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The objective of Smart Manufacturing is to improve productivity and competitiveness in
industry, based on in-process data. Indeed, failures can stop the production for a couple of
days and generate costs of non-quality. Failures in industry can either damage the machine
or the product being produced. In both cases, the earlier the failure is detected, the lower
the impact on production. Thus, monitoring both the process and the machine condition is
interesting, due to their potential interactions. Besides, the diagnosis of the nature of the
incident is also important, in order to react adequately as fast as possible.

It requires reliable, explainable and understandable models such as Bayesian networks for
performing tasks like condition prediction. Bayesian networks can be learned with incomplete
data and in a supervised or unsupervised way, which is very useful because the collect of
labelled data is costly and sometimes impossible, especially in industry where problems are,
moreover, very rare.

In this paper, we propose a generic architecture based on two Bayesian networks and a
collaborative learning strategy that improves the condition monitoring of rotating machines
in unsupervised context by using information gathered from process monitoring.

Keywords: Industry 4.0, condition-based maintenance, process monitoring manufacturing,

machining, tool breakage, Bayesian networks, unsupervised learning, co-training.

1. Introduction

Smart manufacturing is a promising research
area for the improvement of productivity and
competitiveness in industry, by exploiting the
manufacturing digital data (Tao et al., 2018).

Rotating machines are widely used in
many industries. This paper focuses on
machine-tools and especially on the spindle,
which is a very efficient and critical rotat-
ing machine. The spindle is the machine
component that holds the cutting tool (in the
same ways that a drill holds a drill bit). Ball
bearings are used for the rotational guidance
of the spindle shaft.

Condition-based maintenance of rotating
machines is usually based on periodic mea-
surements of vibration (Ebersbach and Peng,
2008; Mathew, 1984). Oil analysis (Craig

et al., 2009) and thermal measures can also
be performed. Practically, the analysis of
vibration signal of rotating machines can be
performed through global criteria that eval-
uates the vibration level, such as the root
mean square velocity (V,.,,,s). It is defined
in the ISO standard 10816-3 (ISO, 2009)
and widely used for condition-based main-
tenance. ISO standard 17243-1 (ISO, 2014)
recommend the use of both velocity V.,
and acceleration A, for the monitoring of
spindle condition. For more accurate mon-
itoring, the frequency spectrum of vibration
can be analyzed. Particularly, BPFO and
BPFI reveal local defect on the outer race
or the inner race of a bearing respectively.
Besides, distributed defect can also be mon-
itored, such as race waviness (Vafaei et al.,
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2002) or worsening of surface roughness de
Castelbajac et al. (2014). Randall and An-
toni (2011) present the state of the art for
the diagnostic of rolling bearing by analysis
of vibration signal. Jimenez-Cortadi et al.
(2020) review articles from the past ten years
treating about predictive maintenance. The
goal is to predict the remaining useful life-
time, which is very challenging. However,
this paper focuses on condition-based main-
tenance, since machine-tool is complex use-
case. Notably, spindle condition monitoring
should be performed during idle rotation of
the spindle, to avoid misinterpretation from
vibration data collected during cutting.

Process monitoring consists in analyzing
the machining in-process signals, in order to
detect tool breakage, or predict the surface
quality of the machined workpiece. Most
of researches about condition monitoring in
machining focus on tool wear monitoring
(Teti et al., 2010). Other papers consider the
impact of chatter on the surface quality of
the machined surface (Peigne et al., 2004).
Literature deals with the prediction and moni-
toring of such unstable vibration, by vibration
or force signals (Munoa et al., 2016; Kul-
janic et al., 2009). Tool condition monitoring
can rely on machine learning; generally in a
supervised way, to build a predictive model
(Kim et al., 2018). For example, a Probabilis-
tic Neural Network can classify broken tools
and good ones (Huang et al., 2015).

In a more general framework, Bayesian
networks (BNs) are probabilistic graphical
models that are suitable for maintenance
or in-process monitoring in the manufac-
turing industry (Weber et al., 2012). In-
deed, their ability to model complex sys-
tems under uncertainty, to learn these models
with unlabelled, incomplete, unbalanced or
small datasets (Benferhat et al., 2020) is well
known. Tidriri et al. (2016) review the main
data-driven and model-based approaches for
process fault diagnosis and compare their
respective advantages and their drawbacks.
Bayesian networks offer a great reliability
to manage uncertainty. For example, Atoui

et al. (2019) propose to use BNs with a
Gaussian mixture model for supervised data-
driven process monitoring. Supervised ap-
proaches are often proposed, whereas the col-
lection of labelled in-process data is generally
impossible in industry. Moreover, the poten-
tial interaction between the machine condi-
tion and the process condition is not studied
in literature, and even less with uncertainties
consideration.

The objective of this paper is to propose a
generic architecture to improve the condition-
based maintenance of rotating machines in
unsupervised contexts by exploiting informa-
tion from in-process monitoring. In this way,
the aim is to detect machine failures caused
by the manufacturing process; and to explain
and understand which type and intensity of
incident damage the spindle, and which evo-
lution of spindle condition monitoring crite-
rion reveals those damages.

Our two main contributions are: (1) The
proposal of a generic architecture based on
BNs that models each monitoring task in-
dependently and allows to define strongly
critical values for the continuous monitoring
criteria provided as inputs of our architecture.
(2) Each of our models is composed of a
two-level structure that is able to take into
account the different possible values of the
criticality threshold used in the definition of
these monitoring criteria.

The next section details the monitoring cri-
teria used, as well as the data preprocessing
step. Section 3 describes the model archi-
tecture and its different components, such as
the learning strategy. In section 4, experi-
ments are performed to validate the proposed
architecture. Finally, section 5 draws the
conclusions and perspectives of this work.

2. Monitoring criteria and data
preprocessing

The choice of vibration sensor, of the signal
preprocessing and of the monitoring criteria
was performed in previous works by Godreau
et al. (2019).
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The raw in-process monitoring criteria
are Appms(t), Vems(t), Nh(t) and Ub(t).
Vims(t) and A,.,s(t) are respectively the
root mean square of the vibration velocity
and acceleration, revealing the current vibra-
tion level. NA(¢) enables chatter detection,
through the asynchronous vibration level, ob-
tained by order tracking in the vibration spec-
trum. Lastly Ub(t) detects tool breakage,
by the amplitude of the contribution at the
spindle frequency that estimates the tool bal-
ancing.

These raw criteria are obtained by real-
time signal processing (from 25kHz vibration
signals) and collected at a frequency of 10
Hz (864000 values per day). To be compared
with daily evaluation of spindle condition, the
in-process monitoring criteria must be daily
aggregated. Since incidents occurring during
machining can be very brief, they cannot be
detected by averaging over all the monitor-
ing values measured during a day. Besides,
only severe vibrations, exceeding a certain
threshold, can damage the spindle. Therefore
Godreau et al. (2019) proposed to aggregate
these raw in-process criteria as described in
equation 1 where 7 is the criticality thresh-
old associated to a generic criterion X ().
High 7 values reveal short and violent events,
when small values highlight long and moder-
ate events.

=864000
X7 = Z max (X (t) — 7,0)

t=1

&)

In this way, in-process critical events are
daily monitored, by computing the advanced
criteria A7, . V7 ., Nh", Ub". (Godreau
etal., 2019) proposed values for the criticality
threshold of these criteria.

Regarding the spindle condition monitor-
ing: a vibration signature is performed once
a day during idle rotation of the spindle, to
evaluate its condition. Faulty bearing in-
duced vibrations are evaluated in the fre-
quency spectrum: the amplitudes at the fun-
damental train frequency F'TF, at the Ball
Pass Frequency on respectively the Outer and

Inner rings BPFO and BPFI criteria; as
well as the shaft balancing (by the vibration
amplitude at the spindle rotation frequency),
noted 1.X.

3. Model

Our architecture, depicted in Figure 1, pro-
poses to model independently the spindle
condition and the in-process monitoring with
two Bayesian networks. The aim is to predict
the state of the system from the observation
of the advanced monitoring criteria defined in
the previous section.

As a preamble, all the advanced monitor-
ing criteria are discretized in a three-level
scale {OK, degraded, KO} (section 3.1).

As seen in the previous section, critical
thresholds 7 can be defined for these monitor-
ing criteria. We then propose to structure the
in-process monitoring in a two steps proce-
dure. The first step is a local aggregation with
several critical thresholds 7 for each criterion,
in order to provide a local decision based on
each criterion (section 3.2). The second step
is a global aggregation that takes into account
all the local decisions in order to predict the
state of the system (section 3.3). Finally,
we propose collaborative strategies to jointly
learn the two models that are respectively
dedicated to the spindle condition and to the
in-process monitoring (section 3.4).

3.1. Discretization

The advanced monitoring criteria defined in
section 2 characterize critical vibrations that
could damaged the spindle. They can be clas-
sified as weakly critical (values near 0), mod-
erately critical (medium values) or strongly
critical (higher values). We thus propose
to discretize in a three-level scale {OK, de-
graded, KO} each continuous criterion X7
(noting its discretized counterpart X 7).
Considering the discretization step in the
model itself is a usual practice when deal-
ing with probabilistic graphical model (see
for instance (Mabrouk et al., 2015)). We
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Our generic architecture based on two Bayesian networks that models the spindle

condition monitoring task (right) and the in-process monitoring one (left) independently,
including a discretization step for the daily-aggregated monitoring criteria (blue nodes).
Circles denote continuous random variables and (rounded) squares discrete ones. PC and
MC stand respectively for Process Condition and Machine Condition.

then propose in a similar way to deal with
this discretization step in the form of a
Gaussian mixture model where the param-
eters are learnt in an unsupervised way by
Expectation-Maximization (EM) algorithm
(Dempster et al., 1977).

3.2. Local aggregation

Each in-process monitoring criterion X pro-
vides us a set of (continuous) advanced moni-
toring criteria X and their discretized coun-
terparts X 7. The objective of this step is to
provide a local decision X ; for each criterion,
considering several critical thresholds X ] si-
multaneously.

We propose in this work to perform this ag-
gregation in two different ways. The first one
is the very naive Max operator that describes
the fact that the local decision is the worst one
returned by this criterion with all its possible
thresholds. The second one is more evolved
and consists in using a probabilistic aggrega-
tion such as the NoisyMax model (Srinivas,
1993). With this kind of aggregation, the de-
pendency between the decision and the inputs
1s no more deterministic, and the influence of
each input on the output is no more constant.

3.3. Global aggregation

The objective of the global aggregation is
to provide a global decision for one sub-
model based on the local decision provided
by the different advanced monitoring criteria
(e.g. Arms,s Vems,, Nhq and Ubg for the in-
process monitoring sub-model).

As for local decision, we propose to deal
with this aggregation with a deterministic
Max or a probabilistic NoisyMax function.

This global aggregation is then simplified
from the initial three-level scale {OK, de-
graded, KO} to a binary decision {NOC, KO}
for the in-process condition or the spindle
condition, where NOC stands for Nominal
Operating Condition {OK, degraded}.

3.4. Learning strategy

A classical approach of this condition-based
maintenance issue would be to learn the spin-
dle condition model in a supervised way, with
the ground truth of daily degradation of the
studied machine part. In our industrial appli-
cation, the collect of labelled data is impos-
sible, but we can access to the data collected
during the in-process monitoring task.

We propose to apply a collaborative strat-
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egy in order to learn jointly, and in an un-
supervised way, the two models respectively
dedicated to the spindle condition and to the
process monitoring.

In the following scenarios, the learning of
the Bayesian networks is limited to the pa-
rameter learning in presence of incomplete
data by using the EM algorithm.

We consider two different collaborative
strategies for this learning task. The simplest
naive strategy consists in learning simulta-
neously both models, by adding an equality
constraint between the global decisions of the
two models.

The second strategy is the application of
the recursive unsupervised co-training strat-
egy, proposed by Monvoisin et al. (2021). It
is an interesting solution to jointly learn two
models in an unsupervised way. The idea
is to firstly learn one model in an unsuper-
vised way (for instance the model dedicated
to spindle condition monitoring) and then to
learn the second one (process monitoring)
enriched with the results of the first one,
obtained by probabilistic inference. In the
recursive strategy, this step is repeated several
times until convergence.

4. Experiments
4.1. Experimental context

Those experiments are realized on real indus-
trial data that contains 436 days of aggregated
and unlabelled data, collected over three spin-
dle lifetimes (a year and a half).

The results obtained by Godreau et al.
(2019) which were afterwards confirmed by
an expert are considered as the ground truth.
The optimal thresholds identified in that
study for each criterion (by genetic algo-
rithm) are also used in some experiments
where we will short-circuit the local aggre-
gation step.

Incidents are rare in machining: from re-
spectively the in-process monitoring and the
spindle condition monitoring datasets only 7
(1.6%) and 5 (1.1%) events were found in
that study as events that should have seriously

10%|
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Fig. 2. Distribution (on a logarithm scale)
of the values of the continuous criterion Vrl,%g

and cut-points estimated after the discretiza-
tion step.

damaged the spindle.

Another issue in this real application is the
fact that the two diagnosis do not coincide
perfectly: only 3 of the 5 spindle damages are
explained by the 7 events detected during the
in-process monitoring.

The implementation of the models and
strategies described in section 3 has been
performed with our library dedicated to Prob-
abilistic Graphical Models (PILGRIM) with
the help of ProBT# library. Parameters used
during learning were a stopping criterion
equals to 10~* for the EM algorithm and
Ngtep = 30 for the recursive strategy.

The performances of the spindle condition
monitoring model (balanced accuracy, speci-
ficity, sensitivity) are estimated with five sep-
arate iterations of two-fold cross-validation
as proposed in (Dietterich, 1998). Some pre-
liminary experiments were realized in order
to take into account the very high imbalance
ratio by applying an over-sampling strategy.
It did not improve the performance. So we
do not use over-sampling in the following
experiments.

4.2. Discretization

Fig. 2 shows an example of the discretization
process proposed in section 3.1. The grey
area is the histogram of the V,120 values. The
blue and orange lines are the cut points be-

tween the three states OK, degraded and KO,

2https://www.probayes.com/
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determined as proposed by Mabrouk et al.
(2015). Weakly critical vibrations are consid-
ered for this variable when V120 < 429, or

strongly critical when V120 > 1735,

rms

4.3. Learning strategies

The first element we want to study is the
learning strategy. As defined in section 3.4,
we here compare the Naive strategy (where
both models are jointly learnt with an equality
constraint) with the Recursive strategy.

In this experiment, the local aggregation
step is bypassed by only using the optimal
critical threshold identified by Godreau et al.
(2019) for each criterion. The global aggre-
gation is performed by Max aggregation.

Table 1 shows the performances of both
learning strategies (line (1) for the naive
learning and (2) for the recursive co-training
strategy). As seen in this table, the recur-
sive co-training strategy slightly improves the
balanced accuracy, with a perfect sensitivity
(i.e. the proportion of KO correctly detected
among the real KO), but a smaller specificity
(i.e. the proportion of NOC correctly detected
among the real NOC).

4.4. Global aggregation

The second choice we want to study con-
cerns the global aggregation, by comparing
the deterministic Max and the probabilistic
NoisyMax functions defined in section 3.3.

In this experiment, the local aggregation
step is bypassed again. Based on the previous
result, the learning strategy is the recursive
one.

Table 1 shows that the performances when
applying respectively the Max aggregation
(line (2)) and the NoisyMax one (line (3))
are almost the same, with only a very small
decrease of the specifity and a non pro-
hibitive increase of the computation time due
to the increase of the number of parameters in
NoisyMax model. Using the NoisyMax global
aggregation can help by weighting differently
the inputs of this aggregation and providing

meaningful interpretation of the relevant in-
puts. But in this experimentation, it does not
help in improving the balanced accuracy.

4.5. Local aggregation

After dealing with the learning strategy and
the global aggregation, we are interested here
in the choice of the local aggregation for the
process monitoring model.

As defined in section 3.2, we here compare
the deterministic Max and the probabilistic
NoisyMax functions for both local and global
aggregation. The learning strategy is the
recursive one, based on the previous experi-
ments.

Table 1 shows the performances when ap-
plying respectively the Max function in the
local and global aggregation steps (line (4)),
the local Max and the global NoisyMax (line
(5)), and the local NoisyMax and the global
Max (line (6)).

Let us recall here that the previous results
were bypassing this local aggregation step by
using the optimal inputs identified for each
criterion in a previous study. We can see
here that working with the whole set of inputs
provides us more and more complex models
in these three experiments, with more and
more parameters, which explains the increase
of the computational time. We can also see
that we are able to get a comparable balanced
accuracy when we are no more bypassing the
local aggregation step. This shows us that we
can learn one full model without taking into
account any previous knowledge.

5. Conclusion

In this paper, we were interested in the unsu-
pervised co-training of Bayesian networks for
the diagnosis of machining spindle by con-
dition monitoring, with the help of data col-
lected during in-process monitoring. We have
proposed a generic architecture that models
each monitoring task independently and ap-
plies a collaborative learning strategy that
takes into account both tasks. Our architec-
ture is also able to take into account the fact

1995



Proceedings of the 31st European Safety and Reliability Conference

Table 1.

Performances (Balanced accuracy, Specificity and Sensitivity in %)

and computational time (s) obtained in different experimental setup (choice
for the three parts of our architecture: local aggregation, global aggregation

and learning strategy, as proposed in section 3)

H Local agg. | Global agg. | Learn. strat. [| Bal. acc. | Spec. | Sens. [| Time |
l (1) H Optimal [ Max [ Naive H 84.2 [ 90.0 [ 78.3 H 0.7 ‘
2) Optimal Max Recursive 85.6 71.5 | 100.0 0.6
3) Optimal NoisyMax Recursive 85.5 71.0 | 100.0 3
@) Max Max Recursive 85.2 70.4 | 100.0 2
(5) Max NoisyMax Recursive 85.1 70.1 100.0 59.6
(6) NoisyMax | Max Recursive 83.9 68.3 100.0 1945

that several possible critical thresholds can be
used in the daily computation of advanced
monitoring criteria.

Our experiments, based on a real and im-
balanced dataset, were able to identify the
same degradations than Godreau et al. (2019).
It led to surprising results where the sim-
ple aggregation schema (Max) in both local
and global aggregation steps provided the
best results, without considering any external
knowledge (i.e. without using the Optimal
local aggregation). Complexifying the aggre-
gation with NoisyMax led to more complex
models that are not useful with our limited
number of data, which is conform with the
principle of parsimony in Machine Learning.
A paired t-test between the different models
investigated, did not exhibit any significant
difference between them. In another way,
these more complex models could estimate
which input or sensor are interesting. Based
on this observation, one of our perspectives to
improve this work is to add a feature selection
procedure when using the NoisyMax aggrega-
tion in order to select the relevant monitoring
criteria in the model, to decrease the number
of parameters and to converge to similar re-
sults than the ones obtained with the Optimal
models. Another perspective is related to the
improvement of the unsupervised co-training
procedure as described in Monvoisin et al.
(2021).

One last perspective concerns the very spe-
cific dataset we have used for our experi-
ments. This dataset was initially unlabelled

and the results obtained by Godreau et al.
(2019), afterwards confirmed by an expert,
were considered as the ground truth. This
means that all the existing points labelled as
KO have been confirmed as real ones in this
dataset; but not that all data that are currently
labelled as NOC are real ones. The sensitiv-
ity obtained by our system is 100%, which
means that we are also able to detect the same
KO. New and unknown KO could be discov-
ered soon in the dataset by our improved co-
training method.
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