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ABSTRACT

Multi-wavelength digital holography is a very powerful approach for surface shape measurements. It has the
advantage of being contact-less, non-intrusive, and yields full-field surface shape data without any requirement
for scanning. This paper proposes the analysis of the standard deviation of noise in surface-shape data from two-
wavelength spatially-multiplexed digital holograms. The influence of noise on the measurements of the surface
shape is described by an analytical approach. Numerical simulations with realistic experimental parameters are
provided and discussed.
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1. INTRODUCTION

Multi-wavelength digital holography has demonstrated to be a relevant tool for desensitized testing of steep
optical surfaces (aspheric mirrors and lenses),! large deformation of structures? or also surface shape profiling.?
Such an approach can also be used for surface roughness measurements when the roughness is large compared
to the wavelength.? With the advent of digital holography,® a wide range of applications of multi-wavelength
holography was demonstrated, such as endoscopic imaging,%” calibration of mechanical structures,® erosion
measurements,’ or also in-line industrial inspection.'® When dealing with off-axis digital holography and spatial
multiplexing of two-wavelength digital holograms, the method becomes real-time, in the sense that the surface
shape can be measured at each time instant at which the holograms are recorded. However, due to the roughness
of the inspected surface, speckle decorrelation occurs and noise is included in the final data. The noise amount
in the data must be investigated in order to define the best processing approach for holograms. This paper
proposes the theoretical analysis of the standard deviation of noise in the surface-height data from two-wavelength
spatially-multiplexed digital holograms. The influence of noise on the measurements of the surface shape is
described by an analytical approach.

2. TWO-WAVELENGTH DIGITAL HOLOGRAPHY

Two-wavelength digital holography has many advantages over single wavelength holography. With a unique
wavelength, the measured surface height of any natural object (non polished) is ambiguous when larger than
the wavelength. Since the surface of the object also includes roughness, then the surface shape cannot be recon-
structed because the phase extracted from the digital holograms results from a fully developed speckle pattern.
The ambiguity and randomness of this phase can be mitigated with the use of another/several wavelengths
leading to what is known as the synthetic wavelength. It follows that the unambiguous range becomes increased
from microns to millimeter or larger. Considering two wavelengths A1 and Ao, the synthetic wavelength is given
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by A = AA2/|A — )\2|.11 However, there is an inherent issue of using several wavelengths that is related to
the speckle decorrelation arising when the primary illumination wavelength is changed to extend to the next
one. This induces a phase noise in the phase difference calculated from the two phases at the two wavelengths.
The surface height of the object, h(x,y), is calculated with the following equation which includes the speckle
decorrelation noise (here is considered that illumination and observation of the surface are at normal incidence):

h(wy) = L2l 9) — 01(29) + expciic) )

with ¢1, 2 the optical phases from the two holograms at the two wavelengths and €;peckie the phase noise due
to the speckle decorrelation. It follows that the standard deviation of the surface height is given by:

A
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with O‘QAW = Uil +03,2. The standard deviation of the decorrelation noise depends on the modulus of the complex
coherence factor between the two speckle fields at the two wavelengths.'? An approximated formula for o, valid
for || € [0.7;1] was provided by Picart et al:*?

oe =11~ |u). 3)

Thus one obtains,

o = 41;\/0&# (Z)Qu— bt @)

For two-wavelength speckle decorrelation, the modulus of the complex coherence factor depends on the
synthetic wavelength and on the standard deviation of the surface roughness, S;, so that we have |u| =

87252 =
exp (7 i ) 12,14,15

3. ESTIMATION OF THE PHASE NOISE

Digital holography suffers from the influence of speckle noise, photon noise, quantization noise and electronic
noise (readout noise) of the sensor. The influence of these sources of noise must be considered with regard to the
dynamics of encoding of the digital hologram. The photon noise (opp), quantization noise (o,) and electronic
noise (o0ron) of the sensor refers here to the technical noise. Additional noise source is found in the dark current
noise (op¢) and background noise (oy4). The standard deviation of the phase extracted from any off-axis digital
hologram can be estimated according to:'°

R.\V27

o = O 0% + G +0%, + oo ®

In Eq. (5), p, is the pixel pitch of the sensor, Ny, is the maximum number of photo electrons in pixels at
saturation, m; is the modulation of the hologram (m; < 1), o is the saturation ratio of the hologram («; < 0.25)
and R, is the radius of the spectral bandwidth of the digital hologram. Figure 1(a) depicts the basic scheme for
image-plane digital holography for surface-shape measurements. Figure 1(b) illustrates the spectral distribution
in the Fourier domain of the digital hologram in spatially multiplexed off-axis two-wavelength holography. The
useful +1 order has a spectral spatial bandwidth with diameter 2R, , and the extraction of the order is performed

by the binary spectral filter having the same bandwidth.

In the case where the exposure time of the digital holograms is small (typ. < 1 ms) and the measured surface is
at ambient temperature (typ. 300 K), then the contributions of the dark current noise (¢ p¢) and background noise
(obg) are irrelevant and can be neglected in Eq. (5). Whereas ogon is technical data from the camera provider,
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Figure 1. (a) Imaging surface shape through an off-axis digital holographic system, (b) Spectral distribution in the Fourier
domain of the off-axis digital holograms.

the photons noise is given by azh = @ Nyq and the quantization noise is given by o7 = N2, /(12 (2nbits — 1)2)
with nbits the number of quantization bits of the sensor. It follows that we have:

on = Pz RV 2w
Ap = N 22 2 2
saty/Mimsaias

In the following, for the sake of simplicity, we consider the ideal case with m; = my = m and a1 = as = q,
for which Eq. (6) reduces to:
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By combining Eq. (4) and Eq. (7) one gets the standard deviation of the measured surface height, according
to:

aNsat + (

o = 4
47p2 R2 Ngat 2 7\ 2 - 1
1 — U Ny + [ —2 2 1_ L .

" m stat7”2o‘2 ( ! (\/ﬁ(gnbits 1) ORron | T 1 exp ™

Equation (8) is the standard deviation of the surface height computed at any pixel as the product of the
synthetic wavelength and the quadratic sum of the technical noise and decorrelation noise. The latter can be
calculated from statistics either on the whole field of view or on a restricted number of data points around any
considered pixel. For a given synthetic wavelength, the decorrelation noise depends on the value of S; which is
also calculated statistically. If the roughness is statistically stationary, then o is constant over the field of view.
If the roughness is not stationary, then the standard deviation locally varies according to S,. The uncertainty
of the measurement will therefore be higher in the roughest sub-areas.

4. RESULTS

Equation (8) can be plotted by considering realistic values of the experimental parameters. For the sensor, one
considers ogo,n = 6 7, dark current at DC(T = 233 K) = 5.107* e~ /pixel/s, Nyor = 18000 €™, p, = 6.45 um,
R, at almost 1/4 p, = 39 mm ™!, and nyis = 10 bits. For the surface height measurements, the exposure times
are in the order of 1 ms which yields dark current noise almost at 5 x 10~7 e~ /pixel. This confirms that dark
current noise is negligible. One then plots oy, for the ideal case (mq = ma = m and a1 = as = «), noted o4, ideal,



as a function of the synthetic wavelength for two values of the roughness parameter S; at 5 ym and 20 pgm. In
the case where the technical noise could be neglected, Eq. (8) would be restricted to:

=2 (1) (1-en (5352)) ®
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and Eq. (8) can be limited to:

Figure 2 and Fig. 3 show the curves for the noise standard deviations with A; = 0.6328 pum. The curves in
Figs. 2,3 have two y-axes. The left axis corresponds to the standard deviation of the surface height. The limitation
of o1, idear (Eq. (9)), noted DL, is calculated by assuming that the noise related to the acquisition (photons,
quantization, RoN, ...) is irrelevant compared to speckle noise (o.). The standard deviation is multiplied by 10
to be observable. The curve allows explaining the evolution with power 1/5 of Eq. (9) from Eq. (8). The latter
is the product of two factors where the synthetic wavelength appears. The decay of the second factor, the phase
noise term related to speckle, decreases more slowly than the increase of the first factor. Figures 2,3 show that
the deviation between the exact relationship and the limited expression of the noise standard deviation decreases
as the roughness increases. This is because the instrumental noise of the sensor becomes irrelevant compared to
the contribution of the speckle decorrelation from roughness.
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Figure 2. Standard deviation of surface height noise as function of synthetic wavelength for S; = 5 pm. The standard
deviation of decorrelation noise is plotted with a scale factor of 10 for better visibility. The second vertical axis (on the
right) corresponds to the values of |p| and the criterion |p| = 0.85.

The tolerance criterion proposed by Poittevin!” states |u| = 0.85 and imposes a minimum synthetic wave-

length that depends on S, such that Ay, > \/ —87252/In(0.85). A second criterion consists in considering the

dynamics of A/2 to avoid phase jumps in the measurement. But this second criterion can be in contradiction
with the first one. The best choice is therefore to consider the synthetic wavelength which verifies both criteria.
However, an increase in the synthetic wavelength will result in an increase in noise on the height measurement
as shown in Figs 2,3. Finally, any deviation from the ideal case, i.e., a1, as < 0.25 and m1, mo < 1, results in
an increase in measurement uncertainty.
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Figure 3. Standard deviation of surface height noise as function of synthetic wavelength for S; = 20 pm. The standard
deviation of decorrelation noise is plotted with a scale factor of 10 for better visibility. The second vertical axis (on the
right) corresponds to the values of |u| and the criterion |p| = 0.85.

5. CONCLUSION

This paper proposes the theoretical analysis of the standard deviation of noise in the surface-height data from
two-wavelength spatially-multiplexed digital holograms. The influence of noise on the measurements of the
surface shape is described by an analytical approach. Relationships to quantify the minimum measurable surface
height is given by taking into account the experimental parameters of the set-up. These parameters are related
to the spatial bandwidths, modulation of holograms, saturation ratio, number of electrons in pixels, readout
noise, quantization noise, photon noise, and speckle decorrelation due to roughness. The theoretical modeling
can be used when considering practical situation for surface shape measurements.
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