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Improved color-gradient method for lattice Boltzmann modeling of two-phase flows

I. INTRODUCTION

The numerical simulation of interfacial multiphase flows constitutes a challenging subject of investigation in fluid mechanics. Those flows are defined by the co-existence of two immiscible phases. The transition between the two segregated phases is very sharp, and occurs over a few atoms length. For this reason, it is commonly assumed that the two phases are separated by an infinitely thin interface. An inter-molecular attractive forces imbalance occurs at this interface, resulting in surface tension, which has a significant impact on interface dynamics 1 . The interface leads to severe density gradients in the case of liquid-gas configurations, which is a challenge for numerical simulation. For atomization applications, the interface is also subject to intense shear, resulting in additional numerical difficulties. Furthermore, the interface curvature needs to be accurately estimated for an accurate pressure jump prediction, which is a challenge for complex flow topologies, such as interfacial waves, liquid ligaments, and associated break-up. Finally, atomization configurations involve large Reynolds and Weber numbers which results in a large range of scales 2 . Despite those difficulties, methodologies have been proposed to simulate such interfacial flows. On one hand, sharp interface methods consider separated phases with discontinuous quantities and jump conditions at the interface. The advection of a scalar quantity allows to track the interface. The Volume of Fluid (VoF) [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF] method and the Level-Set methods [START_REF] Osher | Front propagating with curvature dependent speed: algorithm based on Hamilton-Jacobi formulations[END_REF] have allowed numerical predictions of realistic two-phase configurations, but suffer from a significant computational cost due to stark mesh resolution requirements in the interface.

On the other hand, diffuse interface methods have also been proposed, in which the interface is considered as a smooth transition from one phase to the other. To allow such a continuous transition, the interface is artificially thickened over several grid points, which consequently reduces interfacial gradients and associated mesh constraints required for their discretization. Among these diffuse interface methods, the Phase Field Method has been first introduced, relying on the work of Van der Waals 5 , Korteweg [START_REF] Korteweg | Sur la forme que prennent les équations du mouvements des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capilarité dans l'hypothèse d'une variation continue de la densité[END_REF] , Cahn and Hilliard 7 . Multifluid methods were later proposed by Baer and Nunziato 8 , Saurel and Abgrall 9 , Kapila 10 , Saurel et al. [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF][START_REF] Fraysse | Automatic differentiation using operator overloading (ADOO) for implicit resolution of hyperbolic single phase and two-phase flow models[END_REF] .

Reviews for both phase-field and multi-fluid methods may be found in Anderson et al. [START_REF] Anderson | Diffuse-interface methods in fluid mechanics[END_REF] and Saurel and Pantano [START_REF] Saurel | Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows[END_REF] .

In the meantime, Lattice Boltzmann Method (LBM) has received a growing attention.

Its basis have been originally proposed by the Cellular Automata community. Since Frish et al. [START_REF] Frisch | Lattice-Gas Automata for the Navier-Stokes Equation[END_REF] and d'Humières et al. [START_REF] Lallemand | Lattice gas automata for fluid mechanics[END_REF] who introduced the Lattice Gas Automata (LGA) Algorithm, Mc Namara and Zanetti [START_REF] Mcnamara | Use of the Boltzmann Equation to Simulate Lattice-Gas Automata[END_REF] extended this work to propose a Lattice Boltzmann Method.

Originally proposed for low-Mach aerodynamics, extensions to multi-phase flows rapidly came out. Rothman and Keller [START_REF] Rothman | Immiscible Cellular-Automaton Fluids[END_REF] proposed a LGA multiphase algorithm that has been adapted to a LBM framework by Gustensen et al. [START_REF] Gustensen | Lattice Boltzmann model of immiscible fluids[END_REF] .

LBM received a growing interest motivated by its scalability and its low dissipation properties, making it particularly well-suited for acoustic long distance dispersion problems [START_REF] Shao | Review of Lattice Boltzmann Method Applied to Computational Aeroacoustics[END_REF] . It has been applied to a wide range of applications such as, reservoir permeability [START_REF] Zhao | Multi-scale analysis on coal permeability using the lattice Boltzmann method[END_REF][START_REF] Zhang | A coupled Lattice Boltzmann approach to simulate gas flow and transport in shale reservoirs with dynamic sorption[END_REF][START_REF] Wang | Apparent permeability prediction of organic shale with generalized lattice Boltzmann model considering surface diffusion effect[END_REF] , combustion flows [START_REF] Tayyab | Lattice-Boltzmann modeling of a turbulent bluff-body stabilized flame[END_REF] , blood flow [START_REF] Sakthivel | An off-lattice Boltzmann method for blood flow simulation through a model irregular arterial stenosis: The effects of amplitude and frequency of the irregularity[END_REF] , boiling flow [START_REF] Saito | Lattice Boltzmann modeling and simulation of forced-convection boiling on a cylinder[END_REF] , thermocapillarity flows [START_REF] Mitchell | Computational modeling of three-dimensional thermocapillary flow of recalcitrant bubbles using a coupled lattice Boltzmann-finite difference method[END_REF] , non-Newtonian flows [START_REF] Li | Effect of visco-plastic and shearthickening/thinning characteristics on non-Newtonian flow through a pipe bend[END_REF] , magneto-hydrodynamic flows [START_REF] De Rosis | Double-D2Q9 lattice Boltzmann models with extended equilibrium for two-dimensional magnetohydrodynamic flows[END_REF] , cryogenic flows [START_REF] Petersen | On the lattice Boltzmann method and its application to turbulent, multiphase flows of various fluids including cryogens: A review[END_REF] , etc.

It also proved to be more computationally efficient than standard methods for aero-dynamics problems for example. Its application to two-phase flows have also largely been undertaken through the use of LBM, with several specific methodologies. Apart from the Colour Gradient Method [START_REF] Rothman | Immiscible Cellular-Automaton Fluids[END_REF] (also known as RK method from Rothman and Keller, their creator) Shan and Chen [START_REF] Shan | Lattice boltzmann model for simulating flows with multiple phases and components[END_REF][START_REF] Shan | Simulation of non-ideal gases and liquid-gas phase transition by lattice boltzmann equation[END_REF] proposed a Pseudo-potential method. Swift et al. introduced the Free Energy method [START_REF] Swift | Lattice boltzmann simulation of nonideal fluids[END_REF][START_REF] Swift | Lattice boltzmann simulations of liquid-gas and binary fluid systems[END_REF] and He et al. [START_REF] He | A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability[END_REF] finally proposed the so-called HCZ method (from He, Chen and Zhang who first proposed the method), which recently received a lot of attention since the work of Fakhari [START_REF] Fakhari | Multiple-Relaxation-Time lattice Boltzmann method for immiscible fluids at high Reynold numbers[END_REF][START_REF] Fakhari | A mass-conserving lattice boltzmann method with dynamic grid refinement for immiscible two-phase flows[END_REF][START_REF] Fakhari | Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios[END_REF][START_REF] Fakhari | Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios[END_REF] Geier et al. [START_REF] Geier | A conservatice phase-field lattice boltzmann model for interface tracking equation[END_REF] and Mitchell 4127 . Having greatly benefited from the advances in the phase field community [START_REF] Sun | Sharp interface tracking using the phase-field equation[END_REF][START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF] , these methods were applied on a large range of cases: droplet impact [START_REF] Wöhrwag | Ternary free-energy entropic lattice boltzmann model with a high density ratio[END_REF] , free jet [START_REF] Saito | Color-gradient lattice boltzmann model with monorthogonal central moments: hydrodynamic melt-jet breakup simulations[END_REF] , ternary fluid [START_REF] Yu | A versatile lattice Boltzmann model for immiscible ternary fluid flows[END_REF] , drop impact on a liquid film [START_REF] Inamuro | Validation of an improved lattice Boltzmann method for incompressible two-phase flows[END_REF] , flow with surfactant [START_REF] Mukherjee | A lattice boltzmann approach to surfactant-laden emulsions[END_REF] , direct-writing printing [START_REF] Monteferrante | Lattice Boltzmann multicomponent model for direct-writing printing[END_REF] and also widely in porous flow [START_REF] Liu | Multiphase lattice boltzmann simulations for porous media applications[END_REF] . HCZ method allows to simulate a large range of flows at both large density ratios and large Reynolds numbers [START_REF] Mitchell | Development of a three-dimensional phase-field lattice boltzmann method for the study of immicible fluids at high density ratio[END_REF] , while other methods are limited to moderate density ratios and / or moderate Reynolds numbers.

Despite the attractiveness of this last method, it takes place in an incompressible framework. The need to account for compressibility is of importance for several two-phase configurations. A typical application of the present work is liquid injection, where cavitation occurs [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF] and atomization may be impacted by acoustics [52][START_REF] Baillot | Behaviour of an air-assisted jet submitted to a transverse high-frequency acoustic field[END_REF][START_REF] Qi | Interfacial destabilization and atomization driven by surface acoustic waves[END_REF][START_REF] Apeloig | Liquid-fuel behavior in an aeronautical injector submitted to thermoacoustic instabilities[END_REF][START_REF] Lo Schiavo | Effects of liquid fuel/wall interaction on thermoacoustic instabilities in swirling spray flames[END_REF][START_REF] Christou | Influence of an oscillating airflow on the prefilming airblast atomization process[END_REF] . For such problems, other methods than HCZ must then be investigated.

Despite the complexity of obtaining equivalent macroscopic equations [START_REF] Reis | Lattice Boltzmann model for simulating immiscible two-phase flows[END_REF][START_REF] Liu | Three dimensionnal lattice boltzmann model for immiscible two phase flow simulations[END_REF][START_REF] Subhedar | Interface tracking characteristics of color-gradient lattice boltzmann model for immiscible fluids[END_REF] , we decided here to revisit the color gradient method, for its simplicity and numerical efficiency [START_REF] Leclaire | Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio[END_REF] . In the present work, a reformulation of the method is proposed. This new formulation is mathematically equivalent to the classical one, but is numerically more efficient. In particular, it is adapted to an arbitrary Equation Of State (EOS), and a new physical interpretation of the method is proposed. Using another approach than the one proposed by Subhedar [START_REF] Subhedar | Interface tracking characteristics of color-gradient lattice boltzmann model for immiscible fluids[END_REF] , the equivalent macroscopic equation associated with the recoloration step of the algorithmaccounting for phase segregation -is proposed. It is shown that the recoloration step allows to solve an advection-diffusion equation. Finally those analyses highlight a temporal spurious term, which can be corrected by a new correction term, which significantly improves numerical stability, thus allowing to tackle density ratios as high as 1000.

This paper is organized as follows: governing equations and the considered isothermal thermodynamic closure are presented in section II. The original Color-Gradient algorithm is recalled in III, in which our revised Color-Gradient algorithm is also presented. Section IV proposes novel physical insights for the proposed algorithm. Relation between spurious currents and isotropy conditions are discussed, a physical interpretation for the recoloration step is provided, and accurate corrections to predict a sheared interface are detailed. Finally, results are provided in section V and conclusions are drawn in section VI.

II. TWO-PHASE FLOW GOVERNING EQUATIONS

Isothermal two-phase flows with density gradient and sheared interface are described with the governing equations and thermodynamic closure detailed in this section.

A. Conservation equations

Mass and momentum conservation equations read

∂ t ρ + ∂ α ρu α = 0 , (1) 
∂ t ρu α + ∂ β ρu α u β + δ αβ p + p σ αβ -T αβ = F α , (2) 
where α and β denote spatial directions, ∂ α and ∂ β the partial derivative in α and β directions, ρ the two phases's density, u α the velocity, p the thermodynamic pressure, δ αβ the Kronecker function, p σ αβ a pressure tensor representing surface tension, T αβ the stress tensor and F α being a volumic force. It must be noted that the Einstein's summation formalism is used in this work. The stress tensor reads:

T αβ = ρν (∂ β u α + ∂ α u β ) + ρ(ν b -ν) 2 D (∂ γ u γ ) δ αβ , (3) 
ν being the kinetic shear viscosity, ν b the kinetic bulk viscosity and D the spatial dimension of the system. Once the total density is known, the knowledge of the composition is required to close the system. Several field can be calculated in order to close the system, such as one of the phase's density (ρ k stands for the k th phase density), the density ratio of the k th phase, noted Y k or any field useful to discriminate the two phases. In this work, the additional conservation equation is accounted for through the conservation of a phase field parameter φ defined as

φ = ρ 1 -ρ 2 ρ = Y 1 -Y 2 , (4) 
By definition, this equation is equal to 1 when located in a pure phase 1 environment and to -1 in a pure phase 2 environment. The equation for the phase field parameter φ is defined in Sec. IV B.

The presence of one single momentum equation Eq. ( 2) implies a mechanical equilibrium assumption: the two phases are assumed to be in velocity and pressure equilibrium:

     u 1 = u 2 p 1 = p 2 (5) 
The surface tension term p σ αβ was proposed by Gueyffier and Zaleski 62 and introduced in the LBM framework by Reis and Phillips [START_REF] Reis | Lattice Boltzmann model for simulating immiscible two-phase flows[END_REF] . It is given by:

p σ αβ = σ[δ αβ-nαn β ]δ interf ace (6) 
with n being an estimation of the normal to the interface, and δ interf ace is a function that allows to locate the interface. They are given by:

n α = ∂ α φ | ∇φ| δ interf ace = | ∇φ| 2 (7) 
Note that the phase field used to solve the system, and the phase field used to calculate the surface tension term don't have to be the same. It is notably the case in the work of Saurel and Perigaud 63 who uses the volume fraction or in the work of Ba et al. 64 that uses a modified version of φ. To the authors knowledge, the impact of the used phase field on the capability to predict surface tension haven't been investigated. For the sake of simplicity, the same phase field φ is then used for the surface tension operator and for solving the composition of the density. In this model, surface tension is modeled as a pressure tensor (see Eq. ( 2)).

The fact that surface tension could take the form of stress tensor was first demonstrated by Korteweg 6 , and the current model, referred to as CSS (Continuous Surface Stress), was proposed by Gueyffier and Zaleski 62 . It relies on the same geometrical background as the CSF (Continuous Surface Force) model proposed by Brackbill et al. [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] , i.e. both of them are equivalent to a volumic force proportional to an estimation of the curvature.

B. Thermodynamic closure

To close the above system, a thermodynamic closure is required, which can be written generically as:

p = f (ρ, Y 1 ) = g(ρ, φ). (8) 
Note that the equation of state (EOS) necessarily differs from p = ρc 2 s (c s being the speed of sound), classically used in athermal Lattice-Boltzmann modelling [START_REF] Krüger | The Lattice Boltzmann Method, Principles and Practice[END_REF] . In the classical color gradient formulation [START_REF] Leclaire | Isotropic color gradient for simulating very high-density ratios with a two-phase flow lattice Boltzmann model[END_REF] , the closure relation reads:

p = ρY 1 c 2 1 + ρY 2 c 2 2 , (9) 
with c 1 and c 2 are the speed of sound in each phase, chosen to ensure mechanical equilibrium.

This equation of state proposed by Grunau et al. [START_REF] Grunau | A lattice Boltzman model for multiphase fluid flows[END_REF] presents a major drawback for high density ratios, as it implies

c 2 2 c 2 1 = ρ 1 ρ 2 . ( 10 
)
This drawback can easily be illustrated considering the liquid-air system: for a density ratio of 1000, the air sound speed c s,2 = 347m.s -1 would imply a liquid sound speed of c s,2 = 11m.s -1 . In such conditions, any liquid flow speed above 3m.s -1 would correspond to a local Mach number over 0.3, and therefore create non-physical compressible effects.

To circumvent this limitation, an Equation Of State (EOS) is used, inspired from the Stiffened Gas formulation 69 p = ρ(c p -c v ).T -p ∞ for each phase, where p ∞ accounts for the attractive forces in the liquid. Assuming an isothermal fluid, the equation of state in each phase k only differs from the classical athermal EOS used in LBM by p ∞,k , as:

p k = ρ k c 2 k -p ∞,k . (11) 
Note that p ∞,k , c k are constants of the flows. Finally, a mixture equation of state for the two-phase flow by assuming mechanical equilibrium [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF][START_REF] Boivin | A thermodynamic closure for the simulation of multiphase reactive flows[END_REF] , is derived:

p = p k , ∀k, (12) 
yielding

1 ρ = Y 1 ρ 1 + Y 2 ρ 2 = Y 1 c 2 1 p + p ∞,1 + Y 2 c 2 2 p + p ∞,2 , (13) 
which can be inverted to provide explicitly the expression required in Eq. ( 8), e.g.

p = 1 2 ρĉ 2 -p ∞,1 -p ∞,2 + (p ∞,2 -p ∞,1 + ρc 2 ) 2 + ρ 2 (1 -φ 2 )c 2 1 c 2 2 ( 14 
)
where ĉ2 =

c 2 1 +c 2 2 2 + φ c 2 1 -c 2 2 2 and c2 = c 2 1 -c 2 2 2 + φ c 2 1 +c 2 2
2 . Derivation of Eqs. (13, 14) and proof of the pressure's positivity can be found in the literature [START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF] in the more general non-isothermal case.

Note nonetheless that the present work is compatible with any other EOS which can be written under the generic form Eq. ( 8).

III. LATTICE-BOLTZMANN MODEL

For the sake of simplicity, the presentation of the Lattice-Boltzmann model is performed in 2D, based on the classical D2Q9 nearest-neighbor lattice [START_REF] Krüger | The Lattice Boltzmann Method, Principles and Practice[END_REF] . Discrete velocities are introduced as:

ξ i = ∆x ∆t          (0, 0) i = 0 (±1, 0) or (0, ±1) i = 1, 3, 5, 7 (±1, ±1) or (±1, ∓1) i = 2, 4, 6, 8 , (15) 
where ∆x and ∆t are respectively the space and time discretization. To each discrete velocity is assigned a weight 66 ω i (lattice-dependent). A characteristic lattice velocity c s , related to the speed of sound [START_REF] Krüger | The Lattice Boltzmann Method, Principles and Practice[END_REF] , is defined as:

c s = ∆x √ 3∆t . (16) 

A. Color gradient method

The color-gradient method is the first Lattice Boltzmann method introduced for twophase flows. Initially derived in the Lattice Gas Automata framework [START_REF] Rothman | Immiscible Cellular-Automaton Fluids[END_REF] , it has been successively transported to a LBM framework by Gustensen [START_REF] Gustensen | Lattice Boltzmann model of immiscible fluids[END_REF] , the current recoloration operator was proposed by Latva-Kokko 72 , the surface tension operator by Reis and Phillips 58 , and successive improvements and generalization to more than 2 species were proposed by Leclaire 67,[START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF][START_REF] Leclaire | Unsteady immiscible multiphase flow validation of a multiplerelaxation-time lattice boltzmann method[END_REF][75] . The fluid is represented by two probability density functions (f

(1) i , f (2) 
i ) related to each fluid mass volume (ρ 1 , ρ 2 ) as

ρ k = i f (k) i . (17) 
It should be underlined, that this formalism is only proposed for discrete density functions, to the author knowledge, it cannot be transposed to continuous equations. For this model, mechanical equilibrium is assumed (Eqs. ( 5)), and the mixture's momentum reads

ρu α = i k ξ α,i f (k) i (18) 
Each population (f

(1) i , f (2) 
i ) is calculated via a three-step algorithm:

Step 1: collision is achieved via

f (k), * i = f (k) i + Ω (1),k i + Ω (2),k i , (19) 
where Ω

(1),k i is the collision operator, relaxing the population towards the Maxwell-Boltzmann equilibrium distribution function f (k,eq) i

.

For the BGK (Bhatnagar-Gross-Krook) single relaxation time model [START_REF] Bhatnagar | A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[END_REF] , the collision term reads

Ω (1),k i = - 1 τ f (k) i -f (k,eq) i , (20) 
where the dimensionless relaxation time τ is related to the fluid viscosity through

τ = ν ∆tc 2 s + 1 2 (21) 
In Eq. (19), Ω

,k i is a second collision term which accounts for surface tension, further detailed in Eq. (45).

Step 2: recoloration. The recoloration step -giving its name to the method -is applied to the total population

f i = f (1) i + f (2) 
i , taking the form

f (k), * * i = Y k f * i ± Ω (3) i ( 22 
)
where Y k is the mass fraction of the k th phase, and Ω

i is a third collision function accounting for the fluid segregation.

Step 3: streaming. Finally, each population is streamed, accounting for the convective part of the macroscopic equations 66 :

f (k) i (x + ξ i ∆t, t + ∆t) = f (k), * * i (x, t). (23) 
In this formulation, the first two steps (collision and recoloration) are executed twice: once per population. Moreover, two equilibrium functions (f

(1,eq) i , f (2,eq) i 
) have to be computed.

In practice, the same collision model is applied to both phase and the model can be recast as follows, thereby limiting the number of operations per time-step.

B. Revised color-gradient algorithm

To minimize the number of operations per time step, let us consider

f i = f (1) i + f (2) i , (24) 
corresponding to the total density ρ = ρ 1 + ρ 2 , and

g i = f (1) i -f (2) i , (25) 
related to the phase field function φ defined in Eq. ( 4) through

ρφ = i g i . (26) 
The three steps described in Sec. III A can then be expressed as follows.

Step 1: collision. is recast as:

f * i = f eq i + Ω (1) i + Ω (2) i + 1 2 S i , (27) 
where Ω

(1) i is the collision operator, detailed in Eq. (20), Ω

(2) i is the surface tension operator which will be detailled later (Eq. ( 45)), and S i is a forcing term, also detailed later (Eq. ( 51)).

Step 2: recoloration.

The recoloration step writes now:

g * i = φf * i + Ω (3) i (28) 
with Ω

i the collision operator accounting for phase segregation, further detailed in Eq (48).

Step 3: streaming. Both f i and g i populations are then streamed, through

f i (x + ξ α,i ∆t, t + ∆t) = f * i (x, t) (29) 
g i (x + ξ α,i ∆t, t + ∆t) = g * i (x, t) (30) 
In the subsequent subsections, the proposed equilibrium function, the collision terms, and the force term S i for the revised color gradient method are given.

C. Equilibrium part

The equilibrium function considered here reads:

f eq i = ρw i H 0,i + u α H α,i c 2 s + u α u β H αβ,i 2c 4 s + (p -ρc 2 s ) E i + u α w i H ββα,i 2c 6 s , (31) 
where the first terms correspond to the classical formulation [START_REF] Krüger | The Lattice Boltzmann Method, Principles and Practice[END_REF] , and the last one allows to consider an arbitrary EOS (e.g. when p = ρc 2 s ). In Eq. ( 31), H α,i are the Hermite polynomials, provided in Appendix A. In this work, the moment m * associated to the Hermite polynomial H * is defined by

m * = i H * ,i f i . (32) 
Similarly, the moment of the equilibrium function associated with the Hermite polynomial H * is noted m eq * . The equilibrium function of (Eq. ( 31)), is designed so that its low-order moments follow:

m eq 0 = ρ (33) 
m eq α = ρu α (34) 
The second-order moment is obtained by pointing out that the macroscopic equation corresponding to the equilibrium part follows 77 :

∂ t m eq α + ∂ β m eq αβ + m 0 c 2 s δ αβ = F α + O(∆t), (35) 
corresponding to the Eulerian part of the momentum equation Eq. ( 2):

∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) δ αβ = 0. ( 36 
)
Comparing the two previous equations, the second order moment of the equilibrium has to be:

m eq αβ = ρu α u β + (p -ρc 2 s )δ αβ (37) 
The definition of the third moment depends on the considered numerical scheme. In a Lattice Boltzmann framework, the number of discrete velocities is directly related to the number of moments that are recovered correctly 66 . For instance, not all three order moments (i.e. the moments linked to the third degree Hermite's polynomial:

H xxx , H xxy , H xyy and
H yyy in D2Q9) can be correctly recovered 66 :

i w i H xxx,i f eq i = i w i H yyy,i f eq i = 0 for all f eq
i . The consequence is that, while the third moments of f eq i should be

m eq αβγ = (p -ρc 2 s )(u α δ βγ + u β δ αγ + u γ δ αβ ), (38) 
it actually reads:

     m eq ααβ = (p -ρc 2 s )u β α = β m eq ααα = 0 otherwise (39) 
This problem has already been discussed by Wen et al. [START_REF] Wen | Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows[END_REF] , and the proposed solution is to adopt the forcing strategy proposed by Li et al. [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] for the color-gradient framework, leading to the forcing term S Sp given in Eq. ( 53).

In the equilibrium distribution function Eq. (31), a new isotropic operator E i is introduced as:

E i = w i H xx,i + H yy,i 2c 4 s - H xxyy 4c 6 s . (40) 
The derivation and discussion of this operator is addressed in Sec. IV A.

Note that for the D2Q9 lattice 66 , E i =

w i -δ i,0 c 2 s
, showing that this formalism reduces to the following, classically found in the literature [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF][START_REF] Semprebon | Ternary free-energy lattice boltzmann model with tunable surface tensions and contact angles[END_REF] despite being more related to the free-energy community:

     f eq i = w i p c 2 s + ρ u α H α,i c 2 s + u α u β H α,i 2c 4 s + (p -ρc 2 s )u α H ββα 2c 6 s i = 1..8 f eq 0 = ρ -1..8 f eq i (41) 

D. Collision step: Ω (1) i

In LB methods, the collision term Ω

(1) i (Eq. ( 19)) relaxes the population towards the so-called equilibrium distribution function Eq. (31).

In practice, the BGK collision operator 76 is quite limited in terms of stability 82 . To enhance stability, a regularized collision operator [START_REF] Malaspinas | Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularisation[END_REF] is used in this study. The effect of the bulk viscosity is also accounted for following the method by Renard et al [START_REF] Renard | Improved compressible hybrid lattice boltzmann method on standard lattice for subsonic and supersonic flows[END_REF] .

The proposed collision term reads

Ω (1) i = 1 - 1 τ ν f r,neq xy,i + f r,neq ν,i + 1 - 1 τ b f r,neq b,i (42) 
where f r,neq ν,i and f r,neq b,i are the projections of the non-equilibrium counterpart of the population function on respectively the H ν and H b polynomials:

f r,neq k,i = H k,i c 4 s i f i -f eq i + 1 2 S i H k,i , k = ν, b, xy. ( 43 
)
where S i is a source term detailled afterward that introduces volumic forces, surface tension and correction terms. The dimensionless relaxation times (τ ν , τ b ) depend on the kinematic viscosity ν and bulk viscosity ν b as:

τ ν = pν ρ∆t + 1 2 τ b = pν b ρ∆t + 1 2 (44) 
E. Collision step: Ω

The collision term Ω

(2) i introduces surface tension to the model:

Ω (2) i = σw i 4| C|c 4 s 2C x C y H xy,i + (C 2 x -C 2 y )H ν,i τ ν - (C 2 x + C 2 y )H b,i τ b ( 45 
)
This operator is a reformulation of the one proposed by Liu et al. [START_REF] Liu | Three dimensionnal lattice boltzmann model for immiscible two phase flow simulations[END_REF] , taking into account the different relaxation times for the moments of H ν and H b . C refers to the colour gradient that gave the method's name and σ is the surface tension (kg.s -2 ) . The colour gradient can be seen as an approximation of the spatial gradient of the phase field as showed by Leclaire et al. [START_REF] Leclaire | Isotropic color gradient for simulating very high-density ratios with a two-phase flow lattice Boltzmann model[END_REF] . Among the discretization scheme proposed in [START_REF] Leclaire | Isotropic color gradient for simulating very high-density ratios with a two-phase flow lattice Boltzmann model[END_REF] , we chose the one providing the highest level of isotropy while involving the first neighbours only:

C α (x, t) = i w i ξ α,i φ(x + ξ α,i ∆t, t) c 2 s = ∆t∂ α φ + O(∆t 2 ) (46) 
When τ ν = τ b = τ , this formulation is equivalent to the one proposed by Reis & Phillips [START_REF] Reis | Lattice Boltzmann model for simulating immiscible two-phase flows[END_REF] .

where the operator Ω

(2) i is designed in order to guarantee

i ξ α,i ξ β,i Ω (2) i = p σ αβ τ (47) 
with p σ αβ the pressure tensor introducing surface tension described in II F. Recoloration step: Ω

(3) i

The recoloration step applies to the phase-field population g i (Eq. ( 28)) and reads

Ω (3) i = w i p(1 -φ 2 ) 2W ξ α,i ∂ α φ c 2 s | ∇φ| (48) 
where W has the dimension of a length (m) and corresponds to the characteristic width of the interface (see Sec. IV B). This term was originally proposed by Latva-Kokko 72 inspired by the work of D'Ortona [START_REF] Ortona | Two-color nonlinear boltzmann cellular automate: Surface tension and wetting[END_REF] and later improved by Halliday et al. [START_REF] Halliday | Lattice boltzmann algorithm for continuum multicomponent flow[END_REF] . The present formalism is strictly equivalent to the one proposed by Halliday et al. [START_REF] Halliday | Lattice boltzmann algorithm for continuum multicomponent flow[END_REF] , where the source term 85 is given by:

Ω (3),Hal i = β ρ 1 ρ 2 ρ 2 f eq i (u = 0) ∂ α φ | ∇φ| ξ α,i (49) 
with β a constant, f eq i (u = 0) the equilibrium function given in (31) with all the velocity terms equal to zero. Taking into consideration the fact that

E i = w i -δ i,0 c 2 s , then f eq i (u = 0)ξ α,i = w i pξ α,i c 2 s
. By definition of φ, it can be shown that:

ρ 1 ρ 2 ρ 2 = 1-φ 2 4
, then Halliday's term reduces to:

Ω (3),Hal i = βw i p(1 -φ 2 ) 4 ξ α,i ∂ α φ c 2 s | ∇φ| (50) 
Then it comes that both formulations are equivalent for β = 2 W .

G. Forcing term S i

In this work, the forcing term consists of three contributions

S i = S F,i + S Sp,i + S t,i . (51) 
S F is a source term accounting for potential volume forces, e.g. gravity. Given a force F α ,

S F,i = w i F α H α,i c 2 s + (u α F β + u β F α ) H αβ,i 2c 4 s . ( 52 
)
S Sp is a corrective term which corrects the error stemming from the third order moment, improperly resolved on the D2Q9 lattice [START_REF] Wen | Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows[END_REF][START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF][START_REF] Guo | Improved standard thermal lattice boltzmann model with hybrid recursive regularization for compressible laminar and turbulent flows[END_REF] :

S Sp,i = w i 3 ∂ y [(p -ρc 2 s )u y ] -∂ x [(p -ρc 2 s )u x ] 2c 4 s H ν,i - ∂ y [(p -ρc 2 s )u y ] + ∂ x [(p -ρc 2 s )u x ] 2c 4 s H b,i (53) 
This expression corresponds to the correction introduced by Wen et al. [START_REF] Wen | Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows[END_REF] recast in the present formalism. The derivative terms are calculated with the scheme proposed in Eq. ( 46).

Finally, a novel temporal correction term is proposed in this work:

S t,i = p(x, t) -p(x, t -∆t) + (ρ(x, t) -ρ(x, t -∆t))c 2 s E i . ( 54 
)
The derivation of Eqs. (53, 54) is provided in Sec. IV C.

H. Units and dimension

All values in the present paper are physical units, even though dimensionless Lattice-Boltzmann units are manipulated in the algorithm [START_REF] Krüger | The Lattice Boltzmann Method, Principles and Practice[END_REF] . Physical and Lattice-Boltzmann units are linked through a characteristic density (ρ ref ), a characteristic speed and a characteristic length. The authors followed the common practice 66 in LBM to set the spatial step ∆x as characteristic length, and the ratio ∆x ∆t as characteristic velocity (i.e. c s = 1/ √ 3 in Lattice Boltzmann Units (l.b.u.)). The characteristic density is chosen so that the heaviest fluid density is unity.

IV. ALGORITHM JUSTIFICATION AND DISCUSSION

A. Isotropic operator for arbitrary equation of state

The choice of operator E i is of paramount importance to regulate spurious current [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] .

In order to satisfy the moments of the equilibrium function given in Eqs. (33, 34, 37), E i must only have non-zero second order moments in Hermite polynomial. :

i H αβ,i E i = 0 ( 55 
) i H x,i E i = i H y,i E i = i H xy,i E i = 0 ( 56 
) i H xx,i E i = i H yy,i E i = 1 ( 57 
) i H xxy,i E i = i H yyx,i E i = 0 (58) 
For the sake of simplicity, let us assume τ ν = τ b in the remainder of this section.

At this point, our system has only 8 moments for 9 unknownsns weights. It can be completed by the moment of H xxyy . This moment must be chosen wisely and a random choice can lead to highly unstable behaviour, even for simple case at low density ratio. H xxyy being a high degree polynomial, its impact on the macroscopic equation cannot be determined using the Chapmann-Enskog development, but can be found via a Taylor expansion [START_REF] Farag | Consistency study of lattice-boltzmann schemes macroscopic limit[END_REF][START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] .

The complete expansion, summarized in Appendix B indicates that the moments of the equilibrium functions are solution of the following equation:

∂ t m eq α + ∂ β m eq αβ + m 0 c 2 s δ αβ = T αβ + ∆t 2 ∂ β (O(∂ t T αβ ) + O(∂ γ Π (1) αβ ) + O(∆t 3 ) (59) 
with

Π (1)
αβ the third moment of the non-equilibrium function. Its formulation is given by:

Π (1) αβγ = ∂ t m eq αβγ + ∂ µ m eq αβγµ + m eq αβ δ γµ + m eq βγ δ αµ + m eq αγ δ βµ c 2 s ( 60 
)
It comes that the ∆t 2 error induced by the scheme has two components, one proportional to the time derivative of the stress tensor, and one proportional to Π

αβ . It is expressed as a function of the moments of the equilibrium function and the equilibrium function can be decomposed as follow:

f eq i = f 0 i + (p -ρc 2 
s )E i , then all the moments of f eq i can also be decomposed in the same manner:

m eq * = m O * + i H * E i (p -ρc 2 s ) From this last decomposition, if note Er the component of Π (1)
αβγ coming from the E i counterpart of the equilibrium function, it comes:

Er = ∂ t i H αβγ,i E i (p -ρc 2 s )+ ∂ µ i H αβγµ,i E i + i [H αβ,i δ γµ + H βγ,i δ αµ + H αγ,i δ βµ ] c 2 s E i (p -ρc 2 s ) (61) 
Using Eqs. (57 58), the expression of the error can be simplified. It comes than the error term can be cancelled when:

i H αβγµ,i E i = -(δ αβ δ γµ + δ βγ δ αµ + δ αγ δ βµ ) c 2 s (62)
or, equivalently on the D2Q9 lattice

i H xxyy,i E i = -c 2 s ( 63 
)
The system being closed, we finally have the formula given earlier ( 40):

E i = w i H xx,i + H yy,i 2c 4 s - H xxyy 4c 6 s (64)
The condition proposed in Eq. ( 62) happens to also be an isotropic condition as already discussed by Burgin 88 . A more general discussion about isotropy is proposed by Suiker [START_REF] Suiker | Application of higher-order tensor theory for formulating enhanced continuum models[END_REF] , and the issue was largely tackled at the time of Lattice Gas Automata by Wolfram [START_REF] Wolfram | Cellular automaton fluids 1: Basic theory[END_REF] . Subhedar 60 also discussed the importance of isotropy for the recoloration operator.

Illustration

The efficiency of this isotropic formulation Eq. ( 63) can be evaluated through the testcase of a static droplet. In a squared box with periodical boundary conditions, a spherical droplet of density ρ 1 = 10kg.m -3 is set into an atmosphere of a lower densityt fluid (ρ 2 = 1kg.m -3 ).

The surface tension is set to 0, and the velocity field is initiated at 0 in all the domain.

Giving the absence of phenomena able to animate the fluids, the flow is supposed to stay still, which makes it ideal to observe the spurious currents induced by the numerical scheme.

The other parameters of the case are given afterward. The space step is ∆x = 0.001m, the number of points in the x and y directions are N x = N y = 128 and the time step is ∆t = 1, 6638.10 -6 s. The radius of the droplet is a multiple of the grid size: R = 20∆x and so does the width of the interface W = 2∆x (as a reminder, W is the parameter of the collision term in the recoloration operation Eq (48)). The shear viscosity of the fluids are set equal, and the bulk viscosity is equal to the shear viscosity:

ν 1 = ν 2 = ν b,1 = ν b,2 = 0.001m 2 .s -1 .
The parameters of the equation of states (Eq. ( 11)

) are c 1 = c 2 = 347m.s -1 , p ∞,2 = 0 and p ∞,1 is set in order to ensure mechanical equilibrium p 1 = p 2 = 120409P a.
Two cases are compared, one with E i defined with i H xxyy E i = 0, and a second one satisfying the isotropic condition given in Eq. (63). In Fig. 1, the spurious currents induced by the two methods are compared after 2000 iterations. The location of the interface is given by the line φ = 0, and the velocity field is represented with arrows, whose length has a scale of 1m.s -1 . In the non-isotropic case, it can be seen that strong spurious currents appear in the interface, reaching a maximum value of velocity of 53m.s -1 . These spurious currents are strong enough to deform the interface shape. Around 4000 iterations, numerical instabilities led to the failure of the computation. In the isotropic case, the spurious currents are not visible (the maximum value of spurious velocity is 1.210 -3 m.s -1 ), and the initial shape of the droplet is preserved. This illustrates the capability of this isotropic operator to reduce drastically the spurious currents. Note that the value for the non-isotropic operator 

B. Recoloration and capillary effects

Through a Taylor expansion inspired by Dubois 87 (Appendix D), the macroscopic equation solved by the phase field calculated through the recoloration algorithm is obtained as:

∂ t ρφ + ∂ α (ρφu α ) = ∂ α p∆t 2 ∂ α φ - 1 -φ 2 W n α + O(∆t 2 ), (65) 
The left side of the above equation is the Eulerian derivative, the right side related to the interface is itself composed of two terms, one diffusive term: ∂ α W n α . The two effects are antagonist and they enventually compensate each other, meaning that the width of the interface can be controlled. Actually, in the case of a steady flat interface in a quiescent flow, it can be shown that the interface stabilizes in a hyperbolic tangent profile:

φ = tanh x -x ǫ W (66) 
with x ǫ the location of the interface φ = 0. Since tanh(2.65) ≈ 0.99 the terminal thickness of the interface can be approximated at 5W . It is interesting to notice that the anti-diffusion force is simulated through the third collision term Ω [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF] , while the diffusive term is induced by the recoloration step. It shows that the recoloration scheme allows to solve an advectiondiffusion type equation in a LBM framework in an efficient way. A drawback of this method is that the diffusion rate (i.e., the p∆t 2 factor) is implied by the numerical scheme and then cannot be set freely. It is interesting to compare the current equation ( 65) to the conservative Allen-Cahn equation proposed by Chiu & Lin 43 expressed by:

∂ t φ + ∂ α (φu α ) = ∂ α M ∂ α φ - 1 -φ 2 W n α (67) 
M being a constant named the mobility factor which has the dimension of a diffusion term (m 2 .s -1 ). The right sides of both equations are similar, which confirms that the current equation is conservative in mass [START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF] , supports the mass conservation property of the method already underlined by D'ortona [START_REF] Ortona | Two-color nonlinear boltzmann cellular automate: Surface tension and wetting[END_REF] and Latva-Kokko [START_REF] Latva-Kokko | Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids[END_REF] . In the density match case, (ρ 1 = ρ 2 ) the current equation Eq (65) becomes equivalent to the Allen-Cahn equation with the mobility given by:

M = p∆x 2ρc 2 s . (68) 

Illustration

Let us now conduct a study in the density matched case to highlight the influence of the mobility parameter M , even if it cannot be defined in the general case. The influence of the mobility factor is investigated through the case of a flat interface. First of all, a convergence analysis is held to recover Eq. ( 65), and then the impact of the mobility on the dynamic of the interface is investigated.

The flat interface case is described as follow. The domain is a rectangular box with only few points (N x = 5) in the short side, N y = L ∆x in the long side. The physical length of the domain is constant for all cases: L = 1m, and the space step ∆x is used to set the mobility factor M though Eq. ( 68). The boundary conditions are set periodic for the long side (normal to the x direction) and to wall conditions for the short side (along the x direction). Two phases are initialized in two equal volume of space such as:

     φ(y, t = 0) = -1 0 < y < L 2 φ(y, t = 0) = 1 L 2 < y < L (69) 
Initially infinitely sharp. Due to the diffusive effect of the method, the interface widens under the effect of diffusion until it reaches its terminal thickness. First, the grid convergence is investigated. The characteristic length of the interface is set to W = 0.1m. As seen in Eq. ( 66), the solution at steady state should be a tangent hyperbolic profile. Then a L2

error can be defined as:

L2 = N y j (φ(j) -tanh j∆x-yǫ W ) 2 N y (70) 
It was stated in Eq. ( 65) that φ is solution of the Allen-Cahn equation with an error proportional to ∆t 2 which is itself proportional to ∆x 2 . This can be verified by plotting the L2-error in a log-log diagram as in Fig. 2. The L2 error follows nicely the expected tendency, which supports the theoretical result of Eq. (65). To study the dynamics on the interface, the same set up is used chosing W = 2.5∆x. As previously, the case is performed for different values of ∆x in order to compare the results with different values of the mobility factor M . Assuming that the profile of the interface at any time corresponds to a tangent hyperbolic profile: φ(x, t) = tanh( x-xǫ W (t) ), the value of W (t) can be determined at any time by proceeding through a least square algorithm. For clarity issues, W 0 now denotes the final value of the interface thickness. As the system only depends on W 0 and M , a non-dimensional time scale can be defined:

W W0 M =0.001m 2 s -1 M =0.005m 2 s -1 M =0.01m 2 s -1 M =0.05m 2 s -1 M =0.1m 2 s -1
τ int = W 2 0
2M . The evolution of the ratio W/W 0 is represented on Fig. (3) as a function of the dimensionless time: t/τ int . It can be seen that the different profiles of interface thickening nicely superimpose on each other, evidencing that the evolution of the interface is driven by τ int and W 0 . Thanks to this analysis, it can be seen that the interface reaches 99% of its final thickness around t = 5.6τ int . It was pointed out earlier than the mobility factor (and consequently the characteristic time of interface thickening) is imposed by the numerical scheme, which could result in thickening of the interface slower than expected. To answer that issue, it is interesting to write τ int as a function of the dimensionless interface final width W0 defined as W0 = W 0 ∆x :

τ int = W0 ρc 2 s ∆t p (71) 
In this equation it is straightforward that the characteristic time of thickening can be reduced by reducing the time step, i.e. by refining the mesh. It shows that the drawback that was highlighted earlier is actually not an issue for a fine enough mesh.

C. About the error term for a D2Q9 scheme

It has been known since the work of Holdych [START_REF] Holdych | An improved hydrodynamics formulation for multiphase flow lattice-boltzmann models[END_REF] , that when the EOS of state is such as p = ρc 2 s , an error appears in the stress tensor, leading to an equivalent momentum equation of the form (see derivation in Appendix C):

∂ t ρu α + ∂ β ρu α u β + pδ αβ + p σ αβ -T αβ = ∆t∂ β (Er α δ αβ ) + O(∆t 2 ) , (72) 
where the error term reads

Er α = -3(τ ν -1/2)∂ α (p -ρc 2 s )u α + 3 2 (τ ν -τ b ) ∂ γ (p -ρc 2 s )u γ recursivity + (τ b -1/2) ∂ t (p -ρc 2 s ) + ∂ γ (p -ρc 2 s )u γ conservativity , (73) 
The error Er α (C13) stems from two contributions:

• a lack of recursivity, pointed out by Malaspinas et al. [START_REF] Malaspinas | Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularisation[END_REF] ,

• and the fact that p is not a conservative variable (e.g.

∂ t p + ∂ α pu α = 0)
For implementation purposes, it is convenient to rewrite (C13) separating spatial and temporal derivatives as:

Er α = Er t + Er Sp (74) 
with

Er Sp -3(τ ν -1/2)∂ α (p -ρc 2 s )u α + 3 2 (τ ν -τ b ) ∂ γ (p -ρc 2 s )u γ +(τ b -1/2) ∂ γ (p -ρc 2 s )u γ 2 (75) 
Two possible cures to the spatial error Er Sp are proposed in the literature. Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] following the work of Che Sidick 92 proposed a modification of the equilibrium function that aims to correct the error term Er Sp in the form of a forcing term. The second solution is to heal the recursivity of the scheme as proposed in the work of Li et al [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] .

The first solution reportedly leads to discontinuity problems across sheared interfaces 78 , as will be shown in the illustration hereafter. For this reason, the strategy by Li et al. [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] is prefered, and S Sp given in Eq. ( 53) can be recovered from:

i H ν,i S Sp,i = 3 ∂ y (p -ρc 2 s )u y -∂ x (p -ρc 2 s )u x 2 (76) i H b,i S Sp,i = ∂ γ (p -ρc 2 s )u γ 2 . ( 77 
)
To the authors' knowledge, the second error term Er t has remained uncorrected up to date. This term has nonetheless a strong effect on the method stability, and can be recovered by enforcing:

i H b,i S t,i = ∂ t (p -ρc 2 s ), (78) 
or, equivalently, i S t,i H αβ,i = ∂ t (p -ρc 2 s )δ αβ . Since ∆t multiplies the error in Eq. ( 72), a first order approximation for the spatial derivative

i H b,i S t,i (x, t) = p(x, t + ∆t) -p(x, t) -c 2 s (ρ(x, t + ∆t) -ρ(x, t)) (79) 
is enough to recover a second-order accuracy in time, leading to the expression for S t provided in Eq. ( 54).

Illustration

The The boundaries normal to the x-axis are set as walls, and the boundaries normal to the y-axis are periodic. Finally, a constant volumic force, which simulates a constant pressure gradient G, is applied. The expression of the force is given by F = G e x . The norm of this force is given by G = 9.81kg.m -1 .s -2 An illustration is proposed in Fig. 4. Other usefull parameters that were used for the testcase are given afterward. The spatial step is set to ∆x = 0.001m.

The density ratio is set to 100, with densities of ρ 1,0 = 1kg.m -3 and ρ 2,O = 0.01kg.m -3 , the kinematic viscosity of the fluids are identical: ν 1 = ν 2 = 1.666667m 2 .s -1 , and the second viscosity is set equal to the shear viscosity: ν b,1 = ν b,2 = ν 1 . The speed of sound in both fluids is identical and equal to the speed of sound in air at ambient temperature, moreover The lighter fluid is supposed to have no coherent forces, then p ∞,2 = 0, and p ∞,1 is chosen to guarantee mechanical equilibrium between the phases, i.e., p ∞,1 = (ρ 1,0 -ρ 2,0 )c 2 s . The surface tension is neglected σ = 0 which has no impact here, since the interfaces are planar in this Poiseuille flow. The interface thickness is set to W = 1.6∆x. The initial solution is implemented with a thick interface, i.e.:

φ(x, y, 0) = tanh - |y| -a W , (80) 
with W the interface thickness.

The analytical solution is known, a development is proposed by Huang and Lu [START_REF] Huang | Relative permeabilities and coupling effects in steady-state gasliquid flow in porous media: A lattice Boltzmann study[END_REF] . Then the simulated field obtained can be compared to the analytical solution. Results are proposed in Fig. 5 where the analytical solution is also reported. Two simulation are leaded. In the first one, referred as "model 1", Leclaire's scheme is implemented, i.e. S Sp = 0, S t = 0 and a correction term is added to the equilibrium function given in Eq. (31) f eq,(Leclaire) i = f eq i + Φ i with the expression of Φ given in Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] . In the second one, referred as "model 2", the present scheme is used. It is clearly visible that a non-physical velocity jump appears at the interface for the Leclaire's scheme, while the flow stays continuous across the interface with the proposed scheme.

V. VALIDATION AND RESULTS

A. Laplace test

One of the fundamental capability intended from a multiphase solver is the ability to accurately simulate surface tension. This behavior can be evaluated through the Laplace In a 2D framework (which comes to simulate an infinite cylinder), the pressure jump is given by the following form of the Laplace law

p 1 -p 2 = Γ r (81) 
r being the cylinder radius, p 1 the pressure outside the droplet/bubble, p 2 the pressure inside the droplet/bubble, Γ being the surface tension and r the radius of the cylinder. The test consists in comparing the value of given surface tension (in this case, the term σ in Eq. ( 45)), and the resulted pressure jump across the interface. This test was performed in a squared grid of size N x = 128, N y = 128, for a space step of ∆x = 0.0001m. In this box, a bubble of radius r taking one value in the range of (10, 15, 20, 25) The test is initialized by setting:

φ(x, y, 0) = -tanh (x -x 0 ) 2 + (y -y 0 ) 2 ) -r W 0 (82) 
W 0 = 1.3∆x being the initial interface thickness and (x 0 , y 0 ) the coordinates of the center of the box. The other parameters of the simulation are:

c 1 = c 2 = c s = 347m.s -1 , W = 1.6∆x, ν 1 = ν 2 = ν b,1 = ν b,2 = 0.001m 2 .s -1 .
The results of these multiple tests are proposed in Fig. 6. It can be seen that the relationship of proportionality between the pressure jump and ∆x/r is nicely recovered for a large range of density ratio, even as high as 1000. The accuracy of the pressure jump prediction is satisfying in most cases. Defining the relative error by:

E = 100 |σ exp -σ| σ σ exp = (p 1 -p 2 )r (83) 
E is found systematically under 2% and can be as low as 0.007% for density ratio of 4, 10 and 100. For a density ratio of 1000 the error increases between 7% and 8% for the case where the radius is r = 10∆x, and higher for surface tension, and remain reasonable for the other cases. The values for the relative error are given in Table I. 

B. Oscillating droplet

If the previous test case allowed to evaluate the capability of the model to simulate surface tension in a static case, a dynamic case is now evaluated. The case of an ellipsoidal oscillating bubble is chosen. As in the previous case a denser phase 1 is put into a quiescent atmosphere composed of phase 2. The final shape of this droplet must be spherical. As the droplet is not initially in its equilibrium shape, surface tension initiates the contraction of the bubble to its final shape, but due to its own inertia, the bubble tends to oscillate around the spherical shape until viscous effects degrade the interface motion. The a 

T theo = 2π (ρ 1 + ρ 2 )r 3 6Γ ( 84 
)
The case is described as follows: in a squared box (N x = N y = 128), an ellipsoidal droplet is initialized in a quiescent atmosphere. The initial profile is given by: φ(x, y, 0) = -tanh

(x-x 0 ) 2 a 2 + (y-y 0 ) 2 b 2 -R W 0 ( 85 
)
where a and b are the semi-axis length of the ellipsoid, given by a = 3 2 , b = 1/a, W 0 = 1.1∆x is the initial interface width. R is the radius of the disc with the same area of the ellipse (i.e., the area of the ellipse is πR 2 ). The other parameters are: ∆x = 0.0001m

ν 1 = ν 2 = ν b,1 = ν b,2 = 0.0002m 2 s -1 , W = 1.6∆x, ρ 2 = 1kg.m -3 , c 1 = c 2 = 347m.s -1 .
All boundaries are periodic. An illustration of the setup is proposed Fig. 7.

As explained by Rayleigh [START_REF] Rayleigh | On The Instability Of Jets[END_REF] , the phenomenon of the oscillating droplet consists in a periodic transfer of energy between the kinetic energy and the surface tension energy. When the droplet is totally deformed, the kinetic energy is minimum and the surface tension energy is minimum when the sphere is into a spherical shape. As a consequence, the period of the phenomenon can easily be measured by plotting the kinetic energy of the system. The total kinetic energy (K E ) of the droplet is calculated through:

K E = Nx,Ny i,j ρ 1 + φ 2 u 2 x + u 2 y 2 (86) 
An example of this function of time is given in Fig. 7. The period can then be determined by measuring the time between the extrema of this curve. From this measured period (noted T exp ), an experimental surface tension can be defined by inverting Eq (84):

σ exp = 2π T exp 2 (ρ 1 + ρ 2 )r 3 6 (87) 
Then a relative error can be defined:

Er = 100 |σ exp -σ| σ (88) 
This analysis has been performed for different values of radii (r = (15, 20, 25)∆x), density ratio (γ = (4, 10, 100) giving ρ 2 = 1kg.m -3 ) and surface tension (σ = (0.05, 0.07, 0.08)).

More over, this test case is also the opportunity to appreciate the gain in terms of numerical stability coming from the temporal correction (the counterpart of the source term given in Eq. ( 54)). Then the simulation will be performed twice, one with S t = 0 (no correction) and one with S t defined as in Eq. ( 54). The results are compiled in Table II. It should be noted that the range of radii and surface tension is smaller than for the Laplace test. This is due to the fact that all ellipsoidal droplets do not oscillate. In Fig. 7, it can be seen that the envelope of the kinetic energy oscillations decreases with time due to viscous dissipation.

When this decrease is too sharp (i.e., when the characteristic time of the dissipation is shorter than the period of oscillation), the droplet does not oscillate. For this reason, systems with surface tension lower than 0.05kg.s -2 , radii lower than 15∆x, or density ratio of 1000 are not presented in this study. A possibility to simulate the oscillation of the cases would be to reduce the viscosity. In this study, it was set to ν = 2.10 -4 m.s -2 , but a lower value would lead to unstable behaviors.

First of all, it can be seen that the temporal correction allows a better robustness of the method at high density ratio. For a density ratio of 100, the absence of temporal correction implies the non-stability of the method. It should also be noted that, despite the absence of cases at a ratio density of 1000, they were simulated and found numerically unstable without the temporal correction. Otherwise, it can be seen that when the method is stable enough, Table II: Oscillation of an ellipsoidal droplet: comparison between expected surface tension σ and experimental value σ exp The symbol "-" underlines a lack of oscillation and "crash" a lack of numerical stability the performances in terms of prediction are pretty similar in most cases. The trend seems to be that the higher surface tension is, the more precise the method is and the larger the radius of the droplet is, the more precise the method is. These two values are directly linked to the amplitude of the oscillation: high oscillations lead to better precision. This explains the poor capability of prediction in the case γ = 100 for r = 20 and r = 25 for σ = 0.05 : in all these cases, the oscillation is particularly weak, and the droplet is nearly not oscillating.

In favorable cases, the performances of the method are very good since it can go as low as a 3.47% error. Giving the fact that Eq. ( 84) was obtained by assuming an inviscid system, it is reasonable to think that this performances could be enhanced in a less viscous simulation.

C. Rayleigh-Taylor instability

Previous cases showed that the method could actually predict accurately the behavior of an interface. Then the numerical robustness of the method can be interrogated. The Rayleigh Taylor instability is a good case to investigate it. This instability appears when a heavier fluid is put over a lighter fluid and when both of them are under the influence of a gravitational field. Under certain condition, the interface is unstable which turns a small disturbance into non-linear behaviors and can lead to break-up for high Reynolds Number

(Re) cases. In order to compare with the literature, the setup of He et al [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF] is reproduced.

In a rectangular box (Nx=256, Ny=1024) the, a fluid of density ρ 1 = 3kg.m -3 is put up on a lighter fluid ρ 2 = 1kg.m -3 . The box width is L = ∆xN x. Defining the Atwood number (At) by:

ρ 1 -ρ 2 ρ 1 + ρ 2 (89) 
this choice of density leads to At = 0.5. The phase field is initiated as:

φ(x, y, 0) = tanh y -y 0 -0.2L cos -2πx L W 0 (90) 
y 0 being the vertical coordinate of the center of the box. As it can be seen, a single-mode initial perturbation is imposed. Moreover, a volume force us applied, taking the form:

F = -ρg e y (91) 
e y being the vertical direction. In this case, no surface tension is included, then σ = 0.

A characteristic velocity is given by U 0 = √ Lg. In He et al. [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF] , the characteristic nondimensional velocity is set to the value of 0.04 which gives U 0 = 0.04 ∆x ∆t in the present study, as well as L = 56.1m . From this velocity, a Reynolds number can be determined:

Re = U 0 L ν = 2048 (92) 
Leading to the kinematic viscosity ν = 0.643m 2 .s -1 . Finally, a dimensionless time can be defined as:

t * = t g L (93) 
The result of the simulation is illustrated in Fig. 8 The flow profiled obtained is similar to the one obtained through the HCZ method (He et al [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF] ). Compared to HCZ method, the present work tends to accentuate the atomisation process since more little structures appear.

This results underline the capability of the method to handle high Reynold flows for a colour gradient method without the necessity to set a high bulk viscosity. More over, as expected from a diffuse interface method, the break up into small structures, even in structures as complex as in the present work, does not affect the numerical stability. 

VI. CONCLUDING REMARKS

A new, improved formulation of the Color gradient method 67 has been proposed, presenting the following characteristics:

• The stream & collide algorithm structure 66 is fully preserved and only knowledge of first neighbors is required, allowing efficient and scalable implementation.

• The model is derived for an arbitrary equation of state, relieving the unphysical relation between density and sound speed ratios (10) present in the original formulation 67 ,

• A novel fourth order operator is used, allowing to limit spurious currents arising from isotropy defects;

• A novel temporal correction, required for use of arbitrary equation of states, is proposed.

The model was then validated based on static and oscillating droplets up to density ratios of 1000, on a two-phase Poiseuille flow and on a Rayleigh Taylor instability at Re=2048. In a future work, the present approach will be extended to non-isothermal flows.

In this framework, the formulation of the LBM algorithm has to be slightly modified:

Streaming step

f i (x, t + ∆t) = f * i (x -ξ i ∆t, t) (B9)
Collision step:

m * j = m eq j + (1 - 1 τ j ) m j -m eq j + 1 2 S j + 1 2 S j (B10)
As can be seen, a source term is present in this collision step. Note that if this source term is aimed to introduce a volumic force, then the 1st moment of f i (i.e., m α = i ξ α,i f i ) is no longer equal to the momentum, but is linked with the volumic force through m α = m eq α -∆t 2 F α . It is actually not necessary to give this relationship as a necessary condition to recover the desired macroscopic equations, this relationship actually comes naturally at the end of this development. To illustrate that, until the last steps of this development, the value of the 1 st moment of f i will not be specified. In agreement with Dubois's 87 , this notation is adopted:

Λ k j,α = i M ji ξ α,i M -1 ik and similarly: Λ k j,αβ = i M ji ξ α,i ξ β,i M -1 ik , and Λ k j,αβγ = i M ji ξ α,i ξ β,i ξ γ,i M -1 ik .
The following relationship will be used:

Λ l j,αβ = k (Λ k jα Λ β kl ) (B11)
Eq .(B10) can be manipulated to obtain

m j -m * j = 1 τ j m j -m eq j -1 - 1 2τ j S j (B12)
Using Taylor expansion, Eq. (B9) can be extended to:

f i (x, t) + ∆t∂ t f i (x, t) + ∆t 2 2 ∂ 2 t f i (x, t) = f * i (x, t) -∆tξ α,i ∂ α f * i (x, t) + ∆t 2 2 ξ α,i ξ β,i ∂ αβ f * i (x, t) + O(∆t 3 ) (B13)
At the first order in ∆t the last equation becomes

f i = f * i + O(∆t)
. This equation is true for all the microscopic velocities i, then by using equation Eq. (B1):

m j = m * j + O(∆t) (B14)
By injecting this relationship in Eq. (B12) and after small manipulations, it comes:

m j = m eq j + τ j - 1 2 S j + O(∆t) (B15)
1. 1 st Order Developed at the order O(∆t 2 ), and integrated in the moment space, Eq. (B13) becomes:

(m j -m * j ) = -∆t ∂ t m j + ∂ α k Λ k j,α m * k + O(∆t 2 ) (B16)
Using the collision relationship, Eq. (B12), it comes:

∂ t m j + ∂ α k Λ k j,α m * k = 1 ∆t 1 - 1 2τ j S j - m j -m eq j τ j (B17)
For j = 0, the previous equation can be simplified (giving m 0 = ρ, m eq 0 = ρ and S 0 = 0). Moreover, the term Λ k j,α can be determined. Given M 0,i = 1 then M ji ξ α,i = M α,i . Then:

k Λ k j,α m * k = ik M ji ξ α,i M -1 ki m * k = k i M α,i M -1 ik m * k = k δ αk m * k = m * α (B18)
By expressing m * j in term of m eq j and S j through Eq. (B14) and Eq. (B15) it comes:

∂ t m 0 + ∂ α m eq α + τ α - 1 2 S α = O(∆t) (B19)
For j = α, the sum term can also be simplified. M ji becomes M αi . Then M αi ξ βi = ξ α ξ β .

Then the product ξ α ξ β must be expressed in terms of vectors of the matrix M:

ξ α ξ β = M αβ,i + c 2 s H 0,i δ αβ (B20)
In the case of the polynomial basis used in the main text, this expression is slightly more complicated and must be detailed for the different values of α and β:

ξ x ξ y = M xy,i (B21) 
ξ 2 x = M b,i + M ν,i + M 0,i c 2 s (B22) ξ 2 y = M b,i -M ν,i + M 0,i c 2 s (B23)
As a consequence, Λ k j,α can be detailed:

k Λ k j,α m * k = ik M ji ξ β,i M -1 ki m * k = k i M αβ,i + c 2 s M 0i δ αβ m * k = m * αβ + m * 0 c 2 s δ αβ (B24)
Then using previous relationships Eqs. (B14)(B15), the Eq. (B17) can be expressed for j = α:

∂ t m α + ∂ β m eq αβ + c 2 s m eq 0 δ αβ + τ αβ - 1 2 S αβ = 1 ∆t 1 - 1 2τ α S α - m α -m eq α τ α + O(∆t) (B25)
From the previous equation, a condition between the first moments m eq α , m α and S α stands out:

F α = 1 ∆t 1 - 1 2τ α S α - m α -m eq α τ α (B26)
To conclude with the first order, the following relationships can be obtained by manipulating both Eqs. (B15)(B10):

m * j = m eq j + (τ j -1/2) S j -∆t(τ j -1) ∂ t m j + ∂ α k Λ k j,α m * k + O(∆t 2 ) (B27) m j = m eq j + (τ j -1/2) S j -∆tτ j ∂ t m j + ∂ α k Λ k j,α m * k + O(∆t 2 ) (B28)
2. 2 nd order Eq. (B13) when fully integrated into the moments space is given by:

1 τ j (m j -m eq j ) -1 - 1 2τ j S j = -∆t ∂ t m j + ∂ α k Λ k j,α m * k - ∆t 2 2 ∂ 2 t m j -∂ αβ k Λ k j,αβ m * k + O(∆t 3 ) (B29)
Then this equation must be reduced for the two moments of interest: j = 0 and j = α.

First of all Λ k j,αβ must be determined for j = 0. Giving M ji = 1, it reduces to: Λ k 0,αβ = ik ξ α,i ξ β,i M -1 ik which has already been calculated (Eq(B20))

∆t (∂ t m 0 + ∂ α m * α ) + ∆t 2 2 ∂ 2 t m 0 -∂ αβ m * αβ + c 2 s m * 0 δ αβ = O(∆t 2 ) (B30)
By expanding ∂ 2 t m 0 using Eq(B19), and by expanding m * α , the previous equation becomes:

∂ t m 0 + ∂ α (m eq α + (τ α -1/2) S α ) - ∆t (τ α -1/2) ∂ t m α + ∂ β m * αβ + c 2 s m * 0 δ αβ = O(∆t 2 ) (B31)
After few manipulations implying Eq. (B25), and by integrating the relationship between the volumic force and the 1 st moments Eq(B26):

∂ t m 0 + ∂ α m α + ∆t 2 F α = O(∆t 2 ) (B32)
From the previous equation, it comes in a straightforward way that to ensure the mass conservation principle, the first moments of the density population must respect:

m α + ∆t 2 F α = ρu α (B33)
which is the condition often found in the literature [START_REF] Guo | Discrete lattice effects on the forcing term in the lattice boltzmann method[END_REF] .

The same work should now be done for j = α. Eq(B29) becomes

∂ t m α + ∂ β m * αβ + c 2 s m * 0 c 2 s δ αβ + ∆t ∂ 2 t m α -∂ αβ k Λ k α,βγ m * k = F α + O(∆t 2 ) (B34)
Giving that M α,i = ξ α,i and that:

ξ α ξ β ξ γ = M αβγ + c 2 s (M α δ βγ + M β δ αγ + M γ δ αβ ) (B35) It comes: k Λ k α,βγ m * k = m * αβγ + c 2 s (m * α δ βγ + m * β δ αγ + m * γ δ αβ )
Using Eq(B27) to expand m * αβ and Eq(B25) to expand ∂ 2 t m α , the following equation comes:

∂ t m α + ∆t 2 f α + ∂ β m eq αβ + m eq 0 c 2 s δ αβ + ((τ αβ -1/2) S αβ ) - ∆t (τ αβ -1) ∂ β ∂ t m αβ + ∂ γ k Λ k αβ,γ m * k - ∆t 2 ∂ t m * αβ + m * 0 c 2 s δ αβ + ∂ γ m * αβγ + c 2 s (m * α δ βγ + m * β δ αγ + m * γ δ αβ ) = F α + O(∆t 2 ) (B36) Giving M αβ,i ξ γ,i = M αβγ,i + c 2 s (M α,i δ βγ + M β,i δ αγ )
and by including Eq(B19), it comes:

∂ t m α + ∆t 2 F α + ∂ β m αβ + m eq 0 c 2 s δ αβ + (τ αβ -1/2) S αβ = ∆t(τ αβ -1/2)Π αβ + f α + O(∆t 2 ) (B37) with Π j = ∂ t m j + ∂ α k (Λ k j,α m * k ).
It is also useful to define:

Π eq j = ∂ t m eq j + (τ j -1/2) S j + ∂ α k Λ k j,α (m eq k + (τ k -1/2) S k ) (B38)
Noting that: Π αβ = Π eq αβ + O(∆t), the equation of conservation of momentum can be written as:

∂ t m α + ∆t 2 F α + ∂ β m αβ + m eq 0 c 2 s δ αβ + (τ αβ -1/2) S αβ = ∆t(τ αβ -1/2)Π eq αβ + F α + O(∆t 2 ) (B39)
To conclude with the 2 nd order, the following relationships can be obtained by manipulating Eqs. (B10, B29):

m * j = m eq j + (τ j -1/2) S j -∆t (τ j -1) ∂ t m j + ∂ α k Λ k j,α m * k - ∆t 2 2 ∆t (τ j -1) ∂ 2 t m j -∂ αβ k Λ k j,αβ m * k + O(∆t 3 ) (B40)
Using Eq(B11), the last term can be manipulated:

∂ 2 t m j -∂ αβ k Λ k j,αβ m * k = ∂ 2 t m j + ∂ t ∂ α Λ l j,α m * l -∂ t ∂ α Λ l j,α m l =O(∆t) -∂ αβ kl Λ l j,α Λ k j,αβ m * k + O(∆t) = ∂ t Π j -∂ α Λ l j,α Π l + O(∆t) = ∂ t Π eq j -∂ α Λ l j,α Π eq l + O(∆t) (B41)
By extending ∂ t m j and ∂ α Λ k j,α m k * using Eq. (B27) and Eq. (B28), Eq. (B40) reduces to:

m * j = m eq j + (τ j -1/2)S j -∆t (τ j -1) Π eq j -∆t 2 (τ j -1) (τ j -1/2)∂ t Π eq j + ∂ α k (τ k -1/2)Λ k j,α Π eq k + O(∆t 3 ) (B42)

3 rd Order

Eq. (B13) can be extended to an additional order and then integrated to the moment space which gives:

1 τ j (m j -m eq j ) -1 - 1 2τ j S j = -∆t ∂ t m j + ∂ α k Λ k j,α m * k - ∆t 2 2 ∂ 2 t m j -∂ αβ k Λ k j,αβ m * k - ∆t 3 6 ∂ 3 t m j + ∂ αβγ k Λ k j,αβγ m * k + O(∆t 4 ) (B43)
For j = 0, the equation becomes:

∂ t m 0 + ∂ α m * α =m eq α + ∆t 2 fα - ∆t 2    ∂ 2 t m 0 -∂ αβ (m * αβ + c 2 s m * 0 δ αβ ) (1) 
   - ∆t 2 6    ∂ 3 t m 0 + ∂ αβγ m * αβγ + c 2 s (m * α δ βγ + m * β δ αγ + m * γ δ αβ ) (2)    = O(∆t 3 ) (B44) (1 
) can then be detailed by expanding ∂ 2 t m 0 using Eq(B32) and m * αβ using (B27)

(1) = -∂ α ∂ t m α + ∆t 2 f α + ∂ β m eq αβ + m eq 0 c 2 s δ αβ + (τ αβ -1/2) S αβ -∆t (τ αβ -1) Π eq αβ + O(∆t 2 ) (B45)
Which gives (using Eq(B39)):

(

1) = -∂ α F α + ∂ β ∆t 2 Π eq αβ + O(∆t 2 ) (B46)
In (2), ∂ 3 t m 0 can be developed by using Eq(B19) and Eq(B25) successively, which gives:

(

2) = ∂ α ∂ β ∂ t m * αβ + m * 0 c 2 s δ αβ + ∂ γ m * αβγ + c 2 s m * α δ βγ + m * β δ αγ + m * γ δ αβ -∂ t F α ] + O(∆t) (B47)
Which can be reduced to:

(2) = ∂ α ∂ β Π eq αβ -∂ t F α + O(∆t) (B48)
By combining the expression of (1) and (2), the equation that is solved by the first moment of the main population is finally given by:

∂ t m 0 + ∂ α m eq α = ∆t 2 ∂ α 1 12 ∂ β Π eq αβ - 1 6 ∂ t F α + O(∆t) 3 (B49)
Finally, for j = α, Eq(B43) comes as:

∂ t m α + ∂ β m * αβ + m * 0 c 2 s δ αβ + ∆t 2    ∂ 2 t m α -∂ βγ m * αβγ + c 2 s m * α δ βγ + m * β δ αγ + m * γ δ αβ (1) 
   + ∆t 2 6       ∂ 3 t m α + ∂ βγµ k Λ k α,βγµ m * k (2)       + O(∆t 3 ) (B50) k Λ k α,βγµ m *
k , can actually be expressed but simply to long to be inserted in the same expression as the rest. It is given by: To express (2), ∂ 3 t m α must be expanded by using Eq. (B19), then Eq. (B25) and finally the definition of Π αβ :

∂ 3 t m α = ∂ 2 t F α -∂ β ∂ 2 t m * αβ + m 0 c 2 s δ αβ + ∂ t ∂ βγ k Λ k αβ,γ m * k -Λ k αβ,γ m * k + O(∆t) = ∂ 2 t F α -∂ β ∂ t Π αβ + ∂ βγ ∂ t m αβγ * + m * γ δ αβ + m α δ βγ + m * β δ αγ c 2 s + O(∆t) (B52)
By underlining that: and that according to Eq. (B25):

∂ t m α + ∂ β (m αβ + m 0 c 2 s δ αβ ) = F α + O(∆t) (B54) 
(2) can be expressed as a composition of Π eq αβγ and Π eq αβ :

(2) = ∂ 2 t F α + c 2 s ∂ βγ (F α δ βγ + F β δ αγ + F γ δ αβ ) + ∂ βγ Π eq αβγ -∂ β ∂ t Π eq αβ + O(∆t) (B55)

Developing ∂ 2 t m α using Eq. (B39), and developing m αβγ using Eq. (B42), ( 1) is expressed as:

(1) = ∂ t F α -∂ β Π αβ + ∆t (τ αβ -1/2) ∂ t Π eq αβ + (τ αβγ -1) ∂ γ Π eq αβγ (B56)

By combining the expressions of (1), ( 2) and m * αβ (Obtained through Eq(B42), the 2nd order equivalent equation to the algorithm comes as follow: Noting that in the previous expression, for the sake of clarity no volumic force are considered.

∂ t m
This equation can be extended by determining the expression of Π eq αβ . This calculation is given for α = x, the method being symmetrical for x and y direction the equation obtained for y -direction is similar. ∂ β Π j xβ is given by: ) is an error proportional to the Mach number [START_REF] Krüger | The Lattice Boltzmann Method, Principles and Practice[END_REF] .

∂ β (τ
Eq(D4) can be expressed at a higher degree: 

α = O(∆t) and using the values of m eq α and m

(g) 0 it comes:

∂ t ρφ + ∂ α ρφu α = O(∆t) (D8)
Now Eq(D4) can be integrated into the moment space at its higher degree: To express the ∆t 2 , the spatial derivative must also be expressed: Finally, the final equation is given by:

∂ αβ k Λ k j,
∂ t ρφ + ∂ α ρφu α = ∂ α p∆t 2 ∂ α φ -S (3) α + O(∆t 2 ) (D12)
This justifies the form of the collision term in the re coloration phase, to mimic the right term of the Allen-Cahn equation proposed by Chiu and Lin 43 , the source term first moments must be:

S (3) α = p∆t 2 (1 -φ 2 ) W ∂ α φ | ∇φ| (D13)
This justifies the form of the source term proposed in this work. The moment of the source term is projected in the Hermite's polynomial base: 

Ω (3) i = w i S (3) 
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 21 Figure 1: Case of a static bubble in a quiescent atmosphere with two different operators,one without the isotropic condition, i.e. i H xxyy,i = O (left), and one with it (right). The interface is represented by the φ = 0 isolines and the velocity field by arrows of length scaled by 1m.s -1
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 222 and one anti-diffusive term: ∂ α φ and one ∂ α p∆t

Figure 2 :

 2 Figure 2: Visualization of a phase field profile after grid convergence (left). L2 error expressed as a function of the spatial step ∆x compared with a straight line of slope=2 in a log-log scale.

Figure 3 :

 3 Figure 3: Time evolution of the non-dimensional interface thickness for different mobility factors M as a function of dimensionless time.

  test case is as follows: in a rectangular 2D box N x = 5 and N y = 200, two fluids coexist. The denser fluid 1 is located in a band of width 2a surrounded by two bands of width b -a of the fluid 2, a and b being geometrical values given by a = ∆xN y 2 and b = ∆xN y 4 . The system is invariant along the x-axis. Placing that the origin of the y-axis in the middle of the box, the initial phase field profile is given by |y| < a: φ = 1 and when a < |y| < b: φ = -1.

Figure 4 :

 4 Figure 4: Two-phase Poiseuille flow case

Figure 5 :

 5 Figure 5: Comparison between "model 1" inspired fom the scheme in Leclaire 73 (left), and "model 2" the present scheme inspired from Li 79 (right), for a two-phase Poiseuille flow at high density ratio case (100). Both are compared with the theoretical solution (solid line)

Figure 6 :

 6 Figure 6: Laplace test for a range of surface tension σ, and radius r for different density ratios γ. The value of the pressure jump p 1 -p 2 (dots) can be compared with σ r (plain curve)

Figure 7 :

 7 Figure 7: Illustration of an oscillating ellipsoidal droplet between initial state (left) and half period state (centre). Time evolution of kinetic energy curve (right)

Figure 8 :

 8 Figure 8: Rayleigh-Taylor instability at various characteristic times t * , Reynolds number is Re = 2048

+ c 2 s

 2 (m * αβ δ γµ + m * αγ δ βµ + m * αµ δ βγ + m * βγ δ αµ + m * βµ δ αγ + m * γµ δ αβ )+ m * 0 c 4 s (δ αβ δ γµ + δ αγ δ βµ + δ αµ δ βγ ) (B51)

  m * k + m * αµ δ βγ + m * βµ δ αγ + m * γµ δ αβ c 2 s + m * 0 [δ αβ δ γµ + δ αγ δ βµ + δ αµ δ βγ ] c 4 s (B53)

∂

  t ρu α + ∂ β ρu α u β + pδ αβ + p σ αβ = ∆t∂ β O(M a 3 ) + (τ ν -1/2)p (∂ β u α + ∂ α u β ) + (τ b -τ ν )p∂ γ u γ + Er α δ αβ (C12)where the error term readsEr α = -(τ ν -1/2)3∂ α (p -ρc 2 s )u α + 3 2 (τ ν -τ b ) ∂ γ (p -ρc 2 s )u γ + (τ b -1/2) ∂ t (p -ρc 2 s ) + ∂ γ (p -ρc 2 s )u γ (C13)and the term O(M a 3

  α φ(m eq α ) + (τ α -1/2)S α ) + S (3) α + O(∆t) (D7)Noting that S α = ∆tf α = O(∆t), S

  j = -∂ t ∂ α φm eq α + O(∆t) = -∂ α (u α ∂ t ρφ + φρ∂ t u α ) + O(∆t) = ∂ α (u α ∂ β (ρφu β ) + ρφu β ∂ β u α + φ∂ β pδ αβ ) + O(∆t) = ∂ αβ ρφu α u β + ∂ α (φ∂ α p) + O(∆t) (D10)

δ

  αβ = ∂ αβ (ρφu α u β + φp) + O(∆t) (D11)

α H α,i c 2 s

 2 (D14)Which allows to recover Eq.(48). It is interesting to note that this operator is almost similar to the one originally proposed by D'Ortona[START_REF] Ortona | Two-color nonlinear boltzmann cellular automate: Surface tension and wetting[END_REF] in 1995 and Latva-Kokko 72 in 2005. At the time, recoloration operator wasn't understood as a scheme allowing to solve a diffusionadvection equation for the phase field, and Chiu and Lin 43 only proposed their conservative form of the Allen-Cahn equation in 2011.

  α + ∆t 2 F α + ∂ β m αβ + m eq 0 c 2 s δ αβ + (τ αβ -1/2) S αβ = ∆t(τ αβ -1/2)Π eq αβ + F α F α + c 2 s ∂ βγ (F α δ βγ + F β δ αγ + F γ δ αβ ) + O(∆t 3 ) (B57)The conservation equation for momentum to the order 2 is given by Eq .(B39). By expressing the moments of the equilibrium function, it comes as:∂ t ρu α + ∂ β ρu α u β + pδ αβ + p σ αβ = ∆t(τ αβ -1/2)∂ β Π eq

	+ ∆t 2 ∂ β	τ αβ -	1 2	2	-	1 6	∂ t Π eq αβ + τ αβγ -	1 2	τ αβ -	1 2	-	1 12	∂ γ Π eq αβγ
	-t Appendix C: Macroscopic equation ∆t 2 6 ∂ 2						

αβ (C1)

  xβ -1/2)Π eq xβ = (τ ν -1/2) ∂ x Π eq ν + ∂ y Π eq xy + ∂ x (τ b -1/2)Π eq H ν,i ξ γ,i = H xxγ,i -H yyγ,i 2 + c 2 s H x,i δ γx -c 2 s H y,i δ γy (C7) H xy,i ξ γ,i = H xyγ,i + c 2 s (H x,i δ γy + H y,i δ γx ) (C8)By integrating the definition of the equilibrium function Eq. (31), it gives:Π eq xy = ∂ t ρu x u y + ∂ x (p -ρc 2 s )u y + ρc 2 s u y + ∂ y (p -ρc 2 s )u x + ρc 2 s u x (C11)By merging Eqs. (C9, C10, C11) into Eq. (C2), the macroscopic equation that is solved by the scheme is:

					Π eq b = ∂ t	H b,i f eq i + ∂ γ	H b,i ξ γ,i f eq i	(C5)
						i		i
	Giving that						
					H b,i ξ γ,i =	H xxγ,i + H yyγ,i 2	+ c 2 s H γ,i	(C6)
	Π eq ν = ∂ t	ρu 2 x -ρu 2 y 2	+ ∂ x	(p -ρc 2 s )u x 2	+ ρc 2 s u x + ∂ y	(p -ρc 2 s )u y 2	+ ρc 2 s u y	(C9)
	Π eq b = ∂ t	ρu 2 x + ρu 2 y 2	+ (p -ρc 2 s ) -∂ x	(p -ρc 2 s )u x 2	-ρc 2 s u x + ∂ y	(p -ρc 2 s )u y 2	s u y -ρc 2 (C10)
									b	(C2)
	With							
					Π eq ν = ∂ t		

i H ν,i f eq i + ∂ γ i H ν,i ξ γ,i f eq i (C3) Π eq xy = ∂ t i H xy,i f eq i + ∂ γ i H xy,i ξ γ,i f eq i (C4)
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Appendix A: Hermite definitions

The Hermite polynomials are defined as:

H αβ,i = ξ α,i ξ β,i -c 2 s δ αβ (A3)

Two additional polynomials are used and are compositions of Hermite's polynomial:

H ν is linked to shear stress and H b is linked to bulk viscosity.

Appendix B: Taylor Expansion

In this appendix, the equivalent equation of the Lattice Boltzmann algorithm are derived up to the order 3 following the method presented in the work of Dubois [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] . It shows the equation that is solved by the moments of the main density population f i . As Dubois's development takes place in a Multiple Relaxation Time (MRT) framework, the moments m j of the distribution function f i are defined as

with M the transformation matrix from the population function basis to the moments function basis. To fit the MRT formalism, a specific relaxation time must also be attributed to each moment. In the method presented in the main text, a regularized collision model is used which can be translated in a MRT framework. the M matrix the Hermite polynomial basis and is given by:

Relaxation times must be attributed to each moments, in the regularized framework, this comes as:

and other relaxation times are set to 1, i.e.: τ 0 = τ α = τ αβγ = τ αβγµ = 1. This formulation not being symmetrical between x and y coordinates can complicate the formulation. For this reason, in this development, the formulation will be given form M 4i = H xx,i and M 5i = H yy,i , and then τ αβ = τ ν . While the ideas of the calculation are conserved, the formulation is way simpler. For the critical phases, some results in the based used in the main text will be given so the interested reader can recover those results easily. The inverse-matrix of M is noted M -1 si that:

Appendix D: Recoloration

In this section, the equivalent macroscopic equation of the g i population is determined.

First of all, some value must be defined. The moments of the g i population are noted:

By definition of φ m (g) 0 = ρφ. As previously, the algorithm that is followed by the phase field population function should be slightly re-formulated. The recoloration is expressed in the moment space:

(D2)

By expanding the streaming relationship:

Integrated into the moment space and by integrating Eq(B27) the last expression can be expressed: