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Abstract. We consider the interest of leveraging information between
related tasks for learning Bayesian network structures. We propose a new
algorithm called Multi-Task Max-Min Hill Climbing (MT-MMHC) that
combines ideas from transfer learning, multi-task learning, constraint-
based and search-and-score techniques. This approach consists in two
main phases. The first one identifies the most similar tasks and uses their
similarity to learn their corresponding undirected graphs. The second
one directs the edges with a Greedy Search combined with a Branch-and-
Bound algorithm. Empirical evaluation shows that MT-MMHC can yield
better results than learning the structures individually or than the state-
of-the-Art MT-GS algorithm in terms of structure learning accuracy and
computational time.

Keywords: Bayesian Networks · Structure learning · Multi-task learn-
ing · Transfer learning.

1 Introduction

Learning reliable models from small datasets is difficult, therefore transfer learn-
ing (also known as domain adaptation [21]) can enhance the robustness of the
discovered models by leveraging data from related tasks [12]. Transfer learning
is a well-studied area. It has been successfully employed in a variety of machine
learning fields, focusing mainly on neural networks [13, 21].

Multi-Task (MT) learning, also referred to as parallel transfer learning, is a
learning paradigm that aims to leverage useful information contained in related
tasks to help improve the generalization of all the tasks [20]. In order to consid-
erably increase learning tasks performance, MT learning can be combined with
other learning mechanisms [20].

Inductive transfer and MT learning are closely related. They both intend to
leverage knowledge among similar problems [10]. The distinction between these
two approaches lies in the transfer technique. In Transfer Learning (TL), the
information is transferred from the source to the target task. Ultimately, the
goal is to improve the performance of the target task with the support of source
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tasks by affording additional information. We note here that the target task
has a more significant role than source tasks. On the contrary, the tasks in MT
learning are considered equally [17].

Bayesian Networks (BNs) have proven to be an efficient tool to capture condi-
tional dependencies and independencies between random variables. They give an
effective way to represent the structure of real-world applications and determine
the effect of many observations on an outcome. They are frequently employed in
decision support systems and machine learning applications, where it is gener-
ally assumed to have sufficient data from which a reliable model can be learned.
However, in some fields, as manufacturing or medicine [7], data can be rare and
usually gathered from different but closely related problems. In this situation,
existing solutions have been proposed for transfer and multi-task learning of
Bayesian networks [8, 11, 10]. These approaches are mainly adaptations of basic
constraint-based or score-based BN structure learning algorithms.

In this paper, we propose an extension to multi-task learning of an efficient
BN structure discovery algorithm called Max-Min Hill-Climbing (MMHC) [18]
that takes advantage of both constraint based and score-based algorithms.

Our three main contributions are: (1) MT-MMHC, a hybrid transfer learning
algorithm that can learn multiple BN structures simultaneously by inducing
information between similar tasks to improve the performance of the constructed
networks; (2) one procedure to generate MT benchmarks from any reference
model, by controlling the similarity between tasks; and (3) one experimental
validation of MT-MMHC by using such benchmarks compared to Single Task
(ST) structure learning, but also to MT-GS reference algorithm (Multi Task
Greedy Search).

Section 2 introduces background information and relevant related work about
BN structure learning. Section 3 describes our MT-MMHC approach. Section 4 is
dedicated to the generation of MT benchmarks and to the empirical evaluation of
our proposition. Finally, section 5 gives a general conclusion and several research
perspectives.

2 Bayesian Network Multi-task structure learning

A Bayesian Network (BN) B =< G,Θ > represents the joint probability distri-
bution of a set of n random variables {X1, X2, ..., Xn} [4]. It is characterized by
a Directed Acyclic Graph (DAG) G and a set Θ of Conditional Probability Ta-
bles (CPTs), also called parameters. The graph or structure G is given by a pair
(V,E) where V is the set of nodes in the graph and E the set of edges between
them. Each node corresponds to a random variable and each edge represents a
direct dependency between the two variables that it connects. A strong property
of BNs is that this representation is easy to interpret and can help in visualizing
dependencies between variables.

BN Single-Task (ST) learning aims at discovering the structure of the network
G and estimating the parameters Θ of the model from one dataset D.
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In Multi-Task (MT) learning, we consider k tasks corresponding to k datasets
D = {D1, D2, ..., Dk} from which we learn k corresponding BN graphs G =
{G1, G2, ..., Gk} and the associated parameters. The objective is to learn all
the models simultaneously as a multi-task problem while leveraging information
between the tasks. It is worth to notice here that Azzimonti et al. [1] propose
an alternative BN learning approach where one common BN structure is learned
from related data sets.

MT parameter learning, when G is known, have been processed in the litera-
ture [4, 8]. For instance, Luis et al. [8] present a method of inductive transfer to
determine the CPTs using aggregation functions from several sources.

In this paper, we are mainly interested in Bayesian network MT structure
learning. In a single task context, discovering the structure of a Bayesian network
can be seen as a problem of selecting a probabilistic model that fits and explains
a given dataset [4]. Three main approaches are generally adopted [4] : (1) search
and score based methods exploring the space of structures; (2) constraint-based
methods using conditional independencies; and (3) hybrid methods combining
the two previous ones.

Search and score approaches One of the most widely known methods of
learning Bayesian network structures is the use of search and score techniques [4].
These approaches perform an exact or a heuristic search within the space of
network structures and evaluate the best candidate structure to fit the data
using a given scoring metric. Generally speaking, these algorithms require : (i) a
search space of allowable states of the problem, each state represents a Bayesian
network structure; (ii) a scoring function to evaluate a state and see how well it
matches the data; (iii) a mechanism to explore this space in an exact way when
the dimension of the search space is limited, or in a heuristic way.

Greedy Search (GS) [14], for example, is a ST structure learning algorithm
that starts from some initial structure and explores the DAG space by selecting
at each iteration the neighbor graph with the highest score. The search stops
when the current structure has a better score than all its neighbors, and may be
repeated several times starting from different initial states to avoid local maxima.
A neighborhood of a structure G is commonly defined as all the DAGs obtained
by removing or reversing an existing edge in G, or by adding a new one. For
states evaluation, several scores have been settled in the literature such as AIC,
BIC or BDeu [3] or more recent ones such as qNML [15].

In [10], Niculescu-Mizil and Caruana extend this score-based search in a MT
context. Let us denote this algorithm MT-GS. They consider a configuration of
k structures {G1, G2, ..., Gk} and then follow a greedy search procedure in the
space of DAGs to find the k graphs that fit the best the k respective datasets.
The neighborhood of a configuration is defined as the set of all configurations
obtained by considering all possible subsets of the graphs and applying an add,
remove or reverse operation to the same edge in each graph of each subset. The
score to maximise is the posterior probability of a configuration given the data
defined in Eq. 1.
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P (G|D) = P (G1, ..., Gk|D1, ..., Dk) ∝ P (G)

k∏
a=1

P (Da|Ga) (1)

They propose two different priors (i) an edit prior which considers the mini-
mum number of updates needed to make an edge similar in every structure and
(ii) a paired prior that considers the differences among each pair of structures
as defined in Eq. 2.

P (G) = Zδ,k
∏

1≤a≤k

P (Ga)
1

1+(k−1)δ

∏
1≤a<b≤k

(1− δ)
d(Ga,Gb)

k−1 (2)

where δ ∈ [0, 1] is a parameter that penalizes every difference between the mod-
els’ structure when calculating the prior, Zδ,k is a normalization constant and
d(Ga, Gb) is the number of edges in the symmetric difference between Ga and
Gb. Thus, the scoring function takes into account data from all the tasks and
leverages information between them.

As the search space can get large for large k and n (the number of variables
in datasets), they provide a computational optimization based on a Branch-and-
Bound strategy to find at each step the best configuration in the neighborhood
of the current one. To this end, they define a partial configuration of order `,
C` = (G1, ..., G`), as a configuration where only the first ` structures are specified
and the other k−` structures are not. This exploration goes through a search tree
of depth k to reach the best scoring configuration. At each level ` < k, only the
score of the partial configuration C` = (G1, ..., G`) is computed and compared
to the current best score. The score of a partial configuration is defined as an
upper bound to the scores of all complete configurations C that match it. By
this way, each sub-tree rooted at a partial configuration whose score is lower
than the current best score can be pruned.

Constraint-based approaches Algorithms following this approach test con-
ditional independencies between variables in the data, and progressively identify
the graph that describes these dependencies and independencies discovered in
the data [4].

In a transfer learning context, Jia et al. [5] address the problem of constraint-
based learning with inductive transfer. Luis et al. [8] propose a constraint-based
structure learning for BNs in a MT setting. The general outline of the algo-
rithm is inspired from the (single task) PC algorithm [16]. It starts with a fully
connected undirected graph, and measures the association between variables to
decide if an edge should be removed from the graph or not. The major difference
is the way the independence tests are evaluated. It is replaced by a linear combi-
nation of independence measures from the target task with the closest auxiliary
task, where closeness is determined by the combination of two metrics: a global
similarity Sg defined in Eq. 3 and a local similarity Sl defined in Eq. 4.

The global similarity measure Sgab computes the number of common depen-
dencies and independencies between every possible pair of variables (X,Y ) in



Multi-Task Transfer Learning for Bayesian Network Structures 5

task a and task b (i.e. in their corresponding datasets Da and Db)[8].

Sgab =
∑
X<Y

1(Ia(X,Y )− Ib(X,Y )) (3)

where Ia(X,Y ) and Ib(X,Y ) are respectively the result of an independence test
between variables X and Y performed on datasets Da and Db.

The local similarity measure Slab(X,Y |S) compares independencies between
two variables X and Y given a subset of variables S [8].

Slab(X,Y |S) =

{
1, if Ia(X,Y |S) = Ib(X,Y |S).

0.5, otherwise.
(4)

where Ia(X,Y |S) and Ib(X,Y |S) are respectively the result of the conditional
independence test between variables X and Y given S performed on datasets Da

and Db. Based on the two previous metrics, Luis et al. [8] define the combined
similarity measure Scab(X,Y |S) as:

Scab(X,Y |S) = Sgab×Slab(X,Y |S) (5)

For a given task a, the confidence measure αa estimates the confidence of the
independence test between X and Y given the conditioning set S and is defined
as:

αa(X,Y |S) = 1− logNa
2Na

× T (6)

where T = |X| × |Y | × |S|, with |x| is the cardinality of x, and where Na is the
size of the dataset Da.

Finally, the combined independence function Ia, that computes the indepen-
dence test between X and Y given S in task a with inductive transfer learning,
is a linear weighted combination of the independence measures in a and in its
most similar task b∗ (with respect to the combined similarity Sc) :

Ica(X,Y |S) = αa(X,Y |S)× sgn(Ia(X,Y |S))

+ αb∗(X,Y |S)× Scab∗(X,Y |S)× sgn(Ib∗(X,Y |S))
(7)

where sgn(I) is +1 if X and Y are independent given S and −1 otherwise.

Hybrid approaches These approaches combine the features of the constraint-
based and the score-based algorithms. To our knowledge, they are only proposed
so far for single task learning. Generally, these algorithms start by implementing
a constraint-based strategy to reduce the space of candidate DAGs, then they
perform a score-based strategy to find an optimal DAG in the restricted space.
In this context, we can cite the Max-Min Hill-Climbing (MMHC) algorithm
proposed in [18]. MMHC is a hybrid approach for single task Bayesian structure
learning that first identifies the skeleton of the graph with a constraint-based
method (named MMPC for Max-Min Parent Children) then it selects and directs
the interesting edges using a search-and-score procedure.
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The MMPC algorithm uses an association metric A(X,Y |S) such as Mutual
information or χ2 to estimate the strength of the dependency between X and
Y given S and it performs a conditional independence test I(X,Y |S) from this
metric. The algorithm progressively identifies for each variable X a set of can-
didate parents and children CPC(X) (without distinction between parent or
child).

Throughout the edge direction assignment step, a greedy search is performed
to determine the DAG that best fits the data. The important difference from
standard greedy search is that the search space is constrained by the fact that
candidate edges must be consistent with the CPCs discovered by MMPC.

3 The MT-MMHC algorithm

The BN structure learning algorithms mentioned in section 2 mainly perform
transfer learning in single task (ST) scenario with constraint based approaches [8]
or multi-task consideration with search-and-score methods [10]. In our contribu-
tion, we propose a hybrid approach for multi-task problems that we call MT-
MMHC. The purpose is to learn k BN structures from k similar problems si-
multaneously, combining benefits from constraint-based algorithms, score-and-
search based algorithms, TL and MT learning techniques.

3.1 Overall process of MT-MMHC

The main idea is to extend the MMHC algorithm to the MT scenario, as shown
in Fig. 1. As its ST counterpart, the procedure starts with a constraint-based
phase to identify the CPC sets associated to each task. It performs a local
search technique ensured by the MMPC algorithm (refer to the grey boxes in
Fig. 1). For transfer learning adaptation, we propose in section 3.2 a combined
association metric. In the second phase, for edge orientation, we apply the MT
greedy search algorithm proposed in [10] adapted to our context by constraining
it to the discovered CPCs as described in section 3.3.

3.2 The combined association measure

The first phase of the MT-MMHC algorithm that we denote MT-MMPC, con-
sists in k parallel MMPC with a new combined association measure, to identify
the upper bound CPC of the skeleton of each model (refer to the grey boxes in
Fig. 1).

Inspired by the work in [8], we propose in Eq. 8 this new association metric
taking into account the MT setting.

Aca(X,Y |S) =
αa(X,Y |S)Aa(X,Y |S) + αb∗(X,Y |S)Scab∗(X,Y |S)Ab∗(X,Y |S)

αa(X,Y |S) + αb∗(X,Y |S)Scab∗(X,Y |S)
(8)

where Aa(X,Y |S) is the usual association measure between two variables X
and Y given a subset S from the dataset Da and Ab∗(X,Y |S) expresses the
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D1 D2 Dk...

MT-MMHC

G1 G2 Gk...

MT-GS

...

Branch and bound

CPC1 CPC2 CPCk

MMPC

Combined 
association 

measure

MMPC

Combined 
association 
measure

MMPC

Combined 
association 
measure

Fig. 1. Overall process of MT-MMHC.

association measure between the two same variables X and Y given the subset
S from dataset Db∗ of the closest task b∗ determined by the combined similarity
measure Sc.

This combined association measure allows us to transfer information between
similar tasks while computing independence tests. We propose using Aca instead
of the combined independence function Ia defined in Eq.7 for the following rea-
son: as a convex combination of two association measurements, this value can
also be interpreted as an association measurement. Ia is the non convex linear
combination of two signs of independence tests which is only used for its sign
whereas the MMPC algorithm requires also the information provided by the
strength of the association between variables.

3.3 MT greedy search with CPC constraints

MT-MMPC, the constraint-based phase of MT-MMHC, outputs a CPC set
{CPC1, CPC2, ..., CPCk} for each task.

In the second phase of MT-MMHC, as inspired by the single task MMHC,
we propose to apply the MT-GS algorithm (cf. Fig. 1) described in section 2.
The main difference lies in the input of the algorithm and how we accordingly
bound the search space by using the information provided by the CPCs.

The neighborhood of a configuration {G1, G2, ..., Gk} is generated by apply-
ing for each pair of nodes in each possible subset of graphs an edit operation
(add, remove, reverse or leave unchanged an edge). We adapt the generation of
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Original BN BN1 ...BN2 BNk

D1 D2 Dk

- l random operations
- update parameters

- l random operations
- update parameters

- l random operations
- update parameters

Fig. 2. A procedure to generate multi-task benchmarks from a reference BN.

Table 1. Description of the BNs used in our experimentation.

Name Nodes Arcs Max in-degree Description

Asia 8 8 2 Used for patient chest clinic diagnosis given symptoms and risk factors
Alarm 37 46 4 Medical diagnosis for monitoring intensive care patients

this neighborhood by allowing the addition of the edge X → Y in a graph Ga
only if X ∈ CPCa(Y ).

By using this definition of a neighborhood, we can perform a MT greedy
search procedure while keeping all the properties of the greedy search in the
context of MT with the constraints provided by the result of MT-MMPC. Hence,
we can reduce the search space and decrease the computational cost of the greedy
search. As the neighborhood size of a configuration {G1, G2, ..., Gk} can get large
for large k and n, MT-MMHC could then be more scalable than MT-GS.

4 Experiments

In this section, we present an empirical evaluation of MT-MMHC as a compar-
ative study with state-of-the-art single task BNs structure learning algorithms
GS and MMHC, and also with the MT-GS algorithm.

4.1 Experimental protocol

Benchmark and data generation When benchmarks for BN structure learn-
ing in single task context are quite popular with reference models such as
ASIA [6] or ALARM [2] (see Table. 1), there are no benchmarks for evaluat-
ing MT algorithms. We propose here one simple procedure that takes as an
input one of the reference models used for ST learning, and generates a set of k
MT reference models by controlling the similarity between each model.

As a first version of this procedure, we generate k similar networks by ap-
plying one random walk between each model (by applying randomly ` usual
operators: add, remove or reverse edge) and recomputing randomly the param-
eters (see Fig. 2).

We can then generate one dataset for each model by applying the usual
forward sampling algorithm, with a potentially different number of observations
that we call data size Na for each task a.
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In our work, we generated three series of experiments, with small datasets
size (Na ∈ [500, 1000[), medium size (Na ∈ [1000, 5000[) and large size (Na ∈
[5000, 10000[) for k = 5 different tasks generated with ` = 1.

Algorithms We have implemented several algorithms in PILGRIM1, our C++
library dedicated to probabilistic graphical models. We propose to compare MT-
MMHC (described in section 3), MT-GS (cf. section 2) and the independent
running of k single task structure learning algorithms kST-GS and kST-MMHC.
In our experiments, we used mutual information as a measure of association,
with α = 5% for the independence tests, and BIC as an approximation of each
marginal likelihood P (Da|Ga) in Eq. 1 and δ = 1e− 7 as a penalty in Eq. 2.

Evaluation metrics We measure performances in terms of run time and Struc-
tural Hamming Distance (SHD) between the true structures (from which we
generated sampling data) and the learned ones, and more exactly the distance
between the essential graphs as proposed in [18]. For each experiment, we pro-
pose the mean and standard deviation of SHD over 10 runs x 5 tasks, and the
mean and standard deviation of the execution time over the 10 runs.

4.2 Empirical results

MT-MMHC versus kST-GS and kST-MMHC Fig. 3 (top) presents per-
formances in terms of SHD (the lower the better) for the three approaches MT-
MMHC, kST-GS and kST-MMHC with respect to three categories of data size,
and MT benchmarks generated from ASIA and ALARM networks.

The trends in the performances are as expected: learned networks are more
accurate with larger datasets, and kST-MMHC performs better than kST-GS
except for small datasets. It is worth to note that MT-MMHC is able to find
better networks than the single task approaches.

Fig. 3 (bottom) shows the average execution time to learn five tasks BNs.
Single task MMHC is the fastest approach in all experiments, but we can notice
that MT-MMHC is much faster than ST greedy search in a medium network
like Alarm thanks to the space reduction strategy. For the small network Asia,
MT-MMHC is the slowest but still runs in quite reasonable time (from 2.5 to
17.5 seconds on average). For instance, in the case of the largest data slice from
ASIA, MT-MMHC is 17% slower but 40% more accurate than kST-GS.

MT-MMHC versus MT-GS Fig. 4 presents performances in terms of SHD
and execution time for MT-MMHC and MT-GS with respect to the sizes of
datasets, for MT benchmarks generated from the ALARM network.

For small datasets, MT-GS is slightly better than MT-MMHC with a much
higher execution time. For medium and larger datasets MT-MMHC performs
better in terms of quality of the learned model and runs with an affordable time
cost.
1 https://pilgrim.univ-nantes.fr/
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Fig. 3. SHD (top) and run time (bottom) with respect to data size for MT-MMHC,
kST-GS and kST-MMHC (MT benchmarks are generated respectively from the ASIA
and ALARM networks).
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and MT-GS for MT benchmarks generated from the ALARM network

5 Conclusion

In this paper, we propose an extension of an efficient BN structure discovery
algorithm MMHC to a multi-task context. Our algorithm MT-MMHC is the first
hybrid transfer learning algorithm. MT-MMHC can learn multiple BN structures
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simultaneously by inducing information between similar tasks with the help of
a new combined association measure.

In order to validate our approach, we have also proposed one procedure to
generate MT benchmarks from any reference model, by controlling the similarity
between tasks.

The results of our experiments show that it is more beneficial to learn related
tasks simultaneously than considering them individually and, both our combined
association measure and the use of the CPC discovered by MT-MMPC help in
finding accurate models with an affordable time cost. In these experiments, MT-
MMHC was able to learn better models than kST-GS, kST-MMHC and MT-GS
in medium to large MT benchmarks.

This work is the first step of our research, with several perspectives. In a
very short term, we intend to perform larger experiments with other datasets to
consolidate the interest of our proposition. We are also planning to work on ad-
ditional procedures to generate MT benchmarks, for instance by using ”longer”
random walks, or by creating tasks that don’t necessarily have all variables in
common.

Finally, our objective is to combine such MT structure learning algorithms
with differential privacy techniques (already used for BN ST learning in [19] for
instance) in order to propose one general framework to Federated Learning of
Bayesian networks, i.e. collaborative Structure and Parameter Learning with pri-
vacy considerations and no shared training data. Our interest is also to perform
this BN federated learning for the development of BN-based medical assistants
such as Medical Companion [9].
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