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1 Introduction

Matrix integrals play an important role in numerous physical and mathematical subjects,
such as multi-component quantum field theory [1] (see [2] for the review), two-dimensional
quantum gravity and string theory [3–6], mesoscopic physics [7], algebraic geometry [8–11],
number theory [12], etc. A rather general class of matrix integrals has the form

Z =
∫
dN

2
AdN

2
B dN

2
C . . . e−trV(A,B,C,... ) (1.1)

where A,B,C, . . . are Hermitian N ×N matrices with U(N) invariant integration measure
and the potential V(x, y, z, . . . ) is an analytic function (often a polynomial) of the variables
x, y, z, . . . . The partition function Z is a function of parameters (couplings) of the potential.
The typical “physical” quantities to study are various correlators of traces of “words” built
out of products of matrices A,B,C, . . ., computed w.r.t. the measure represented by the
expression under the integral:

〈 tr
N

(AkBlCm . . . ) tr
N

(AnBpCq . . . ) . . .
〉
. (1.2)

The N →∞ limit, with the appropriately adjusted parameters of the potential and of
the averaged quantity, is of a special importance in multiple applications since it describes
the thermodynamical limit of macroscopically many degrees of freedom for various physical
systems. Such a limit deals with the infinite number of integrals, thus the matrix integral
becomes a functional integral.

A particularly interesting N → ∞ limit, for the potential scaled as V(x, y, z, . . . ) =
N V (x, y, z, . . . ), where the function V (x, y, z, . . . ) contains only finite, N -independent pa-
rameters, is usually called the ‘t Hooft, or planar limit. Among many important matrix
models of this kind there is the so called Eguchi-Kawai d-matrix integral equivalent, in
the ‘t Hooft limit, to the multicolor Quantum Chromodynamics [13]. The ‘t Hooft limit
is characterized by the perturbative expansions given in terms of planar Feynman graphs
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(1/N -expansion appears to be a topological expansion: the “fat” graphs of a given genus g
are weighted with the factor N2−2g). This allows the counting of such planar graphs [14–
16] and enables the introduction and exact solution of statistical mechanical models on
random planar dynamical lattices — Ising model on random triangulations [17, 18] and
various generalizations [6, 19–21].

The direct analytic computation of a majority of such multi-matrix integrals is virtually
impossible, apart from some trivial, albeit important, cases, such as the quadratic potential
V (x, y, z, . . . ) leading to the gaussian integral.1

For a sub-class of such integrals with specific potentials the problem can be reduced
to integrations over a smaller number of variables than ∼ N2. For example, sometimes the
problem can be reduced to the integrations or summation only over ∼ N variables, such
as eigenvalues of the matrices. Then, in the large N limit, the problem can be reduced to
the saddle point calculation, significantly simplifying the problem of computation of that
functional integral.2 The basic example of such a simplification is the one matrix model

Z =
∫
dN

2
A e−trV(A) (1.3)

solvable for any potential V(x). Once we have two or more matrix integration variables
in (1.1) the problem usually gets much more complicated. Generically, such models are
unsolvable, i.e. the number of degrees of freedom cannot be efficiently reduced, and the
saddle point approximation is inappropriate since the characteristic “energy” and entropy
of the integration variables are both of the order ∼ N2. Here comes the question whether
we can study these integrals at least numerically.

Virtually the only universal general method of numerical computation of functional
integrals is the Monte-Carlo method. It has been applied to some matrix integrals with
more or less of success. Its main drawbacks are well known: i) the result comes with a
statistical error; ii) it is sometimes difficult to reach the numerical equilibrium state in
a reasonable time; iii) MC is bad for the systems with sign-changing Boltzmann weights
or non-local interactions; iv) the size of the system (the number of integrals) is limited
by computational facilities v) The precision is usually rather modest, maximum about
3–4 digits.

Do we have any alternative?
In the 1980’s, in a series of papers [23–25], the authors formulated the problem of large

N matrix integral and large N quantum mechanics in the loop space (space of moments).
The authors attempted the numerical study for the loop variables by minimizing an effective
action. They were the first to stress the importance of positive semi-definiteness conditions
for certain matrices of loop variables in getting physically meaningful results.

Recently, an important progress has been made in the computations of multi-point
correlators in conformal field theories in various dimensions, due to the conformal bootstrap

1Expansions w.r.t. parameters around the gaussian point lead in the ‘t Hooft limit to the perturbation
theory formulated in terms of planar Feynman graphs. It can help to study the model in a specific, narrow
domain of the parameter space.

2An (incomplete) review of such solvable matrix models can be found in [22].
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method [26]. The method uses various properties of correlators, such as crossing and
positivity, to “bootstrap” numerically their values and the values of the critical exponents.
It appeared to be far more efficient and precise then other numerical approaches, giving the
critical exponents of 3d Ising model with the record 6-digits precision [27]. An appealing
property of this method is the absence of any statistical error in the results, which are
given within rigorously established margins.

Inspired by this success a few authors applied the philosophy of the numerical bootstrap
to the computations of various matrix integrals [28, 29] and even of the lattice multi-color
QCD and N = 4 SYM theory [30]. Instead of the direct study of the matrix integrals they
proposed to study the large N Schwinger-Dyson equations which are often also called loop
equations, in analogy with their applications to QCD [31]. They are easily obtained by
the obvious Ward identities resulting from insertion of the full matrix derivative under the
matrix integral:

0 =
∫
dN

2
AdN

2
B dN

2
C . . .

tr
N

(
∂

∂A
AmBnCk . . .

)
e−trV(A,B,C,... ) (1.4)

where the matrix derivative inside the trace ∂
∂A acts on all A-matrices, including the po-

tential. All other loop equations correspond to all possible “words” of matrices under the
trace and to all insertions of various matrix derivatives at any place in the “words”.3 Then
the positivity conditions are imposed stating that the inner product4 of any operator with
itself is positive. Rigorous bounds on the dynamical quantities of the theory can be derived
from these positivity conditions and loop equations.

This new approach, compared to the previous work of loop variables [23–25], imposes
the large N Schwinger-Dyson equations (loop equations) explicitly, rather than getting
loop equations as a result of effective action minimization. In parallel with the philosophy
of conformal bootstrap, this approach focuses more on the geometry of the space of loop
variables under sensible physical constraints, which guarantees the rigorousness of the
bounds on physical quantities.

In the inspiring work of Lin [28] the method was rather successfully applied to the
one-matrix model mentioned above, to the exactly solvable two-matrix model with tr(AB)
interaction [15, 16] describing the Ising model on planar graphs [17] as well as to the model
with tr(AB2 +A2B) interaction, presented there as a case of “unsolvable” matrix model.5
Lin uses the non-linear equations (1.4) to bootstrap the loop averages up to the positive
semi-definite matrix of size 45.

This new approach has, in our opinion, a great potential for the precision computations
of physically important matrix integrals in the ‘t Hooft limit. But at the same time it is
very much perfectible at this stage.

Firstly, the numerical matrix bootstrap approach of [28–30], based on the loop equa-
tions and positivity constraint, is not well understood analytically. Its efficiency, and the

3In the ‘t Hooft limit, the single trace “words” are enough due to the factorization property which we
will describe in the next section.

4Here inner product of an operator O means 〈trO†O〉.
5We will demonstrate in the appendix A that, in fact, all two-matrix models with cubic interactions,

including this one, are solvable in the above-mentioned sense.
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power of positivity, still looks quite mysterious. It is not even fully understood why we
need the positivity condition. Secondly, the matrix bootstrap has a very distinguished
feature comparing to most of the other bootstrap problems we dealt with so far: it is
in general non-convex. The non-convexity comes from the quadratic terms in the loop
equation, which is a result of large N factorization. In optimization theory, this is called
Nonlinear SDP (semi-definite programing) and all the solvers for it are not mature enough
compared with the highly developed SDP solvers dealing with linear problems. In [28–30],
the authors tried to bootstrap the matrix models by the Nonlinear SDP directly, and this
non-linearity limited the bootstrap capabilities to very simple models, or to more complex
models but only up to very small lengths of operators.

1.1 Main results

In this work, we advance the matrix bootstrap approach trying, on the one hand, to un-
derstand analytically the role of positivity conditions, and on the other hand, to overcome,
at least partially, the above-mentioned limitations of the method.

First, we derive a necessary and sufficient condition for the positivity of bootstrap
for large N one-matrix model, to clarify how this method is working. Namely, we show
that the positivity is equivalent to the condition for the resolvent to have the cuts only
on the real axis, with the positive imaginary part corresponding to the positive density
of eigenvalue distribution. This condition actually enables us, in principle, to analytically
solve the bootstrap problem for any one-matrix model. For the illustrative purposes, we
will apply the new positivity condition to the one-matrix model with quartic potential:

V ′(x) = µ

2x
2 + g

4x
4, (µ = ±1) (1.5)

where we normalized the quadratic term to ±1. We will use the analytic bootstrap to
completely classify the admissible set of solutions of the loop equations and positivity
conditions, and to locate the critical value of Z2 symmetry breaking.

So far, we could solve exactly a very limited set of bootstrap problems, and most of
them correspond to very simple theories, such as Sine-Gordon theory in S-matrix boot-
strap [32] and 1d mean field theory in conformal bootstrap [33]. Since this method appears
to be applicable to any one-matrix model and generalized to some solvable multi-matrix
models, it provides us with a big new family of exactly solvable bootstrap problems. Hope-
fully these solvable bootstrap models will give us more of intuition about the way the
bootstrap method works.

The other new result of this work is a new bootstrap scheme for the study of non-
linear SDP for multi-matrix integrals, which appears to be numerically much more efficient
than those proposed in the past. The main ingredient of the method is the introduction
of relaxation matrix in the place of non-linearity of the loop equation. Namely, we treat
the quadratic terms as independent variables and impose the positivity condition on these
variables. Surprisingly, it seems enough to bootstrap the region of admissible values of
the computed quantity that is quickly shrinking with the increase of the “cutoff” — the
maximal length of “words” in the involved operators.

– 4 –



J
H
E
P
0
6
(
2
0
2
2
)
0
3
0

As a particular example of analytically unsolvable matrix integral we will study by
this method the following two-matrix model

Z = lim
N→∞

∫
dN

2
AdN

2
B e−Ntr(−h[A,B]2/2+A2/2+gA4/4+B2/2+gB4/4). (1.6)

Various versions of this model have been studied in the past in connection to certain
N = 1 supersymmetric Yang-Mills theories [34]. In the particular case g = 0 the model
is solvable and it will serve us as an important check of applicability and efficiency of
our relaxation bootstrap method. Our results show a very good precision: up to 6 digits
with the maximal cutoff equal to 22 for the words under averages. We were also able to
establish with a reasonable accuracy the phase structure of the model in the g, h coupling
space, i.e. the positions of critical lines corresponding to the convergence radius of planar
perturbative expansion, as well as to the spontaneous Z2 symmetry breaking.

The two-matrix model (1.6) considered in this paper serves mostly for the illustration
of the power of our method, though it could have in principal some physical applications,
such as the statistical mechanics on dynamical planar graphs, in the spirit of [35–37].

This article is organized as follows. The next section 2 serves as a retrospect of the
Hemitian matrix integral and the numerical bootstrap technique developed for it so far.
Then in section 3 we propose our equivalent condition for the positivity condition described
in section 2. This condition will justify the numerical bootstrap method and enable us to
analytically solve the corresponding bootstrap problem. in section 4, we will describe the
way our relaxation method works for analytically unsolvable large N multi-matrix integrals.
We test this relaxation method in section 5 on the concrete unsolvable model (1.6). We
will see that our relaxation method is able to largely meet our expectations, with remark-
able precision. In the last section, after short conclusions, we will briefly discuss possible
applications of our method to some more physical problems, such as the multicolor lattice
Yang-Mills theory.

Note: the main results of this work are compared with the later Monte Carlo(MC) re-
sults [38]. This comparison convinces us that the bootstrap method is more efficient than
MC regarding the large N two-matrix model calculation.

2 Hermitian one-matrix model bootstrap

In this section we will revisit several basic facts about large N limit Hermitian one-matrix
model and the related numerical bootstrap proposed in [28]. We will be mainly focused
here on the aspects of this model which are crucial for the theoretical development in the
next section and provide us with important intuition. The reader can refer to numerous
works and reviews, some already cited above (see e.g. [39] for a good state-of-art description
of results on Hermitian one-matrix model).

2.1 Hermitian one-matrix model in the planar limit and loop equations

The Hermitian one-matrix model is defined by matrix integral:

ZN =
∫
dN

2
M e−NtrV (M) (2.1)

– 5 –
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where the invariant Hermitian measure is dN2
M = ∏N

i,j1 dMij . The potential is usually
taken polynomial:6

V (x) =
d+1∑
k=2

gk
k
Mk. (2.2)

The main “physical observable” is the k-th moment:

Wk = 〈TrMk〉 =
∫
dN

2
M

ZN

1
N

trMke−NtrV (M). (2.3)

This model is solvable in the planar limit for arbitrary polynomial potentials [14]. There ex-
ist several methods for that: direct recursion relations for planar graphs, orthogonal polyno-
mials, saddle point approximation for the eigenvalue distribution, loop equations (see [2, 40]
for a review). The loop equations will play the crucial role in our bootstrap method.

To derive them we simply use the Schwinger-Dyson method by writing

0 =
∫
dN

2
M

tr
N

(
∂

∂M
Mk

)
e−NtrV (M) (2.4)

since the expression under the integral is a total derivative. The boundary terms are
absent assuming that the highest power d+ 1 of the potential is even and its coefficient is
positive td+1 > 0.7

Applying explicitly the matrix derivative in (2.4) we write the loop equation in terms
of the moments:8

〈TrV ′(M)Mk〉 =
k−1∑
l=0
〈TrM lTrMk−l−1〉. (2.5)

In the N →∞ limit we can use the factorization property:

〈TrM lTrMm〉 = 〈TrM l〉〈TrMm〉+O
(
1/N2

)
. (2.6)

Then the loop equation reduces to

d∑
j=1

gj Wk+j =
k−1∑
l=0
Wl Wk−l+1. (2.7)

The simplest way to solve (2.7) is to introduce the generating function of moments —
the resolvent — as a formal power series in terms of z−1:

G(z) =
∞∑
k=0

z−k−1Wk. (2.8)

6We believe that our final conclusion can be generalized to non-polynomial potentials, but there may be
some subtleties.

7For the “unstable” potentials, which do not satisfy one of these conditions, the matrix integral might
still exist with appropriate deformation of the integration contour. The large N solutions can exist even
independently of the contour deformation since they correspond to local minima of the effective potential
for the eigenvalues.

8Here for the conciseness, we introduce the normalized trace Tr = 1
N

tr, so that TrI = 1.

– 6 –
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We have not yet assumed anything about the convergence of the series. Multiplying (2.7)
by z−k and summing from k = 1 to ∞ we represent the loop equation in a compact form
as a quadratic equation for the resolvent.

G(z)2 + P (z) = V ′(z)G(z). (2.9)

The function P (z) comes from carefully collecting in the summation the terms with small
k’s. It can be written compactly as:

P (z) = 〈trV
′(z)− V ′(M)
z −M

〉. (2.10)

This is a polynomial of z and a linear function of Wk, (k = 1, . . . , d − 1). For example, if
V ′(z) = z + gz3, then we have P (z) = 1 + gz2 + gW2 + gzW1. We can solve (2.9), picking
the relevant branch of the root which reproduces the leading z−1 behavior of the resolvent
G(z) = 1

z +O( 1
z2 ) at infinity:

G (z) = 1
2

(
V ′(z)−

√
V ′(z)2 − 4P (z)

)
. (2.11)

This result will play an important role in our work, so we make several comments on it:

1. By (2.11), the resolvent is understood as a genuine analytic function, at least in
the neighborhood of infinity point. So the formal series defined in (2.8) has a finite
radius of convergence. As a consequence, there must be an exponential bound for
the moments:9

Wn ≤ C0R(gk,W1, . . .Wd−1)n. (2.12)

2. It is clear from this formula, that all the moments are determined by several low-order
moments in P (z) and the couplings:

Wn =Wn(gk,W1, . . . ,Wd−1). (2.13)

This is what the loop equation tells us. But the loop equation doesn’t tells us how to
fix the low-order moments involved in P (z). Those can be fixed only by additional
assumptions on the solution, such as for example the single support solution for the
eigenvalues (single cut on the physical sheet of G(z)). We will see how to classify the
solutions which are picked up by the bootstrap method.

To have more intuitive ideas of possible large N solutions it is useful to reduce the
matrix integration (2.1) to the integration over the eigenvalues of the Hermitian matrix.
Namely, if we represent it as M = Ω†XΩ where X = diag(x1, x2, . . . , xN ) is the diagonal
matrix of eigenvalues and Ω is the diagonalizing unitary matrix, the matrix integral reduces
to only N integrations over the eigenvalues [14]:

ZN =
∫ N∏

j=1

(
dxj e−NV (xj)

)
∆2(x1, . . . , zN ) (2.14)

9Strictly speaking the radius of convergence is the inverse of the module of largest root of the polyno-
mial under the square root in (2.11), unless two of such roots merge. Here it is enough for us that it is
bounded exponentially.
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Figure 1. Coulomb gas interpretation for the eigenvalue configurations and a typical cut configu-
ration. For a general solution of the SDP (2.15), we can have a complex cut at the maximum of
the potential.

where the square of the Vandermonde determinant ∆(x1, . . . , zN ) = ∏
i>j(xi − xj) rep-

resents the Jacobian of the change of integration variables (Dyson measure). Here the
integrand is of the order eN2(... ) whereas the number of variables is reduced to N . This
allows for the application of the saddle point approximation, giving the BIPZ saddle point
equations (SPE) [14]

V ′(xj) =
∑
k( 6=j)

2
xj − xk

, j = 1, 2, . . . N. (2.15)

It looks as the condition of electrostatic equilibrium of two-dimensional point-like electric
charges (of the same sign) with coordinates xj on a line, locked in the potential V (x) (see
the figure 1).

The possible physical solutions correspond to filling n minima of such a potential with
fractions N1, N2, . . . , Nn of these charges, such that ∑n

l=1Nk = N . The eigenvalues then
form a continuous distribution with n finite supports along the real axis.

The SPE describes all extrema of the effective potential

Veff = N
∑
k

V (xk) + log ∆2(x1, . . . , zN ), (2.16)

not only the minima but also the maxima. For the solutions with the filling of some maxima
of the potential the linear supports of distributions around the maxima should inevitably
turn into the complex plane, with the complex conjugate endpoints, as shown in figure 1.
We will call such solutions “unphysical”. The values of fractions νj = Nj/N, j = 1, 2, . . . , d
are in one-to-one correspondence with the values of first d− 1 moments W1, . . .Wd−1 and
they completely fix the algebraic curve of the solution [8, 9]. The solutions where we fill
only the minima of the effective potential will be called “physical”. The supports for such

– 8 –
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solutions will be located only on the real axis, with positive weight for the distribution of
the eigenvalues.

In the large N limit, the distribution of eigenvalues converges to a continuous func-
tion ρ(x) and the corresponding SPE actually becomes the quadratic equation for resol-
vent (2.9). In this limit, the resolvent function, the eigenvalue distribution and the series
of moments are closely related.

The moments can be computed via the resolvent (2.8) by a simple contour integration
formula:

Wn = 1
2πi

∮
Γ
znG(z)dz = − 1

4πi

∮
Γ
znC(z)dz (2.17)

where the contour Γ must encircle all branch points of G(z) (see [8, 9] for the details). We
introduced here the “cut-function” — the square root of the discriminant — by the formula

C(x) =
√
V ′(x)2 − 4P (x) =

√
D(x) = gd+1

√√√√ d∏
k=1

(x− ak)(x− bk). (2.18)

The roots {ak, bk} of the discriminant become the branch points of the cut-function. Their
number is always even. For real couplings in the potential the branch points lay only on the
real axis or come in complex conjugate pairs. Note that it is easy to relate the eigenvalue
fractions to these branch points:

νj = 1
2πi

∮
Γj

G(z)dz = − 1
4πi

∮
Γj

C(z)dz (2.19)

where the contour Γj encircles anticlockwise only the branch points {ak, bk}, and νj can
be in principal of either sign.

The eigenvalue density is expressed as the discontinuity of the cut function C(x):

ρ(x) = 1
4πi(C(x+ i0)− C(x− i0)) = 1

2π=C(x+ i0) (2.20)

and the moments can be expressed by the eigenvalue density:

Wn =
∫ ∞
−∞

xnρ(x)dx. (2.21)

2.2 Bootstrap method for the large N one matrix model

As we stated above, the loop equation (2.7), (2.9) has in general a continuum of solu-
tions of the form (2.11) labeled by a finite number of parameters — the lowest moments
W1, . . .Wd−1 which can take a priori arbitrary values. But not all of these solutions are
“physical”, i.e. rendering all moments Wk, k ∈ Z+ real and compatible with the finite N
Hermitian matrix ensemble. For example, the physical even moments should be positive,
but this condition is not the only one.

A more general physical condition on a solution is the positivity of inner product
for the matrix integral. This condition states that, for any operator of the form O =
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∑n−1
i=0 αiM

i s.t.α ∈ Rn, and for any n ∈ Z+, we have the positive semi-definite
quadratic form:10

〈TrO†O〉 = αTWα ≥ 0 ∀α ∈ Rn. (2.22)

Here we introduced the matrix Wij = Wi+j−2 which will be called below for convenience
the correlation matrix. The above condition is equivalent to the positive definiteness of
correlation matrix:11

W � 0 . (2.23)

The condition (2.22) is obvious for a finite N matrix model with converging integral (2.1),
i.e. when d + 1 is even and gd+1 > 0 in the potential (2.2), since the moments are just
given by the integration of positive definite functions with a positive measure. In addition,
at finite N there exists only one solution for the moments.12 But it is far from trivial
in large N limit, where we have to understand what solutions from the continuum are
really physical.

To do numerical bootstrap, we set a finite cutoff Λ, i.e. the highest moment in the
correlation matrix W and loop equations is W2Λ and the size of the correlation matrix is
(Λ + 1)× (Λ + 1). We can use the loop equations to express the higher moments through
a certain number of the lower moments and substitute them into the correlation matrix as
functions of lower moments. Then the positivity of the correlation matrix provides us with
algebraic inequality on these lower moments. In general, we expect to get the inequalities
for each of the lower moments both from above and from below, for example:

Wmin
2Λ ≤ W2 ≤ Wmax

2Λ (2.24)

at a cutoff Λ. In practice, the allowed region [Wmin
2Λ ,Wmax

2Λ ] shrinks fast as we increase Λ,
giving us tight bounds on W2.

We exemplify this approach on the case of quartic potential V (z) = 1
2z

2 + g
4z

4. We
plot in figure 2 the region for the allowed values of function W2(g) under the assumption
of M ⇔ −M symmetry of the solution, i.e. W2l+1 = 0. Under this assumption, all the
higher moments are polynomials in terms of W2 and g. The positivity of the correlation
matrix reduces to a list of algebraic inequalities on W2.13

It is a bit surprising that the bootstrap scheme described above for Hermitian one-
matrix model is generally analytically solvable, considering that it is usually non-trivial

10Here we assume that all the expectation values we study are real. This is actually a non-trivial result
from the M → MT symmetry of the potential. Since this symmetry is always present for all the models
considered in this article, we will implicitly assume this to be always true.

11Here we slightly abused the notations: W sometimes means the matrix with finite size, involving only
the moment up to a certain order Λ (“cutoff”), and sometimes it means the infinite dimensional matrix.
But the positive semi-definiteness is always well defined as a positivity of the corresponding quadratic form.

12To define the matrix integral for unstable potentials, when d + 1 odd or/and gd+1 < 0 one usually
deforms appropriately the integration contours. Then the questions of positivity become less obvious for
finite N . But we will see on the example of quartic potential that at infinite N we can still have positivity
for certain solutions, even for such, globally unstable, potentials.

13To depict the allowed region, maybe the simplest way is the Mathematica RegionPlot function. Al-
though not really numerically efficient, it is already good enough for the simplest quartic one-matrix model.

– 10 –



J
H
E
P
0
6
(
2
0
2
2
)
0
3
0

Figure 2. The allowed region for quartic model V (z) = 1
2z

2 + g
4z

4 for different cutoff Λ, compared
with the analytic solution. Here we assuming W1 = 0, we also note that for g > 0, we didn’t plot
Λ ≥ 5 since they are almost indistinguishable from the analytic solution on the figure.

to solve an infinite series of algebraic inequalities. In the next section we will propose a
necessary and sufficient condition for the positivity constraint (2.23) by virtue of a result of
solution of Hamburger moment problem. By this condition we can not only generally solve
the bootstrap problem analytically but also justify why the numerical bootstrap process
excludes the unphysical solutions of SPE described in section 2.1.

3 Hamburger moment problem and positivity of resolvent

As it should be clear from the previous section, the bootstrap method for one-matrix model
has two main ingredients: 1. The Schwinger-Dyson loop equations for the moments of the
random matrix variables; 2. The positive definiteness of the correlation matrix of these
moments. We will rigorously prove that the second ingredient, in virtue of the Hamburger
moment problem [41], picks up in the planar limit the solutions of loop equations only with
real-positive supports of the matrix eigenvalue distribution. We will employ this condition
to analytically solve the bootstrap condition.

3.1 Hamburger problem versus the positivity condition on resolvent

The loop equation (2.7) renders all possible large N , saddle point solutions of the Her-
mitian one matrix model. Some of them “look” physical, i.e. corresponding to the stable
equilibrium in the Coulomb gas picture for the eigenvalues locked in the effective poten-
tial (2.16). For the other, the stable solution corresponds to “unphysical” picture when the
supports of eigenvalue distribution become complex. What are the solutions captured by
our bootstrap procedure?

As we just reviewed, numerical bootstrap of one matrix model consists of two ingredi-
ents: loop equation and positivity of correlation matrix. It sets a cutoff on both constraints
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and gets a rigorous bound on the physical quantities we are interested in. Analytically all
the information contained in the loop equations is encoded in the quadratic equation of
resolvent (2.9), which has a simple solution (2.11). It describes the hyper-elliptic algebraic
curve parameterized by complex variable x. It is natural to ask the question: can the
positivity of correlation matrix also be expressed as a simple condition on the resolvent?
The answer is, luckily and a bit surprisingly, yes.

For convenience, we make the following definition: a resolvent satisfies the positivity
condition if the corresponding eigenvalue density (2.20) is supported on the real axis and
is positive on its support. Our main conclusion of this section will be:

Positivity of correlation matrix⇔ Positivity of Resolvent (3.1)

We prove the necessity first. The proof is based on a well-known mathematical conclusion
that will play an important role in our demonstration — the result of the solution of the
Hamburger moment problem [41]:

For a given series of real numbers {mn}∞n=0, there exists a positive Borel measure µ
such that:

mn =
∫
xndµ (3.2)

if and only if the matrix Hij = mi+j−2 is positive semi-definite. Moreover, if there exist
the constants C and D, such that |mn| ≤ CDnn!, the measure is unique.

Applying the result of Hamburger momentum problem (3.2), we have for each moment
Wn =

∫
R x

ndµ(x). We notice from the exponential bound condition (2.12) that µ must
be supported in a finite region [−R,R], since otherwise, if we have ε > 0, such that
µ
(
(−∞,−(R+ ε))⋃(R+ ε,∞)

)
= µ0 > 0, then

W2n =
∫
R
x2ndµ(x) > (R+ ε)2nµ0, (3.3)

which contradicts the exponential bound (2.12).
Consequently for |z| > R:

G(z) =
∞∑
k=0

z−k−1Wk =
∞∑
k=0

z−k−1
∫

[−R,R]
xkdµ(x) =

∫
[−R,R]

dµ(x)
z − x

. (3.4)

The exchange of infinite sum and integration is justified by Fubini’s theorem. Due to this
equation, G(z) is analytic in the region outside of the disk |z| > R. The last equality
in (3.4) enables us to analytically continue G(z) to the whole region C\[−R,R]. So the
function G(z) must be analytical away from the real line, which eliminates the possibility
of cuts between complex branch points. Comparing with (2.11) and (2.20), we come to
the conclusion that all supports of ρ(x) function must be located on the real line. For the
positivity of eigenvalue density, we note that we can extract by contour deformation the
coefficient of the series in (2.8):

Wn = 1
2πi

∮
znG(z)dz =

∫
[−R,R]

xnρ(x)dx. (3.5)
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By the uniqueness of solution of the Hamburger momentum problem, we must have
ρ(x)dx = dµ i.e. they are equal in terms of positive measure.14 So we have ρ(x) real
supported and positive. This concludes our proof of necessity for (3.1).

The proof of sufficiency is straightforward. It is already true because the sufficiency
is a part of the result of the solution of Hamburger moment problem. For a more direct
argument, suppose we have a resolvent that satisfies the positivity condition, i.e. (2.21)
with ρ(x) > 0. We notice that the matrix (X)ij = xi+j−2 is trivially positive semi-definite
for real x, so that if we integrate the matrix X w.r.t. the positive measure ρ(x)dx, it
stays positive semi-definite as well. The result of the integration is actually our correlation
matrix W. This concludes the proof of sufficiency and hence of the equivalence (3.1).

It is easy to demonstrate by the direct computation that in the presence of complex
branch points in G(x) the corresponding correlation matrix is not positive definite. A
simple example is the resolvent for the matrix model with the unstable potential V (M) =
−1

2Tr M2, which is G(x) =
√
x2 + 2− x = 1

x −
1

2x3 +O
(
( 1
x)4
)
. We see that 〈TrM2〉 = −1

2
so that the correlation matrix is not positive definite.

This suggests the validity of the numerical bootstrap approach at least in the case of the
one-matrix model: by imposing the positive semi-definiteness condition on the solutions of
loop equations, at least for a finite cutoff Λ, we exclude the “unphysical” large N solutions
with the eigenvalue distributions having complex or negative supports, i.e. violating the
hermiticity of the matrix measure.

The result of the present section actually enables us to analytically solve the bootstrap
constraints, since the infinite series of inequalities from the positivity of the correlation
matrix have been proven to be equivalent to the positivity property of resolvent. As an
example, in the next subsection we will present the analytic result of solving the bootstrap
problem of quartic one-matrix model.

The application of numerical bootstrap to the multi-matrix models, such as the one
studied in section 5, has not as strong theoretical basis as the one presented in this section
for the one-matrix model. However the arguments presented here give a good intuition why
the numerical bootstrap can work even in the multi-matrix model case. In the following
sections we will demonstrate its viability empirically, by showing its numerical efficiency
for a specific, “unsolvable” matrix model.

3.2 Classification of physical solution of quartic one-matrix model

In figure 2, we saw that as we increase Λ the allowed region converges to the analytic
solution. One may ask whether the allowed region will ultimately exclude all other solutions
as Λ increases, or it will stabilize to a very tiny island which will not shrink further. The
results of the current section will support the first of these options.

14We note that the uniqueness is not strictly necessary here. To see this, the reader can combine Stone-
Weierstrass theorem and the fact that compactly supported continuous function is dense in Lp, 1 ≤ p <∞.
Then if ρ(x)dx is not positive almost everywhere then the positivity of correlation matrix is violated.
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In this section, we will apply the positivity of resolvent to the one-matrix model with
quartic potential

V (x) = 1
2µx

2 + 1
4gx

4 (3.6)

in order to fully classify all physical solutions. This is equivalent to solving the positivity
condition of one-matrix bootstrap analytically. Since in the previous subsection we have
already formulated this problem as a precise mathematical theorem, we will not present the
formal mathematical derivation here. For the details the reader can refer to the appendix B.

For the bootstrap problem we are trying to solve, we will not assume the Z2 symmetry
of the solutions. This symmetry would mean W2k+1 = 0. We will see that there exist
solutions that break this symmetry. In fact, for solutions we find numerically the breakdown
or preservation of Z2 symmetry will be established dynamically and not necessarily imposed
as an input. Alternatively, if we assume Z2 symmetry from the beginning, the numerical
efficiency for such solutions considerably increases.

For the specific potential (3.6) the positivity condition for the resolvent

G(x) = 1
2

(
V ′(x)−

√
V ′(x)2 − 4P (x)

)
= 1

2

(
−
√
−4g(W2 + x(W1 + x)) + (gx3 + µx)2 − 4 + gx3 + µx

) (3.7)

translates into the condition that it has a only real positive eigenvalue distribution. This
condition can be solve rigorously, namely:

1. µ = 1 and g ≥ − 1
12 : W1 = 0, W2 = (12g+1)3/2−18g−1

54g2 .

2. µ = 1 and g < − 1
12 , there is no possible solution.

3. µ = −1 and g ≤ 0, there is no possible solution.

4. µ = −1 and g ≥ 1
4 : W1 = 0, W2 = (12g+1)3/2+18g+1

54g2 .

5. µ = −1 and 0 < g < 1
4 : this situation is a bit involved. The bootstrap solution

is a curve segment parametrized by W1. Explicitly, the solution is a branch of the
algebraic equation:

0 = 11664g6W5
2 +

(
−27216g5 − 864g4

)
W4

2

+W3
2

(
−16200g5W2

1 − 13824g5 + 19872g4 + 1440g3 + 16g2
)

+W2
2

((
43200g5 + 33480g4 + 888g3

)
W2

1 + 23040g4 − 3232g3 − 544g2 − 16g
)

+W2
((

4125g4 − 22500g5
)
W4

1 +
(
−65280g4 − 24568g3 − 1480g2 − 16g

)
W2

1

+4096g4 − 8704g3 − 1072g2 − 32g
)

+ 3125g5W6
1 +

(
18500g4 − 3925g3 − 16g2

)
W4

1

+
(
−1024g4 + 22848g3 + 7096g2 + 608g + 16

)
W2

1 − 4096g3 − 512g2 − 16g.
(3.8)
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The physical branch of solution is selected by the one passing through W1 = 0,
W2 = 1

g ,15 with −W1c ≤ W1 ≤ W1c.

For 0 < g ≤ 1
15 ,

W1c =
2
√

4500g2 + 75g − 2(1− 15g)3/2(60g + 1) + 2
75
√

5g3/2 , (3.9)

and for 1
15 < g < 1

4 ,

W1c =
2
√

12000g2 + 1200g −
√

3(20g + 7)3/2(60g + 1) + 102
75
√

5g3/2 . (3.10)

This reproduces the exact solution of quartic one-matrix model. In figure 2 we have
already compared the exact solution and the numerical bootstrap result for µ = 1. A
typical comparison for µ = −1 case is figure 3.

In figure 3 we take a representative from each phase and compare it with the above
analytic solutions. We see that the numerical bootstrap results converge quickly to the
analytic result. A distinguishable feature of these figures is that the allowed region is
not guaranteed to be convex. This is very different from the convex optimization problems
which we encountered in CFT bootstrap and S-matrix bootstrap. Generally, the large-scale
non-convex problem is hard and usually unsolvable. We will discuss in the next section
how to overcome this difficulty.

3.3 Comments

Here we present several comments on the results of this section:

1. There may exist certain doubts on particular choices of the positivity condition of the
correlation matrix in numerical bootstrap. In the work [28, 30], the authors showed
that in some cases one only needs the positivity of even moments W2k ≥ 0 to make
bootstrap converging to the analytically known solution. But in general one should
be careful about the choices of the positivity condition. For example, consider the
model with V (x) = −1

2x
2 + 1

4x
4. Under the assumption of the Z2 symmetry, the loop

equations of this model read:

W2k =W2k−2 +
k−2∑
l=0
W2lW2k−4−2l k = 2, 3, 4, . . . (3.11)

We see that the positivity condition on even moments only provides us with the
constraint W2 ≥ 0, evident by induction in loop equations. In this situation we
can bootstrap the physical solution only with the positivity condition on the full
correlation matrix. This fact explains to some extent why the convergence in figure 3
is not as fast as for the model with positive quadratic coefficient.

15Actually for µ = −1 and 0 < g ≤ 1
4 , the Z2 symmetry preserving solution is just W1 = 0, W2 = 1

g
. So

the first discontinuity of W2(g) at g = 1/4 happens for second derivative.
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Figure 3. The comparison of numerical bootstrap with our analytic bootstrap results (the black
point or the black curve on the figures) in section 3.2 with µ = −1 in potential (3.6). They are
representatives from different phases of the model, with g = 1, 1

10 ,
1

30 (for the figures from above
to below, respectively). We notice even visually that for g < 1

4 i.e. when the symmetry breaks, the
exact solution is a non-convex set.
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2. For the one-matrix integral with integration over the unitary matrix instead of the
Hermitian matrix, we can establish and justify a similar bootstrap method. This
enables us with the analytic solution of such bootstrap problems. The main difference
in this case comparing to the Hermitian integral is that the correlation matrix is of
the form Wij = Wi−j . It is called the Toeplitz matrix in linear algebra.16 For this
correlation matrix, we have the following result of solution, this time for trigonometric
moment problem:

For a given series of real numbers {mn}∞n=−∞ such that m−k = m∗k, there exists a
positive Borel measure µ on [0, 2π] such that:

mn = 1
2π

∫ 2π

0
exp(−int)dµ(t) (3.12)

if and only if the matrix Tij = mi−j is positive semi-definite.

Applying this result to our unitary matrix integral, we come to the conclusion that
the positivity of correlation matrix for large N unitary matrix integral is equivalent
to the positivity of the eigenvalue density which is supported on the unit circle in the
complex plain.

4 Relaxation bootstrap method

Now we turn to the discussion of the bootstrap method for multi-matrix models. We
will see that a naive generalization of the previous one-matrix model bootstrap will lead
to a Non-linear SDP.17 But it is widely known that a general large-scale Non-linear SDP
cannot be solved efficiently. In this section we will propose a systematic numerical bootstrap
procedure to solve the large N multi-matrix models via SDP.

SDP, unlike the Nonlinear-SDP which is directly applicable in the case of large N
matrix model bootstrap [28, 30], has a long history in academic research as well as in
applied sciences. The standard primal form of SDP is:18

minimize
m∑
i=1

cixi w.r.t. {x1, x2, . . . , xm} ∈ R,

subject to
m∑∑∑
i=1
Fixi − F0 � 0, Fi ∈ Sn.

(4.1)

Here Sn denotes the space of n× n real symmetric matrices. As long as we can transform
our bootstrap problem to the form (4.1), we can get rigorous bounds on the physical
quantities of interest — linear functions of {x1, x2, . . . , xm} — by efficiently solving the
SDP problem (4.1).

16For the Hermitian integral the correlation matrix is of the form of the Hankel matrix.
17SDP means semi-definite programming.
18There exists also the dual form of these problems, which will be discussed in appendix C. We also note

that in some literature different conventions for dual and primal for SDP are used.
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So the problem reduces to the question how to efficiently transform our matrix integral
problem into the constraints of the form (4.1). Then the original physical problem is
transformed into a purely numerical SDP problem.

In this section we will describe our relaxation bootstrap method on the example of
single trace moments in a large N two-matrix model with the partition function:19

Z = lim
N→∞

∫
dN

2
AdN

2
Be−NtrV (A,B) (4.2)

where V (A,B) is assumed to be a so far general polynomial in A and B, to make the
loop equations more tractable. In the next section we will apply it to a model with a
concrete potential, generally unsolvable by the known analytic methods. We will see that
our method has four types of constraints: loop equations, global symmetries, positivity of
correlation matrix and positivity of relaxation matrix (which will be explained later).

4.1 Physical constraints

To make this section as self-contained as possible, we briefly review here the terminology
already introduced in the previous sections and show how the constraints of the type (4.1)
are specified in the two-matrix model.

The positivity of correlation matrix is still at the heart of our method. Since we
are doing numerical analysis, we set the cutoff 2Λ to the length of operators that we are
considering, i.e. to the length of “words” built from two “letters” — the matrices A and
B: O = ABBAAAB . . .. For any word O of the length≤ Λ, we assume:

〈TrO†O〉 ≥ 0 . (4.3)

The set of words with length≤ Λ is a vector space spanned by all the words constructed
from two letters with the length cutoff Λ. This is a set of L = 2Λ+1− 1 elements which we
denote as Oi, where i runs from 1 to L = 2Λ+1 − 1. For example, when Λ = 2 the basis of
this vector space reads:

I, A, B, A2, AB, BA, B2. (4.4)

We can expand the equation (4.3) w.r.t. this base:

〈Tr
(

L∑
i=1

αiOi

)†( L∑
i=1

αiOi

)
〉 = αTMLα ≥ 0. (4.5)

Let us introduce the correlation matrix MLij = 〈TrO†iOj〉 which consists of expectation
values of operators with the lengths up to 2Λ. Since (4.3) is true for all operators, the
condition (4.5) holds for all α ∈ RL, i.e. the semi-definite positivity of correlation matrix
is ensured:

ML � 0. (4.6)

This correlation matrix condition can be directly applied to the two-matrix model. We see
that the main difference with the one-matrix model is that the dimension of correlation
matrix grows exponentially with Λ.

19The generalization to multi-matrix models with more matrices is straightforward.
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Another important ingredient for our bootstrap method is the loop equations. For the
two-matrix model it can be schematically represented as:∫

dN
2
AdN

2
B tr

(
∂M

(
Word× e−NtrV (A,B)

))
= 0, M = {A,B} (4.7)

where “Word” means the matrix word built by arbitrary finite product of matrices A and
B.20 The differentiation ∂M can be either w.r.t. the matrix A or w.r.t. the matrix B.

The loop equations for large N multi-matrix model in general close on all words.21

Schematically, they have the following quadratic form:

〈Tr (Wordl × ∂MV (A,B))〉 =
l∑

l1=1
〈TrWord(M)

l1−1〉 · 〈TrWord(M)
l−l1〉 (4.8)

which is a direct generalization of (2.7) of the one-matrix model. Here
Wordl1−1 and Wordl−l1 are the words obtained by cutting the word Wordl in two words
whenever one has the matrixM on the l1-th place in Wordl. The matrix factor ∂MV (A,B)
in the l.h.s. comes from the derivative of the exponential factor in (4.7), which generically
renders a sum over single trace operators with lengths from l1 to l1 + d (the degree of
polynomial V (A,B) is assumed to be d+ 1). So we expect that a loop equation of length
l1 involves quadratic relations of operators with lengths up to l1 + d. In the next section
we will precise all these steps on a particular example of the two-matrix model.

The set of all loop equations can be efficiently generated by applying the derivatives
in M = {A,B} to any word of the length less than a certain cutoff.22 However, the
loop equations obtained in this way are not all independent, which means that there may
exist linear dependence and/or algebraic dependence among them. It turns out that these
redundancies are numerically crucial when applying the SDP solver to the constraints of
our system, but they are not important at this stage of explanation. We will discuss these
technicalities in appendix D.

If the model has some discrete symmetries, such as M → −M or A ↔ B, it is
not necessary to assume them from the beginning in our bootstrap scheme, but factoring
it out will significantly increase our numerical efficiency if we are only interested in the
symmetry preserving solution. Generally, the symmetry assumptions not only simplify the
loop equation by reducing the number of operators23 but in certain cases they make the
correlation matrix block diagonal, thus greatly simplifying our problem. We will encounter
this situation in the next section for a concrete model.

At last, we identify all the operators related by cyclicity of trace and the reversion
of the word. These transformations also reduce considerably the number of unknowns in
our scheme.

20Note that “word” is not yet traced, so that generically it is not cyclically symmetric: a cyclic transfor-
mation gives in general a new word.

21Here we mean that there is generally no infinite subset of loop equations and operators closed among
themselves. This fact will be explored further in section F.

22We will discuss the detail of the choice of the cutoff in the appendix D.
23For example, if the potential has Z2 symmetry A↔ B, we could identify all the operators identical by

A↔ B transformation.
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In summary, for the two-matrix integral (4.2), assuming the global symmetries or not,
we set up all the physical constraints. A natural question is what is the solution of these
constraints. But this is not a good question since generally, apart from some solvable models
where the loop equations close on a very limited subclass of operators (like in a two-matrix
model [42, 43] or some n-matrix models [6, 19, 20]), the number of operators grows faster
than the number of constraints, which means that the solution is a region in an extremely
high dimensional space. A constructive question at this stage is: given a cutoff to the
length ≤ 2Λ, what is the minimal or maximal possible value of a physical quantity? This
amounts to asking what is the allowed interval when the region allowed by the constraints
is projected on the linear subspace corresponding to the specific physical quantity.

Rephrasing it in the language of optimization theory, we deal with the problem of
the form:

minimize cTx

subject to xTAix+ bTi x+ ai = 0 (i’th loop equation),

and M0 +
L∑
j=1

Mjxj � 0
(4.9)

where c is a vector defining the dynamical quantity we want to optimize and x is the
column vector of all our operator expectations xi = 〈TrOi〉, up to the length 2Λ. The
quadratic loop equation (in the middle) is written in the vector form, where Ai is the
quadratic form encountered in the ith equation; linear and constant terms are represented
accordingly. The matrix inequality is the expansion of the correlation matrix in terms of
the operator expectations. This is certainly not equivalent to the standard SDP which we
introduced by (4.1) since the quadratic equations represent non-convex conditions. One of
the conventional methods to deal with it is relaxation.

4.2 Relaxation matrix

The constraints discussed in the last section define a problem which is called Non-Linear
SDP in optimization theory. There are indeed some solvers specialized for it but, from
our limited trials, they are not mature enough to solve large-scale problems such as the
ones we encountered in matrix bootstrap. To improve the situation, we propose to modify
the problem (4.9) by relaxing the non-convex conditions involving the non-linear loop
equations, into convex ones. Our intuition here is that we don’t really need all of the loop
equation constraints for our bootstrap method to converge as Λ increases.

To see how our method works, let us begin with a simple example which will provide
us with a heuristic argument. Suppose we have only three quadratic “loop equations”:

x2 = T1

y2 = T2

xy = T3

(4.10)

Here Ti = ∑
j q

j
i wj , (i = 1, 2, 3) denote linear combinations of some other variables

w1, w2, . . . . These equations are of course non-convex. But we can relax them to make them
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convex by replacing x2 = T1 with x2 ≤ T1 or, in the positive semi-definite matrix form,(
1 x

x T1

)
� 0 . (4.11)

We can do the same thing with the second equation y2 = T2, to relax it to a convex
condition. But the same operation cannot be reproduced for equation xy = T3, since
neither xy ≤ T3 nor xy ≥ T3 is convex.24 It is tempting to consider the positive semi-
definite combinations:

(x+ αy)2 ≤ T1 + α2T2 + 2αT3, ∀α ∈ R . (4.12)

It is not very elegant to implement (4.12) by introducing extra parameters like α, although
numerically this is viable. Can we write instead of (4.12) a condition that does not contains
explicitly α? In fact yes. Since T1 ≥ x2 ∨ T2 ≥ y2, we only need the discriminant of (4.12)
w.r.t. α to be non-positive, to exclude the existence of real solution for α when (4.12)
becomes an equality. That means(

T1T2 − T1y
2 − T2x

2 − T 2
3 + 2T3xy

)
≥ 0 (4.13)

is equivalent to (4.12) for all α ∈ R. In its turn, it is equivalent to:

Det

1 x y

x T1 T3
y T3 T2

 ≥ 0. (4.14)

Combining (4.11) and (4.14) we come to the conclusion that:1 x y

x T1 T3
y T3 T2

 � 0. (4.15)

This is mathematically more elegant and numerically more efficient.
To apply this relaxation method to the case of our loop equations is a simple gen-

eralization of what we just proposed. We make in the loop equation the substitution
〈TrOi〉〈TrOj〉 = Xij , or in matrix notations:

X = xxT (4.16)

where again x is the column vector whose components are 〈TrOi〉. Formally, this changes
the loop equations in (4.9) to a linear form:

TrXAi + bTi x+ ai = 0 . (4.17)

To apply the relaxation method sketched above, we relax (4.16) by imposing the inequality:

(αTx)2 ≤ αTXα, ∀α ∈ RL (4.18)
24Because the bilinear form xy is not positive semi-definite.
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which is equivalent to:
X � xxT . (4.19)

By Schur’s complement, this can be re-arranged into a more compact form:

R =
(

1 xT

x X

)
� 0. (4.20)

Here we introduced the relaxation matrix by Rij = Xij and R0i = Ri0 = 〈TrOi〉 = xi.
This step concludes our translation of the nonlinear bootstrap problem into an SDP. This
SDP takes now a numerically much more tractable, convex form:

minimize cTx

such that TrXAi + bTi x+ ai = 0 ,

and M0 +
L∑
j=1

Mjxj � 0 ,

and
(

1 xT

x X

)
� 0 .

(4.21)

It has now two types of variables to bootstrap: a column vector variable x and a symmetric
matrix variable X.

Several comments are in order:

• One of the primary questions to the method is: does the relaxed SDP generate
the same bounds as the previous Non-linear SDP problem? Generally, the answer is
“no”. It is obvious that when the optimal solution of the relaxed problem satisfies the
constraint of the original problem the relaxed problem will generate the same bound
as the original one. From our experience, this is not the case for any finite Λ.25 But
as we increase the cutoff Λ, the mismatches for the quadratic conditions are tending
to zero. So we are tempted to believe that for infinite Λ, the relaxed problem and
the original problem give the same result for most of the questions we are interested
in. This indicates that the non-linear constraints in the loop equations are somehow
contained in the positivity conditions for correlation matrix and relaxation matrix.

• One can regard our relaxation scheme as a numerical compromise: doing relaxation
we replace the nonlinear equalities by linear inequalities but we can thus explore the
correlation matrices of a much higher order since we can significantly increase the
length cutoff Λ. This enable us to embrace more information from correlation matrix.
Our numerical results in the next section will show that this is a worthy trade-off.

• There is another point of view on our relaxation formulation (4.21). The prob-
lem (4.21) is actually the dual of the dual of the problem of (4.9). Although this

25More precisely, if the relaxation is saturated for the optimal solution, we expect that the relaxation ma-
trix will only have one non-zero eigenvalue. But practically, we always observe multiple non-zero eigenvalues
for the relaxation matrix.
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fact is in principle simple to show its proof is quite lengthy, so we put it into the ap-
pendix C. In that appendix, we also briefly review the definition and basic facts about
the dual formulation. As it is known, the dual problem of any general optimization
problem is always convex [44], so the double dual is guaranteed to be convex. In
some sense, this point of view is more general and universal.

• We believe that the key condition for the relaxation method to work well is that, under
our bootstrap assumption, there is a unique exact solution.26 Then since a single
point (corresponding to the Λ = ∞ solution of bootstrap) is convex, our relaxation
procedure leading to convex constraints will not make the results too different even
for a finite but sufficiently large Λ. However, we observed in section 3.2 that the set
of exact solutions may become non-convex in the presence of a symmetry breaking.
In such situation, we need further assumptions to make the exact solution unique.
We will further discuss these aspects in the next section when bootstrapping the
symmetry breaking solutions.

5 Bootstrap for “unsolvable” two-matrix model with Tr[A,B]2 interac-
tion

In this section, we implement the relaxation bootstrap method described in the previous
section to the case of generically unsolvable large N two-matrix model:

Z = lim
N→∞

∫
dN

2
AdN

2
B e−Ntr(−h[A,B]2/2+A2/2+gA4/4+B2/2+gB4/4) (5.1)

where the integration goes over Hermitian matrices A and B. This model is unsolvable
analytically for generic parameters h and g, at least with the known methods, such as
reduction to eigenvalues or the character expansion. It is still analytically solvable for
some particular values: for g = 0 it can be reduced to a specific one-matrix model and
solved via saddle point method or via the reduction to a KP equation [34, 45]; for h = 0 it
reduces to two decoupled one-matrix models; for h =∞ we have [A,B] = 0 and it reduces
again explicitly to another eigenvalue problem. These particular solvable cases are useful
to test the power of our numerical method.

The present section is organized as follows: the bootstrap results for the model (5.1)
with particular choice of parameters g = 1, h = 1 (which represent a generic analytically
“unsolvable” example) are shown in section 5.1. Then in section 5.2 we compare the
bootstrap result for the analytically solvable cases h = 0 or g = 0 with the corresponding
analytic solution, to test our method. In section 5.3, we explore the phase diagram of the
this model and make several comments about the convergence rate in different regions. At
last, in section 5.4, we investigate the symmetry breaking in the model by our relaxation
bootstrap method.

26Here exact solution means bootstrap solution with infinite cutoff.
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5.1 Bootstrap solution for a generic choice of g, h

In this subsection, we present the results of the bootstrap for the model (5.1) where we
specify, for definiteness, the parameters: g = 1, h = 1. We stress that this choice has
nothing specific for the properties of the model and it is made mostly for the demonstrative
reasons, as an example of generic values of parameters. The method appears to be very
efficient almost everywhere in the physical domain of parameters g, h, except when we
approach the critical lines where it is less efficient. We will discuss in the next subsection
the phase structure of the model in the g − h plane.

The symmetry of this model can be described by the Dihedral Group D4,27 with
generator: 

A→ −A
B → −B
A↔ B

(5.2)

We saw already on the example of the one matrix model that in the large N limit there could
be a multitude of saddle point solutions, many of them breaking this kind of symmetries.
We begin with the study of D4 symmetric large N solutions. Later we will discuss the
solutions with broken symmetries as well.

In the fully D4 symmetric solutions, only the operators with even number of A and
even number of B can be non-vanishing, and we should identify the operators under the
exchange A↔ B. Obviously this assumption of D4 symmetry of solution is in principle not
necessary for our bootstrap method to work. However, assuming this symmetry we gain
a lot in the efficiency since we are left with approximately 1/8 of operators comparing to
a general non-symmetric setup. It also happens that the symmetry assumption simplifies
the correlation matrix by much. Namely, when constructing the correlation matrix, only
the words with the same Z2 parity in both A and B can appear in the inner product for a
non-vanishing correlator. So our correlation matrix break into 4 block-diagonal matrices,
corresponding to Z2 parities in A and B: even-even, even-odd, odd-even, odd-odd. By
A↔ B symmetry, the even-odd and odd-even blocks are actually the same. So the original
correlation matrix can be reduced to three block diagonal matrices: even-even, even-odd,
and odd-even.

Here we bootstrap the allowed region for the first two non-vanishing operators t2 =
〈TrA2〉, t4 = 〈TrA4〉.28 According to (4.21), this corresponds to setting the objective
function of the optimization problem as:

Minimize: t2 cos θ + t4 sin θ (5.3)

Scanning it in the interval 0 ≤ θ < 2π we can fix the allowed region for these two operators.
Using the general method described in the last section we can use the SDP solvers to solve

27Actually we implicitly assume the A → AT, B → BT which basically means that all the moments are
real. We will assume throughout this paper that this symmetry cannot be broken. At least intuitively, this
is unlikely to happen in our model (5.1).

28Here we give up the Wk notation for the moments we used in one-matrix model since for two-matrix
model the moments cannot be characterize by a single positive number.
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Figure 4. The allowed region of t2 − t4 of model (5.1) with parameter g = 1, h = 1 for the cutoff
Λ = 7, 8, 9, 10, 11. We recall the definition of Λ: the longest operators in the correlation matrix and
in the loop equations have the length 2Λ.

these problem. The readers interested in the details of the implementation can refer to the
appendix D, where we gather all the technical detail of numerical implementations. We
also demonstrated in appendix E our numerical procedure explicitly, step by step, on the
example of the system with Λ = 4 cutoff.

Let us demonstrate our results for various values of the length cutoff Λ. We summarized
the allowed regions for the first two correlators t2 = 〈TrA2〉 and t4 = 〈TrA4〉 in figure 4.
The regions for Λ = 10 and Λ = 11 are too small to be plotted on the figure, so we give
here the upper and lower bound of t2 and t4. For Λ = 10:0.421780275 ≤ t2 ≤ 0.421785491

0.333339083 ≤ t4 ≤ 0.333343006
(5.4)

and for Λ = 11: 0.421783612 ≤ t2 ≤ 0.421784687
0.333341358 ≤ t4 ≤ 0.333342131

(5.5)

We see here that for Λ = 11 we already have a six digits precision at g = h = 1. The
Λ = 11 calculation is the largest problem in this work, it is done with SDPA-dd, a solver
in SDPA family with the double-double float type. The input to SDPA has 95 variables,
with the correlation matrix size: even-even 683, odd-odd 682, even-odd 1365, and with
relaxation matrix size 8. We note that this is still within the capability of a single laptop,
it only takes 150000s CPU time for a single maximization cycle. We also stress that these
inequalities, unlike the Monte Carlo methods, are exact: increasing the cutoff Λ we can
only improve the margins.
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5.2 Demonstration for analytically solvable cases

It is instructive to apply our numerical method to the analytically solvable cases g = 0 or
h = 0, which is a good check for our approach, convincing us that it works well indeed
even for the generic parameters, where we have no analytic data to compare with. In this
part we will firstly review the analytic solution for both cases and then compare it with
the numerical results of our relaxation bootstrap method.

As we mentioned, for h = 0 this model reduces to two decoupled one-matrix models
— the case which we already discussed and studied analytically in section 3.2. Integrating
out one of the decoupled matrices, we expect the operator containing only one matrix to
have exactly the same expectation value as for the result in section 3.2:

gc = − 1
12 , t2 = (12g + 1)3/2 − 18g − 1

54g2 . (5.6)

For g = 0, this model is already solved analytically in [34, 45]. Here we simply present
the analytic solution derived there in our notations and normalization. To have a compact
form, we introduce the short-hand notations E = E(m), K = K(m), ϑ = E/K, where K
and E are the complete elliptic integrals of first and second kind:

K(m) =
∫ π/2

0

dθ√
1−m2 sin2(θ)

, E(m) =
∫ π/2

0

√
1−m2 sin2(θ)dθ. (5.7)

We introduce the new parameter m related with h by:

h (m) = K
(
(m− 1)− 2 (m− 2)ϑ− 3ϑ2)

6π4 , (5.8)

and we can express t2 as:

h(m)t2(m) = 1
12 −

K2 (−(m− 2)(m− 1) + 10(m− 2)ϑ2 + 2((m− 6)m+ 6)ϑ+ 10ϑ3)
5π2 (−(m− 1) + 2(m− 2)ϑ+ 3ϑ2) .

(5.9)
This formula is valid when h > 0. For h < 0, we need to analytically continue the

solution to the other sheet of Riemann surface of the variable m. For that we introduce
the analytic continuation of the elliptical integral K(m) and E(m):

Ka = Ka(m) =
K
(

1
m

)
+ iK

(
1− 1

m

)
√
m

,

Ea = Ea(m) =
−(m− 1)K

(
1
m

)
+ iK

(
m−1
m

)
+mE

(
1
m

)
− imE

(
m−1
m

)
√
m

,

ϑa = Ea/Ka.

(5.10)

To make (5.8) and (5.9) valid for h < 0, we simply replace all the K, E, ϑ by Ka, Ea, ϑa.
The critical point of the smallest possible hc for h < 0 can be defined as the solution

of the equation:29

dh(m)
dm

= 0 (5.11)

29We thank Nikolay Gromov for sharing with us his computation of hc.
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Figure 5. Comparison with the exact analytic solution of model (5.1) with h = 0, i.e. two decoupled
quartic one-matrix model. The lower plot is for Λ = 8.

which can be numerically solved as:

hc ≈ −0.04965775; t2c ≈ 1.18960475. (5.12)

The comparison of our numerical results with analytic result is presented on figure 5
and figure 6. Indeed, we see that our numerical results nicely agree with the analytic
formula (5.6) and (5.9). An apparent feature of these plots is that when g < 0 or h < 0,
the allowed region is much larger than the one for the positive coupling case, thus giving
less of precision. In general we have the worst convergence in the neighborhood of critical
value. We will discuss this feature in more details in the next subsection.
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Figure 6. Comparison of the numerical bootstrap results with the exact analytic solution of the
model (5.1) with g = 0. The lower plot is for Λ = 8.

There is another fact which is not obvious from the figure 5. If we compare this figure
with figure 2 in section 2 we will find that for same values of Λ, the non-relaxed one-matrix
bootstrap bound for t2 (denoted byW2 in that section) and our relaxation bootstrap bound
for h = 0 case of the 2-matrix model actually coincides within the error bar. This is a very
striking feature of our relaxation method since we relaxed all the quadratic equalities to
inequalities but we compensated this with many more mixed operators of two decoupled
matrices. So the correlation matrix is much larger in the relaxed case and the final results
are basically the same. We will see this feature of relaxation again when we discuss later the
bootstrapping of the symmetry breaking solutions. We don’t have a very clear explanation
for these phenomena in general.
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5.3 Phase diagram and convergence rate

In this part, we will discuss the phase diagram of the matrix model (5.1) and the corre-
sponding convergence rate in different regions of the diagram.

In general, for finite N matrix integral the potential V (A,B) must be bounded from
below to define a sensible integral over Hermitian matrices. But this is not necessary for
a large N theory, where we only need deep enough local minima to have a stable saddle
point solution. Even for the unstable potentials, the tunnelling effects between the local
minima, or to the infinity are suppressed exponentially. We saw this in section 5.2, where
the bootstrap procedure allowed the existence of solutions with negative values of g and
h. This provides us with a possibility to study the boundaries of possible g and h values
(we will call the region of possible g and h values the feasible region in the following) even
when the corresponding potential is not bounded from below.

Before going deeper into the technicalities of bootstrapping the boundaries of the
feasible region, we can get a rough estimate of them by deriving the parameter region of
g and h which leads to the matrix potential bounded from below. It is obvious that the
domain (h ≥ 0, g ≥ 0) is one part of the region we are looking for. Another, less obvious
part is (h < 0, g ≥ −4h), as in this case we should have:

trV (A,B) = tr
(
−h[A,B]2/2+A2/2−h(A4+B4)+B2/2+(g+4h)(A4/4+B4/4)

)
= tr

(
−h((AB+BA)2/2+(A2−B2)2)+A2/2+B2/2+(g+4h)(A4/4+B4/4)

)
≥ 0 . (5.13)

The union of these two domains represents the maximal region where the matrix potential
is bounded from below, since for (h ≥ 0, g < 0) and (h < 0, g < −4h) we can always find
A, B configurations where the potential is not bounded from below. For (h ≥ 0, g < 0),
one of these configurations is taking B = 0 and A→∞. For (h < 0, g < −4h), we simply
put A and B to be some constants α times generalized Pauli matrices of dimension N ασ1
and ασ2, where α is a large real number. Then we have:

trV (ασ1, ασ2) = N
(
α2 + (g + 4h)α4

)
. (5.14)

This must be unbounded from below when (h < 0, g < −4h).
In conclusion, the region of potential bounded from below is (g ≥ 0⋂ g ≥ −4h). In

addition, the domain (g ≥ 0⋂ g ≥ −4h) is guaranteed to lie within the feasible region.
But due to the large N effects, we expect the feasible region to be a little bigger than
that. Specifically, for analytically solvable cases, when h = 0 we have g ≥ − 1

12 and when
g = 0 we have h & −0.04965775. These facts give us an additional information about the
location of the boundary of the feasible region.

To numerically bootstrap the boundary of the feasible region, we can obtain the critical
boundary between the allowed and forbidden parameter regions by bisection. Namely, for a
given Λ we fix h and take two values of g, as g1 and g2. Here g1 is a point that is guaranteed
to be forbidden for a given h, and g2 is a point that is guaranteed to be allowed. Then
we test the geometric average value gm = g1g2

g1+g2
. If gm is allowed, then we make the
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Figure 7. The numerical phase diagram of the model (5.1). The gray region is strictly excluded
by our relaxation bootstrap method at Λ = 8. In the blue region the matrix potential is bounded
from below and its boundary is located above the straight lines g = 0 and h = − 1

4g. The red and
green dots are the critical valus for h = 0 and g = 0.

substitution g2 = gm, otherwise we take g1 = gm. In this way we can recursively approach
the maximal forbidden value of g at fixed h. Then we scan over the values of h and get
the plot shown in figure 7.

Some explanations for the plot figure 7 are in order. The gray region is rigorously
forbidden as the result of bootstrap at Λ = 8. On the contrary, the white region is not
guaranteed to be allowed for any physical large N solution. As we increase Λ, the gray
region will expand a little. But we have several hints about the position of the exact
boundary line:

• We notice the red and green dots on the plot, which are the critical points of the
analytic solutions. They are located on the exact boundary of feasible region, i.e.
no matter how large is Λ, the gray curve cannot go beyond these two points. From
this fact we convince ourselves that our numerical curve in figure 7 is already very
accurate, since the red dot and the green dot are very close to the gray curve.

• The blue region is the region where the potential is strictly bounded from below.
It is enclosed by the lines g = −4h and g = 0. Its boundary can be considered as
the exact solution in the “classical” limit ~ → 0 for this matrix integral, where 1/~
is the coefficient put in front of the potential. In this case we scale the couplings
as h → 1/~, g → 1/~. The boundary of the gray will coincide for ~ → 0 with the
boundary of the blue area on figure 7. Then inside the blue area we have a well-
defined theory even for finite N . At large N and finite h, g there is a gap between
blue region and gray region, as is visible on the figure 7.
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5.3.1 Rate of convergence

As the reader may have noticed already in section 5.2, when g < 0 or h < 0 the convergence
is very bad compared to the case g > 0 and h > 0. From our experience, this is a generic
situation when we are outside of the blue region in figure 7, which is defined by the region
of parameters yielding a potential bounded from below. For example, figure 8 depicts the
allowed region for t2 when we fix g = 1 and scan over h in the neighborhood of h = −1/4.
It is clear from this figure that for h < −1/4 there is drop in the rate of convergence.
Actually, from numerical data, the difference of the upper bound and the lower bound
varies between the orders of magnitude from 10−4 to around 10−2 when h varies from
h = −0.25 to h = −0.26.

Nonetheless we can get a rather accurate estimate of physical quantities in the region
discussed in the last paragraph. We note that in figure 5 and figure 6, the analytic solution
is very close to the lower bound, comparing to the upper bound.30 Actually, as we increase
Λ, the lower bound stabilizes already at rather small Λ. Empirically this is a typical
behavior in the unbounded region. Under the assumption that there is a unique solution
satisfying the constraint for arbitrarily large Λ, we expect that the optimization results
for the maximum and the minimum of t2 will ultimately converge with increasing Λ to
the same value. This has been proven for some parameters of the one-matrix model in
section 3.2, and we have strong numerical evidence to believe it will hold for our model (5.1)
as well. So we can simply bootstrap the physical quantities by the minimization of t2 in this
region (in the following, we will call this procedure the minimization scheme as opposed
to the maximization scheme). Comparing it to the analytically solvable particular cases
we learned that this method can yield especially accurate estimate of physical quantities.
However, we lost the rigorous margin in the region with good convergence (blue region in
figure 7).31

There exists a region in the phase diagram figure 7 where the bootstrap is valid only
for very high cutoff Λ: it is g < 0, |g| � h. The figure 9 shows the allowed region when we
fix h = 1 and vary g. For the lower bound of pink region Λ = 9, there are some numerical
instabilities for −0.09 < g < 0. From careful inspection of our data at various values
of Λ it seems that the lower bound at Λ = 9 should stabilize in this region at the value
t2 ' 0.5 if no numerical instabilities happened in our SDP solver. We notice a few very
distinguishable features of this plot:

1. For a fixed Λ, there is a region where t2 is slightly larger than 0.5 and not bounded
from above. In other words, the dual SPD problem for the upper bound is infeasible.
In this bad region of parameter space, the bootstrap with such Λ essentially tells us
nothing about the right physical values. Luckily, the “bad” region is shrinking when
we increase Λ, and hopefully it will disappear when we have a high enough cutoff.

30We believe that the upper bound and the lower bound converge to the same value, but it seems they
have rather different convergence behaviors.

31This situation is similar to that of the early days of conformal bootstrap when people used the kink of
a plot to estimate the dimension of operators in the 3d Ising model, cf. [46].
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Figure 8. The allowed region for t2 when we fix g = 1 and vary h. In the region where the
potential is bounded from below i.e. h ≥ − 1

4 , we have a decent convergence whereas for h < − 1
4

the convergence gets much slower.

2. As already stated in the last paragraph, when we are not in the “bad region”, the
minimization scheme converges much faster than the maximization scheme. So for
a reasonable estimate of the operator expectation we should privilege the minimiza-
tion scheme.

3. We also notice that for the region g > 0, h > 0, the convergence is excellent as
expected, but there is a huge drop in the rate of convergence in the neighborhood
of h = 0.

5.4 Bootstrapping the symmetry breaking solution

In the previous parts of this section, we always assumed the global symmetry, or in other
words, we bootstrapped the symmetry preserving solutions. Here in the following, we
will make the first attempt to study the symmetry breaking solutions with our relaxation
bootstrap method. Consequently, in this subsection we will not make assumptions on a
specific global symmetry of operator expectations. For example, we will assume that it is
possible to have:

t1 = 〈TrA〉 = 〈TrB〉 6= 0 (5.15)

and any other nonzero expectations containing odd number of letter A or B, unlike the
solutions with such A→ −A, B → −B symmetry.

To understand the general features of symmetry breaking solutions, figure 3 in sec-
tion 3.2 is a good source for our intuition. We see on that figure that the exact solution
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Figure 9. The allowed region for the fixed h = 1 and varying g. For the lower bound of the pink
region Λ = 9, there are some numerical instabilities at −0.09 < g < 0. From careful inspection
of our data at various values of Λ it seems that the lower bound at Λ = 9 should stabilize in this
region at the value t2 ' 0.5 if no numerical instabilities happened in our SDP solver.

is not unique anymore but there is rather a continuous family of solutions parametrized
by t1. This is a non-convex set of exact solutions, so we don’t expect that our relaxation
bootstrap method, as applied in the case of figure 4, will converge to such a non-convex
set as Λ increases. Namely, if we impose the relaxation bootstrap constraint without the
assumption of A→ −A, B → −B symmetry, then minimize the value of

t1 cos θ + t2 sin θ (5.16)

and then scan over θ in [0, 2π), we expect to get a convex set instead of the non-convex
one, due to the convex nature of the relaxation method.

So to bootstrap the symmetry breaking solutions, new techniques are needed to tackle
the non-convexity. We will describe the general method for bootstrapping solutions and
then we apply it to the study of our model (5.1).

5.4.1 Schemes for symmetry breaking bootstrap

The main problems in the study of symmetry breaking solutions in the multi-matrix model
of the type considered here are:

1. How to identify the range of parameters for which the model has a possible symmetry
breaking solution?

2. How to numerically bootstrap the symmetry breaking solution?
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The answer to the first problem is quiet straightforward. We can establish the relaxed
constraint without the symmetry assumption, and bootstrap a dynamical quantity which
signals the symmetry breaking. For example, for the A → −A, B → −B symmetry
breaking solution we take the objective function (cTx in (4.21)) as:

t1 = 〈TrA〉 (5.17)

and for the A↔ B symmetry breaking we take the objective function as:32

〈TrA2〉 − 〈TrB2〉. (5.18)

If the bound of the symmetry breaking expectation is significantly larger than the error
bar at the current Λ for a given value of parameters, we believe that this is a strong signal
of existence of a symmetry breaking solution.

For the second problem, we propose to transform the non-convex set of exact solutions
to a convex one, which means that for the case of figure 3 we fix t1 by t1 = t

(0)
1 in our

bootstrap procedure. For this particular value of t1 we should have at infinite cutoff Λ
a unique exact solution for t2 and for other higher moments, which is definitely a convex
set. Therefore our relaxation bootstrap method with a finite cutoff Λ will yield a rigorous
upper bound and lower bound for t2. Next we scan over t(0)

1 until such values that the
problem becomes infeasible. In this way we get the allowed region in t1, t2 plane.

The above method is easily generalizable to the problem of bootstrapping solutions
with the other symmetry breaking patterns. Namely, we establish the bootstrap scheme
by fixing the dynamical quantity signaling the symmetry breaking, and then we bootstrap
the quantities we are interested in. At this step, we expect that after fixing such dynamical
quantity, the exact solution of the bootstrap problem is unique. At the next step, we scan
over all possible values of the quantity which was fixed in the previous step. In this way
we can bootstrap a non-convex set of solutions.

There is another possibile solution for the first problem, i.e. to locate the symmetry
breaking region. We can assign to the dynamical quantity signaling the symmetry breaking
a specific value and then use the method similar to that of section 5.3, i.e. using a bisection
to approach the maximal possible value of expectation signaling the symmetry breaking.
In principle this bisection method could have given us a tighter bound than our initially
proposed method. However, from our test, the two methods yield basically the same
numerical result, so we will not bother to use the bisection method in what follows.

5.4.2 Numerical results for symmetry breaking solution

Here we apply the method proposed above to the model (5.1). Our results in this part
concern the breaking of the following symmetries:

A→ −A, B → −B (5.19)
32Here in these two situations the dynamical quantity signaling the symmetry breaking is respectively
〈TrA〉 and 〈TrA2〉 − 〈TrB2〉.
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and
A↔ B. (5.20)

In the bootstrap setup, we don’t impose the global symmetry assumptions for the corre-
sponding symmetries, i.e. that the non-singlet operator expectations of the Z2 symmetry
vanish. Then we pick up the dynamical quantities signaling the symmetry breaking as:

〈TrA〉 (5.21)

and
〈TrA2〉 − 〈TrB2〉, (5.22)

respectively and set them as the objective functions in the corresponding boot-
strap problem.

As the result, in the feasible region of figure 7 we didn’t find any evidence of the
existence of a symmetry breaking solution for the model (5.1). We tried several points
in different regions of figure 7. The results show that the maximized values are always
lying within the error bar (typically 10−3 and 10−4, depending on the cutoff Λ and the
parameters g and h). In particular, for Λ = 8 and some generic values of g and h, we have:

− 10−4 . 〈TrA〉, 〈TrA2〉 − 〈TrB2〉 . 10−4 . (5.23)

We believe this to be a strong evidence that the two symmetries we investigated are
not spontaneously broken for all the regions in figure 7.

Some other interesting facts:

1. For g = 0, i.e. when the quartic coefficient vanishes, the preservation of symmetry is
automatic from the loop equation. This fact provides us with the intuition that the
commutator square interaction is to some extent not a symmetry-breaking interac-
tion. Regarding that at h = 0 the model is not in symmetry breaking phase, since
it reduces to two decoupled one-matrix models, intuitively it points on the absence
of symmetry breaking phase the for model (5.1) (with positive coefficients in front of
quadratic terms).

2. For the region h > 0 and g slightly smaller than zero, we have a very large upper
bound for the exposed quantities, sometimes of order 10, which might signal the
symmetry breaking. But we note that the bootstrap convergence is really bad in this
region where some bootstrap results for symmetry preserving solution are presented
on figure 9, and the error bar here is almost infinitely big. So we believe this cannot
be a reliable evidence that there a symmetry breaking takes place in this region.

As we don’t find evidence for the existence of symmetry breaking solutions for
the model (5.1), we consider the same model but with negative coefficients in front of
quadratic terms:

Z = lim
N→∞

∫
dN

2
AdN

2
B e−Ntr(−h[A,B]2/2−A2/2+gA4/4−B2/2+gB4/4). (5.24)
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(a) Λ = 6. (b) Λ = 9.

Figure 10. The allowed t1 − t2 region for Λ = 6 and Λ = 9. The corresponding parameters in
the model (5.24) are g = 1

100 , h = 0. The shaded region is the result of one-matrix bootstrap. The
black line is the exact analytic solution described in section 3.2. The green and red dots are the
upper bounds and lower bounds of our relaxation method from scanning over t1.

We know from the section 3.2 that for h = 0 where we have just two decoupled one-matrix
models, we have a symmetry breaking phase for g < 1/4. At such values of g we can test
our method for bootstrapping the symmetry breaking solutions.

In figure 10 we compare the results of our relaxation method described above with
the exact results and the one-matrix bootstrap plot at the same cutoff and the parameters
g = 1

100 , h = 0. We see that our method is indeed able to bootstrap the symmetry breaking
solution, even though it is non-convex. It is especially striking that not only our relaxation
method converges to the highly non-convex exact solution, but it even coincides with the
one-matrix bootstrap at each cutoff Λ within the error bars. It seems that, in spite of some
loss of information when applying the relaxation method, we recover this information by
considering the positivity condition of the mixed operators containing both matrices, such
as 〈TrABAB〉. We don’t have yet a good explanation why these two approaches give equal
or very close results. We also note that in this case the maximization scheme converges
faster than the minimization scheme. Namely, the upper bound (green dots) in the plot is
much closer to the exact solution than the lower bound (red dots). This suggests that if
we are looking for a good approximation for the exact solution, we should use the upper
bound solution as the best approximation.

For generic values of h and g for the model (5.24), the convergence is slower than in
the analytically solvable particular case. It would be good to understand whether such a
situation for solvable versus unsolvable models is typical. In figure 11 we plot the boot-
strap result for g = 1

30 , h = 1
15 . Obviously, it is still a symmetry breaking solution. We

expect that taking the upper bound we can get a very accurate estimation of the physical
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Figure 11. The allowed region for g = 1
30 and h = 1

15 . These numerical results are obtained for
Λ = 8.

quantities. We didn’t try to further increase the value of Λ, being already satisfied to see
that the proposed method works for rather generic values of parameters.

6 Conclusion and discussion

In this work, we develop further the matrix bootstrap method pioneered in the papers [28,
30] and propose a crucial improvement — the relaxation procedure — applicable to a
large class of multi-matrix problems and allowing to bootstrap them with a much higher
precision. The relaxation transforms a Non-linear SDP, with the non-linearity due to
the structure of loop equations, to the usual, linear SDP. We demonstrate the efficiency
of our approach on the analytically unsolvable two-matrix model and establish its phase
structure with rather high precision. The method appears to work well even for the discrete
symmetry breaking large N solutions.

Actually, the efficiency of the matrix bootstrap, based on the positivity of the corre-
lation matrix, remains an enigma. Nevertheless we managed to theoretically study this
question in the one-matrix model and to establish precisely the class of physical solution
singled out by such bootstrap.

As it was noticed in [28, 30, 47] the numerical bootstrap for large N multi-matrix
models presents a higher degree of difficulty than the bootstrap of the large N one-matrix
model. The bootstrap study of multi-matrix models was restricted to low orders in the
length cut-off for the moments (or “words” forming them) and consequently it provided us
with a limited precision. The main reason for this inefficiency is the non-convex formulation
of the problem. Our main task in this work was to overcome these drawbacks of the matrix
bootstrap.

Compared to the cited above papers we achieved a better understanding and efficiency
of the matrix bootstrap in the following aspects:
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• In the case of the large N Hermitian one-matrix model, we managed to prove that the
bootstrap constraints pick up precisely the exact “physical” solutions, with positive
measure for the distribution of the eigenvalues (the corresponding resolvent has only
the cuts on the real axis). In other words, we established the exact analytic solutions
of the bootstrap conditions for the one-matrix model, thus justifying the numerical
bootstrap techniques. We don’t have yet the generalization of such analytic argument
for the multi-matrix models, which is an interesting question to address.

• Then for the multi-matrix models, we developed the relaxation bootstrap method to
overcome the crucial obstacle of non-convexity of the original problem. We demon-
strated that this relaxation method was a systematic approach, capable to provide
the numerically viable procedure for the large N multi-matrix models. We tested
this method on a model that is genuinely analytically unsolvable (unlike Lin’s 2-
matrix model with cubic interactions in [28]). For particular parameters, when the
analytic solution is known, our numerics reproduces extremely well the analytic re-
sults. For generic values of these parameters, we bootstrap the physical values with
a remarkable precision (6 digits).

• This method is also able to detect critical behaviors, though the precision gets less
impressive in the vicinity of critical lines.

• Remarkably, our bootstrap method is also applicable for bootstrapping the
symmetry-breaking solutions and transform the non-convex problem to a convex one.

Here we make several comments on the bootstrap method proposed here and sketch
out some further directions:

• All the numerical results in this study can be, in principle, reproduced on a single
decent laptop in a decent time laps. So it looks very promising to implement it on a
big cluster with parallelization. The main technical difficulty of the method is that we
used the precision bigger than the machine precision (double-double or quad-double)
in our current work. We believe that this is mainly due to the fact that our problem
is badly-scaled as an SDP: the involved variables can have very different orders of
magnitude. It would be good to find a systematic approach to scale appropriately
the variables for very large-scale problems.

• The positivity of the correlation matrix in the matrix bootstrap method must be
satisfied for any multi-matrix integrals with a reasonably converging positive measure.
It follows from the fact that the integral of a positive function against a positive
measure is positive. Contrary to the conformal bootstrap and S-matrix bootstrap
where unitarity is one of the most important conditions, we don’t know whether the
unitarity or reflection positivity can be imposed in the bootstrap method for the
matrix models. We also hope that our method can be generalized for bootstrapping
non-unitary quantum field theories.
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• We expect that the correlation matrix contains a lot of redundancies, i.e. very few
of its minors may contain 99% of the information of the whole correlation matrix.
This is reminiscent of a similar feature of the conformal bootstrap: we don’t impose
the positivity condition on all spin channels, rather a very limited number of spin
channels are good enough to make the algorithm to converge [26]. At the moment
we don’t have any scheme to isolate the minors of the correlation matrix that are
more important than the other, which would be very beneficial when considering
large-scale problems.

• It would be interesting to apply our methods to the Matrix Quantum Mechanics, in
the spirit of the work [29], including for the non-singlet states there. Another inter-
esting two-matrix model to study by bootstrap would be the generalization of (1.6)
by taking the q-deformed version of interaction: tr[A,B]2q = tr(qAB−q−1BA)2. This
model interpolates between the solvable cases with tr(A2B2) or tr(BABA) interac-
tions [35].

• An obvious, and one of the most ambitious possible applications of our relaxation
bootstrap methods is the lattice Yang-Mills theory. We have thus good chances to
significantly improve on this way the very preliminary results of [30]. A method
alternative to the wide-spread Monte-Carlo simulations, even at large N [48], would
be extremely welcome for the study and a deeper understanding of QCD. Obvious
advantages of the bootstrap method based on Migdal-Makeenko loop equations [31]
w.r.t. Monte-Carlo are: i) Exact inequalities on loop averages, no statistical error;
ii) absence of finite boundary conditions (the lattice is infinite); iii) One gets some
information on all loops at once up to a given length, although with better precision
for short loops. That gives access to more of the physical quantities. The obvious
drawback is the limited length of Wilson loops. We hope to establish by the future
numerical work whether this drawback is crucial indeed.

A Analytic solvability of two-matrix model with cubic interactions
and arbitrary potentials

The Hermitian 2-matrix model with the general cubic interactions between two matrices
and general potentials in the action

S = tr
(
h
(
AB2 +BA2

)
+W (A) + W̃ (B)

)
, (A.1)

has been studied in [28] by numerical bootstrap method, as an example of bootstrap ap-
proach to an analytically “unsolvable” matrix integral. Here we show that this matrix
model is in fact analytically solvable for generic potentials W and W̃ , in the sense that
the matrix integral can be explicitly reduced to ∼ N amount of variables, instead of the
original ∼ N2 matrix variables, which in principal allows the application of the saddle point
method at large N . Our derivation will be schematic and we will repeatedly neglect the
non-dynamical factors before the integral of partition function. It is unclear whether this
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integrability influences the efficiency of Lin’s bootstrap method but this is our motivation
to choose a different, truly “unsolvable” 2-matrix integral, with the interaction tr[A,B]2,
as the main example of application of bootstrap in this paper.

Since tr(A+B)3 = tr(A3 + 3A2B + 3AB2 +B3) we can always rewrite it as

S = tr
(

(A+B)3/3− V (A)− Ṽ (B)
)

(A.2)

where V (A) = A3/3 −W (A) and Ṽ (B) = B3/3 − W̃ (B) and we have set wit1out loss of
generality h = 1.

We can always reduce it to Itzykson-Zuber-Charish-Chandra (IZC) integral by an extra
matrix integration, following the trick similar to proposed in [6] in the context of solution
of the Potts model on dynamical planar Feynman graphs. Namely, represent the first term
in (A.2) in terms of an extra hermitian matrix integral over X33

etrC3/3 =
∫
dN

2
Xetr(iXC+F (X)), C = A+B (A.3)

where the function F (X) is defined as the inverse matrix Fourier transform:

etrF (X) =
∫
dN

2
Cetr(−iXC+C3/3) =

∫ ∏
j

dcj e
c3

j/3 ∆2(c)detj,k e−ixjck

∆(c)∆(x) , (A.4)

i.e. it represents the matrix Airy function. In the last equality we applied the IZC integral.
Then we rotate the contour of X integration, change variable C → −C and write the
partition function of cubic 2MM model in the form

Z =
∫
dN

2
X

∫
dN

2
Cetr(XC−C3/3)

∫
dN

2
Aetr[XA−V (A)]

∫
dN

2
B e tr[XB−Ṽ (B)]. (A.5)

We can compute the function F (X) in terms of the eigenvalues of X = Ω†xΩ where
x = diag{x0, x1, . . . , xN−1}. We compute the angular integral in (A.4) via IZC integrals:

etrF (X) = ∆−1(x)
∫ ∏

j

dcj e
xjcj−c3

j/3 ∆(c) = W [−Ai(x0), · · · − Ai(xN−1)]
∆(x) (A.6)

where in the denominator we have the N ×N “Wronskian” of Airy-type functions:

Ai(x) =
∫
C
dc e−xc+

1
3 c

3
, (A.7)

and:

W [f0(x0), . . . fN−1(xN−1)] =
∑
σ∈Sn

sgn(σ)
N−1∏
i=0

∂σ(i)
xi

fi(xi). (A.8)

Here the complex contour C is usually chosen so that it goes from infinity with the slope
−π/3 and ends up at infinity with the slope π/3. However, when we study the limit
N → ∞ the saddle point configuration of the eigenvalues will adjust itself to the relevant

33We drop here and further all inessential overall factors.
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distribution on the real axis given by a solution of the integral saddle point equation.
Similarly, the bootstrap numerical procedure should single out such solutions.

Then we treat similarly the other two integrals in (A.5) and represent them also in
terms of Wronskians of

f(x) =
∫
da exa−V (a) , f̃(x) =

∫
db exb−Ṽ (b). (A.9)

In this way, we managed to re-wrtite the cubic 2MM entirely in terms of eigenvalue
integral:

Z =
∫ ∏

j

dxj
W [−Ai(x0), . . . ] W [f(x0), . . . ] W [f̃(x0), . . . ]

∆(x) . (A.10)

Hence we reduced the cubic two-matrix integral (A.2) to an explicit integral over N
eigenvalues of an auxiliary matrix X. We treat such a matrix model as “solvable“ though
the further details of the explicit solution can be rather involved. Instead of studying the
saddle point in terms of wronskians it is better to apply the method (inspired by [49])
which was proposed by V.Kazakov and I.Kostov for solution of Potts model on random
planar graphs [50]; it is well presented in [20]. We will not pursue here this route and we
leave it for the future work.

B Solving the positivity condition of the resolvent

We saw in section 3.1 that the positivity of correlation matrix is equivalent to the positivity
of the resolvent. As it was noticed there, this equivalence enables us to analytically solve the
bootstrap condition. Here we propose a general method to solve the lower moments from
the positivity condition of resolvent. This finishes our analytic solution of the bootstrap
problem corresponding to the Hermitian one-matrix model. As a specific example, we also
apply this method to one-matrix model with quartic potential, for which the results were
summarized in section 3.2.

B.1 Cuts and zeros

Finding the lower moments from the positivity of the resolvent is a well-posed problem in
complex analysis, and abundant mathematical tools can be employed to solve it. Here we
study the configuration of cuts and zeros of the cut function defined in the main text (2.18).
Due to the polynomiality of the discriminant D(x) = C(x)2 we can give the full classifica-
tion of all possible configurations of cuts and zeros of the cut function C(x) on the real line.
It turns out that the properties of these configurations provide not only necessary but also
sufficient condition for the positivity of the resolvent. Generally, if we know a configuration
of the cuts and zeros, we are able to fix a few lowest moments which we want to find the
solution. This is how we solve the positivity condition of the resolvent. In the following we
will be considering a Hermitian one-matrix model with general polynomial potential V (x).

First let us pick a single cut of C(x) on the real axis, namely [ai, bi], as shown in
figure 12. The positivity condition of the resolvent implies that for x ∈ [ai, bi] we have
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Figure 12. The left plot shows the sign of C(x) in the neighborhood of a positive cut. The right
plot shows there must be at least one zero, or generally odd number of zeros, between two cuts to
fix the sign.

ImC(x+ i0) ∝ ρ(x) ≥ 0. From the definition of the cut function, we must have C(x) > 0
in the right neighborhood of bi, and C(x) < 0 in the left neighborhood of ai. A direct
consequence is that we must have at least one zero, or generally odd number of zeros,
between two positive cuts to fix the sign. This is also illustrated in figure 12.

There is yet another constraint on the zeros. We notice that V ′(x) and C(x) get
unbounded at infinity, but G(z) →

z→∞
1
z , i.e. it is analytic there. As a result, asymptotic

behavior of C(x) must match the asymptotics of V ′(x). For example, if limx→∞ V
′(x) < 0,

we must add another zero to the right of all the cuts to fix the sign of C(x), preserving
both positivity of the resolvent and the asymptotic behavior.

For the zeros of D(x) which are not located on the real axis, there exist roots with
even multiplicities since there shouldn’t exist complex cuts for C(x). We also note that
since D(x) is a polynomial with real coefficients, all its complex roots must come in pairs.

The above analysis gives the way to count the possible number of cuts. Here we list the
maximum number of cuts m when the degree of the potential is d+1, under the asymptotic
behavior (±,±):34

• (−,+): 2m+ 2(m− 1) ≤ 2d⇒ m ≤ (d+ 1)/2,

• (+,−): 4 + 2m+ 2(m− 1) ≤ 2d⇒ m ≤ (d− 1)/2,

• (+,+) and (−,−): 2 + 2m+ 2(m− 1) ≤ 2d⇒ m ≤ d/2.

B.2 A working example

In this part, we will use these cuts and zeros considerations solve the bootstrap condition
of the model with potential:

V (x) = 1
2x

2 + 1
4gx

4, g < 0. (B.1)

This potential has a (+,−) asymptotic, so in the minimal case, we must have a positive
cut in the middle, and two zeros, one placed on the right and another one on the left of the
cut, to fix the asymptotics. Since the polynomial D(x) = V ′(x)2 − 4P (x) is of 6th degree,
we have already reached the maximum number of zeros. The conclusion is that the cut
configuration in figure 13 is the only possibility for such asymptotic behavior.

To see when this cut configuration is possible, we note that:

D(x) = V ′(x)2−4P (x) =
(
gx3 − x

)2
−4gx2+4g−4g (W1x+W2) = D1(x)−D2(x). (B.2)

34For example, (−,+) means limx→−∞ V ′(x) < 0 and limx→∞ V ′(x) > 0.
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Figure 13. The only possible cut configuration for asymptotic (+,−).
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(a) g = −1/20.
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(b) g = −1/12.

Figure 14. The only possible cut configuration for µ = 1 and g < 0. The critical case is g = − 1
12 ,

below that, there is no more bootstrap solution.

Here we split the discriminant into the part depending on W1 and W2:

D1(x) =
(
gx3 − x

)2
− 4gx2 + 4g (B.3)

and the part depending only on g:

D2(x) = 4g (W1x+W2) . (B.4)

D2(x) is a straight line with negative intercept. As depicted in figure 14, it is possible
that a straight line crosses D1(x) with sufficient number of intersections, but only for
g ≥ gc = − 1

12 . For g < gc the qualitative shape of the graph of D1(x) disqualifies the only
possible cut configuration figure 13, excluding the existence of any bootstrap solution.

From the figure 14, it is obvious that W1 = 0. Otherwise we won’t have a resolvent
satisfying the positivity condition. We can find W2 from the vanishing of the discriminant
of the polynomial D(x), namely:

W2 = (12g + 1)3/2 − 18g − 1
54g2 (B.5)

which corresponds to the standard one-cut IBPZ solution [14].
To make our intuitive arguments above more systematic, and applicable to higher

degree potentials, let us list the conditions by which the positivity of the resolvent translates
into the properties of the polynomial D(x):

1. D(x) has 6 real roots counting multiplicity, two of them are double roots. Two of
them are single roots.

2. The simple roots of D(x) lie in between the double roots on the real line.
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Figure 15. 4 solutions under the condition 1 when g = −1/15. The blue line is the functionD1(x)
which is independent of moments W1, W2, whereas other color straight lines are different solution
of D2(x). We see only the green line has the correct configuration of zeros depicted in figure 14.

The property 1 boils down to the condition that the degree of the greatest common
divisor of (D(x), D′(x)) is 2. We apply the Euclidean algorithm to D(x) and D′(x) to
rewrite them in the form: 

D = q1D
′ + r1

D′ = q2r1 + r2

r1 = q3r2 + r3

r2 = q4r3 + r4

(B.6)

The remainder r4 is a polynomial of degree 1 in x and we set all its coefficients to zero.
In this way we get 2 algebraic equations which, in principle, fix W1 and W2 in terms of g.
For the reality of the roots, we note that this means the discriminant of (D(x), D′(x)) = r3
and the discriminant of D(x)/r2

3 is non-negative. These are already a lot of conditions.
Luckily the mathematica Reduce function can treat these conditions efficiently, leaving
us with four solutions. The four solutions correspond to different orders of single zeros and
double zeros. We show the corresponding solutions in figure 15. We can take advantage of
the condition 2 to select the only physical solution for this case:


− 1

12 ≤ g < 0 : W1 = 0, W2 = (12g+1)3/2−18g−1
54g2 .

g < − 1
12 : No bootstrap solution.

(B.7)

C Dual formulation and relaxation

In this appendix, we review some basic facts about dual formulation in optimization theory
and clarify the relationship between our relaxation method introduced in section 4 and the
dual formulation. For the readers interested in more details about the optimization theory,
the book [44] is a good starting point.
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C.1 Dual problem of general optimization problem

Consider a general optimization problem of the form:
min c(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , p
x ∈ Rn.

(C.1)

For convenience, we denote the optimal value for (C.1) by p?. Whenever c(x), fi(x) are
convex functions and hj(x) are linear functions the problem (C.1) is defined to be convex,
otherwise it is non-convex.35

For a general problem of the form (C.1), convex or not, we can construct its dual
problem starting with the Lagrangian defined by:

L(x, u, v) = c(x) +
m∑
i=0

uifi(x) +
p∑
j=0

vjhj(x), ui ≥ 0 (C.2)

and minimize over x:36

g(u, v) = min
x∈Rn

L(x, u, v) . (C.3)

It is a simple exercise to show that g(u, v) is concave, since it is a minimization over a
family of linear functions in u, v. For all u, v under the constraints ui ≥ 0, we have:

g(u, v) ≤ max g(u, v) ≤ p?. (C.4)

This indicates us the formulation of the dual problem:
max g(u, v)
s.t. ui ≥ 0 i = 1, . . . ,m.

(C.5)

We denote the optimal solution of this problem to be d?. This optimization problem is
guaranteed to be convex, since it is maximizing a concave function g(u, v). In this sense
the dual problem (C.5) is simpler when the primal problem is non-convex. Of course we
always have:

d? ≤ p? (C.6)
due to (C.4). The inequality (C.6) is conventionally called weak duality. It would be
actually nice to have the equality, i.e. when strong duality holds. For that case we have the
well-known Slater’s condition:

The strong duality holds if the primal problem is convex and it has a strictly feasible
solution.

By definition, a solution x∗ is strictly feasible when:
fi(x∗) < 0 i = 1, . . . ,m
hj(x∗) = 0, j = 1, . . . , p.

(C.7)

In general, we don’t have strong duality for non-convex problem.
35It turns out that usually we can only solve the convex optimization problem efficiently, and non-convex

problems are generally NP-hard.
36We stress here that the minimization is the unconstrainted minimization, i.e. x ∈ Rn.
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C.2 Relaxation problem and dual problem

In this section, for completeness we present a proof that the relaxation problem introduced
in (4.21) is the dual of the dual problem of the original problem (4.9). The proof is actually
trivial but lengthy, so the reader could treat it as an implementation example of the dual
formulation introduced in the last section.

First we transform the original problem (4.9) to the following form:

min cTx

s.t. trXAi + bTi x+ ai = 0,

M0 +
L∑
j=1

Mjxj � 0,

X = xxT.

(C.8)

To take the dual problem of it, we write down its Lagrangian:

L (x,X, λ, Y, Z) = cTx+
∑
i

λi
(
trXAi + bTi x+ ai

)
− tr

Y
M0 +

L∑
j=1

Mjxj


+ tr

(
Z
(
xxT −X

))
. (C.9)

The matrices Y and Z introduced here are real symmetric matrix variables, satisfying
Y � 0 due to the inequality condition in (C.8). To minimize the Lagrangian, we collect all
the terms involving primal variables x and X:

L (x,X, λ, Y, Z) = tr
((∑

i

λiAi − Z
)
X

)
+ xTZx+

(
c+ d+

∑
i

λibi

)T

x

+
∑
i

λiai − tr (YM0) (C.10)

where we introduced the vector variable dk = −Tr(YMk) to make the formula more com-
pact. We get g(λ, Y, Z) by taking the minimization over x,X:

g (λ, Y, Z) =
∑
i

λiai − tr (YM0)− 1
4

(
c+ d+

∑
i

λibi

)T

Z†
(
c+ d+

∑
i

λibi

)
,

if
∑
i

λiAi − Z = 0, Z � 0,
(
I − ZZ†

)(
c+ d+

∑
i

λibi

)
= 0.

(C.11)
The reader can verify that if the conditions in the second line of (C.11) are not saturated,
the minimal value g(λ, Y, Z) is −∞, which is irrelevant since we are only interested in its
the maximal. Note that Z† here denotes the pseudo-inverse of the matrix Z:

Z† = lim
ε→0+

(
ZTZ + εI

)−1
ZT. (C.12)
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Introducing an auxiliary variable γ by Schur complement, we can formulate the dual prob-
lem in a more compact form:

max γ

s.t.
∑
i

λiAi − Z = 0, Y � 0,(∑
i λiai − tr(YM0)− γ (c+ d+∑

i λibi)T/2
(c+ d+∑

i λibi)/2 Z

)
� 0.

(C.13)

To do the second dualization, we introduce again the Lagrangian:

L2 (x,X,δ,W,S,γ,λ,Y,Z) =−γ−tr(SY )+tr
(
W

(∑
i

λiAi−Z
))

−tr
((

δ xT

x X

)(∑
iλiai−tr(YM0)−γ (c+d+∑iλibi)T/2
(c+d+∑iλibi)/2 Z

))
(C.14)

Here we slightly abuse the notation by introducing a dual variable contains x and X, which
satisfies: (

δ xT

x X

)
� 0. (C.15)

We also note that S � 0. The dual problem becomes apparent when we collect the
coefficients of γ, Y, Z, γ:

L2 (x,X, δ,W, S, γ, λ, Y, Z) = (δ − 1) γ + tr
((
M0δ − S +

∑
k

Mkxk

)
Y

)
− tr ((W +X)Z)

+
∑
i

λi
(
tr(WAi)− aiδ − bTi x

)
− cTx.

(C.16)
Again, all the coefficients of the linear terms must vanish, otherwise the minimal value of
L2 will be −∞ when we take the minimization. So this time we can write down the dual
problem as:

min cTx,

subject to M0 +
∑
k

Mkxk � 0

tr(XAi) + bTi x+ ai = 0,(
1 xT

x X

)
� 0

(C.17)

which is exactly our original problem with relaxation.

D Implementation in SDPA

Here we gather the details on the implementation of our methods which are not cov-
ered in section 5. We stress that although we are quite satisfied by the current efficiency
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of the method, we cannot guarantee that the choices we made are the best possible.
In appendix E, we will demonstrate explicitly the importance of all these details on a
simple example.

D.1 Choice of SDP solvers

The SDP solver for all of the numerical results in section 5 is SDPA [51]. In the search for
a better performance, we tried a lot of other solvers, including PENLAB, SDPB, SDPA,
MOSEK, SDPT3 and SeDuMi. In the early stage of this work, we were mainly working
with SDPB [52]. Our experience shows that SDPB gives the most stable convergence in
all situations, even when we set the SPDB precision to 64. All other solvers sometimes
fail to converge. The disadvantage of SDPB is that it is much slower and uses much more
memory compared to all other solvers. This is due to the fact that SDPB is an arbitrary
precision solver relying on GMP, which potentially slows the program by more than 1000
times. Due to this reason, when we try to deal with large-scale problems, we switch to
SDPA which, according to our limited tests, converges better than all other SDP solvers
on large-scale problems.

D.2 Generation of the loop equations

For loop equations of a given length l, the set of all loop equations could be generated by
exhaustive method.37 This is conceptually simple and numerically easy to implement. In
fact, a slight optimization of Lin’s code in [28] is efficient enough to generate loop equations
up to Λ = 11 in our work. The tricky part here is to determine what is the sufficient length
cutoff of loop equations for our numerics.

Let’s take the model (5.1) as an example again. Suppose we are considering a cutoff
Λ, which means that the longest operator in the correlation matrix is 2Λ. We recall that
in loop equation of length l in this model, we have the operator expectations of lengths
l−1, l+1, l+3.38 We can consider only the loop equations up to the length l = 2Λ−3, since
they contain only the operators we are interested in. But higher length loop equations could
also generate non-trivial relations on the operator expectations of lengths within the cutoff.
Namely, as loop equations of higher length contain lower operators that we are interested
in, we could eliminate higher operators and get new, generally linear independent loop
equations containing only operators up to the length l = 2Λ. However, empirically for the
model (5.1) this doesn’t happen: the procedure described above does not produce any new
independent loop equations, in addition to the standard ones, constraining the operators
of lengths l ≤ 2Λ − 3. One exception is the case h = 0 and g = 0, i.e. when the model
is solvable. Then we need to consider the loop equations up to the lengths l = 2Λ + 1
and l = 2Λ − 1 to generate all the equations between operators we are interested in. We
don’t have any proof why this is true. But this is not hard to understand intuitively. For
example, when g = 0 and we consider the loop equations only up to l = 2Λ− 3, so we have
a smaller number of length 2Λ operators comparing to the case g 6= 0 in the loop equations.

37Here exhaustive method means that we generate all the loop equations by taking matrix derivatives on
all possible positions of all possible words in Schwinger-Dyson equations.

38Here we define the length of quadratic terms in loop equations as the sum of the lengths of their factors.
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But we also note that even for h = 0 or g = 0, when we consider only the loop equation
up to length l = 2Λ − 3 in our bootstrap assumptions, we still get a bound very close to
the one using the higher length loop equations as well. This example supports our general
intuition that higher loop equations are expected to have a relatively limited influence on
small length operators.

In conclusion, for the model (5.1) with cutoff 2Λ, it is enough to take into account the
loop equations up to the length l = 2Λ− 3.

D.3 Solving the loop equations

Unlike other solvers, the input form of SDPA is rather demanding. It only admits an input
problem strictly of the (4.1) form. As a consequence, we need to solve the loop equation and
substitute the solution into the correlation matrix and relaxation matrix. More precisely,
by solving the loop equations we mean that there is a reduced set of operator expectations,
such that all other operator expectations and all the quadratic terms Rij can be solved by
loop equations as linear combinations of them. For later convenience, we denote the vector
of this reduced set by xred.

A bad news is that the loop equations generated by exhaustive method are not linearly
independent, so solving it with floating point numbers will cause some numerical instabili-
ties. One way out of this difficulty is to remove the linear redundancies in loop equations.
Another way is to use exact numbers in Mathematica. The first is hard since we found that
for some specific values of h and g, there will be coincident degeneracies. So we doubt we
could have a systematic way to select the linear independent loop equations. Actually we
are using the second way, i.e. only using the exact number computation when generating
and solving loop equations. The exact number arithmetics consumes a lot of memory and
makes the solving procedure much slower, but up to the most involved case Λ = 11 in this
article, we still have enough of memory(around 200 Gigabytes) and the solving functions
are efficient enough.

D.4 Relaxation matrix

There are some technical details concerning generating the relaxation matrix constraints.
First we note that if we are considering loop equations up to l = 2Λ − 3, they contain
quadratic terms only up to length 2Λ − 4. The operators in the bottom right corner
of the relaxation matrix R are neither constrained at all, nor contained in the objective
function (cf (4.20)). So they are actually irrelevant. Formally these can be shown by Schur
complement:39

R =
(
X1 B1
BT

1 X2

)
� 0⇔ X1 � 0 ∧X2 −BT

1 X
−1
1 B1 � 0. (D.1)

Here X1 is the sub-matrix contain the product of 〈TrOi〉〈TrOj〉, where the length of Oi
plus Oj is less or equal than Λ−2. Since X2 is not constrained at all, the second inequality

39Numerically there is no difference between strict inequalities and non-strict ones.
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can always be satisfied. In this way, the positivity condition of R is equivalent to the
positivity of the X1.

The matrix X1 needs to be further reduced. Since we know that the operator expecta-
tions are linearly dependent on the loop equations, it is not surprising that the quadratic
terms are linearly dependent. We must reduce this linear dependency, otherwise it will
induce numerical instabilities for SDPA. To solve this potential problem, we consider the
minor X1red in the form:

X1red = x1redx
T
1red. (D.2)

The vector x1re consists of operator expectations 〈TrOi〉, such that not only the lengths of
Oi are equal or less than Λ− 2 but also they are in the set xred derived by solving the loop
equations. Then we impose the positivity condition on the reduced relaxation matrix:

R1red =
(

1 xT
1red

x1red X1red

)
� 0 . (D.3)

D.5 Feasibility

In section 5.3, in the bisection process we need to test whether the SDP is feasible. However,
SDPA doesn’t have a built-in option to test the feasibility of a SDP. To deal with this
difficulty, we introduce a slack variable µ in addition to the original variables in the SDP,
to transform the original problem (4.21) into the form:

min µ

subject to M0 +
∑
k

Mkxk + µI1 � 0,

and tr(XAi) + bTi x+ ai = 0,

and
(

1 xT

x X

)
+ µI2 � 0.

(D.4)

Here I1 and I2 are the identity matrices of the appropriate size. If the optimal value is
negative, then the original problem (4.21) is feasible, otherwise it is infeasible.

D.6 Normalization

When we are dealing with a large-scale SDP, a common problem is that our input data is
badly-scaled. We usually need to adjust our normalization to make all the numbers in the
optimization problem to be of similar order of magnitude. In our problem, we make the
substitution:

O′l = gl/2s Ol (D.5)

and then we bootstrap the primed operator instead of the original one. Here l is the length
of the operator. When g and h are not vanishing we put gs = min{|g|, 2|h|}. When it is
vanishing, we take gs to be the absolute value of the non-vanishing coupling.

This naive choice to scale is not guaranteed to be the best for the problem, though
it appears to lead to decent results for our range of cutoffs. It may be more advanta-
geous to scale this problem according to the asymptotic behavior of large length operator
expectations, which would be interesting to study analytically.
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D.7 Precision of the solver

Finally, we want to make some comments on the numerical precision. Most of the SDP
solvers including SDPA are machine precision solvers. Numerical instabilities may happen
when we are too ambitious about the precision of the results or the input data is badly
scaled. In this situation, one could try arbitrary precision solvers like SDPB and SDPA-
GMP, or other solvers in SDPA family called SDPA-DD and SDPA-QD, which is actually
our recommendation. SDPA-DD and SDPA-QD is based on double-double and quad-
double data type in QD library. From our tests, 32 digits or 64 digits are always enough
for our purpose, and they are still efficient enough to solve the problem.

E Λ = 4 example

In this appendix, we demonstrate the numerical implementation of SDPA introduced in the
appendix D on the simplest non-linear case Λ = 4 of the model (5.1), under the assumption
of Z3

2 symmetry.

E.1 Operators and loop equations

Before generating the loop equations, one of the preparatory work is to generate all the
nonequivalent operators and possible quadratic terms up to the cutoff Λ = 4. As already
discussed in section 5, we have only very few operators that are non-equivalent up to
identifications due to the symmetries of the problem and of the class of solutions considered
here.40 There are 20 operators with the length smaller or equal to 8:

TrA2, TrA4, TrA2B2, TrABAB, TrA6, TrA4B2, TrA3BAB, TrA2BA2B, TrA8,

TrA6B2, TrA5BAB, TrA4BA2B, TrA4B4, TrA3BA3B, TrA3BAB3, TrA3B2AB2,

TrA2BABAB2, TrA2BAB2AB, TrA2B2A2B2, TrABABABAB .
(E.1)

All other operators are identical to those in this list or they vanish under the Z3
2 symmetry

assumption. There is only one quadratic term left under this assumption. For conciseness,
we denote it by β in this appendix:

β =
(
TrA2

)2
=
(
TrB2

)2
= TrA2TrB2. (E.2)

40We slightly abuse the notations in this appendix: all single trace operators in this section actually mean
their expectation values. For example TrA2 is actually 〈TrA2〉.
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To generate the loop equations, we simply apply the exhaustive method and then
delete the duplicates. For general couplings h and g, we have 14 loop equations left:

1 = TrA2 + gTrA4 − h
(
−2TrA2B2 + 2TrABAB

)
0 = −2TrA2 + TrA4 − h

(
2TrA3BAB − 2TrA4B2

)
+ gTrA6

0 = −TrA2 + TrA2B2 − h
(
−TrA2BA2B + 2TrA3BAB − TrA4B2

)
+ gTrA4B2

0 = −h
(
2TrA2BA2B − 2TrA3BAB

)
+ gTrA3BAB + TrABAB

β = −2TrA4 + TrA6 − h
(
2TrA5BAB − 2TrA6B2

)
+ gTrA8

β = −TrA2B2 + TrA4B2 − h
(
−TrA3B2AB2 + 2TrA3BAB3 − TrA4B4

)
+ gTrA6B2

0 = −2TrA2B2 − h
(
−TrA2B2A2B2 + 2TrA2BABAB2 − TrA3B2AB2

)
+ TrA4B2 + gTrA6B2

0 = −TrA4 + TrA4B2 + gTrA4B4 − h
(
−TrA4BA2B + 2TrA5BAB − TrA6B2

)
0 = TrA3BAB − h

(
2TrA2BAB2AB − TrA2BABAB2 − TrA3BAB3

)
+ gTrA5BAB − TrABAB

0 = TrA3BAB + gTrA5BAB − 2TrABAB − h
(
−2TrA2BABAB2 + 2TrABABABAB

)
0 = TrA3BAB + gTrA3BAB3 − h

(
−TrA3BA3B + 2TrA4BA2B − TrA5BAB

)
0 = gTrA3BA3B + TrA3BAB − h

(
2TrA3B2AB2 − 2TrA3BAB3

)
0 = −TrA2B2 + TrA2BA2B − h

(
−TrA2BAB2AB + 2TrA2BABAB2 − TrA3B2AB2

)
+ gTrA4BA2B

β = TrA2BA2B + gTrA3B2AB2 − h
(
2TrA3BA3B − 2TrA4BA2B

)
.

(E.3)

This is a system of 14 linear equations for 21 variables. For generic values of h and g, like
the one we often chose in this paper h = g = 1, they are all linearly independent. So we
can express 14 variables including β through seven variables of shortest lengths. These
seven variables form the subset xred introduced in appendix D.4. For h = g = 1, we can
take it as:

xred =
(
TrA2, TrA4, TrA2B2, TrA6, TrA8, TrA6B2, TrA5BAB

)T
. (E.4)

The other operators, including β, can be expressed as linear combinations of these variables:

TrABAB = 1
2TrA2 + 1

2TrA4 + TrA2B2 − 1
2

TrA4B2 = 1
6TrA2 − TrA2B2 + 1

6TrA6 + 1
6

TrA3BAB = −5
6TrA2 + 1

2TrA4 − TrA2B2 + 2
3TrA6 + 1

6
TrA2BA2B = −TrA2 + TrA4 − TrA2B2 + TrA6
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TrA4BA2B = −8
3TrA2 + 9TrA4 − 14

3 TrA2B2 − 1
3TrA6 − 8

3TrA8 − 16
3 TrA6B2

+ 28
3 TrA5BAB + 1

3
TrA4B4 = 5

2TrA2 − 8TrA4 + 17
3 TrA2B2 + 1

6TrA6 + 8
3TrA8 + 13

3 TrA6B2

− 22
3 TrA5BAB − 1

2
TrA3BA3B = −9

2TrA2 + 31
2 TrA4 − 23

3 TrA2B2 − 2
3TrA6 − 14

3 TrA8 − 28
3 TrA6B2

+ 46
3 TrA5BAB + 1

2
TrA3BAB3 = 2TrA4 − 2

3TrA2B2 − 2
3TrA6 − 2

3TrA8 − 4
3TrA6B2 + 7

3TrA5BAB

TrA3B2AB2 = −8
3TrA2 + 10TrA4 − 5TrA2B2 − 2

3TrA6 − 3TrA8 − 6TrA6B2

+ 10TrA5BAB + 1
3

TrA2BABAB2 = −14
3 TrA2 + 14TrA4 − 26

3 TrA2B2 − 4TrA8 − 8TrA6B2

+ 14TrA5BAB + 2
3

TrA2BAB2AB = −3TrA2 + 8TrA4 − 17
3 TrA2B2 − 7

3TrA8 − 14
3 TrA6B2

+ 26
3 TrA5BAB + 2

3
TrA2B2A2B2 = −41

6 TrA2 + 18TrA4 − 28
3 TrA2B2 + 1

2TrA6 − 5TrA8 − 11TrA6B2

+ 18TrA5BAB + 5
6

TrABABABAB = −67
12TrA2 + 55

4 TrA4 − 61
6 TrA2B2 + 1

3TrA6 − 4TrA8 − 8TrA6B2

+ 29
2 TrA5BAB + 5

4
β = −2TrA4 + TrA6 + TrA8 + 2TrA6B2 − 2TrA5BAB.

(E.5)

E.2 Correlation matrix and relaxation matrix

As we discussed in section 5, under the Z3
2 symmetry our correlation matrix decouples

into a block-diagonal matrix with three blocks. They are, respectively, the inner product41

matrix of even-even words:

I, AA,BB,AAAA,AABB,ABAB,ABBA,BAAB,BABA,BBAA,BBBB (E.6)

odd-odd words:

AB,BA,AAAB,AABA,ABAA,ABBB,BAAA,BABB,BBAB,BBBA (E.7)
41Here inner product of O1 and O2 is defined to be 〈TrO†1O2〉.
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and even-odd words:
B,AAB,ABA,BAA,BBB . (E.8)

For example, the block for the even-odd words reads:
TrA2 TrA4 TrA2B2 TrABAB TrA2B2

TrA4 TrA6 TrA4B2 TrA3BAB TrA4B2

TrA2B2 TrA4B2 TrA4B2 TrA3BAB TrA2BA2B

TrABAB TrA3BAB TrA3BAB TrA2BA2B TrA3BAB

TrA2B2 TrA4B2 TrA2BA2B TrA3BAB TrA4B2

 (E.9)

It is easy to construct the relaxation matrix for this example using the explanations
of appendix D.4. It is: (

1 TrA2

TrA2 β

)
� 0. (E.10)

We note that in our current setting the vector x1red is a single component vector with the
component TrA2.

To turn the original problem into the form (4.1), we substitute the “solution” of the
loop equations (E.5) into the correlation matrix and the relaxation matrix. As for the
objective function, we choose it to minimize TrA2 and −TrA2 to find the minimal and the
maximal value of TrA2, respectively. In this way, we can get the allowed region of TrA2.
At the next step we generate the input file for SDPA and solve it. With the appropriate
setup, the entire time consumed for generating the input and solving it should last less
than 0.1s CPU time. The result for Λ = 4 bootstrap is then:

0.393566 ≤ TrA2 ≤ 0.431148 . (E.11)

F Structure of loop equations and solvable 2-matrix model

Generalizing the results derived in section 3.1 to multi-matrix model is far from straight-
forward. In one-matrix model, all the information contained in the loop equations and
the positivity conditions can be encoded compactly into the resolvent function. On the
contrary, for the multi-matrix model, as the loop equations and the correlation matrix both
get much more involved, we don’t expect to have such an analytic function enclosing the
information of all the moments. Due to this complication, the bootstrap problem for a gen-
eral multi-matrix model is generally not exactly solvable. In this appendix, we will discuss
the nature of these complications in the structure of the loop equations and remind, from
this point of view, an old result for the simplest 2-mattrix model with tr(AB) interaction
when the loop equations greatly simplify [43, 53].

F.1 Base moments

As demonstrated in section 2 by the loop equations, all higher moments of one-matrix
model are fully determined by a fixed number of lower moments (which we will call the
base moments). But this is not generally true in multi-matrix model: namely, the number
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of such base moments generally grows with the increase of the cutoff Λ. Let us take the
model d (5.1) as an example. The following results can be observed from our numerical
investigation:42

1. In the simplest case h = 0 when the model effectively factorizes into two decoupled
one-matrix models, all the moments can be expressed by a polynomial of t2 = 〈TrA2〉
and g. The number of base moments is 1 here.43

2. For g = 0 which is also solvable, all the moments are fixed by t2k = 〈TrA2k〉, k =
1, 2, . . .. This is very different from the one-matrix model since here we have to specify
the value of infinite number of moments to determine the value of the remaining
moments. If we set a finite cutoff 2Λ to the length of the moments, we have a set of
truncated set of base moments of the size Λ.

3. For the general parameters (g 6= 0, h 6= 0), there are much more base moments than
the case g = 0.

The intuition here is that, for a given multi-matrix model, the number of the base moments
is negatively related with the solvability of the multi-matrix model. For a given cutoff,
the number of the base moments are relatively easy to calculate. So one of the possible
application of this intuitive observation is that one can use the number of the base moments
for a finite but high cutoff to predict the solvability of the model.

F.2 Closed subset of loop equations

Sometimes, the loop equations can be closed on a proper, much reduced subset of all
moments. This usually leads to a great simplification of the system of loop equations and
potentially makes the bootstrap problem for the multi-matrix model exactly solvable. we
demonstrate this on the simplest solvable 2-matrix model, with a long history of stydy and
applications [15–17] and used in [28] to demonstrate the matrix bootstrap:

Z = lim
N→∞

∫
dN

2
AdN

2
B e−Ntr(−AB+V (A)+V (B)), V (x) = g2x

2/2 + g3x
3/3. (F.1)

We notice that the following subset of loop equations:

−g3tn+1 = g2tn − tn−1,1 −
n−2∑
j=0

tjtn−2−j ,

−g3tn+1,1 = g2tn,1 − tn−1,2 −
n−2∑
j=0

tjtn−2−j,1,

−g3tn−1,2 = g2tn−1,1 − tn,

(F.2)

are closed among the operators tn, tn,1, tn,2, here:

tn = 〈TrAn〉, tn,m = 〈TrAnBm〉. (F.3)
42At some finite but high cutoffs, but we strongly believe that it holds also for arbitrarily high cutoff.
43We assumed the global symmetry.
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Summing over the equations by the way in section 2.1, we can get the Master loop
equation for model (F.1) [53]:

(Y (z)− V ′(z))(z − V ′(Y (z))) + P (Y (z), z) = 0, (F.4)

where

P (x, y) = −〈TrV
′(x)− V ′(A)
x−A

V ′(y)− V ′(B)
y −B

〉+ 1,

G(z) = 〈Tr 1
z −A

〉 =
∞∑
i=0

z−i−1ti,

Y (z) = V
′(z)−G(z).

(F.5)

Since this is a closed subset of loop equations, we assume that the sub-correlation
matrix defined by Ti,j = ti+j−2 is positive semi-definite, which is the positivity condition for
the minor of the whole correlation matrix consisting of the elements tn. This brings us back
to the one-matrix type bootstrap problem considered in section 3.2. Here the positivity
condition is equivalent to that the eigenvalue distribution corresponding to G(z) is real and
positive, or Y (z) has a negative cut. In principle, this problem is analytically solvable, the
complication compared with one-matrix model is that we have a cubic equation instead of
a quadratic one (or an equation of nth degree for the potentials of order n). The solution
of these loop equations has been found in [54] in terms of an algebraic curve depending on
the base moments [55].
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