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Abstract In this paper, we present a new framework of Bi-Level Uncon-
strained Minimization (BLUM) for development of accelerated methods in
Convex Programming. These methods use approximations of the high-order
proximal points, which are solutions of some auxiliary parametric optimiza-
tion problems. For computing these points, we can use different methods, and,
in particular, the lower-order schemes. This opens a possibility for the latter
methods to overpass traditional limits of the Complexity Theory. As an exam-
ple, we obtain a new second-order method with the convergence rate O

(
k−4

)
,

where k is the iteration counter. This rate is better than the maximal possi-
ble rate of convergence for this type of methods, as applied to functions with
Lipschitz continuous Hessian. We also present new methods with the exact
auxiliary search procedure, which have the rate of convergence O

(
k−(3p+1)/2

)
,

where p ≥ 1 is the order of the proximal operator. The auxiliary problem at
each iteration of these schemes is convex.

Keywords Convex Optimization · Tensor methods · Proximal-point
operator · Lower complexity bounds · Optimal methods

Mathematics Subject Classification (2010) 90C25

1 Introduction

Motivation. In the last decade, in Convex Optimization we can observe a high
activity in the development of the accelerated high-order methods and prov-
ing for them the lower complexity bounds. (see [1,2,5,8,11]). At this moment,
for methods of any order there exists a natural problem class, for which we
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2 Yurii Nesterov

know the accelerated methods. For example, functions with Lipschitz contin-
uous gradients, can be naturally minimized by the first-order schemes, which
can demonstrate in this case an unimprovable convergence rate of the order
O
(
k−2

)
, where k is the iteration counter. For functions with Lipschits con-

tinuous Hessians, we can apply the second-order methods with the rate of
convergence going up to O

(
k−7/2

)
, etc.

This one-to-one correspondence between the type of the methods and the
particular problem class allows us to speak about optimal methods of certain
order, which have unimprovable convergence rate. However, recently in [22]
there were presented new results which break down this peaceful picture. It
was shown that the special superfast second-order methods can converge with
the rate O

(
k−4

)
, which is faster than the lower bound O

(
k−7/2

)
for these

type of schemes. Of course, there is no contradiction with the Complexity
Theory. The classical lower bound for the second-order schemes was obtained
for functions with Lipschitz continuous Hessian, and in [22] we worked with
the functions having Lipschitz continuous third derivative. In any case, this
is the first example of successful expansion of the lower-order methods at the
territory traditionally reserved for the higher-order schemes. In this paper, we
are trying to analyze and explain this phenomena in some general framework.

At each iteration of the superfast methods from [22], we need to solve
a serious auxiliary problem requiring additional calls of oracle (the number
of these calls is bounded by the logarithm of accuracy). Therefore, in our
developments we decided to employ one of the most expensive operations of
Convex Optimization, the proximal-point iteration.

The proximal approximation of function f(·), defined by

ϕλ(x) = min
y

{
f(y) + 1

2λ‖y − x‖
2
}
, λ > 0, (1)

was introduced by Moreau [14]. Later on, Martinet [13] proposed the first
proximal-point method based on this operation. The importance of this con-
struction for computational practice was questionable up to the developments
of Rockafellar [24], who used the proximal-point iteration in the dual space for
justifying the Augmented Lagrangians. This dual scheme was accelerated by
Güller [9], who introduced in this method some elements of the Fast Gradient
Method from [15]. Some attempts were made by Teboulle and others [25,10] in
studying the proximal-point iteration with non-quadratic non-Euclidean ker-
nel. However, during decades this idea was mainly considered as a theoretical
achievement which hardly can be used in the efficient optimization algorithms.

In this paper, we come back to this old idea, having in mind another type
of kernel functions. Our goal is the development of accelerated methods for
Unconstrained Convex Optimization. Therefore, we suggest to replace ‖y−x‖2
in (1) by ‖ · ‖p+1, with p ≥ 1. We call the corresponding proximal step the
pth-order proximal-point operation. This terminology is justified by two facts.

Firstly, in Section 2, we show that the corresponding simple proximal-
point method converges as O (k−p). The rate of convergence of the accelerated
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Inexact Accelerated High-Order Proximal-Point Methods 3

version of this method is O
(
k−(p+1)

)
. In both cases, we can use appropriate

approximations of the proximal point.

Secondly, in Section 3, we show that this approximation can be computed
by one step of the pth order tensor method provided that the pth derivative
of the objective function is Lipschitz continuous.

Our main results are presented in Section 4. In this section, we introduce
the framework of Bi-Level Unconstrained Minimization (BLUM), which can
be used for development of new and efficient optimization methods. In this
framework, we can choose independently the order of the upper-level proximal-
point tensor method and the lower-level method for computing an appropriate
approximation to the proximal point. It appears that this strategy opens a
possibility for the lower-order methods to overpass the limits given by the
traditional Complexity Theory. Note that a similar phenomena was already
observed in the framework of non-convex optimization [7]. However, for Convex
Optimization this situation is new.

For supporting this claim, we analyze efficiency of the second-order method
in approximating the third-order proximal point. Using the relative smoothness
condition [4,12], we develop a very efficient second-order method for computing
this approximation. The global rate of convergence of our upper-level method is
O
(
k−4

)
, and the complexity of the lower-level scheme depends logarithmically

on the accuracy parameters. The new second-order method can be applied to
functions with Lipschitz continuous third derivative.

In the next Section 5, we introduce even more powerful operation, the
proximal-point iteration with line search. As compared with (1) it has one more
variable in the auxiliary convex minimization problem. We prove that under
assumption of the exact search, the corresponding accelerated method con-
verges as O

(
k−(3p+1)/2

)
. Our approach has the same near-optimal complexity

bound as [6]. However, its search procedures are based on convex auxiliary
problems and therefore they are easier to implement.

In the last Section 6, we discuss our results and directions for future de-
velopments.

Notation and generalities. In what follows, we denote by E a finite-dimensi-
onal real vector space, and by E∗ its dual space composed by linear functions
on E. For such a function s ∈ E∗, we denote by 〈s, x〉 its value at x ∈ E.

Let us measure distances in E and E∗ in a Euclidean norm. For that, using
a self-adjoint positive-definite operator B : E → E∗ (notation B = B∗ � 0),
we define

‖x‖ = 〈Bx, x〉1/2, x ∈ E, ‖g‖∗ = 〈g,B−1g〉1/2, g ∈ E∗.

Sometimes, it will be convenient to treat x ∈ E as a linear operator from R
to E, and x∗ as a linear operator from E∗ to R. In this case, xx∗ is a linear
operator from E∗ to E, acting as follows:

(xx∗)g = 〈g, x〉x ∈ E, g ∈ E∗.
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4 Yurii Nesterov

For a smooth function f : E → R denote by ∇f(x) its gradient, and by
∇2f(x) its Hessian evaluated at point x ∈ E. Note that

∇f(x) ∈ E∗, ∇2f(x)h ∈ E∗, x, h ∈ E.

Using the above norm, we can define the standard Euclidean prox-functions

dp+1(x) = 1
p+1‖x‖

p+1, x ∈ E,

where p ≥ 1 is an integer parameter. These functions have the following deriva-
tives:

∇dp+1(x) = ‖x‖p−1Bx, x ∈ E,

∇2dp+1(x) = ‖x‖p−1B + (p− 1)‖x‖p−3Bxx∗B � ‖x‖p−1B.
(2)

Note that function dp+1(·) is uniformly convex (see, for example, Lemma 4.2.3
in [21]):

dp+1(y) ≥ dp+1(x) + 〈∇dp+1(x), y − x〉+ 1
p+1

(
1
2

)p−1 ‖y − x‖p+1, x, y ∈ E.
(3)

In what follows, we often work with directional derivatives. For p ≥ 1,
denote by

Dpf(x)[h1, . . . , hp]

the directional derivative of function f at x along directions hi ∈ E, i =
1, . . . , p. Note that Dpf(x)[·] is a symmetric p-linear form. Its norm is defined
in a standard way:

‖Dpf(x)‖ = max
h1,...,hp

{∣∣∣Dpf(x)[h1, . . . , hp]
∣∣∣ : ‖hi‖ ≤ 1, i = 1, . . . , p

}
. (4)

If all directions h1, . . . , hp are the same, we apply notation

Dpf(x)[h]p, h ∈ E.

Note that, in general, we have (see, for example, Appendix 1 in [16])

‖Dpf(x)‖ = max
h

{∣∣∣Dpf(x)[h]p
∣∣∣ : ‖h‖ ≤ 1

}
. (5)

In this paper, we work with functions from the problem classes Fp, which
are convex and p times continuously differentiable on E. Denote by Mp(f) the
uniform upper bound for the pth derivative:

Mp(f) = sup
x∈E
‖Dpf(x)‖. (6)

One of our main results is based on the following relation between the second,
third and fourth derivatives of convex function (see Lemma 3 in [19]):

D3f(x̄)[h] � 1
ξ∇

2f(x̄) + ξ
2M4(f)‖h‖2B, x̄, h ∈ E, (7)

where ξ is an arbitrary positive number.
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Inexact Accelerated High-Order Proximal-Point Methods 5

2 Inexact high-order proximal-point steps

Consider the following optimization problem:

min
x∈E

f(x), (8)

where f(·) is a differentiable closed convex function. Denote by x∗ one of its
optimal solutions and let f∗ = f(x∗).

All methods presented in this paper are based on the pth-order proximal-
point operators, defined as follows:

proxpf/H(x̄) = arg min
x∈E

{
fpx̄,H(x)

def
= f(x) +Hdp+1(x− x̄)

}
, (9)

where H > 0 and p ≥ 1. The properties of the standard first-order proximal-
point operator

proxf/H(x̄) = arg min
x∈E

{
f(x) + H

2 ‖x− x̄‖
2
}

are studied very well in the literature (e.g. [23]). However, we will see that
the high-order proximal-point methods converge much faster. The main goal
of this paper is to establish the global rate of convergence of these methods
in accelerated and non-accelerated forms and complement this information by
the complexity of computing an appropriate inexact proximal-point step (9).

Indeed, very often, the proximal-point operator (9) cannot be computed in
a closed form. Instead, we have to use an approximate solution of this problem
obtained by an auxiliary optimization procedure. Let us introduce the set of
acceptable solutions to problem (9), that is

ApH(x̄, β) =
{
x ∈ E : ‖∇fpx̄,H(x)‖∗ ≤ β‖∇f(x)‖∗

}
, (10)

where β ∈ [0, 1) is a tolerance parameter. Note that proxpf/H(x̄) ∈ ApH(x̄, β).

However, since ∇fpx̄,H(x̄) = ∇f(x̄), we see that x̄ 6∈ ApH(x̄, β) unless x̄ = x∗.

Lemma 1 Let T ∈ ApH(x̄, β). Then

(1− β)‖∇f(T )‖∗ ≤ H‖T − x̄‖p ≤ (1 + β)‖∇f(T )‖∗, (11)

〈∇f(T ), x̄− T 〉 ≥ H
1+β ‖T − x̄‖

p+1. (12)

Moreover, if β ≤ 1
p , then

〈∇f(T ), x̄− T 〉 ≥
[

1−β
H

] 1
p ‖∇f(T )‖

p+1
p
∗ . (13)
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6 Yurii Nesterov

Proof Indeed, inequality (11) follows from representation

∇fpx̄,H(T )
(2)
= ∇f(T ) +H‖T − x̄‖p−1B(T − x̄). (14)

Further, denote r = ‖T − x̄‖. Then, squaring both parts in inequality (10), we
have

‖∇f(T )‖2∗ + 2Hrp−1〈∇f(T ), T − x̄〉+H2r2p
(14)

≤ β2‖∇f(T )‖2∗.

This inequality can be rewritten as follows:

〈∇f(T ), x̄− T 〉 ≥ κ(r)
def
= 1−β2

2Hrp−1 ‖∇f(T )‖2∗ + H
2 r

p+1

(11)

≥ 1−β2

2Hrp−1 · H
2r2p

(1+β)2 + H
2 r

p+1 = Hrp+1

1+β ,

(15)

and this is inequality (12). Let us compute the derivative of κ(·):

κ′(τ) = −(p− 1) 1−β2

2Hτp ‖∇f(T )‖2∗ + (p+ 1)H2 τ
p, τ > 0.

Note that r
(11)

≥ r̂
def
=
[

1−β
H ‖∇f(T )‖∗

] 1
p

. Since

κ′(r̂) = −(p− 1) (1−β2)H
2H(1−β)‖∇f(T )‖∗ + (p+ 1)H2 ·

1−β
H ‖∇f(T )‖∗

= ‖∇f(T )‖∗
[

1−β
2 (p+ 1)− 1+β

2 (p− 1)
]

= ‖∇f(T )‖∗ [1− βp] ≥ 0,

we have 〈∇f(T ), x̄ − T 〉 ≥ κ(r) ≥ κ(r̂) + κ′(r̂)(r − r̂) ≥ κ(r̂), and this is
inequality (13). ut

The following corollary is a trivial consequence of convexity of f(·) and
inequality (13).

Corollary 1 Let T ∈ ApH(x̄, β) and β ≤ 1
p . Then

f(x̄)− f(T ) ≥
[

1−β
H

] 1
p ‖∇f(T )‖

p+1
p
∗ . (16)

Let us justify now the rate of convergence of the basic inexact high-order
proximal-point method:

xk+1 ∈ ApH(xk, β) , k ≥ 0. (17)

For analyzing this scheme, we need the following Lemma A.1 from [20].

Lemma 2 Let the sequence of positive numbers {ξk}k≥0 satisfy the following
condition:

ξk − ξk+1 ≥ ξ1+α
k+1 , k ≥ 0, (18)

where α ∈ (0, 1]. Then for any k ≥ 0 we have

ξk ≤ ξ0

(1+ αk
1+α ln(1+ξα0 ))

1/α ≤
[(

1 + 1
α

)
(1 + ξα0 ) · 1

k

] 1
α . (19)
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Inexact Accelerated High-Order Proximal-Point Methods 7

Denote by D0 = max
x∈E
{‖x − x∗‖ : f(x) ≤ f(x0)} the radius of the initial

level set of the objective function in problem (8).

Theorem 1 Let the sequence {xk}k≥0 be generated by method (17). Then for
any k ≥ 0 we have

f(xk)− f∗ ≤ 1
2

(
1

1−βHD
p+1
0 + f(x0)− f∗

)
·
(

2p+2
k

)p
, k ≥ 1. (20)

Proof Indeed, in view of Corollary 1, for any k ≥ 0 we have

f(xk)− f(xk+1) ≥
[

1−β
H

] 1
p ‖∇f(xk+1)‖

p+1
p
∗ ≥

[
1−β
H

] 1
p
(
f(xk+1)−f∗

D0

) p+1
p

.

Denoting now ξk = 1−β
HDp+1

0

(f(xk)− f∗) and α = 1
p , we get the condition (18)

valid for all k ≥ 0. Hence, in view of Lemma 2, we have

ξk ≤
[(

1 + 1
α

)
(1 + ξα0 ) · 1

k

] 1
α ≤

(
1 + 1

α

) 1
α 2

1−α
α (1 + ξ0) ·

(
1
k

) 1
α .

And this is inequality (20). ut
Note that the rate of convergence (20) of method (17) does not depend

on the properties of function f(·). This means that the actual complexity of
problem (8) for this method is reflected somehow in the complexity of finding
the point xk+1 ∈ ApH(xk, β). We will discuss this issue in the remaining part
of this paper. To conclude this section, let us present an accelerated variant
of the Inexact Proximal-Point Method.

Our presentation is very similar to the justification of Accelerated Tensor
Methods in Section 2 in [22]. Therefore we omit some technical details. Denote

c(p) =
[

1−β
H

] 1
p

. (21)

And let us choose β ∈ [0, 1
p ]. Then, for any T ∈ ApH (x̄, β), we have

f(x̄)− f(T )
(16)

≥ c(p)‖∇f(T )‖
p+1
p
∗ . (22)

Define now the sequence of scaling coefficients

Ak =
(

1
2c(p)

)p ( k
p+1

)p+1 (21)
= 2(1−β)

H

(
k

2p+2

)p+1

,

ak+1
def
= Ak+1 −Ak, k ≥ 0.

(23)

Note that kp+1 ≥ (k + 1)p+1 + (p + 1)(k + 1)p · (−1). This inequality can be
rewritten in the following form:

a
p+1
p

k+1 ≤
1
2c(p)Ak+1, k ≥ 0. (24)
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8 Yurii Nesterov

Consider the following high-order proximal method.

Inexact Accelerated pth-Order Proximal-Point Method

Initialization. Choose x0 ∈ E, β ∈ [0, 1
p ], and H > 0. Define

coefficients Ak by (23) and function ψ0(x) = dp+1(x− x0).

Iteration k ≥ 0.

1. Compute vk = arg min
x∈E

ψk(x) and choose yk = Ak
Ak+1

xk + ak+1

Ak+1
vk.

2. Compute Tk ∈ ApH (yk, β) and update

ψk+1(x) = ψk(x) + ak+1[f(Tk) + 〈∇f(Tk), x− Tk〉].

3. Choose xk+1 with f(xk+1) ≤ f(Tk).

(25)

Note that computation of point vk at Step 1 can be done in a closed form.

Theorem 2 Let sequence {xk}k≥0 be generated by method (25). Then, for
any k ≥ 1, we have

f(xk)− f∗ ≤ H
2(p+1)(1−β)

(
2p+2
k

)p+1 ‖x0 − x∗‖p+1. (26)

Moreover, ‖vk − x∗‖p+1 ≤ 2p−1‖x0 − x∗‖p+1.

Proof First of all, note that by induction it is easy to see that

ψk(x) ≤ Akf(x) + dp+1(x− x0), x ∈ E. (27)

In particular, for ψ∗k
def
= min

x∈E
ψk(x) and all x ∈ E, we have

Akf(x) + dp+1(x− x0)
(27)

≥ ψk(x)
(3)

≥ ψ∗k + 1
p+1

(
1
2

)p−1 ‖x− vk‖p+1. (28)

Let us prove by induction the following relation:

ψ∗k ≥ Akf(xk), k ≥ 0. (29)

For k = 0, we have ψ∗0 = 0 and A0 = 0. Hence, (29) is valid. Assume it is valid
for some k ≥ 0. Then

ψ∗k+1 = min
x∈E

{
ψk(x) + ak+1[f(Tk) + 〈∇f(Tk), x− Tk〉]

}
(28)

≥ min
x∈E

{
ψ∗k + 1

p+1

(
1
2

)p−1 ‖x− vk‖p+1 + ak+1[f(Tk) + 〈∇f(Tk), x− Tk〉]
}
.
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Inexact Accelerated High-Order Proximal-Point Methods 9

Note that

ψ∗k + ak+1[f(Tk) + 〈∇f(Tk), x− Tk〉]

(29)

≥ Akf(xk) + ak+1[f(Tk) + 〈∇f(Tk), x− Tk〉]

≥ Ak+1f(Tk) + 〈∇f(Tk), ak+1(x− Tk) +Ak(xk − Tk)〉

= Ak+1f(Tk) + 〈∇f(Tk), ak+1(x− vk) +Ak+1(yk − Tk)〉,

where the last equality follows from the relation Akxk = Ak+1yk − ak+1vk.
Further, for all x ∈ E we have (see, for example, Lemma 2 in [18])

1
p+1

(
1
2

)p−1 ‖x− vk‖p+1 + ak+1〈∇f(Tk), x− vk〉

≥ − p
p+12

p−1
p

(
ak+1‖∇f(Tk)‖∗

) p+1
p

.

Finally, since Tk ∈ ApH(yk, β), we get

〈∇f(Tk), yk − Tk〉
(12)

≥ c(p)‖∇f(Tk)‖
p+1
p
∗ .

Putting all these inequalities together, we obtain

ψ∗k+1 ≥ Ak+1f(Tk)− p
p+12

p−1
p

(
ak+1‖∇f(Tk)‖∗

) p+1
p

+Ak+1c(p)‖∇f(Tk)‖
p+1
p
∗

= Ak+1f(Tk) + ‖∇f(Tk)‖
p+1
p
∗

(
Ak+1c(p)− p

p+12
p−1
p a

p+1
p

k+1

)

≥ Ak+1f(Tk) + ‖∇f(Tk)‖
p+1
p
∗

(
Ak+1c(p)− 2a

p+1
p

k+1

)
(24)

≥ Ak+1f(Tk) ≥ Ak+1f(xk+1).

It remains to note that in view of relations (27) and (29), we have

f(xk)− f∗ ≤ 1
Ak
dp+1(x∗ − x0)

(23)
= H

2(1−β)

(
2p+2
k

)p+1 · 1
p+1‖x

∗ − x0‖p+1.

In order to get the remaining bound for vk, we need to apply inequalities
(28) and (29) with x = x∗. ut

We can see that method (25) is much faster than the basic method (17).
Its rate of convergence is also independent on the properties of the objective
function. Hence, in order to evaluate its actual performance, we need to inves-
tigate the complexity of finding a point T ∈ ApH(x̄, β). This will be done in
the remaining sections of the paper.
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10 Yurii Nesterov

3 Approximating proximal-point operator by tensor step

Let us show that with appropriate values of parameters, the inclusion T ∈
ApH(x̄, β) can be ensured by a single step of the Basic Tensor Method of degree
p. Firstly, recall some simple facts from the theory of tensor methods.

For function f(·), let us assume that Mp+1(f) < +∞. Define its Taylor
approximation at point x ∈ E:

Ωx,p(y) = f(x) +
p∑
k=1

1
k!D

kf(x)[y − x]k.

Then
‖∇f(y)−∇Ωx,p(y)‖∗ ≤ Mp+1(f)

p! ‖y − x‖p, y ∈ E. (30)

Define now the augmented Taylor polynomial

Ω̂x,p,M (y) = Ωx,p(y) + M
(p+1)!‖y − x‖

p+1.

If M ≥Mp+1(f) then this function provides us with a uniform upper bound for

the objective. Moreover, if M ≥ pMp+1(f), then function Ω̂x,p,M (·) is convex
(see Theorem 1 in [19]). Therefore, we are able to compute the tensor step

Tp,M (x) = arg min
y∈E

Ω̂x,p,M (y).

Let us allow some inexactness in computation of this point. Namely, we
assume that we can compute a point T satisfying the following condition:

‖∇Ω̂x,p,M (T )‖∗ ≤ γ
1+γ ‖∇Ωx,p(T )‖∗, (31)

where γ ∈ [0, β
1+β ) is the tolerance parameter. Thus,

γ
1+γ ‖∇Ωx,p(T )‖∗ ≥ ‖∇Ω̂x,p,M (T )‖∗ ≥ ‖∇Ωx,p(T )‖∗ − M

p! ‖T − x‖
p.

Therefore, ‖∇Ωx,p(T )‖∗ ≤ (1 + γ)Mp! ‖T − x‖
p. (This inequality was used as a

termination criterion in [5].)
Let us prove the following simple result.

Lemma 3 Let M > 1
1−γMp+1(f). Then for point T satisfying (31), we have

‖∇f(T ) + M
p!∇dp+1(T − x)‖∗ ≤ Mp+1(f)+γM

(1−γ)M−Mp+1(f)‖∇f(T )‖∗. (32)

Proof Denote r = ‖T − x‖. Then

Mp+1(f)rp

p!

(30)

≥ ‖∇f(T )−∇Ωx,p(T )‖∗

= ‖∇f(T )−∇Ω̂x,p,M (T ) + M
p!∇dp+1(T − x)‖∗

(31)

≥ ‖∇f(T ) + M
p!∇dp+1(T − x)‖∗ − γ

1+γ ‖∇Ωx,p(T )‖∗

≥ ‖∇f(T ) + M
p!∇dp+1(T − x)‖∗ − γMrp

p! .
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Inexact Accelerated High-Order Proximal-Point Methods 11

Thus,

Mp+1(f)+γM
p! rp ≥ ‖∇f(T ) + M

p!∇dp+1(T − x)‖∗

≥ M
p! ‖∇dp+1(T − x)‖∗ − ‖∇f(T )‖∗

(2)
= Mrp

p! − ‖∇f(T )‖∗.

Thus, rp

p! ≤
1

(1−γ)M−Mp+1(f)‖∇f(T )‖∗, and we obtain (32). ut
Let us define now M = 1+β

β(1−γ)−γMp+1(f) and H = M
p! . Then the inequality

(32) can be rewritten as follows:

‖∇f(T ) +H∇dp+1(T − x)‖∗ ≤ β‖∇f(T )‖∗.

In other words, these values of parameters ensure the inclusion T ∈ ApH(x, β).
For such M , the convexity condition M ≥ pMp+1(f) is satisfied with β ≤ 1

p−1 .

Thus, the accelerated and non-accelerated tensor methods from [19] can
be seen as particular implementations of inexact high-order proximal-point
methods. Their efficiency bounds can be obtained by Theorems 1 and 2.

4 Bi-level unconstrained minimization

In solving problem (8) by inexact high-order proximal-point methods from
Section 2, we have two degrees of freedom. Firstly, we need to decide on the
order p of the proximal-point method. This defines the rate of convergence for
the upper-level process. Note that for obtaining the rates (20) or (26), we do
not need any assumption on the properties of the objective function.

After that, we have to choose the lower-level method for computing a point

T ∈ ApH(x, β). (33)

For analyzing efficiency of the latter method, we do need to assume something
on the objective function. Thus, the overall complexity of this bi-level scheme
depends on efficiency bounds of both processes. Note that the objective func-
tion in the auxiliary problem (9) has some structure (composite form, uniform
convexity), which can help to increase efficiency of the lower-level method.

We call this framework Bi-Level Unconstrained Minimization (BLUM). Let
us show that it opens new horizons in the development of very efficient opti-
mization methods.

Indeed, as we have seen in Section 3, the condition (33) can be satisfied
by one step of tensor method. This strategy does not require additional calls
of the oracle. However, the high-order tensor methods need computations of
the high-order derivatives and therefore quite often they are impractical. In
this case, it is reasonable to solve the auxiliary problem in (9) by a cheaper
method, based on the derivatives of a smaller degree than the order of the
underlying proximal-point scheme.
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12 Yurii Nesterov

In this section, we present an example when this strategy works very well.
We are going to consider a third-order proximal-point method, which is imple-
mented by a second-order scheme. The first confirmation that this is possible
was obtained in [22], using the approximations of third derivative along two
vectors by the finite differences of gradients. In the remaining part of this
section, we discuss a simpler approach, based on a direct application of the
relative non-degeneracy condition [4,12] to the auxiliary problem (9).

Let us consider the following unconstrained minimization problem:

min
y∈E

{
fx̄,H(y)

def
= f(y) +Hd4(y − x̄)

}
, (34)

with constant H > 0 and central point x̄ ∈ E. As compared with notation
(9), we drop the index p since in this section we always have p = 3. In what
follows, we assume that the fourth derivative of function f(·) is bounded on E
by constant M4.

Our main tool for solving the problem (34) is the gradient method based
on relative non-degeneracy condition. This condition is formulated in terms of
the Bregman distance. Recall that this is a (non-symmetric) distance function
between two points x and y from E, which is computed with respect to some
convex scaling function ρ(·). It is defined as follows:

βρ(x, y) = ρ(y)− ρ(x)− 〈∇ρ(x), y − x〉, x, y ∈ E. (35)

We say that the function ϕ(·) is relatively non-degenerate on E with respect
to the scaling function ρ(·) if there exist two constants 0 < µ ≤ L such that

µβρ(x, y) ≤ βϕ(x, y) ≤ Lβρ(x, y), x, y ∈ E. (36)

The value κ = µ
L is called the condition number of function ϕ(·) with respect to

ρ(·). Recall that there exists a convenient sufficient condition for relations (36),
this is

µ∇2ρ(x) � ∇2ϕ(x) � L∇2ρ(x), x ∈ E. (37)

It appears that for function fx̄,H(·) in the problem (34), we can point out
a simple scaling function, ensuring validity of the condition (36) with a good
value of κ.

Theorem 3 Let H ≥M4(f). Then, the scaling function

ρx̄,H(x) = 1
2 〈∇

2f(x̄)(x− x̄), x− x̄〉+Hd4(x− x̄), (38)

and function fx̄,H(·) satisfy the condition (37) on E with constants

µ = 1− 1
ξ , L = 1 + 1

ξ , κ = ξ−1
ξ+1 , (39)

where ξ ≥ 1 is the unique solution of the following quadratic equation:

ξ(1 + ξ) = 2H
M4(f) . (40)
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Inexact Accelerated High-Order Proximal-Point Methods 13

Proof For the sake of notation, denote M4 = M4(f) and assume that x̄ = 0 ∈
E. Then, for any x ∈ E, we have

∇2f(x) = ∇2f(0) +D3f(0)[x] +
1∫
0

(1− τ)D4f(τx)[x]2dτ

(4)

� ∇2f(0) +D3f(0)[x] + 1
2M4‖x‖2B

(7)

�
(

1 + 1
ξ

)
∇2f(0) + 1

2M4‖x‖2 (1 + ξ)B

(2)

�
(

1 + 1
ξ

)
∇2f(0) + 1

2M4 (1 + ξ)∇2d4(x).

Therefore,

∇2f0,H(x)
(40)

�
(

1 + 1
ξ

)
∇2f(0) +

[
ξ(1+ξ)

2 M4 + 1
2M4 (1 + ξ)

]
∇2d4(x)

=
(

1 + 1
ξ

)
∇2ρ0,ξ(x).

Similarly, using again (4), we have

∇2f(x)
(7)

�
(

1− 1
ξ

)
∇2f(0)− 1

2M4‖x‖2 (1 + ξ)B

(2)

�
(

1− 1
ξ

)
∇2f(0)− 1

2M4 (1 + ξ)∇2d4(x).

Hence,

∇2f0,H(x)
(40)

�
(

1− 1
ξ

)
∇2f(0) +

[
ξ(1+ξ)

2 M4 − 1
2M4 (1 + ξ)

]
∇2d4(x)

=
(

1− 1
ξ

)
∇2ρ0,ξ(x). 2

From now on, we fix the following values for our parameters:

ξ = 2, H = 3M4(f), µ = 1
2 , L = 3

2 , κ = 1
3 . (41)

Note that these values satisfy relations (39) and (40). Consequently, we can
use a simpler notation for the corresponding scaling function:

ρx̄(y)
def
= 1

2 〈∇
2f(x̄)(y − x̄), y − x̄〉+ 3M4(f)d4(y − x̄). (42)

Let us present now an optimization method for solving efficiently the prob-
lem (34). For our goals, the most appropriate variant of this method can be
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14 Yurii Nesterov

found in [20].

Choose x̄ ∈ E and H = 3M4(f). Set x0 = x̄.

For k ≥ 0, iterate:

xk+1 = arg min
x∈domE

{
〈∇fx̄,H(xk), x− xk〉+ Lβρx̄(xk, x)

}
.

(43)

Note that this is a first-order method for solving the problem (34) provided
that the Hessian ∇2f(xk) is represented in an appropriate basis (this can be
done before the iterations start). It forms a sequence of points {xk}k≥0 with
monotonically decreasing values of the objective function.

Applying now Lemma 3 in [20], we come to the following result.

Lemma 4 Let sequence {xk}k≥0 be generated by method (43). Then, for any
k ≥ 1 and any x ∈ domψ we have

βρx̄(xk, x) ≤ (1− κ)
k
βρx̄(x0, x) + 1

L [fx̄,H(x)− fx̄,H(xk)]. (44)

Let us show how this method can be used on the lower level of the proximal-
point method (25) with p = 3. Our optimization problem (8) is characterized
by the following parameters:

M4(f) < +∞, R0 = ‖x0 − x∗‖, M2(f) < +∞,

D0 = max
x∈E
{‖x− x∗‖ : f(x) ≤ f(x0)} < +∞.

(45)

For our analysis, parameters M4(f) and R0 are critical. The remaining param-
eters M2(f) and D0 appear in the efficiency bounds only inside the logarithms.
Using the constant M2(f), we can bound the variation of the objective function
as follows:

f(y)− f∗ ≤ 1
2M2(f)‖y − x∗‖2, y ∈ E. (46)

Let us write down the full version of the combination of method (25) with
(43). We choose β = 1

p = 1
3 and other parameters by (41).

Define the following sequences:

Ak = 4
9M4(f)

(
k
8

)4
, ak+1 = Ak+1 −Ak, k ≥ 0. (47)
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Inexact Accelerated High-Order Proximal-Point Methods 15

Inexact Accelerated 3rd-Order Proximal-Point Method

Initialization. Choose x0 ∈ E. Define function ψ0(x) = d4(x− x0).

Iteration k ≥ 0.

1. Compute vk = arg min
x∈E

ψk(x) and choose yk = Ak
Ak+1

xk + ak+1

Ak+1
vk.

2. Compute xk,i∗k ∈ A
3
3M4(f)

(
yk,

1
3

)
by the following procedure.

• Define functions ϕk(x) = f(x) + 3M4(f)d4(x− yk)

and ρk(x) = 1
2 〈∇

2f(yk)(x− yk), x− yk〉+ 3M4(f)d4(x− yk).

• Set xk,0 = yk. For i ≥ 0, iterate

xk,i+1 = arg min
x∈E

{
〈∇ϕk(xk,i), x− xk,i〉+ 3

2βρk(xk,i, x)
}

up to the first iteration i∗k with ‖∇ϕk(xk,i∗k)‖∗ ≤ 1
3‖∇f(xk,i∗k)‖∗.

3. Update ψk+1(x) = ψk(x) + ak+1[f(xk,i∗k) + 〈∇f(xk,i∗k), x− xk,i∗k〉].

4. Define xk+1 = arg min
x

{
f(x) : x ∈ {xk, xk,i∗k}

}
.

(48)

The major difference of this method from the earlier tensor methods [19,22]
consists in the necessity to call oracle of the objective function at each iteration
of the internal loop.

Clearly, this is a second-order method, which implements the inexact third-
order proximal-point method (25). Let us assume for a moment, that at each
upper-level iteration of this scheme, the numbers i∗k are well defined. Then by
Theorem 2, we get the following rate of convergence:

f(xk)− f∗ ≤ 9M4(f)
(

4
k

)4
R4

0, k ≥ 1. (49)

Thus, it remains to find an upper bound for the numbers i∗k. For that, we need
to get an upper bound for the size of points xk,i. We will do this under the
following assumption:

f(xk,i)− f∗ ≥ ε, 0 ≤ i ≤ i∗k, k ≥ 0, (50)

where ε > 0 is the desired accuracy of the solution to problem (8). Note that
we need this assumption only for estimating the number of steps, which are
necessary to violate it.
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16 Yurii Nesterov

Assume that at some iteration k ≥ 0 the points xk and vk are well defined.
Since f(xk) ≤ f(x0), in view of Theorem 2 we have

‖yk − x∗‖ ≤ max{‖xk − x∗‖, ‖vk − x∗‖} ≤ max
{
D0,
√

2R0

}
.

At the same time, since ϕk(xk,i) ≤ ϕk(xi,0) = f(yk), we get

3
4M4(f)‖xk,i − yk‖4 ≤ f(yk)− f(xk,i)

(46)

≤ 1
2M2(f)D2

0.

Therefore, ‖xk,i − yk‖ ≤ D1
def
=
[

2M2(f)
3M4(f)D

2
0

] 1
4

and

‖xk,i − x∗‖ ≤ D2
def
= D1 + max

{
D0,
√

2R0

}
.

Hence,

‖∇f(xk,i)‖∗ ≥ f(xk,i)−f∗
D2

(50)

≥ ε
D2
. (51)

However, in view of Lemma 4, ϕk(xk,i)→ min
x∈E

ϕk(x) as i→∞. This implies

‖∇ϕk(xk,i)‖∗ → 0,

ensuring that the auxiliary minimization process at iteration k is finite and
xk+1 and vk+1 are well defined. Let us estimate its length.

In view of Lemma 3.2 in [22], for all u ∈ E with ‖u‖ ≤ D, we have

βd4
(u, v) ≤ 5

2D
2‖v − u‖2 + 1

2‖v − u‖
4, v ∈ E.

Therefore,

βρk(x, y) ≤ 1
2M2(f)‖y − x‖2 + 3M4(f)βd4

(x− yk, y − yk)

≤ 1
2M2(f)‖y − x‖2 + 3M4(f)

[
5
2D

2
1‖y − x‖2 + 1

2‖y − x‖
4
]

= 1
2

[
M2(f) + 15M4(f)D2

1

]
‖y − x‖2 + 3

2M4(f)‖y − x‖4

def
= θ(‖y − x‖).

for all x with ‖x−yk‖ ≤ D1 and y ∈ E. At the same time, in view of Lemma 3.3
in [22], the last bound and Theorem 3 imply

Lθ∗(
1
L‖∇ϕk(xk,i)‖∗) ≤ ϕk(xk,i)− ϕk(x∗k).

Hence,

Lθ∗(
1
L‖∇ϕk(xk,i)‖∗) ≤ ϕk(xk,i)− ϕk(x∗k)

(44)

≤ L
(

2
3

)i
βρk(yk, x

∗
k)

≤ L
(

2
3

)i [ 1
2M2(f)‖x∗k − yk‖2 + 3

4M4‖x∗k − yk‖4
] (52)
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Inexact Accelerated High-Order Proximal-Point Methods 17

where x∗k = arg min
x∈E

ϕk(x) and θ∗(λ) = max
τ

[λτ − θ(τ)]. Since ‖x∗k − yk‖ ≤ D1,

we can get an upper bound for i∗k from the following inequality:

(
2
3

)i [ 1
2M2(f)D2

1 + 3
4M4D

4
1

] (51)

≤ θ∗

(
ε

LD2

)
.

Using Lemma 7 in [22], we can estimate for function θ(τ) = a
2 τ

2 + b
4τ

4 its dual
function as follows:

θ∗(λ) ≥ λ2

2[a+b1/3λ2/3]
.

In our case, a = M2(f) + 15M4(f)D2
1 and b = 6M4(f). Therefore,

θ∗(λ) ≥ λ2

2[M2(f)+15M4(f)D2
1 ]+[6M4(f)]1/3λ2/3 .

Thus, we can see that all values i∗k are bounded by O(ln 1
ε ). A similar reasoning

shows that the length of the last iteration, stopped at the moment when the
condition (50) be violated, is also bounded by O(ln 1

ε ). Hence, we have proved
the following theorem.

Theorem 4 The second-order method (48) finds an ε-solution of problem (8)
in

4
(

9M4(f)
ε

) 1
4

R0

iterations. At each iteration, it calls the second-order oracle once and the first-
order oracle O

(
ln 1

ε

)
times at most.

Let us discuss now the implementation details of method (48). At each
inner iteration of this scheme, it is necessary to solve an auxiliary optimization
problem for finding the point xk,i+1 ∈ Rn. For doing this efficiently, it is
reasonable to start with computation of the tri-diagonal factorization of matrix
∇2f(yk):

∇2f(yk) = UkΛkU
T
k ,

where Uk ∈ Rn×n is an orthogonal matrix and Λk ∈ Rn×n is a symmetric
tri-diagonal matrix. Then we can change variables:

x = yk + Ukw, w ∈ Rn,

and minimize the function ϕ̂k(w) = ϕk(yk + Ukw). The advantage of this
formulation is that in the new variables the scaling function ρk(·) becomes
very simple:

ρk(x) = ρ̂k(w) = 1
2 〈Λkw,w〉+ 3

4M4(f)‖w‖4(2),

where ‖ · ‖(2) is the standard Euclidean norm in Rn. Thus, the computation of
the new point wk,i+1 = UTk (xk,i+1−yk) can be done in a linear time. Therefore,
the total complexity of each iteration of the inner method will be quadratic in
n (plus one computation of the first-order oracle).
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18 Yurii Nesterov

Note that in the method (48) we have a possibility of computing the lower
bounds for the optimal value of the objective function, provided that we have
an upper bound for the distance to the minimum:

‖x0 − x∗‖ ≤ R.

Then, for k ≥ 1, we can compute the value

`∗k = 1
Ak

min
x

{
k−1∑
j=0

aj+1[f(xj,i∗j ) + 〈∇f(xj,i∗j ), x− xj,i∗j 〉] : ‖x− x0‖ ≤ R

}
≤ f(x∗),

and use it in the termination criterion. Note that with this value the inequality
(49) is valid if we replace f∗ by `∗k and R0 by R. If the bound R is not known, we
can update the initial guess dynamically using the observed distance between
xk and x0.

5 High-order proximal-point methods with line search

In this section, we consider new methods for solving the problem (8), which
are based on pth-order proximal-point operator with line search (p ≥ 1). It is
defined as follows:

proxpf/H(x̄, u) = arg min
x∈E,
τ∈R

{
f(x) +Hdp+1(x− x̄− τu)

}
∈ E× R, (53)

where the point x̄ and direction u belong to E and the proximal coefficient H is
positive. Note that the value of this operator is a solution of a convex optimiza-
tion problem. As compared with operation (9), we increased the dimension of
the search variable by one. Hence, it should not create a significant additional
complexity. In this paper, we will analyze only the exact computation in (53).

Let us mention the main properties of operator (53).

Lemma 5 Let (T, τ) = proxpf/H(x̄, u). Denote y = x̄ + τu and r = ‖T − y‖.
Then

∇f(T ) +Hrp−1B(T − y) = 0, (54)

‖∇f(T )‖∗ = Hrp, 〈∇f(T ), y − T 〉 = Hrp+1, (55)

〈B(T − y), u〉 = 0, 〈∇f(T ), u〉 = 0. (56)

Moreover, f(x̄)− f(T ) ≥ H
p+1r

p+1.

Proof Equation (54) and the first equation in (56) are the first-order optimality
conditions for the objective function in the problem (53). The first equation
in (55) follows from (54), and we get the second one by multiplying (54) by
y − T . Second equation in (56) follows from the first one in view of (54).

Finally, for proving the remaining inequality, we choose in the optimization
problem in (53) x = x̄ and τ = 0. ut
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Clearly, the smaller H is, the better is the result of (53). However, the small
values of H make this computation more difficult. Thus, a reasonable choice
of H must be dictated by the problem class and the auxiliary methods, which
will be used for solving (53) approximately. We keep the detailed analysis of
different possibilities for the future research.

Consider the following optimization scheme.

pth-Order Proximal-Point Method With Line Search

Initialization. Choose x0 ∈ E, H > 0, and ψ0(x) = 1
2‖x− x0‖2.

Iteration k ≥ 0.

1. Compute vk = arg min
x∈E

ψk(x).

2. Compute (xk+1, τk) = proxpf/H(xk, vk − xk).

3. Define yk = xk + τk(vk − xk) and rk = ‖xk+1 − yk‖.

4. Define ak+1 by equation
a2
k+1

Ak+1
= 1

Hrp−1
k

with Ak+1 = Ak + ak+1.

5. Set ψk+1(x) = ψk(x) + ak+1[f(xk+1) + 〈∇f(xk+1), x− xk+1〉].

(57)

Let B0 = 0 and denote Bk = H
2

k∑
i=1

Air
p+1
i−1 for k ≥ 1. Let us prove the

following result.

Lemma 6 Let the sequence {xk}k≥0 be generated by method (57). Then for
all k ≥ 0 and x ∈ E we have

Akf(xk) +Bk ≤ ψ∗k = min
x∈E

ψk(x). (58)

Proof Let us prove this relation by induction. For k = 0, we have A0 = 0,
B0 = 0, and ψ0(x) = 1

2‖x− x0‖. Thus, in this case inequality (58) is valid.
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20 Yurii Nesterov

Let us assume that it is valid for some k ≥ 0. Then

ψ∗k+1 = min
x∈E

{
ψk(x) + ak+1[f(xk+1) + 〈∇f(xk+1), x− xk+1〉]

}
≥ min

x∈E

{
ψ∗k + 1

2‖x− vk‖
2 + ak+1[f(xk+1) + 〈∇f(xk+1), x− xk+1〉]

}
≥ min

x∈E

{
Akf(xk) +Bk + 1

2‖x− vk‖
2

+ak+1[f(xk+1) + 〈∇f(xk+1), x− xk+1〉]
}

≥ min
x∈E

{
Ak+1f(xk+1) +Bk + 1

2‖x− vk‖
2

+〈∇f(xk+1), ak+1(x− xk+1) +Ak(xk − xk+1)〉
}

(56)
= min

x∈E

{
Ak+1f(xk+1) +Bk + 1

2‖x− vk‖
2

+〈∇f(xk+1), ak+1(x− vk) +Ak+1(yk − xk+1)〉
}

= Ak+1 f(xk+1) +Bk − 1
2a

2
k+1‖∇f(xk+1)‖2∗

+Ak+1〈∇f(xk+1), yk − xk+1〉

(55)
= Ak+1 f(xk+1) +Bk − 1

2a
2
k+1H

2r2p
k +Ak+1Hr

p+1
k

= Ak+1 f(xk+1) +Bk + 1
2Ak+1Hr

p+1
k = Ak+1f(xk+1) +Bk+1. 2

Let us prove now the main result of this section. In the proof, we closely
follow the arguments justifying Lemma 4.3.5 in [21].

Theorem 5 For any k ≥ 1, we have

f(xk)− f∗ ≤ 2pHRp+1
0

(1+
2(k−1)
p+1 )

3p+1
2

. (59)

Proof Note that√
Ak+1 −

√
Ak = ak+1√

Ak+1+
√
Ak

=

√
Ak+1

(
√
Ak+1+

√
Ak)H1/2r

p−1
2

k

≥ 1

2
√
Hrp−1

k

.

Thus, denoting ξk = 2
√
Hrp−1

k , we get Ak ≥
(
k−1∑
i=0

1
ξi

)2

. For p = 1 this proves

that Ak ≥ k2

4H . So, let us assume that p > 1.
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On the other hand, in view of Lemma 6, we have

Akf(xk) +Bk ≤ ψ∗k ≤ f(x∗) + 1
2R

2
0,

where R0 = ‖x0 − x∗‖. Therefore,

1
2R

2
0 ≥ H

2

k−1∑
i=0

Ai+1r
p+1
i = H

2

k−1∑
i=0

Ai+1

[
ξ2
i

4H

] p+1
p−1

.

In other words, we have the following bound:

k−1∑
i=0

Ai+1ξ
2(p+1)
p−1

i ≤ D
def
= (2p+1H)

2
p−1R2

0. (60)

We need to minimize now the sum
k−1∑
i=0

1
ξi

subject to this bound. Since the

bound is active, we can introduce for it a Lagrange multiplier λ > 0 and find
the optimal ξi from the equation

λ
ξ2
i

= Ai+1ξ
p+3
p−1

i , i = 0, . . . , k − 1.

Thus, ξi =
[

λ
Ai+1

] p−1
3p+1

. Substituting these values in the constraint (60), we

get equation for optimal λ:

D =
k−1∑
i=0

Ai+1

[
λ

Ai+1

] 2(p+1)
3p+1

= λ
2(p+1)
3p+1

k−1∑
i=0

A
p−1
3p+1

i+1 .

Therefore,

k−1∑
i=0

1
ξi
≥
(

1
λ

) p−1
3p+1

k−1∑
i=0

A
p−1
3p+1

i+1 =
(

1
D

) p−1
2(p+1)

(
k−1∑
i=0

A
p−1
3p+1

i+1

) 3p+1
2(p+1)

.

This means that we have proved the following inequality:

Ak ≥
(

1
D

) p−1
p+1

(
k−1∑
i=0

A
p−1
3p+1

i+1

) 3p+1
p+1

. (61)

Denote Ck =

(
k∑
i=1

A
p−1
3p+1

i

) 2
p+1

and θ =
(

1
D

) p−1
p+1 . Then inequality (61) can be

written as follows:

C
p+1

2

k+1 − C
p+1

2

k = A
p−1
3p+1

k+1 ≥ θ
p−1
3p+1

(
k+1∑
i=1

A
p−1
3p+1

i

) p−1
p+1

= θ
p−1
3p+1C

p−1
2

k+1 .

Denoting γ = θ
p−1
3p+1 , we see that C1 ≥ γ. Moreover, since τ

p+1
2 with τ ≥ 0 is

a convex function, we have τ
p+1

2
+ − τ

p+1
2 ≤ p+1

2 τ
p−1

2
+ (τ+ − τ). Therefore,

γC
p−1

2

k+1 ≤ C
p+1

2

k+1 − C
p+1

2

k ≤ p+1
2 C

p−1
2

k+1 (Ck+1 − Ck).
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Consequently, Ck+1 ≥ Ck+ 2γ
p+1 and we conclude that Ck ≥ γ+ 2γ(k−1)

p+1 , k ≥ 1.

Substituting this bound in (61), we get

Ak ≥ θC
3p+1

2

k ≥ θ
(
γ + 2γ(k−1)

p+1

) 3p+1
2

=
(

1
D

) p−1
2

(
1 + 2(k−1)

p+1

) 3p+1
2

.

It remains to note that in view of inequality (58), we have

f(xk)− f∗ ≤ 1
2Ak

R2
0 ≤

D
p−1

2 R2
0

2(1+
2(k−1)
p+1 )

3p+1
2

=
2pHRp+1

0

(1+
2(k−1)
p+1 )

3p+1
2

. 2

6 Conclusion

In this paper we present a new framework BLUM, where the development of
the accelerated minimization scheme consists of two steps. Firstly, we choose
the order of the proximal-point iteration. At this moment, we are not restricted
by any properties of the objective function except its differentiability (which
can be dropped) and convexity.

These properties play a crucial role at the second step, where we decide
on the type of the scheme we use for approximating the proximal point. The
overall complexity of the method can be computed then as the product of the
number of steps of the upper-level process and the estimate for the number of
steps in the lower level process.

In this way, we managed to justify a second-order scheme, which uses only
the second-order information for an approximate computation of the third-
order proximal point. It is interesting that the overall complexity bound of
our method is essentially the same as the bound for the number of iterations
of the accelerated third-order methods [3,19]. At the same time, these bounds
overpass the limits for the maximal efficiency established for the second-order
methods by functions with bounded third derivative (see [1,2] and Section 4.3.1
in [21]).

It is interesting to understand why this improvement was possible. One of
the reasons is that in this paper we are working with a subclass of functions
with Lipschitz continuous third derivative. Indeed, in view of Lemma 4 in [22],

M3(f) ≤
√

2M2(f)M4(f).

Therefore, the lower bounds of [1,2] are not valid anymore.
Another question is if it is possible to improve the rate of convergence of

the lower-order methods in the framework of BLUM. We are not ready to
give now a comprehensive answer to this question. However, let us look at the
worst-case functions, which justify the lower complexity bound for the tensor
methods. In accordance to [19], for pth-order methods they have the form

fp(x) = |x(1)|p+1 +
n−1∑
i=1

|x(i+1) − x(i)|p+1, x ∈ Rn.
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This function justifies the maximal rate of convergence O(k−2) for the first
order methods (e.g. [21]).

Note that, for p = 1 this is a quadratic function. Hence, all its derivatives
Dsf1(·) of the order s with s ≥ 3 are equal to zero. Therefore, we cannot
expect for the first-order methods any improvements from any assumptions
on the boundedness of these derivatives.

The situation with the second-order methods is different. Their worst-case
function f2(·) has discontinuous third derivative. Hence, the corresponding
lower bound O(k−7/2) may be not valid if we assume the existence and bound-
edness of the forth derivative. And the results of Section 4 show that this is
indeed the case. Our second order method (48) has the rate of convergence
O(k−4), and the results of Section 5 gives us a hope that there exist the second-
order methods with the rate of convergence O(k−5) (this is the maximal rate
of convergence for the third-order methods).

Another consequence of the above observation is that we cannot speak
anymore about the pth-order optimal methods. Instead, we should switch to
speaking about the optimal methods for different problem classes. Indeed, we
have seen that for the same problem class we can have methods of different
order, which have the same rate of convergence. In this situation, it is natural to
agree that the lower-order method is better. This means, that our complexity
scale, instead being one-dimensional, should be two-dimensional at least. But
of course all these questions need further investigations.

We hope that our results create interesting directions of research related
to further increase of the efficiency of the lower-order methods as applied to
the problem classes which were traditionally out of their scope.
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