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ABSTRACT: Alkynyl C-nucleosides are of high value for various applications; however, their synthesis remain underexplored. 

Here we report a simple route towards the synthesis of alkynyl C-nucleosides from simple and stable furanosyl carboxylic acids and 

terminal alkynes under low-cost and non-toxic copper catalysis. The approach that we report here demonstrates the power of 

Cu/photoredox dual catalysis to access highly complex glycosides under mild conditions. 
 

C-Nucleosides has emerged as a promising class of bioactive 

glycosides most notably in the fields of virology and cancer 

therapy.
1
 These derivatives in which the anomeric C–N 

nucleosidic bond is replaced by a C–C bond, are considered as 

glycomimetics of natural nucleosides as they are known to be 

more resistant towards hydrolysis under biological conditions.
2 

Representative natural and synthetic C-nucleosides are dis-

closed in Figure 1a, including varitriol
3
 and showdomycin

4
 

(natural nucleosides), ribavirin analogs
5
 such as pyrazomycin

6
 

or SO91
7
 (antitumor agent), and benzamide ribonucleotide

8
 

(BAR, IMP dehydrogenase inhibitor). Recently, the 

remdesivir C-nucleoside metabolite GS-441524 (Figure 1a) 

was reported as a potential inhibitor of SARS-CoV-2 by bind-

ing to the nsP3 macrodomain of the virus.
9
 Moreover, C-

nucleosides have been used to study RNA and DNA pro-

cessing enzymes with the aim to extend the genetic alphabet 

and designing new therapeutic proteins.
10 

Because of their key role in many biological processes, the 

development of methods towards an efficient and 

stereoselective synthesis of C-nucleosides is considered to be 

of great importance.
11 

Various chemical scaffolds such as 

aromatics, heteroaromatics, alkyls, alkenyls and alkynyls were 

introduced at the anomeric pentose sugar position. Among all 

these architectures, alkynylated nucleosides (called also sugar 

acetylene) are particularly important as they offer a unique 

opportunity to increase the complexity of the targeted C-

nucleoside, due to the numerous possible transformations of 

the C–C triple bond (Figure 1b).
12

 For instance, the alkyne 

function may be subjected to partial or total reduction, 

hydrometallation
13

 followed by a selective functionalization or 

(4+2) cycloaddition with azides to produce triazoles
14

 or with 

dienes
15

 to access to aromatic nucleosides (Figure 1b). Be-

sides, C-alkynyl nucleosides may be used as partners in a C–H 

activation/annulation process with anilines to afford a variety 

of substituted C-furanosyl indoles.
16

 Otherwise, C-ethynyl 

furanosides are also reported as a promising antibiotic by 

acting against Zn
2+

-dependent enzyme LpxC
17

 (Figure 2a). 

Despite these possibilities, their use is underdeveloped, and 

only few methods for their synthesis are reported (Figure 2a).
11

 

Among them, the introduction of the alkynyl function at the 

anomeric position involves the reaction of furanosyl halides or 

acetates with alkyne iodides mediated by indium.
18

 Organome-

tallic alkynes such as alkynyl trifluoroborates
19

 or alkynyltin 

species
20

 are well known to be good partners in the 

Figure 1. (a) natural and bioactive C-nuleosides, (b) examples of possible 

transformations of alkynyl C-nuleosides 

glycosylation of furanosyl fluorides and bromides in the pres-

ence of Lewis acids such as boron trifluoride or zinc chloride. 

Grignard alkynyl reagents
 
are also used as nucleophiles in the 

coupling with acetals.
21

 Although their high interest, these 

methods require the use of harsh conditions (high temperature 

and excess of the metal in the case of indium coupling) and 

overstoichiometric amounts of air and moisture sensitive 

alkynyl organometallics as well as the nature of the used Lew-

is acidic used. These issues often limit the practicability of the 
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Figure 2. (a) strategies for the synthesis of alkynyl C-nuleosides, (b) 
Cu/photoredox approach developed herein 

scope of substrates. Moreover, a mixture of both anomers is 

mainly observed in numerous reported methods. Then, devel-

oping new, mild and catalytic conditions to access 

diastereoselectively alkynyl C-nucleosides is still one of the 

highly challenging topics in glycochemistry. In light of the 

aforementioned challenges, we were intrigued to develop an 

efficient catalytic method to perform a decarboxylative 

alkynylation of ribosyl radicals under dual photoredox
22

 catal-

ysis conditions (Figure 2). In this context, anomeric radicals 

have recently been manipulated in conjunction with Ni/Ru or 

Ir photoredox dual catalysis for the synthesis of alkyl-, (het-

ero)aryl- and acyl-C-glycosides.
23

 Gagnée and co-workers 

used this approach to generate anomeric radicals from 

pyranosyl bromides which react with alkenes to produce ex-

clusively alkyl α-C-glycopyranosides.
24

 Molander group re-

ported a range of glycosyl-based radicals generated from 

dihydropyridyl glycoside precursors and coupled with activat-

ed carboxylic acids to synthesize non-anomeric C-acyl glyco-

sides.
25

 This approach was applied recently to carbohydrate 

substrates bearing the dihydropyridine (DHP) as an activating 

anomeric group to prepare C-aryl glycosides, including nucle-

osides and 2-deoxysugars.
26 

Very recently, 2-deoxyglycosyl 

boronic acid derivatives were used as radical sources to syn-

thesize a series α-C-glycosides mediated by a 

photoredox/nickel dual catalytic system.
27

 Finally, Wang, 

Zhang and co-workers
28

 demonstrated for the first time, that 

ribosyl acids are valuable partners in the photoredox/nickel 

dual-catalyzed cross-coupling with heteroaryl and vinyl bro-

mides, furnishing various β-selective heteroaryl-C-nucleosides 

in good yields. Based on this exceptional reactivity of 

anomeric radicals, we considered them to be well-suited for 

the development of an alkynylation photoredox cross-coupling 

process with terminal alkynes. Indeed, pioneer studies demon-

strated recently that copper acetylide which could be formed 

from terminal alkyne and copper salt under mild conditions, 

were compatible with a photoredox process in the alkynylation 

of N-hydroxy phthalimide esters.
29

 Based on all these observa-

tions and our ongoing interests in metal-catalyzed functionali-

zation of sugar
 
motifs,

30
 we propose herein a catalytic method 

for the decarboxylative alkynylation of ribosyl carboxylic 

acids with terminal alkynes under copper/photoredox dual 

catalysis (Figure 2b). This approach which proceeds via 

anomeric radical intermediate, exhibits many advantages over 

the conventional methods: (i) the use of bench-stable and 

easily handled sugar carboxylic acids, (ii) the use of earth-

abundant and low cost- transition metal copper catalyst, (iii) 

mild reaction conditions (RT) and (iv) large functional groups 

tolerance. If successful, this approach would provide not only 

an excellent complementary pathway to the established 

alkynylation methods but also immediate access to a reactive 

platform that can be engaged in numerous 

postfunctionalization. 

To initiate this study, we chose the coupling of tri-O-

benzylated 1-β-D-glucofuranose 1a with 4-

methoxyphenylacytelene 2a as a model study under various 

reaction conditions. Representative results from this optimiza-

tion study are summarized in Table 1. The reaction of O-

Benzylated-furanose 1a (1 equiv, E1/2furanose(OBn)3 == +1.15 V vs 

SCE in MeCN) with 2a (3 equiv) was first investigated by 

using 20 mol% of CuOAc, 2.5 mol% of a commercially avail-

able 4CzIPN photocatalyst (E1/2(PC*/PC
_.

) = +1.35 V vs SCE in 

MeCN) in the presence of CsOAc (2 equiv) as a base in DMA 

under blue light emitting diode (LED) irradiation (Table S1, 

entry 1, ESI). Surprisingly, performing the reaction under 

argon led to the formation of a mixture of three products: the 

alkynylated glycoside 3a in 50% yield  

 

Entry Deviation from the standard conditions 
Yield 3a 

(%)b 

1 none 96 

2 PC1 instead PC2 78 

3 PC2 1mol% 50 

4 CuOAc 10 mol% 61 

5 L1 or L2 or L3 or L4 instead of L5 traces 

6 L6 insteadn of L5 48 

7 1a (1equiv) and 2a (5 equiv) 40 

8 No photocatalyst PC 0 

9 No Cu-catalyst 0 

10 dark 0 
a Reactions conditions: 1a (0.4 mmol), 2a (0.2 mmol), CsOAc (0.4 mmol), 

DMA (2.0 mL), blue LEDs (4.5 W, irradiation). bIsolated yield. 

Table 1. Optimization of the coupling reaction of 1a with 2a
[a] 
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contaminated with Z- and E- alkenyl glycosides 3a’ and 3a’’. 

The formation of the undesired alkenyl C-nucleosides is in 

total agreement with the recently reported study of Pericas et 

al. on the decarboxylative hydroalkylation of alkynes via dual 

copper-photoredox catalysis.
31

 This first result indicates clear-

ly that under these conditions, two possible pathways are 

running concomitantly leading to the formation of akynyl (3a) 

and alkenyl (3a’, 3a”) products. Importantly, conducting the 

same reaction under air instead of argon produces exclusively 

the β-C-alkynyl nucleoside 3a in 60% yield (Table S4, entry 1, 

ESI). This second observation demonstrates that the presence 

of oxygen inhibits the alkenylation pathway in favor of the 

C(sp)–C(sp
3
) bond formation. Nevertheless, a subtle amount 

of oxygen is necessary for the efficiency of the coupling since 

running the reaction under pure oxygen did not produce 3a 

(Table S4, entry 2, ESI). Although at this stage we don’t have 

any explanation, we can speculate that the high concentration 

of O2  may induce side reactions involving radical oxygen 

species. This outcome inspired us to explore this alkynylation 

reaction under air. Thus, increasing the amount of the 4-

methoxyphenylacytelene 2a up to 5 equiv furnished 3a in only 

37% yield (Table S5, entry 2, ESI). Fine adjusting the ratio 

between 1a/2a to 2:1 under otherwise the same conditions 

produces selectively 3a in an excellent 78% yield (entry 2, 

Table 1). Also, reaction with Ir[dF(CF3) ppy]2(dtbbpy) PF6 

photocatalyst (PC2, E1/2(PC*/PC
_.

) = +1.21 V vs SCE in MeCN) 

instead of 4CzIPN was more efficient and gave the product 3a 

in an excellent 96% yield (entry 1). Tentative to decrease 

amounts of the photocatalyst to 1 mol% or the copper-catalyst 

to 10 mol% led to low yields (50% and 61% yields respective-

ly, entries 3 and 4). Using other photocatalysts such as Ir(p-

CF3-ppy)3, IrMe(Me)ppy2(dtbpy))PF6 or tris2-

phenylpyridinato-C2-Niridium(III) failed (Table S6, entries 3-

5, ESI). The influence of the copper N,N-ligands was also 

examined by a screening of different ligands, but only L5 

revealed to be efficient since the other ligands were less reac-

tive (L6-8, entries 6-8) or completely inactive (L1-4, entries 2-

5). Negative controlling experiments demonstrated the Cu-

catalyst, the Ir-photocatalyst and the light are necessary (en-

tries 8−10) anticipating the cooperative Cu/Ir dual 

photocatalysis mechanism rather than a photoinduced Cu-

catalysis one. Of note, the anomeric configuration of β-C-

alkynyl nucleoside 3a was unambiguously assigned by the 

coupling constant J1,2 = 4.5 Hz and confirmed for 3b (J1,2 = 4.3 

Hz) by comparison with literature NMR data.
32

 

Encouraged by these results, we investigated next the scope 

and limitations of this dual Cu/photocatalysis process by sys-

tematically varying the nature of the alkyne 2 and the sugar 1. 

The substrate scope for alkynes was first explored keeping 

furanosyl acid 1a as the substrate (Scheme 1). Aryl-substituted 

alkynes bearing electron-withdrawing and electron-donating 

groups in ortho, meta or para positions (–OMe, –Cl, –F, –CF3, 

–COMe and –CO2Me) were successfully reacted under our 

conditions to afford the corresponding alkynyl C-nucleosides 

(3a-p) in yields up to 96%. In addition, the enyne substrate 2q 

was employed successfully in the reaction to produce 3q in 

64% yield. Moreover, challenging heteroaromatic alkynes 

could be used in the coupling as compounds 3r and 3s ob-

tained in 70% and 56% yields, respectively. More interesting-

ly, aliphatic alkynes which are known to be less reactive such 

as 1-pentyne, 1-hexyne, cyclohexyne, cyclopropyne as well as 

but-3-yn-1-yl benzene were also successful, furnishing 3t-x in 

yields ranging from 52% to 93%. Finally, the substituted 5-

chloropent-1-yne was employed successfully in this reaction 

and its C(sp
3
)–Cl survived during the process (C-nucleoside 

3y). 

Next, we investigated the reactivity of a series of sugar car-

boxylic acids (Scheme 1). At first, we studied the scope of the 

coupling of ribofuranoses bearing various common protecting 

groups. Thus, substrate 1b bearing benzoyl and acetonide 

protecting groups underwent an efficient alkynylation to pro-

duce C-nucleoside 3z in 54% yield and in an anticipated α/β 

ratio of 4:1 as reported recently.
26

 Otherwise, using the dis-

arming OAc-protecting groups did not provide the desired 

product 3aa under our optimized conditions. 

It is well established that the substituent at the C2 position of 

anomeric ribofuranoses plays a critical role in controlling the 

anomeric configuration. Thus, under our conditions the cou-

pling of 2a with benzyl protected 2-deoxy-D-ribose β-1d 

furnished 3ab in 45 % yield and a ratio α/β of 6:1 in favor of 

the α–anomer. The same reactivity was recently observed on 

the arylation of furanosyl radicals under photoredox Ni-

catalysis.
27,28

 Of note, both α- and β-anomers were separated 

through a simple column chromatography. Interestingly, the 

anomeric configuration does not play any important role in the 

stereoselectivity of the reaction since running the same reac-

tion starting from the α-1d anomer led to the same ratio of α/β 

(7:1). Interestingly, alkynylation of the non-anomeric furano-

syl acid 1e was proved to be effective furnishing the reversed 

alkynyl C-nucleoside 3ac in good yield and excellent 

diastereoselectivity. Finally, decarboxylative alkynylation of 

tetrahydrofuran was less efficient under our conditions and 

provided the desired alkynylated product 3ae in only 10% 

yield. Furthermore OBn-protected glucopyranosyl acid 1h (see 

ESI, page S7) turned out to be an unsuitable substrate for this 

reaction as it failed to produce the corresponding alkynylated 

C-pyranoside. This finding demonstrates clearly that genera-

tion and reactivities of furanosyl and pyranosyl radicals are 

different under these photoredox conditions. This may be 

explained partially, by the significant difference of the reduc-

tion potential (E1/2) between the furanosyl and pyranosyl car-

boxylate salts (E1/2furanose(OBn)3 = +1.15 V, E1/2pyranose(OBn)4 = 

+1.32 V, respectively)
28

. Thus, we attempted to perform the 

coupling of 1a and 2a by using a photocatalyst having a higher 

oxidative potential than PC2 (E1/2(PC*/PC
_.

) = +1.21 V vs SCE in 

MeCN) such as 4CzIPN (E1/2(PC*/PC
_.

) = +1.35 V vs SCE in 

MeCN). However, under these conditions, the reaction failed. 

Alkynes are highly valuable intermediates in organic synthesis 

as they can be involved in a wide range of transformations at 

triple bonds. To further show the synthetic utility of our proto-

col, we evaluated whether the alkyne function of 3a could be 

used as a platform to access more complex C-nucleosides 

through simple transformations of the CΞC bond (Scheme 2). 

To our delight, complete hydrogenation of 3a afford a pure 

alkyl β-C-nucleoside 4a in an excellent yield. In addition, 3a 

was converted to pyridazine C-nucleosides 4b in good yield 

through inverse demand hetero Diels–Alder reaction with 

dimethyl 1,2,4,5- tetrazine-3,6-dicarboxylate (Scheme 2).
33

 

This is an immediate application to the synthesis of pyrrole C-



4 

 

nucleoside analogs of biological interest.
34

 Finally, hydration 

of the alkyne 3a by PTSA
35

 gave the corresponding ketone C-

nucleosides 4c/4c’ in a 1:3 mixture of both regioisomers (73% 

yield, Scheme 2). 

 

Scheme 1. Scope and limitation of the coupling of furanosyl carboxylic acids 1a-f with alkynes 2.
a
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a 
Reaction conditions: 1a (0.4 mmol), 2 (0.2 mmol), CuOAc (20 mol%), L5 (20 mol%), PC2 (2.5 mol%) and CsOAc (0.4 mmol) in 

DMA (2.0 mL) under air and blue LEDs (4.5 W, irradiation) for 24 h. 
b
Isolated yield. 

c
estimated by LCMS. 

Scheme 2. Furthers functionalization of the triple bond.
a
  

 
a 
Reactions conditions: (a) 3a (0.1 mmol) and Pd/C 10 wt% in 

MeOH (0.1 M) at rt for overnight. (b) 3a (0.2 mmol), Dime-

thyl 1,2,4,5-tetrazine-3,6-dicarboxylate (0.3 mmol, 1.5 equiv ) 

in toluene (0.1 M), reflux. (c) 3a (0.1 mmol) and PTSA (0.2 

eq) in EtOH (0.4 M) at 120 
o
C, (MW) for 30 min. 

b
Isolated 

yield. 

Based on recent literature reports,
22a,28,29

 a reasonable mecha-

nism is proposed in Scheme 3. The photocatalytic cycle would 

start by the activation of the iridium catalyst to the excited 

state Ir* by the means of visible light followed by the oxida-

tion of carboxylic acid (or cesium carboxylate) leading to the 

formation of the anomeric radical A and reduced iridium(II) 

complex. Simultaneously, the reaction of the Cu(I) catalyst 

and alkyne 2a in the presence of the base generates the mon-

omeric Cu(I)-acetylene complex II.
29,36

 Then, single electron 

transfer (SET) of this later led to the Cu(II) complex III.
36

 At 

this stage, two pathways may be involved (i) oxidation of the 

Cu(I) complex by oxygen as a terminal niddle
36b

 or (ii) by the 

means of photoexcitation of [LCu(I)] to [LCu(I)*]
37

 followed 

by and electron transfer mechanism.
29,36b

 Later, the anomeric 

radical A, can be captured by LCu(II)-acetylene III to form 

the high-valent transient Cu(III) species IV through the radical 

relay mechanism.
38

 Reductive elimination would deliver the 

final β-alkynyl nucleoside 3a and regenerate the Cu(I) catalyst 

for the next catalytic cycle.
 
The final key step cycle would be 

then the reoxidation of iridium(II) complex by a molecule of 

dioxygen
36b, 39 

to generate the ground-state Ir-photocatalyst and 

close the catalytic cycle. 
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Scheme 3. Proposed mechanism for the dual copper-photoredox catalyzed alkynylation of anomeric radicals 

In summary, we described here the first catalytic approach for 

the alkynylation of anomeric furanosyls with various terminal 

alkynes via a cooperative photoredox/copper catalysis strate-

gy. This method provides an unprecedented access to alkynyl 

C-nucleosides under mild conditions with high efficiency and 

diastereoselectivity. Further mechanistic investigations of this 

reaction are currently underway. We believe that this method 

not  

only opens a new way for catalytic alkynylation of 

furanosides, but also provides a versatile and convergent ap-

proach for the synthesis of complex C-nucleosides through 

further functionalizations of the tripe bond. 
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