SUPPORTING INFORMATION

A plant root-derived Ni-ecocatalyst for Suzuki cross coupling of aryl iodides

Lucie Cases, Pauline Adler, Sébastien Diliberto, Clotilde Boulanger and Claude Grison*

Laboratory of Bio-inspired Chemistry and Ecological Innovations UMR 5021 CNRS – University of Montpellier, Cap Delta, 1682 Rue de la Valsière, 34790 Grabels, France *Corresponding author: <u>claude.grison@cnrs.fr</u>.

Ι.	Infrared spectra	2
1.	. IR spectra of the biomaterials – Before and after functionalization	2
2.	. Infrared spectrum of the Eco-Ni(HCOO) $_2$ ecocatalyst used for Suzuki coupling reaction	3
П.	Description of the products	3
1.	NMR spectroscopic desciption	3
2.	NMR spectra	5
3.	GCMS and GCFID analyses of standards and synthesized products	9
III.	XPS analyses of the Eco-Ni(HCOO) ₂ ecocatalyst	13

I. Infrared spectra

Figure 1. Infrared spectra of water hyacinth, coffee grounds and pinecone before (blue), after functionalization (green) and after titration with NaOH (red).

2. Infrared spectrum of the Eco-Ni(HCOO)₂ ecocatalyst used for Suzuki coupling reaction

Figure 2. Infrared spectrum of Eco-Ni(HCOO)₂

II. Description of the products

1. NMR spectroscopic desciption

1-(1,1'-biphenyl]-4-yl)ethan-1-one – [1]

¹**H NMR (400 MHz, CDCl₃)** δ 8.03 (d, *J* = 12 Hz, 2H), 7.69 (d, *J* = 8 Hz, 2H), 7.63 (d, *J* = 8Hz, 2H), 7.49-7.40 (m, 3H), 2.64 (s, 3H).

1-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethan-1-one – [2]

¹**H NMR (400 MHz, CDCl₃)** δ 8.05 (d, *J* = 8.3 Hz, 1H), 7.72 (s, 2H), 7.68 (d, *J* = 8.3 Hz, 1H), 2.64 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 197.63 (Ccarbonyle), 144.15 (Cq), 143.38 (Cq), 136.60 (Cq), 130.22 (q, *J* = 32.7 Hz, Cq), 129.05 (2C), 127.60 (2C), 127.45 (2C), 125.89 (q, *J* = 3.4 Hz, 2C), 124.14 (q, *J* = 272.2 Hz, CF₃), 26.65 (s).

4-nitrobiphenyl – [4]

¹**H NMR (400 MHz, CDCl₃)** δ 8.34 – 8.21 (m, 2H), 7.76 – 7.68 (m, 2H), 7.65 – 7.57 (m, 2H), 7.55 – 7.27 (m, 4H).

4-cyanobiphenyl – [5]

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 – 7.64 (m, 4H), 7.61 – 7.55 (m, 2H), 7.51 – 7.44 (m, 2H), 7.43 – 7.39 (m, 1H).

4-fluoro-1,1'-biphenyl – [6]

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 – 7.61 (m, 4H), 7.47 (t, *J* = 8 Hz, 2H), 7.37 (t, *J* = 8 Hz, 1H), 7.24 (d, *J* = 9 Hz, 2H).

4-methyl-1,1'-biphenyl – [7]

¹**H NMR (400 MHz, CDCl₃)** δ 7.66-7.63 (m, 2H), 7.56 (d, *J* = 8 Hz, 2H), 7.45 (t, *J* = 8 Hz, 2H), 7.34 (t, *J* = 8 Hz, 1H), 7.24 (d, *J* = 8 Hz, 2H), 2.38 (s, 3H).

3-phenylpyridine – [8]

¹**H NMR (400 MHz, CDCl₃)** δ 8.83 (d, J = 4 Hz, 2H), 8.57 (d, J = 4 Hz, 2H), 7.86 (d, J = 8 Hz, 1H), 7.89-7.83 (m, 1H), 7.57 (d, J = 8 Hz, 2H), 7.63 (d, J = 8Hz, 2H), 7.47 (t, J = 8Hz, 4Hz, 2H), 7.45-7.33 (m, 3H).

2. NMR spectra

1-(1,1'-biphenyl]-4-yl)ethan-1-one – [1]

1-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethan-1-one – [2]

4-fluoro-1,1'-biphenyl – [6]

3. GCMS and GCFID analyses of standards and synthesized products

1-(1,1'-biphenyl]-4-yl)ethan-1-one – [1] – expected mass: 196.09

Figure 3. GCMS spectrum of synthesized product [1]

1-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethan-1-one – [2] – expected mass: 264.04

4-nitrobiphenyl – [4] - expected mass: 199.06 Da

Figure 5. GCMS (black) & GCFID (red) spectra of synthesized product [4]

4-cyanobiphenyl – [5] - expected mass: 179.07 Da

Figure 6.. GCMS (black) & GCFID (red) spectra of synthesized product [5]

4-fluoro-1,1'-biphenyl – [6] - expected mass: 172.07 Da

Figure 7. GCMS (black) & GCFID (red) spectra of synthesized product [6]

4-methyl-1,1'-biphenyl – [7] - expected mass: 168.09 Da

Figure 8. GCMS (black) & GCFID (red) spectra of synthesized product [7]

3-phenylpyridine - [8] - expected mass: 155.07 Da

III. XPS analyses of the Eco-Ni(HCOO)₂ ecocatalyst

Figure 17. XPS analyses of the ecocatalyst before (left) and after the reaction (right)