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ABSTRACT :
Acoustic damping plays a key role in the stability
analysis of liquid rocket engines (LRE). Its charac-
terization is a necessary step towards prediction of
thermoacoustic instabilities [1]. To our knowledge,
current analysis of the damping is limited to ex-
perimental measurements in practical systems or
theoretical models for simple configurations. This
study presents large-eddy simulations (LES) of the
NPCC setup, a cold-flow configuration representing
a simplified LRE geometry, compared to experiments
previously carried out at EM2C, to characterize the
global acoustic damping of the rig.
Steady-state simulations are first performed. Head-
losses due to the injection plane and jet profiles are
assessed. Then, simulations of the forcing of three
eigenmodes give results in very good agreement
with the experiment. It is found that the high forcing
amplitudes reached in the experiment triggers a
non-linear response of the rig. By imposing a lower
modulation in the simulations, it is possible to stay
in a linear framework. A low-order linear model for
the pressure response using the acoustic damping
as a key parameter is then compared to the LES
and correctly predicts the transitory phase and the
limit-cycle amplitude.

1. INTRODUCTION

Since the 1960s, high-frequency combustion instabili-
ties are a key challenge in the development of LRE [2].
They result from the complex interaction between the
turbulent reacting flow and the acoustics of the com-
bustion chamber. Driving phenomena like the coupling
between the pressure fluctuation and the unsteady
heat release from the flame (the Rayleigh term) are in

competition with damping terms [3][4]. Non-reacting
test rigs [5] [6] [7], simplified hot-flows setups [8] [9]
and even a reduced-scale rocket engine [10] [11] have
been designed in the past few years to study these
phenomena.
The present work focuses on the damping in the latest
iteration of the cold-flow test rigs operated at EM2C :
the New Pressurized Coupled Cavities (NPCC) setup,
developed by Gonzalez-Flesca et al. [12]. The sys-
tem is studied in details using 3 dimensional LES, that
gave insights in the past on several mechanisms ta-
king place in LRE [13] [14].

The rig was developed with reduced order mode-
ling in mind [15]. With state variables projected onto
the system’s eigenmodes and in the absence of com-
bustion, the evolution of the modal amplitude η of an
acoustic eigenmode m is given by :

η̈m(t) + ω2
mηm(t) = Sexc(t)−Dm(t) (1)

with Sexc the external excitation and Dm the damping
effects in the domain. With the additional hypothesis
of linear damping, it becomes :

η̈m(t) + 2αmη̇m(t) + ω2
mηm(t) = Sexc(t) (2)

with αm the damping associated with mode m. In
the case of NPCC, the external forcing is achieved
by a perforated wheel attached to a rotating engine,
forming the Very High Amplitude Modulator (VHAM)
designed by Méry et al. [6].

Starting with a precise analytical study of the
excitation, it will be shown that LES is capable to
reproduce the competition between excitation and
damping observed in experimental cases without
any tuning. Discussion of the results will highlight a
non-linear damping process where energy is diverted
to higher frequencies. Finally, it is shown that the
acoustic response is well-represented by a linear
model in the framework of eq. (1) in the early stage



of the excitation or when the excitation amplitude is
lowered. It is then possible to extract a damping rate
αm for all cases studied.

This article is organized as follows. The NPCC se-
tup is first described in section 2. Then, the LES se-
tup is presented in section 3. Validation of the setup
is performed in section 4 with non-modulated com-
putations. Simulations of the continuous modulation
is then detailed (section 5), with comparison with the
limit-cycle results of Gonzalez-Flesca [15]. Discussion
of the LES results is finally presented in section 6, with
an analysis of the frequency content highlighting the
non-linear behaviour of the rig. It is shown that the
non-linearities come from the high amplitudes achie-
ved in the experiment and the corresponding simula-
tion. A shift to a linear framework is done by lowering
the forcing amplitude in the simulation. A linear model
for the pressure response is described and compared
to the signals obtained. The damping rate α is extrac-
ted in the process.

2. EXPERIMENTAL SETUP

The NPCC test rig is the latest evolution of the setups
developed at EM2C to investigate acoustics in cavities
and injector dynamics. The rig was conceived and
operated during the PhD thesis of Manuel Gonzalez-
Flesca [12]. The update compared to the previous
TPCC setup is twofold. First, the chamber assembly
is now made of three separate sections, allowing
to change the chamber length at will. The sections
length are calculated so that the eigenfrequencies of
the chamber may match those of the dome or remain
uncoupled. Secondly, the injector’s new design allows
to put diaphragms at the entrance in order to vary the
head loss of the system.

2.1. Geometry

The rig was designed to mimick the geometry of a
LRE. It is comprised of a dome and a chamber lin-
ked by three injectors, 6 mm in diameter.The air flow
enters the system by a pipe located on the side of the
dome, perpendicular to the injectors. Two nozzles at
the end of the chambers allows the flow to exit the rig.
It is brought to an operating pressure of 3.5 bar. The
total mass flow rate is ṁtot = 3.1g/s. Fig. 1 presents
a transverse cut of the rig, with the placement of the
pressure sensors. The probes are located to be either
at a node or an antinode of pressure, depending on
the excited mode.

The acoustic modulation is achieved using the Very
High Amplitude Modulator (VHAM) [6]. A fully perfo-
rated wheel is used for continuous modulation of the

FIGURE 1: Schematic cut of the NPCC test rig equip-
ped with the VHAM

eigenmodes of the rig. The VHAM is placed at the
system’s exit, for the wheel to block alternatively one
nozzle or the other.

2.2. Cases studied

Three experimental cases are reproduced here with
LES : continuous modulation of mode 1T (fully trans-
verse), 1T1L (transverse and longitudinal components
with coupled dome and chamber) and 1T2L (trans-
verse and longitudinal components, uncoupled). As
detailed in section 5, the response of the rig is
very sensitive to the excitation frequency. It is there-
fore critical to pinpoint precisely the eigenfrequencies.
The excitation frequencies are displayed in Table 1.
The experimental results were obtained by Gonzalez-
Flesca [12] using a sweep over the excitation fre-
quency. The frequencies retained for the numerical
study are obtained with the Helmholtz solver AVSP
[16], with a methodology detailed in Section 3. The
frequencies found are close to the experiments, with
a slight difference for mode 1T2L.

TABLE 1: Modal frequencies found in the experiment
and using the Helmholtz solver AVSP

Mode 1T 1T1L 1T2L
Experiment 1227 Hz 1465 Hz 2002 Hz

AVSP 1226 Hz 1469 Hz 2036 Hz

3. NUMERICAL SETUP

This part presents the method used for the LES of the
NPCC test rig.

3.1. Numerical methods

The AVBP code from Cerfacs and IFPEN is used [17].
A low-dissipative, Two-Step Taylor-Galerkin (TTGC)
numerical scheme is used [18]. It is third order in time
and space. Subgrid-scale momentum fluxes are mo-
deled by the Wall Adapting Large Eddy (WALE) model
[19], well suited for shear flows, with eddy-viscosity
vanishing in purely strained region of the flow.
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3.2. Geometry and Mesh

Compared with the experimental geometry (Fig. 1),
the nozzles are smoothened to avoid sharp corners
in zones of high velocity.
Two meshes are used for modulated cases which re-
quire long physical time to reach a steady state : one
coarse with 2.1 million nodes, one fine with 6.7 mil-
lion nodes. The mesh is in both cases refined in the
injectors, in the jets and around the exit nozzles. The
injectors diameter countains 20 nodes in the coarse
mesh, 30 in the fine mesh. In addition, the mesh adap-
tation strategy described by Davillier et al. [20] is used
to obtain local mesh refinement in critical places such
as the inlet and outlet of each injectors. The MMG3D
algorithm is used two times, resulting in two refined
meshes referred to as Adapted mesh 1 (AM1) and
Adapted mesh 2 (AM2). Fig. 2 presents the meshes
zoomed in around the inlet of the central injector and
the beginning of the jet. Table 2 summarizes the mesh
informations and presents the computation cost for
a typical LES with the numerical methods described
above.

TABLE 2: Summary of the different meshes

Mesh Coarse Fine AM1 AM2
Nb. of nodes (x106) 2.1 6.7 8.2 16.4
Min. cell vol. [m3] 5.37x10−12 1.03x10−12 1.04x10−14 2.25x10−16

Time step (x10−6 [s]) 0.27 0.18 0.03 0.01
CPU [h] for 10ms 750 3700 20 000 150 000

Convective time [ms] 80

FIGURE 2: 4 meshes used, transverse cut, zoomed-in
around the central injector. Left : Injector inlet ; right :
injector outlet. From top to bottom : coarse mesh, fine
mesh, adapted mesh 1, adapted mesh 2.

3.3. Boundary conditions

At the inlet, speed and temperature are imposed in
a soft way with a relaxation method, the speed being
dictated by the mass flow rate of 3.1 g/s imposed in
the experiment. At the outlet, pressure is imposed in
a soft way, with a superimposed sinusoidal acoustic
wave to represent the excitation by the VHAM for mo-
dulated cases. The mean pressure at the outlet repre-
sents the case where both nozzles are half-opened.
The outlet pressure in this case is 2.95 bar. The am-
plitude of the superimposed acoustic wave will be set
at 0.45 bar (section 5). The nozzles are equipped with
slippery walls to limit the headloss in the vicinity of the
outlet where the excitation takes place.
Two types of boundary conditions are tested for the in-
jectors : adiabatic no-slip walls with zero velocity and
walls equipped with an adiabatic wall function for im-
posing the wall shear stress.

3.4. Modal analysis

The AVSP code from CERFACS [16] is used to find
the acoustic eigenmodes of the geometry. LES is first
performed on a very coarse mesh to obtain a conver-
ged solution with the right sound speed repartition.
Then, the Helmholtz solver solves the acoustic equa-
tion. Three cases are computed : all boundaries as
walls (u′ = 0), inlets/outlets considered as open boun-
daries (p′ = 0) and inlet/outlets with calculated impe-
dance as described by Poinsot[21]. The values retai-
ned and presented in Table 1 are the one with u′ = 0
at the open boundaries, but very little difference is ob-
served with the other parameters. The mode shapes
are presented with the continuous modulation results
(section 5).

4. VALIDATIONS

4.1. Mesh convergence

Influence of the grid resolution is tested by com-
puting a case without modulation on the coarse, fine
and adapted meshes. Within the same computation,
influence of the injector’s boundary condition is also
tested. Longitudinal slice of axial velocities around
the central injector averaged over 100ms are shown
on Fig. 3, with a) a no-slip and b) a law of the wall
boundary condition in the injectors. Fine and adapted
meshes present the same flow topology when equip-
ped with a no-slip boundary condition whereas the jet
extends much more on the coarse grid, suggesting
that a refinement is necessary to correctly represent
the physics. Coarse and fine grids present a very simi-
lar jet topology with a law of the wall boundary condi-
tion, and both meshes are very close to the refined
cases equipped with no-slip boundary condition.
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(a)

(b)

FIGURE 3: Axial velocity near the central injector, with
a) no-slip and b) law of the wall boundary condition in
the injector. Lowest values are in blue, largest in red.
The colormap is the same for all grids.

These observations are confirmed by transverse pro-
files of axial velocity taken at 2 different positions
along the jets (x/d = 5 (a) and x/d = 10 (b)), plot-
ted in Fig. 4. With no-slip walls boundary conditions
(black curves), fine and AM1 grids present very simi-
lar profiles, whereas the coarse grid is way off. For the
law of the wall boundary condition, coarse and fine
mesh are very similar. Discrepancy is noted on the
fine mesh between the two boundary conditions close
to the injectors (a), however the difference is minimal
for x/d = 10 (b).

Influence of the grid and injector boundary condi-
tion is also tested for the head losses in the injectors.
It is found by three different ways : a value coming
from singular and friction head loss theory, the
experimental value presented in [12] and the value
extracted from the LES.

Theory : Headlosses in the injectors can be traced to
three sources : the narrowing of the flux at the injec-
tor’s entrance, the friction inside the injector itself and
the widening at the end of the injector. Each source
is quantified and a theoretical headloss is obtained by
summing the three terms.
For the singular head loss due to the narrowing or the
widening, the drop of pressure is :

∆psing = k
ρu2

2
(3)

with k the head loss coefficient evaluated below and u

(a)

(b)

FIGURE 4: Axial velocity profiles at x/d = 5 (a) and
x/d = 10 (b). Injector boundary condition : no-slip
walls, law of the wall. Mesh : AM1, Fine, Co-
arse

the velocity in the narrowest section.
k is found using the relations found in [22]. Conside-
ring that the diameter of the injector is very small com-
pared to the dimensions of the dome and the cham-
ber, k ≈ 0.5 for the narrowing and k ≈ 1 for the wide-
ning.
The head loss due to friction inside the injector is gi-
ven by the Darcy-Weisbach equation :

∆pinj = f
ρū2L

2D
(4)

with f the friction factor, ū = 8.83m.s−1 the mean velo-
city in the injector, L = 50mm the length of the injector
and D = 6mm its diameter.
The friction factor is determined by Prandtl’s friction
law for smooth pipes, which implicitely gives f as a
function of the Reynolds number Re :

1√
f

= 2 log10

(√
fRe

)
− 0.8 (5)

In our case Re ≈ 12000.

Table 3 summarizes the theoretical head loss
found using these relations.

Experiment : In the experiment performed by
Gonzalez-Flesca et al. [15], the headloss ∆P in the
injectors is measured by the difference between the
signals of two Kistler 701A high-frequency piezoe-
lectric transducers placed at HFd1 (dome) and HFc1
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TABLE 3: Theoretical head losses between the dome
and the chamber

Narrowing Injector Widening Total
∆p 81 Pa 40 Pa 161 Pa 282 Pa

(chamber). The measured value is ∆P = 140Pa.

LES : Two methods are used for the measurement of
∆P in the LES. Method 1 takes the pressure value of
an averaged solution, along the x axis in the middle of
the central injector. Then, the difference between the
mean value of P in the dome and the value reached
after the jets in the chamber is taken as ∆P . Method
2 relies on probes placed at the same location as in
the experiment : HFd1 (dome) and HFc1 (chamber).
The two probes are not along the axis of an injector,
but close to the bottom wall. The difference between
the pressure value of the two probes is taken when
the signal converges.

The results shown in Table 4 highlight a clear mesh
convergence for both boundary conditions. With no
slip walls (resp. law of the wall), the headlosses
between dome and injector converge to 348 Pa (resp.
320 Pa). Between the two boundary conditions, a
difference of around 10% is observed. Compared to
the theory, the difference reaches 20%. In any case,
the value obtained for the headloss is significantly
higher than the value found in the experiment.

TABLE 4: Headlosses measured for each LES with the
two methods. Comparison with the theoretical value
and the experimental measurement.

Case Headlosses
Theory 282 Pa

Experiment 140 Pa
LES : mesh, BC Method 1 Method 2

Coarse, no slip walls 460 Pa 463± 11 Pa
Fine, no slip walls 390 Pa 384± 36 Pa

Adapted 1, no slip walls 350 Pa 349± 7 Pa
Adapted 2, no slip walls 345 Pa 348± 5 Pa
Coarse, law of the wall 400 Pa 390± 64 Pa

Fine, law of the wall 360 Pa 347± 73 Pa
Adapted 1, law of the wall 310 Pa 320± 7 Pa
Adapted 2, law of the wall 310 Pa 320± 3 Pa

In conclusion, agreement between the coarse and
refined meshes is satisfactory for a law of the wall
boundary condition in the injectors. The jet topo-
logy is close to the one observed with no-slip boun-
dary conditions on refined meshes. The coarse mesh
equipped with law of the wall boundary condition is

therefore retained for modulated cases which require
to compute a long physical time (hundreds of ms).

4.2. Statistical convergence

In order to know if the transitory regime is passed be-
fore forcing the system, a study on statistical conver-
gence is conducted. Two transitory times are tested :
τa = 100ms and τb = 150ms, and two averaging times
are used : 100ms and 200ms.
Profiles of velocity at x = 5dinj and x = 10dinj (Fig. 5)
for each jets are analyzed. The centerline of the jets
are located at y = −50mm (bottom jet), y = 0mm
(middle jet) and y = 50mm (top jet). Study of the
curves suggest that a transitory time τb = 150ms is
well-adapted, as the averages quickly converge after-
wards. For example, an average on 100ms after τb
(blue curve in Fig. 5b and d) gives almost the same
profiles at x = 5dinj and x = 10dinj than those obtai-
ned after an average on 200ms (orange curve). It is
not the case with τa (Fig. 5a and c), as one observes
persisting discrepancies between the averages at key
locations such as the bottom jet (y = −50mm).

FIGURE 5: Axial velocity profiles, averages after dif-
ferent transitory times, coarse mesh, law of the wall.
(a) τa, profiles at x = 5dinj , (b) τb, profiles at x =
5dinj , (c) τa, profiles at x = 10dinj , (d) τb, profiles at
x = 10dinj

5. LES OF THE CONTINUOUS MODULATION

5.1. VHAM excitation

A required input for the LES of the test rig is the value
of the pressure variation induced at the outlet by the
VHAM. It is not measurable in the experiment. The fol-
lowing section proposes a model for the rotating per-
forated wheel which leads, with reasonable assump-
tions and input values from the experiment, to a value
for p′ at the outlets.

The goal is to link the pressure at the nozzles’ exit
Pn to two parameters : the chamber pressure Pc and
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FIGURE 6: Focus on a nozzle being excited by the
VHAM

the distance h between the wheel of the VHAM and
the nozzles, responsible for some leakage sideways
which is modelled (Fig. 6). h is unknown beforehand
as it was unfortunately neither measured nor estima-
ted during the experimental campaign.
The analytical study will proceed as follows. First, the
movement of the wheel will be described, giving a va-
lue for the "opened" area of each nozzle. Then, the
leakage is taken into account. Using the isentropic
flow relations, the outlet Mach number and the out-
let pressure Pn are then linked to the opened nozzle
area. Finally, h is found using an iterative method with
the formula found for Pn and the experimental cham-
ber pressure Pc.
Table 5 presents some notations and the geometrical
values known to the user of the rig.

TABLE 5: Notations and known values

f Excitation frequency
rn Nozzle radius 0.9 mm
rw Hole radius (wheel) 1.25 mm
Tc Mean chamber temperature 293 K

Movement of the perforated wheel : The curvature
of the wheel is neglected. Everything is happening as
if the nozzle encountered a horizontal strip of holes. It
is reasonable considering that the distance between
the holes and the wheel center is more than 20 times
the diameter of one hole. The wheel and the nozzle
exit plane are supposed parallel.
Fig. 7 presents a front view with the projection of the
nozzle onto the wheel.
The wheel rotating at a constant speed, it is possible
to define the distance D(t) between the projection of
the nozzle’s center on the wheel’s plane (fixed) and
the center of the closest hole (moving), as a triangle
function. When the hole is directly in front of the
nozzle, it is minimum, when the nozzle faces entirely
the plain part, it is maximum. The amplitude is the
hole diameter dw and the frequency is f .

FIGURE 7: Front view of the perforated wheel with the
nozzle projected onto the wheel

D(t) = 2dw|tf − btf +
1

2
c| (6)

The aim is now to derive an expression for the area of
the nozzle being in front of a hole, Ainter.
Considering that rw > rn, three cases are distingui-
shed :

— ifD(t) < rw−rn the nozzle is entirely "open", i.e.
the whole projection of the nozzle is comprised
in a hole : Ainter = Anozzle = πr2

n.
— if D(t) > rw + rn there is no intersection, the

nozzle is entirely "closed" : Ainter = 0.
— in between, the intersection has the shape of a

lens, as seen on Fig. 7. Ainter = Alens. After
some algebra involving the Al-Kashi theorem, it
comes :

Alens = r2
warccos(

D(t)2 + r2
w − r2

n

2D(t)rw
)

+ r2
narccos(

D(t)2 + r2
n − r2

w

2D(t)rn
)

− hD(t) (7)

The shape of the resulting Ainter is shown on Fig. 8. It
is close to a sine function of period 1/f and amplitude
Anozzle with truncated top and bottom, as rn < rw. It
is not symmetrical with respect to the mean value as
the opening and closing of the nozzle follows different
shapes : it opens as a lens but closes as a crescent.

Influence of the leaks : If we were to consider Ainter
as the "open" area of the nozzle, we would suppose
that the nozzle and the wheel are stuck together. In
reality, as nozzle and wheel are mounted on different
parts of the bench, a small gap exists between the
two (exaggerated in Fig. 6). It is responsible for
leakage when the nozzle is supposed to be "closed".
An expression for the additional surface representing
this leakage, Aleaks, is derived :

Aleaks(h, t) =min[Anozzle −Ainter(t),

h ∗ rn(2π − 2arccos(
D(t)2 + r2

n − r2
w

2D(t)rn
))

+ 2rwarccos(
D(t)2 + r2

w − r2
n

2D(t)rw
)] (8)
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The resulting "opened" area of the nozzle Atot can
then be defined as :

Atot(h, t) = Ainter(t) +Aleaks(h, t) (9)

Fig. 8 shows the resulting area Atot when the leaks
are considered (red curve) and when they are not
(Ainter, black curve) for the value of h found later.

FIGURE 8: 5 periods of 1T modulation for d = rn
10 . —

Ainter —Atot

Study of the nozzle flow : Now that an outlet equi-
valent surface has been defined, the repartition of the
exiting mass flow rate between each nozzle can be
approached. The outlets are two identical nozzles : 1
and 2. The flow exiting each nozzle n can be written :

ṁn = ρnvnA
n
tot (10)

with ρn the density at the nozzle outlet, vn the velocity
of the flow exiting the nozzle and Antot the total outlet
area defined above for nozzle n .
With the hypothesis that the flow in each nozzle is
isentropic, it comes :

ṁn = ρc(1 +
γ − 1

2
M2
n)

−1
γ−1Mn

√
γrTc

1 + γ−1
2 M2

n

Antot

(11)
with Mn the outlet Mach number for nozzle n.

Considering that the two nozzles are in phase opposi-
tion, one has access to the combined surface opened
by the VHAM at the end of the rig, Acomb = A1

tot+A
2
tot.

The mass flow rate ṁn for nozzle n can then be for-
mulated :

ṁn = ṁtot
Antot
Acomb

(12)

(11) and (12) are combined to obtain an equation on
the outlet Mach number Mn :

ρc(1 +
γ − 1

2
M2
n)

−1
γ−1Mn

√
γrTc

1 + γ−1
2 M2

n

=
ṁtot

Acomb
(13)

(13) is solved using a root finding algorithm. Then, the
pressure at the nozzle exit Pn is found using the isen-
tropic relation :

Pn = Pc(1 +
γ − 1

2
M2
n)

−γ
γ−1 (14)

with Pc the chamber pressure.

Finding h : At first, the chamber pressure Pc is as-
sumed to be unknown. Suppose now that the wheel,
starting from a distant point, was progressively mo-
ved closer to the nozzles with a constant mass flow
rate ṁtot in the system. According to previous deve-
lopment, h being a parameter of Mn, Mn would in-
crease. When the nozzles become choked (Mn = 1),
the chamber pressure would increase as well.

Therefore, one can trace the evolution of Pc with
respect to h (Fig.9). As the wheel is turning, choking is
not maintained during a whole period. The first value
of h for which choking is observed during a period is
retained. When Pc reaches the pressure observed in
the experiment, Pc = 3.5bar, the corresponding value
of h is assumed to be the experimental one. The value
h = 0.21mm is retained.

FIGURE 9: Variations of chamber pressure with res-
pect to the wheel-nozzle distance

Finally, the acoustic pressure amplitude imposed at
the exit nozzle of the NPCC rig by the VHAM is found
with a reasonable precision, taking the amplitude of
Pn given by eq. 14.

∆p′ = ±0.45 bar (15)

A superimposed sinusoidal acoustic wave of ampli-
tude ∆p′ = ±0.45 bar and frequency the eigenmode
frequency found in AVSP is now added to the charac-
teristic boundary conditions at the nozzle outlets. The
modulation is initiated after a transitory time τb.
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5.2. Mode shapes

As seen on Fig. 10, LES correctly retrieves the mode
shapes for all three eigenmodes excited. In particular,
the coupling between dome and chamber for mode
1T1L is clearly visible.

FIGURE 10: Acoustic pressure p′, Transverse cut, LES
on a coarse mesh (left) and AVSP solution (right), red :
+0.1 bar, blue : -0.1 bar. Top : 1T, mid : 1T1L, bot :
1T2L

5.3. Growth of the pressure response

In the experiment, the wheel starts from a resting po-
sition and is brought to the required speed to modu-
late the system at the proper frequency. This particular
transitory phase is not reproduced in the LES where
the wheel starts spinning at the wanted speed directly,
therefore the growth of the pressure response obser-
ved in the LES cannot be compared to the experiment.
The pressure signals are filtered using a third order
high-pass filter to exhibit the pressure fluctuation p′

(blue curves on Fig. 15). The limit-cycles are reached
in around 150ms for mode 1T, 180ms for mode 1T1L
and 200ms for mode 1T2L.

5.4. Limit-cycle comparisons

The results for probe HFc1 (chamber) and HFd1
(dome) are compared to the experiments (Fig. 11).
The pressure disturbance p′ observed is in very good
agreement with the one obtained by the pressure sen-
sor in the test bench. In particular, the limit-cycle of the
1T mode exhibits high-frequency noise of large ampli-
tude, as well as a peculiar shape of the signal which is
very well retrieved by the LES. The larger amplitudes
reached by the 1T1L and 1T2L mode are also well-
retrieved by the LES. In the dome, the LES retrieves
the coupled nature of mode 1T1L, with a non-zero
pressure signal at probe HFd1. However, the pressure
signal in the LES with these parameters has a slightly
larger amplitude than in the experiment.

It is to be noted that these results are achieved without
any tuning from the user, as the excitation amplitude
is coming from the detailed analysis presented before.

5.5. Mesh convergence

To ensure that grid resolution has no influence on the
results, the 1T1L mode is excited on the fine mesh.
The growth of the pressure response and the limit-
cycle are compared to the coarse mesh computation.
The results are in very good agreement, the two com-
putations showing similar envelopes and limit-cycle
amplitudes with around 10% discrepancy at worst, the
fine mesh computation having the higher amplitude.

6. DISCUSSION

6.1. Frequency content

For each case, a spectrogram is obtained by per-
forming power spectral decomposition over time win-
dows using a Welch method with 3 blocks. Each
window overlaps 50% of the former. The resulting
spectrograms highlight the evolution of the frequency
content in the simulation for each case studied (Fig.
12).
Excitation of mode 1T at the amplitude produced by
the VHAM in the experiment leads, after around 50
ms, to a response at some of the frequencies multiple
of the excited eigenfrequency (1226 Hz). In particular
the 2nd, 3rd and 8th ’harmonics’ produce a noticeable
response (more than 1% of the power of the eigen-
frequency). The excitation of these high-frequencies
is responsible for the peculiar shape of the pressure
signal in permanent regime observed at probe HFc1
(Fig. 11a). For mode 1T1L, the same phenomenon
is observed but with a lesser response of the harmo-
nics. Only the 2nd harmonic responds noticeably, af-
ter around 70ms. Finally, response of the 2nd and 7th
harmonic is observed for mode 1T2L.
Our understanding is that the high amplitude pres-
sure modulation imposed by the VHAM (p′ = 0.45bar,
around 13% of the mean chamber pressure) is res-
ponsible for the transition to a non-linear regime. This
hypothesis is tested by lowering the imposed pressure
amplitude in the LES. Five regimes are therefore tes-
ted for mode 1T1L : 100% , 50%, 30%, 20% and 10%
of the experimental forcing amplitude. Once in fully
linear regime (10%), a linear model is compared to
the pressure response in the LES. In the process, the
damping α is found for all modes by adjusting the mo-
del on the LES when exciting frequencies slightly off
the eigenfrequencies. Finally, the linear model is com-
pared to the LES in the experimental conditions, and
good agreement is found at the beginning of the exci-
tation, before reaching non-linear regime.
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FIGURE 11: p′ at HFc1 (chamber, top) and HFd1 (dome, bottom), LES on coarse mesh (high-pass filtered) ; Expe-
riment (high-pass filtered).Left : 1T, Mid : 1T1L, Right : 1T2L

6.2. Linear framework

Fig. 13 presents the envelope of the pressure res-
ponse p′, high-pass filtered, for all amplitudes tested,
with normalized values with respect to the amplitudes
reached for a forcing of 10%. Notably, the value rea-
ched for a forcing of 20% of the experimental ampli-
tude is less than double the one reached for 10%.
This highlights the non-linear behaviour of the system
at higher amplitudes of excitation. For an excitation
of 30%, 50% and 100%, the non-linear behaviour be-
comes even more visible.

6.3. Linear model

After ensuring that the linear framework was respec-
ted in the lower forcing range, a model for the excita-
tion source term in the amplitude equation (1) is nee-
ded. The model described in [6] represents the VHAM
as two isolated acoustic sources (one at each nozzle)
operating in phase opposition. Starting from the mass
balance equation and using the modal expansion des-
cribed above (1), it comes for mode m :

Smexc(t) =
˙mtot

2 ∗ Λm
ωec

2 (Ψm(x1)−Ψm(x2)) sin(ωet)

(16)
with ˙mtot = ṁ1 + ṁ2 the total modulated mass flow
rate (sum of the mass flow rates exiting nozzle 1 and
nozzle 2), Ψm the eigenfunction of mode m, x1 and
x2 the position of the nozzles, Λm =

∫
V

Ψ2
mdV the

integral over the domain of the mth eigenfunction,
c the speed of sound and ωe the pulsation of the
excitation.

In the following, for the sake of clarity :

λ =
˙mtot

2 ∗ Λm
ωec

2 (Ψm(x1)−Ψm(x2)) (17)

With the assumption of linear damping, the amplitude
equation is :

η̈m(t) + 2αmη̇m(t) + ω2
0ηm(t) = Smexc(t) (18)

with ω2
0 the pulsation corresponding to the eigenfre-

quency, αm the damping associated with mode m.
The solution to (18) can be formulated :

η(t) = e−αt (Acos(ω1t) +Bsin(ω1t))

+ Γ1sin(ωet) + Γ2cos(ωet) (19)

with :

ω1 =
√
ω2

0 − α2

Γ1 =
λ(ω2

0 − ω2
e)

(ω2
0 − ω2

e)2 + 4α2ω2
e

Γ2 =
−2αλωe

(ω2
0 − ω2

e)2 + 4α2ω2
e

(20)

A and B are found using the initial conditions. At
t = 0, η = 0 implies A = −Γ2. It follows : B =
η̇(t=0)−ωeΓ1−αΓ2

ωe
.

The signal is therefore constituted of an exponentially
decaying transitory part (with the damping α as the
exponential constant) and a permanent regime part. It
is to be noted that the damping α plays a role in both
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(a)

(b)

(c)

FIGURE 12: Spectrograms of the pressure response
at probe HFc1 for each mode, LES on coarse mesh,
logarithmic scale. (a) 1T, (b) 1T1L, (c) 1T2L, ∆f =
10Hz

FIGURE 13: Envelope of p′ (high-pass filtered) for
mode 1T1L, probe HFc1. Forcing amplitudes :
100%, 50%, � 30%, 20%, 10% of the initial am-
plitude (0.45 bar)

the transitory part (being present in the exponential
decay, A and B) and the permanent regime amplitude
(in Γ1 and Γ2).
Considering the values that will be presented later for

α, ωe and η̇(t = 0), it comes that A >> B.

6.4. Parameters

Some parameters are known beforehand, some are
found using AVSP. The term η̇(t = 0) is evaluated
on the LES. All known or calculated parameters are
shown in Table 6.

TABLE 6: Known and calculated parameters of the mo-
del

Parameter 1T 1T1L 1T2L
ω0 [rad.s−1] 7703 9230 12793
Ψm(x1) −0.962 0.957 −0.879
Ψm(x2) 0.961 −0.955 0.873
Λm(∗10−4) 7.13 4.10 2.73
η̇(t = 0) [Pa.s−1] 60000 200000 150000

Evaluation of ˙mtot : The modulated mass flow rate,
˙mtot is evaluated in the LES by looking at the mass

flow rate at nozzle exits.

Evaluation of the damping rate α : α is evaluated by
fitting the model either using the initial growth rate of
the LES signal (Fig. 15). The values found for α are
shown in Table 7.

TABLE 7: Damping α found by fitting the linear model

Case 1T 1T1L 1T2L
α [s−1] 3.0 3.0 6.0

6.5. Validation of the linear model

Comparison between the model and the LES results
for mode 1T1L at 10% of the experimental forcing is
presented in Fig. 14. The model correctly reproduces
the limit-cycle amplitude and is very close to the LES
signal in the transitory phase.
A comparison between the model and the LES signal
for all modes at the experimental forcing amplitude is
presented in Fig. 15. The model is very close to the
LES for all cases at the beginning of the runs, i.e at
low amplitudes, when the system responds linearly.
Afterwards a growing discrepancy is observed when
non-linearities appear, corresponding to the energy
transfer to higher frequencies for the LES signal. In
other words, non-linearities act as a damping process
for the main excited frequency.
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FIGURE 14: Comparison between LES signal at probe
HFc1 (—, opacity=70%) and fitted linear model (—)
with time-dependant ˙mtot, 1T1L mode, Excitation am-
plitude : 0.045 bar

FIGURE 15: Comparison between LES signal at probe
HFc1 (—, opacity=70%, bandpass filtered) and fitted
linear model (—), Excitation amplitude : 0.45 bar, top :
1T, middle : 1T1L, bottom : 1T2L

7. CONCLUSION

The excitation of the NPCC test rig by the VHAM was
simulated using LES. Headlosses between the dome
and the chamber and jet profiles were investigated
in steady-state simulations. A geometrical model

was developped for the determination of the VHAM’s
forcing amplitude, including the effect of the leakage
between the perforated wheel and the rig’s nozzles.
The amplitude found was used for the simulations of
the excitation of three of the system’s eigenmodes.
Comparison between LES and experiments was
very satisfying, the LES correctly representing the
limit-cycle amplitude and the spectral content of the
experimental signal, as well as the dome-chamber
coupling (or non-coupling) of each eigenmode.
A detailed study of the transitory phase for each mode
highlighted the apparition of non-linearities, which
were found to be due to the high forcing amplitude. A
linear model was developped and found to be in very
good agreement with the LES when the amplitude
of forcing was kept low. In the process, a global
acoustic damping was found for each mode. When
tested against the signals at the experimental forcing
amplitude the model predicted very well the behaviour
at the beginning of the excitation, but failed to predict
the limit-cycle amplitude due to the non-linearities.
Further studies will focus on the identification and
quantification of the phenomena responsible for
the acoustic damping in this configuration. As it is
possible to trigger non-linearities in this configuration
by playing on the forcing amplitude, these simulations
could also be used to study the non-linear behaviour
of the system and its effect on the acoustic damping.
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