional ran-
dom field (CRF) [12, 13] model to improve the homogeneity of
the labels assigned to neighbouring pixels. Then, we enhance
the temporal consistency of the segmentations by considering
its weighted average. These steps serve to remove spurious seg-
mentations by analysing a temporal sequence of images, which
ultimately translates into generating more stable phenotypic
measurements. A graph structure is then constructed where ev-
ery node is assigned a class label indicating whether it is asso-
ciated with the plant seed, MR, RL, bifurcation, or root tip. Tem-
poral consistency on the graph structures is finally improved by
tracking the labelled nodes and solving conflicting cases. A more
detailed description of these steps can be found in the Methods
section. After the graph generation process, we proceed to ex-
tract phenotypic features for RSA characterization.

Temporal dimension of traditional and novel RSA
parameters

We analysed temporal sequences of plant roots growing under
different conditions. To assess the potential of ChronoRoot, we
decided to compare the RSA of A. thaliana ecotype Col-0 grown
under 2 distinctive photoperiods, i.e., long day (LD; 16 h of light,
8 h of dark) or continuous light (CL; 24 h of light). Light avail-
ability and photosynthesis in the shoot determine the amount
of sugar transported to the roots, thus modulating underground
plant growth. Moreover, ample evidence suggests that root de-
velopmental plasticity depends on the light environment, in-
volving a more sophisticated impact on endogenous signaling
pathways [14].

Traditional parameterization of RSA expanded to temporal
dynamics revealed the progression of root growth under CL and
LD conditions. A representation of root automatic segmentation
is shown in Fig. 1 (see Methods and Fig. 2 for more details). Our
experiments show that MR length, the sum of LR length, and
the resulting total root system (TR) begin to differ between con-
ditions at ∼200–250 h (8–10 days) after germination (Fig. 3A–C),
together with LR number (Fig. 3D). Notably, root growth was not
only faster under CL but also resulted in a different RSA, ex-
hibiting a higher density of LRs and a lower component of the
MR over the total root system (Fig. 3E and F). Notably, between
250 h (10 days) and the end of the experiment (336 h, 14 days),
the contrast between both photoperiods increased gradually in
every measured parameter, hinting at a temporal reorganization
of root development under different light conditions.

Based on the information derived from temporal phenotyp-
ing, we explored in more detail the reconfiguration of RSA under
alternative photoperiods. We identified the time point at which
the sum of LR lengths equals the MR length as a novel parameter
of RSA dynamics (Fig. 4A). However, no significant difference was
observed in the distribution of individual time-length points of
plants grown under CL or under LD (Fig. 4B). The analysis of the
relationship between the MR and LRs along time, determined by

the difference between both measurements (MR − LRs) aligned
to the time point at which MR and LRs are of the same length
(time 0), is shown in Fig. 4C. It reflects that the difference be-
tween MR and LRs tends to have a significantly larger absolute
value for plants grown under CL than under LD. Moreover, we
extracted different indicators to analyse the dynamics of these
curves. Figure 4D shows the approximate derivative (computed
by means of finite differences) at the time point at which MR
and LRs are of the same lengths (time 0). These differences are
not statistically significant according to a Mann Withney U-test.
However, when extending the analysis to the full ±24 h range by
fitting a linear function to every curve from Fig. 4C and plotting
the corresponding slopes (Fig. E), we found strong differences
in the distribution (statistically significant according to a Mann-
Whitney U-test) for both photoperiods. This novel time-related
parameter reflects the dynamics of root growth by determining
how long it takes for the system to be composed of more LRs
than the MR.

To assess the effect of RSA reconfiguration on the area ex-
plored by roots under distinct photoperiods, we calculated the
dynamic convex hull for each subset of plants. Interestingly, the
observation of the convex hull resulting from the overlap of all
individuals grown in the corresponding conditions reveals an
extended high density of LRs along the MR axis at the end of the
experiment under CL (14 days after germination, Fig. 5A–C). No-
tably, the area of the average convex hulls between 8 and 14 days
does not differ between CL and LD conditions (Fig. 5D). Nonethe-
less, the quantification of the sum of LRs length over the convex
hull area indicates that the density of LRs is higher under CL be-
tween 10 and 14 days (Fig. 5E). Collectively, our analyses indicate
that global LR length increases under CL as a result of more nu-
merous LRs growing simultaneously, although the area explored
by the RSA does not differ between the 2 photoperiods. Thus, the
global density of the resulting RSA is higher under CL.

Novel speed-based parameters derived from temporal
phenotyping

The information derived from the temporal dimension of tradi-
tional and novel RSA parameters indicated that the difference in
root growth rate became broader throughout time under CL vs
LD. It has been shown that the A. thaliana MR exhibits an oscil-
lating growth, which likely depends on the lunisolar tide [14,15]
and light-associated carbon partitioning [16]. Therefore, based
on the segmentations obtained with our deep learning models,
we calculated the growth speed throughout the experiment in
both conditions, showcasing how novel speed-based parame-
ters can be derived via ChronoRoot. MR speed increased steadily
until ∼150 h under LD and 200 h under CL after germination,
and the average maximum speed reached in CL was higher than
in LD (Fig. 6A). Strikingly, the difference in the growth speed of
the global root system (TR) between the 2 conditions became in-
creasingly larger since the moment when the speed of the MR
was stabilized (Fig. 6B), hinting at a different acceleration rate
between conditions. The observed root growth dynamics further
supports the increasing relevance of LRs as a main component
of RSA throughout time.

Notably, the analyses of growth speed uncovered an oscil-
lating behavior in both conditions (Fig. 6A and B). To better un-
derstand the different growth patterns exhibited by LD and CL
conditions, we performed a Fourier decomposition of the growth
speed signals. Fourier transform decomposes functions depend-
ing on time into functions depending on frequency. In other
words, the Fourier transform of a given function describes how
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Gaggion et al. 5

Figure 2 Qualitative segmentation results obtained with the benchmarked methods. We observe how the ensemble and the ensemble with temporal consistency
improve the quality of the results, especially in areas with root occlusion.

much of any given frequency is present in the original signal.
When comparing growth speed signals, analysing their Fourier
spectrum helps us to see how much this signal correlates with
particular oscillation frequencies. For example, if high Fourier
coefficients are associated with the frequency 1/24 h, it means
that the plant growth speed follows a daily oscillation (corre-
sponding to what is known as circadian rhythm). Differences
in the Fourier coefficients at a given frequency between growth
conditions would indicate an alteration in the oscillatory pat-
tern of plant growth. A fast Fourier transformation (FFT) of the
signal of MR growth speed in CL vs LD revealed a major energy
difference in the components corresponding to the frequencies
of 1/24 h and 1/12 h, respectively (Fig. 6C). Remarkably, these 2
components distinguish circadian and ultradian rhythms dis-
played by plants grown in LD, with a pronounced local mini-
mum of the growth speed at 1/24 h and a minor local mini-
mum at 1/12 h (Fig. 6D). Strikingly, the most pronounced differ-
ences revealed by FFT (Fig. 6C) served to uncover a root growth
clock-related disorder experienced under CL, coinciding with a

blurred daily oscillation of growth speed, in comparison with
the corresponding sine curves (Fig. 6D; a detailed comparison of
MR, LR, and TR growth speed analyses is shown Supplementary
Fig. 1). Although an oscillating behavior can be observed under
CL towards the end of the experiment (Fig. 6A and B), the en-
ergy at 1/24 and 1/12 frequencies was higher under an LD pho-
toperiod throughout the complete time lapse analysed (Fig. 6E
and F). Notably, the difference between conditions of the TR os-
cillating speed of growth is mainly due to the MR contribution
(Supplementary Fig. S2). Altogether, our study of wild-type A.
thaliana Col-0 plants growing under alternative photoperiods us-
ing ChronoRoot served to reveal novel temporal parameters of
root development, notably including clock-related features de-
pending on the light environment.

3D-printed device for temporal image acquisition

The ChronoRoot device is an affordable and modular imaging
system based on 3D-printed and laser-cut pieces and off-the-
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6 ChronoRoot: High-throughput phenotyping by deep segmentation networks

Figure 3 Traditional RSA parameters expanded to the temporal dimension. (A) Main root (MR) length. (B) The sum of all lateral root (LR) lengths. (C) Total root (TR)

length, representing the sum of LR total length and MR length. (D) Number of LRs. (E) LR density, expressed as LR number/MR length. (F) MR component of the RSA,
expressed as MR length/total root (TR) length, which is the sum of MR and LRs. Data are shown for plants grown under continuous light and long day. The lines indicate
the mean, and the shadows represent the standard deviation (SD) throughout the experiment.

shelf electronics (Fig. 1.1 and 1.2). Each module consists of a
Raspberry Pi (v3)-embedded computer controlling 4 fixed-zoom
and fixed-focus cameras (RaspiCam v2), and an array of infrared
(IR) LED back-light. In between each camera and the correspond-
ing IR array, there is a vertical 12 × 12 cm plate for seedling
growth, allowing automatic image acquisition repeatedly along
the experiment without any modification or movement of the
imaging set-up. The 4-plate module is small (62 × 36 × 20 cm)
and can be placed in any growth chamber. The different parts
of the imaging set-up (back-light, plate support, and camera)
can be positioned along a horizontal double-rail to control the
field of view of the camera and accurate lighting. In addition,
the camera can be moved vertically. ChronoRoot allows image
acquisition at a high temporal resolution (a set of pictures ev-
ery minute). The use of an IR back-light (850 nm) and optional
long-pass IR filters (>830 nm) allow images of the same quality
to be acquired independently from the light conditions required
for the experiment, during day and night.

Each module is connected to the network either by Wi-Fi or
Ethernet cable. A web interface allows the control of the device
offering live feed of the cameras for field of view and focus set-
up. The user can program the activation of cameras and IR back-
light, starting and ending dates, the time basis for picture acqui-
sition, and finally follow the progression of the experiment. The
pictures are saved directly on an external drive plugged on the
Raspberry Pi. Once the experimental set-up is ready, each mod-
ule is completely independent from the external environment

and the access to the network (for more details see Methods,
Supplementary Figs S3–S7, and the Supplementary 3D printing
and laser cutting files).

Discussion

The plant phenotype can be defined as the integration of struc-
tural, physiological, and performance-related traits of a geno-
type in a given environment. Plant phenotyping is therefore the
act of determining the quantitative or qualitative values of these
traits [17]. The advent of novel imaging technologies and image
processing have revolutionized plant phenotyping, expanding
the frontiers of phenotypic trait measurement. Plant roots have
a major role in plant anchorage and resource acquisition while
offering environmental benefits such as carbon sequestration
and soil erosion mitigation [18]. The growing knowledge linking
genetics with functional properties of plant roots is of crucial
interest to plant breeding, notably for the design of novel strate-
gies for sustainable agriculture and environmental stewardship
in the face of the impending climate change. Whereas high-
throughput genotyping, sequencing-based genotyping, and ge-
nomic breeding are behind current agricultural practices in the
era of omics technologies, the collection of phenotypic data for
a thorough characterization of the RSA is increasingly becom-
ing a limiting factor [19]. Although significant advancements in
the application of imaging sensors for high-throughput data col-
lection have allowed comprehensive plant phenotyping [20], the
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Gaggion et al. 7

Figure 4 Novel RSA parameters analysed along time. (A) Example of 1 individual main root (MR) and the sum of lateral root (LR) length along time, revealing the time
point of the intersection between the 2 curves. (B) Distribution of the intersection points for all individuals from both conditions (continuous light [CL] and long day
[LD]). At the top and on the right, the distributions of both populations are represented. For this experiment, no significant difference was observed with respect to

the intersection time point. (C) The difference between the MR length and total LRs length at each time point was calculated and aligned around the point of MR −
LRs = 0 mm for each individual considering ±24 h. (D) Distribution of the derivative value for the individual curves from panel C at time of equal length of MR and
total LRs. The difference between the means is not statistically significant according to a non-parametric Mann-Whitney U-test (P > 0.05). (E) For every individual, the
tendency of the MR − LR curves shown in panel C was determined by fitting a linear function to every curve, considering ±24 h. The boxplot shows the distribution of

the slope of the fitted curves, revealing a clear difference between LC and CL. Difference between the means is statistically significant according to a non-parametric
Mann-Whitney U-test (P < 0.05). In the boxplots every dot is an individual and green triangles represent the mean. The ∗indicate the difference between means is
statistically significant acording to Mann-Whitney U-test (P < 0.05).

characterization of root traits has been hampered by the inac-
cessibility of the rhizosphere.

Large and sophisticated phenotyping platforms are deployed
worldwide and allow the simultaneous phenotyping of several
hundreds of plants (see the International Plant Phenotyping
Network [21]). However, their big dimensions and high automati-
zation reserve their implementation to specialized locations and
mainly for large phenotyping experiments. Root imaging sys-
tems of intermediate complexity, like the one proposed in [22],
serve to address the temporal phenotyping of plant roots using
vertical plates for plant growth in agarized medium. However,

such a system still requires a single-axis mobile robot, which
implies more expensive electronics and plant chamber space de-
voted to the equipment set-up. In contrast, low-cost ChronoRoot
modules can be located easily in already existing facilities with-
out major modifications or permanent movement. The number
of modules to be built and used will only depend on the avail-
able space and the experimental design (e.g., a few modules for
the characterization of given genotypes vs multiple units for
genome-wide association studies [GWAS] approaches using tens
to hundreds of plant accessions). It also allows the hardware
set-up to be scaled according to available funding and experi-
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8 ChronoRoot: High-throughput phenotyping by deep segmentation networks

Figure 5 Area and density of the RSA analysed along time. (A) Overlapped segmentations of the whole root system at 14 days after germination. Blue background
indicates no roots. The brightness of the signal increases as more roots occupy the same position. (B) Same as A, represented as a heat map of the convex hull extracted

for each individual. (C) Overlapped convex hull contours for each condition. (D) Average convex hull area for different time points under CL or LD, represented as violin
plots. The mean is indicated as a green point. (E) LR density calculated as the sum of LR length over the area included in the respective convex hull. The distribution of
each population for the corresponding time points is shown as violin plots. The green points indicate the mean. ∗Statistically significant. We used Shapiro-Wilk test
to assess Gaussianity, Levene test to confirm equal variances and t-test to confirm that differences between the means of both populations are statistically significant

(P < 0.01).

ment requirements progressively. In parallel, the advancement
of the do-it-yourself movement has promoted the development
of a growing number of low-cost phenotyping devices combining
3D-printed, laser-cut, captor, and microcontroller coming from
open-source and open-hardware communities such as Arduino
[23] or Raspberry Pi [24]. Successful inexpensive devices have
allowed plant leaves to be monitored [25], including Phenotiki,
an affordable open software and hardware platform for image-
based phenotyping of plant aerial organs [26]. More recently, the
Phenotiki sensor interface was used to characterize cotton RSA
on soil-containing big Rhizoboxes, allowing the determination
of basic architectural parameters [27] (e.g., total root area, con-
vex hull area, total root length). In contrast, ChronoRoot allows
for a more fine-grained high-throughput temporal phenotyping,
e.g., making it possible to distinguish between MR and LRs. Fi-
nally, modular rhizotrons of more sophisticated designs (includ-
ing more expensive cameras and light flashes, precluding obser-
vations during the night) also served for RSA characterization of
crops [28].

In the past few years, images of the root system from differ-
ent plant species have been acquired manually using a flat-bed
scanner or a camera positioned in front of vertical petri dishes.

Root phenotyping is generally performed upon single-time-
point images or using several images acquired during growth
in time-lapse sequences. More recently, semi-automatic devices
and softwares have also helped to increase the efficiency of im-
age acquisition and associated analyses [29–34]. The great need
of throughput in screening experiments to uncover the genetic
basis of root development justifies the use of simplified artificial
culture conditions and standardized environments to make the
RSA accessible to image acquisition [17]. Software tools use in-
put images of root systems grown under a variety of conditions,
including hydroponic and aeroponic systems, agarized medium,
paper pouches, or soil [32,33]. Here we propose to use vertical
square Petri dishes for plant growth on the surface of transpar-
ent agarized medium, for automatic acquisition of photographs
allowing a high-resolution temporal phenotyping of the RSA.

According to Quantitative Plant [35,36], >40 image process-
ing software tools are available for root system analysis [33,37].
RSA parameters are extracted from various types of 2D im-
ages captured from agar plates or washed roots extracted from
soil. Moreover, 3D RSA reconstruction is possible using X-ray
computed tomography [38] or magnetic resonance imaging [39].
Nearly all the reported tools need human input to be operated
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Gaggion et al. 9

Figure 6 Novel time-derived parameters of RSA. (A) Main root (MR) and (B) total root (TR) growth speed along time. (C) Fast Fourier transform of the growth speed signal
of MR. The largest energy differences are indicated in the graph. (D) The post-processed (high-pass followed by normalization) MR growth speed showing a 7-day
window centered on Day 3. The sine curves corresponding to the frequency 1/12 (in black) and 1/24 (in red) found in C are indicated at the top. Note the correlation
between the LD growth speed oscillation and the 2 components 1/12 and 1/24. (E) The energy at 1/24 frequency calculated in a 7-day-window centered at consecutive

time points for MR. (F) The energy at 1/12 frequency calculated in a 7-day window centered at consecutive time points for MR.

and retrieve precise numbers. RootTrace [40,41], for example,
which also focuses on high-throughput analyses of root growth,
uses traditional image processing and tracking techniques, re-
sulting in a program that can only extract MR length and count

the number of emerged LRs. On the contrary, our model re-
lies on deep networks producing a detailed segmentation of the
RSA, which is then classified into MR and LR, allowing for fine-
grained measurements such as the total length of the LRs, which
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10 ChronoRoot: High-throughput phenotyping by deep segmentation networks

is not provided by RootTrace. Other tools such as GiaRoots [34]
and EZ Rhizo [31] use simple threshold strategies for root seg-
mentation. In contrast to ChronoRoot, these tools fall short at
handling segmentation problems emerging from drops due to
water condensation, they require manual human calibration,
and they do not take advantage of the redundancy provided by
the temporal resolution of the high-throughput videos to filter
out spurious segmentations. Another alternative tool is Win-
RHIZO [42], a commercial and non-open-source tool designed to
work with images captured with high-resolution desktop optical
scanners. Such a requirement makes it virtually impossible to
capture high-throughput temporal sequences of growing plants.
On the contrary, ChronoRoot is open-source and designed to
work with low-cost cameras. Another option is BRAT [43], de-
signed for high-throughput phenotyping of root growth and de-
velopment. The main disadvantage of BRAT is that it can only
handle early root growth and does not provide measurements
for LRs.

The previously discussed methods are mostly based on con-
ventional image processing approaches and extract a limited
number of RSA features. Advances in machine learning applied
to image analysis allowed these limitations to be partially over-
come. For example, deep learning techniques have been used to
improve the consistency of classic approaches, enhancing the
quality of root segmentations [44,45]. Closest to our work is the
recent RootNav 2 [46], which is also based on deep learning mod-
els and provides fine-grained metrics distinguishing between
MR and LRs. However, RootNav 2 does not exploit the redun-
dancy provided by the temporal resolution and follows a dif-
ferent architectural design, which makes ground truth annota-
tions more difficult to obtain and prevents us from training the
model with our dataset. Compared to ChronoRoot, RootNav 2
uses a more complex neural network architecture with 2 out-
put paths: the first one is used to predict root segmentation
masks (differentiating between MR and LRs) while the second
one produces heat maps associated with root tips. This design
choice requires the ground truth annotations to be composed of
3 parts: (i) MR pixel-level annotations, (ii) LR pixel-level annota-
tions, and (iii) root tip annotations. Conversely, ChronoRoot just
requires binary segmentation maps (background vs foreground
root) for training because the MR and LR labelling is performed
after segmentation following a depth-first search approach on
the skeletonized binary segmentation. Thus, our dataset is just
composed of images with foreground/background pixel-level
annotations, which is not enough for training the RootNav 2
model.

Potential Implications

ChronoRoot expands the possibilities for high-throughput root
phenotyping, which is of major importance for natural variation
and GWAS, as well as mutant characterization and screening.
Notably, it has been shown that clock-related mutants exhibit a
differential oscillating MR growth under alternative conditions
[15, 16, 47]. ChronoRoot offers an ideal platform for the identi-
fication of genotypes associated with altered clock traits, based
on the analysis of spectral features extracted from temporal sig-
nals.

Note that the specification of all ChronoRoot hardware com-
ponents (e.g., camera) is released in this article. Thus, for any-
body installing the system and using the same imaging set-up,
our software for A. thaliana analysis should work without fur-
ther retraining. In case the system fails owing to different light-

ing conditions or hardware components, a minimal fine-tuning
of the model by using a few annotated images from the new set-
up may be required.

Methods
Hardware description

An automated imaging set-up was designed and built in the
shape of an independent module of 62 × 36 × 20 cm (Fig. 1). It
is aimed at imaging ≤4 vertical plates either in color or in near-
infrared (NIR) lightning. Each module consists of a single board
computer (Raspberry Pi) controlling 4 cameras through a multi-
plexer module and an array of NIR LED illumination through a
relay. The main support of each module is a 620 × 36 × 5 mm
acrylic sheet cut using a laser cutter to allow to screw the differ-
ent parts or let pass strips connecting the camera to the cam-
era multiplexer. Several 3D pieces were designed and printed to
place the different components of the module. Each module is
separated in 4 subparts, each of them along a double aluminum
axis. This axis allows adjustment of the distance of the differ-
ent parts of the imaging set-up: NIR illumination, plate support,
camera. The underpart of the module was used to fix the LED
AC/DC adaptor, the relay, and the computer. The supports under
the platform raise and stabilize the module. Supplementary File
1 includes a full description of the components and the steps for
the assembly of the device. The 3D-printing and laser-cut plans
are available online [48] under the CERN Open Hardware Licence
Version 2.

Computational methods

We evaluated different state-of-the-art architectures for image
segmentation, and proposed new variants that achieved a good
compromise between processing time, model complexity, and
accuracy, as discussed in the Results section. This segmentation
module is followed by several post-processing stages including
a CRF post-processing to enhance label homogenity, a temporal
consistency refinement step, skeletonization, graph construc-
tion, and node tracking. ChronoRoot outputs a labelled graph per
image indicating which nodes correspond to the seed, MR, LRs,
bifurcations, and the root tips. For each time step, the complete
RSA is saved following the RSML format [49].

Deep learning models for root segmentation

CNNs are representation learning methods with multiple ab-
straction levels, which compose simple but nonlinear modules
transforming representations at one level into a representation
at a higher, slightly more abstract level [50]. These models are
specially suited for computer vision tasks, in particular for im-
age segmentation [51]. We explored 6 different convolutional
neural network architectures to perform plant root segmenta-
tion. Four of them are state-of-the art existing architectures,
while the other 2 were proposed in this work. In what follows,
we first present a brief description of the state-of-the-art ar-
chitectures (namely, the UNet [6], ResUNet [52], SegNet [7], and
DeepLab [8]) and then discuss the 2 models proposed in this
work.

UNet
The first model is a modified lightweight version of the stan-
dard UNet [6], which uses a fully convolutional encoder-decoder
architecture and produces a dense segmentation map at the
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pixel level. Based on the original UNet model, we implemented
a lightweight version reducing by 4 the number of feature maps
per convolutional layer. Skip connections were implemented via
summations of the signals in the up-sampling part of the net-
work, instead of the concatenation used in the original version.
We also replaced the max-pooling layers with avg-pooling and
used an exponential linear unit (ELU) as non-linearity instead of
a rectified linear unit (RELU). See Supplementary Table 1 for a
detailed description of the implemented architecture.

ResUNet
For the second model (ResUNet), we replaced the convolutional
layers in the aforementioned UNet architecture by residual
blocks [9]. Residual blocks help to prevent the degradation prob-
lem that occurs in very deep neural networks by learning resid-
ual functions with reference to the layer inputs, instead of learn-
ing unreferenced functions. Recent works suggest that residual
blocks are effective at segmenting tubular structures like plant
roots or roads in a map [52]. See Supplementary Table 2 for a
detailed description of the implemented architecture.

SegNet
The SegNet architecture [7] is a fully convolutional encoder-
decoder neural network, widely adopted by the computer vision
community to perform dense image segmentation. The archi-
tecture of the encoder is identical to the first 13 layers of VGG-
16 [53], and the role of the decoder network is to map the low-
resolution encoder feature maps to full input resolution feature
maps for pixel-wise classification. Differently from the UNet
where skip connections are used to propagate the complete fea-
ture maps from the encoder to the decoder, the upsampling in
the decoder part of the SegNet model uses the memorized max-
pooling indices from the corresponding encoder level. Our im-
plementation was based on a publicly available model [54].

DeepLab v3
The DeepLab V3 model [8] follows a different approach to gen-
erate dense segmentation maps. Differently from the previous
models, which use skip connections (UNet) or memorized max-
pooling indices (SegNet), this model uses atrous convolutions
with upsampled filters to extract dense feature maps and cap-
ture long-range context.

Proposed models

On top of these state-of-the-art architectures, we propose 2 dif-
ferent CNN models. In the first model, named DSResUNet, we
aimed at improving the segmentation accuracy while keeping
at the same time a fast lightweight model. In the second case,
we focused on increasing the robustness and boosting the ac-
curacy of the segmentation method, at the expense of a more
complex model that follows the principle of ensemble learning.

DSResUNet
Taking the ResUNet as a baseline model, we propose here a new
architecture that combines residual connections and deep su-
pervision [10] to improve the accuracy of the results. Deep su-
pervision integrates additional loss terms, which are computed
using feature maps from the intermediate CNN layers, instead
of the last one only. We concatenated the ResUNet output with
the original input image and processed these feature maps with
2 additional convolutional layers. This resulted in a cascade of 2
networks that are trained jointly, where the first one produces an
initial segmentation map that is then refined by the second part

of the network. We computed 2 loss terms, one after the output
of the standard ResUNet and another one after the additional
convolutions. The sum of both terms constitutes the loss func-
tion used to train the DSResUNet model. See Fig. 1 for a graphical
illustration of the architecture and Supplementary Table 2 for a
detailed description.

Ensemble
Our final segmentation method is an ensemble model. The idea
of ensembling is that we can create higher performing models
by combining multiple predictors using an aggregation function.
One of the most common strategies to implement ensemble
models is bagging [55], where the same classifier is trained mul-
tiple times using different samples of the training set, and the
final output is obtained as the average of the independent pre-
dictions. In this work, we followed a different principle that had
been successfully applied in the context of medical image seg-
mentation, where instead of combining several instances of the
same model trained with different training samples, we com-
bined different models and architectures trained with the same
datasets [11]. The idea is to average out the bias infused by in-
dividual model configurations, to approximate more reliably the
true posterior distribution. In the context of image segmenta-
tion, given a dataset L = (x, y)i, where x is an intensity image
and y the corresponding ground-truth segmentation, we aim
at learning the underlying conditional distribution P(y|x), which
maps input images x into segmentation maps y. This is com-
monly approximated by a model P(y|x; θm), which has trainable
parameters, determined in our case by the neural network archi-
tecture. These parameters were learnt so that they minimize a
particular loss function (see next section for more details in the
loss functions used in our work) using the dataset. Given differ-
ent architectures, we obtained independent estimates and com-
bined them following [11], approximating the posterior P(y|x) as:

P (y|x) ≈ 1
M

∑M

m
P (y|x, θm). (1)

We implemented this ensemble of multiple models and ar-
chitectures by averaging the predictions of the 5 previous models
(UNet, ResUNet, DSResUNet, SegNet, and DeepLab v3), obtaining
a more robust and accurate segmentation method that signifi-
cantly outperforms the independent instances.

Training details
All the CNN models were trained using binary cross-entropy
as the loss function, Adam optimizer with default parameters,
learning rate of 0.0001, and weight decay = 1e−8 for UNet-like
models, 1e−9 for DeepLab, and 1e−10 for SegNet. The hyperpa-
rameters were chosen by grid search using the validation data.
All models were implemented in TensorFlow 1, and the source
code is publicly available. The training was done on a standard
workstation with Intel R© CoreTM i7-8700 CPU, 64 GB RAM, and a
NVIDIA Titan X GPU.

Because we are dealing with a relatively small dataset, data
augmentation was crucial to achieve good segmentation perfor-
mance. We implemented online data augmentation through a
variety of patch-based augmentation procedures including ad-
dition of Gaussian noise, random Gamma corrections to simu-
late different lighting conditions, artificial blur, and horizontal
flipping. These transformations were applied to both the images
and their corresponding ground-truth segmentation masks. The
proposed architectures are all fully convolutional, enabling a
patch-based training procedure. Because this is a highly unbal-
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12 ChronoRoot: High-throughput phenotyping by deep segmentation networks

anced problem (we have fewer pixels corresponding to root class
than background) we implemented the following patch sam-
pling strategy: we sampled patches from random positions cen-
tered in root pixels with the same probability as patches cen-
tered in background pixels. After performing a grid search of hy-
perparameters, the size of the training patches was set to 256 ×
256 and we used batches of 8 patches. At test time, we worked
with the full-resolution images, which can be fed to the network
and processed by the fully convolutional architectures.

CRF Post-processing
The CNN segmentations are post-processed using a standard
fully connected CRF [56]. The CRF operates under the hypoth-
esis that pixels that are contiguous and have similar intensity
values should be assigned the same label. We used an efficient
publicly available implementation [57] of a dense CRF [13] with
Potts compatibility function and hand-tuned parameters θα = 5
and θβ = 3.

Graph generation and temporal consistency
improvement

The CNN output can be interpreted as a soft segmentation. Be-
cause we processed temporal sequences of growing plant roots,
we applied a post-processing step to improve temporal consis-
tency using a variation of the weighted trailing average. The cur-
rent segmentation and an accumulation of the previous ones are
averaged to avoid losing parts of the root due to droplets or other
type of occlusion. Given the current segmentation st at time t,
and the accumulated mask up to the previous time step at − 1, we
compute the current map at = st + αat − 1. The weight α is chosen
depending on the size of the time step (we used α = 0.9 in our
experiments). The aim is to use the root segmentation masks
obtained in previous time steps to correct for potentially miss-
ing root segments. In our experiments, we processed images ev-
ery 15 minutes to ensure that the plant has not grown much
between 2 time steps. The average helped to alleviate certain
problems caused by root occlusion or water droplets because the
probability maps associated to previous frames act as memory
mechanisms, resulting in more stable segmentations (see Fig. 2
for a visual example).

At this point, as the user selects a Region of Interest (ROI)
for each plant, the algorithm starts working one by one. We pro-
ceed to threshold the accumulated probability map for the se-
lected plant, perform closing and opening morphological oper-
ations [58] to eliminate spurious pixels, and then we select the
biggest connected component as the root segmentation. Finally,
we proceed to skeletonize [59] the segmentation and construct
a graph that represents the root system architecture.

We run a depth first search (DFS) algorithm [60] in order to
label the bifurcation and end nodes of the unlabelled root graph
given by the skeletonized binary segmentation. We use the DFS
algorithm, starting from a seed that can be automatically cho-
sen as the top pixel in the plant ROI or manually specified. For as-
signing labels to the MR, we work on the basis of the assumption
that in early growing stages, there will only be an MR with seed
(top pixel) and tip (bottom pixel). We then use nearest neigh-
bours for matching the node graphs in the succeeding iterations.
As more nodes appear deviating from the MR, they will be added
as bifurcation (>1 neighbour) or LR tip (1 neighbour, different
from the MR tip). In case that 1 LR collides with the MR or another
LR, the tip will still be a tip because of the matching process. Fol-
lowing this procedure, labels are assigned for the seed, MR tip,

bifurcation, and LR tip nodes. Node graph matching based on a
nearest neighbour criterion was performed between the labelled
nodes of successive graphs in the temporal sequence to track the
evolution of the root. These graph structures allowed us to ex-
tract phenotyping features such as MR length, total LRs length,
or number of LRs at every temporal step. By processing the com-
plete temporal sequence for a given root, we can obtain tempo-
ral features such as growing speed or information about the root
behavior on day-night cycles, enabling the emergence of novel
temporal plant phenotypes, such as those shown in the Results
section. Figure 7 includes several examples of RSAs extracted
from images with different levels of complexity. Note that we vi-
sualize the graphs using a simplified version where only nodes
corresponding to seed, bifurcation, and tips are shown and con-
nected. However, it is important to highlight that MR and LR
length are computed considering the real length along the la-
belled skeleton, which are stored as an edge attribute in the sim-
plified graph for optimization reasons.

Availability of Source Code and Requirements

The source code corresponding to ChronoRoot, namely, the deep
learning model and the graph generation procedures:

� Project name: ChronoRoot: High-throughput phenotyping by
deep learning reveals novel temporal parameters of plant
root system architecture

� Project home page: https://github.com/ngaggion/ChronoRo
ot

� RRID:SCR 021259
� Operating systems: Platform independent
� Programming language: Python
� Other requirements: Python >3.3, Anaconda, TensorFlow

1.15, PyDenseCRF
� License: GNU GPL

The source code corresponding to ChronoRoot imaging con-
troller, namely, the web interface to check and set up the image
acquisition parameters:

� Project name: ChronoRoot: Module Controller
� Project home page: https://github.com/ThomasBlein/Chron

oRootControl
� Operating systems: GNU/Linux
� Programming language: Python
� Other requirements: NGINX, uWSGI, Python ≥3.5, Flask

≥1.1.0, APScheduler, RPi.GPIO, picamera, WTForms, smbus2
� License: OSI-approved CeCILL-2.1 license

Data Availability

All data gathered and reported in this study are available as
supplementary material. The 2 datasets of images and anno-
tations described in the Datasets section, as well as the 3D
printing and laser cutting files, are publicly available at https:
//github.com/ThomasBlein/ChronoRootModuleHardware under
the CERN Open Hardware License Version 2—Strongly Recipro-
cal licence. Supplementary figures and tables referenced in this
work, as well as a detailed description of the hardware system,
are available in the supplementary file. Snapshots of our code
and other data further supporting this work are openly available
in the GigaScience Repository, GigaDB [61].
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Figure 7 Examples of images, labelled skeleton, and simplified graphs corresponding to RSAs exhibiting different levels of complexity. Note that we visualize the graphs

using a simplified version where only nodes corresponding to seed, bifurcation, and tips are shown and connected. However, because the full skeleton is labelled, the
MR and LR length are computed considering the real length along the skeleton.

Additional Files

Supplementary Table S1: Detailed description of the UNet archi-
tecture implemented in this work.
Supplementary Table S2: Detailed description of the Residual
UNet implemented in this work and the proposed Deeply Su-
pervised Residual UNet.
Supplementary Figure S1: Novel time-derived parameters of
RSA.
Supplementary Figure S2: Novel time-derived parameters of
RSA.
Supplementary Figure S3: Low-cost device for automatic image
acquisition of plant plates.
Supplementary Figure S4: LED near-infrared panel front view
and back view.
Supplementary Figure S5: Plate support.
Supplementary Figure S6: The camera set-up.
Supplementary Figure S7: Electronic connection of a module.
Supplementary Video Abstract

Abbreviations

CL: continuous light; CNN: convolutional neural network; CRF:
conditional random field; DFS: depth first search; DSResUNet:
Deeply Supervised ResUNet; ELU: exponential linear unit; FCN:
fully convolutional network; GPU: graphical processing unit;
GWAS: genome-wide association studies; GT: ground truth; IR:
infrared; LD: long day; LR: lateral root; MR: main root; NIR: near-
infrared; RAM: random access memory; RELU: rectified linear
unit; ROI: region of interest; RSA: root system architecture; RSML:
Root System Markup Language; SD: standard deviation; TR: total
root.
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tional Associé NOCOSYM) to M.C. and F.A.

Authors’ Contributions

T.B., M.C., E.F., and F.A. conceived the project. N.G. and E.F. de-
signed the deep learning models. N.G. implemented the deep
learning models, ran the numerical experiments, and gener-
ated the figures. T.B., V.D., E.L., and S.L. designed and built the
hardware system. T.B. and V.D. implemented the web control
interface. T.R. prepared the plates with A. thaliana seeds and
launched the experiments for image acquisition. A.C. and N.G.
annotated the images used to train the deep learning mod-
els. N.G., E.F., F.A., D.H.M., and T.B. analysed and interpreted
the results. E.F., F.A., T.R., D.H.M., M.C., T.B., and N.G. wrote the
manuscript.

Authors’ Information

F.A., D.H.M., and E.F. are researchers of CONICET; N.G. and A.C.
are fellows of the same institution. T.B. and M.C. are researchers
and V.D. is an engineer of CNRS. E.L. and S.L. are technicians and
T.R. is a fellow of University Paris-Saclay.

We would like to thank Fablab Digiscope | LRI | UPSACLAY,
and in particular Romain Di Vozzo, for fruitful discussions, his
advice on the design, and for the access to their digital fabri-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/7/giab052/6324285 by guest on 23 August 2021



14 ChronoRoot: High-throughput phenotyping by deep segmentation networks

cation equipment. We thank Jean-Paul Bares and Maël Jeuffrard
from IPS2 for support and assembling of the ChronoRoot mod-
ules. We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the Titan Xp used for this research.

References

1. Palmer CM, Bush SM, Maloof JN. Phenotypic and develop-
mental plasticity in plants. In: eLS. Chichester, UK: Wiley;
2012, doi:10.1002/9780470015902.a0002092.pub2.

2. Tracy SR, Nagel KA, Postma JA, et al. Crop improvement from
phenotyping roots: Highlights reveal expanding opportuni-
ties. Trends Plant Sci 2020;25(1):105–18.

3. Ingram PA, Malamy JE. In: Root System Architecture,
vol. 55 of Advances in Botanical Research. Elsevier; 2010:
75–117.

4. Narisetti N, Henke M, Seiler C, et al. Semi-automated Root
Image Analysis (saRIA). Sci Rep 2019; 9(1):19674.

5. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D
active contour segmentation of anatomical structures: Sig-
nificantly improved efficiency and reliability. Neuroimage
2006;31(3):1116–28.

6. Ronneberger O, Fischer P, Brox T. U-net: Convolutional net-
works for biomedical image segmentation. In: International
Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer; 2015:234–41.

7. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep con-
volutional encoder-decoder architecture for image segmen-
tation. IEEE Trans Pattern Anal Mach Intell 2017; 39(12):2481–
95.

8. Chen LC, Papandreou G, Kokkinos I, et al. Deeplab: Seman-
tic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE Trans Pattern
Anal Mach Intell 2017;40(4):834–48.

9. He K, Zhang X, Ren S, et al. Deep residual learning for im-
age recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition; 2016:770–8.

10. Lee CY, Xie S, Gallagher P, et al. Deeply-supervised nets. In:
Artificial Intelligence and Statistics. 2015:562–70.

11. Kamnitsas K, Bai W, Ferrante E, et al. Ensembles of multi-
ple models and architectures for robust brain tumour seg-
mentation. In: International MICCAI Brainlesion Workshop.
Springer; 2017:450–62.

12. Orlando JI, Manterola HL, Ferrante E, et al. Arabidopsis roots
segmentation based on morphological operations and CRFs.
2017; arXiv:1704.07793.
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