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Abstract—We introduce the idea of a symbolic description of
a complex human learning task, in order to contribute to better
understand how we learn. The learner is modeled on the basis
of knowledge from learning sciences with the contribution of
cognitive neurosciences, including machine learning formalism, in
the very precise framework of a task, named #CreaCube reviewed
here, related to initiation to computational thinking presented as
an open-ended problem, which involves solving a problem and
appealing to creativity.

We target problem-solving tasks using tangible interfaces for
computational thinking initiation, and describe in details how we
model the task and the learner behavior in this task, including
goal-driven versus stimulus-driven behavior and the learner
knowledge construction. We show how formalizing these elements
using an ontology offers a well-defined computational model and
the possibility of inferences about model elements, analyzing and
predicting the learner behavior.

This operationalization of a creative problem-solving task is
still at a preliminary stage, but an effective proof of concept is
described in this study.

Index Terms—Cognitive Neuroscience, Ontology, Problem-
Solving, Learning Sciences, Computational Thinking

I. INTRODUCTION

Understanding how we learn is a key issue for improving
education worldwide. This is especially true for transversal
competencies sometimes referred to as “21st-century skills”,
such as computational thinking ( [25], see also [15] for a recent
review). Other transversal skills such as creativity, problem
solving and critical thinking are especially important in the
present period for the development of citizenship [22]. Such
competencies are linked and must be considered in interde-
pendence. For instance, computational thinking is intrinsically
related to problem solving (i.e., requires to solve ill-defined
tasks, not only solving well-defined problems using a step-by-
step approach) and involves creativity in practice (e.g., creative
programming), beyond specific know-what (knowledge) and

know-how skills. Computational thinking requires techno-
creative activities to be developed and must integrate critical
thinking development, especially when acculturating citizens
of all ages to Artificial Intelligence [4]. How to better under-
stand such human learning ? Our contribution is a modeling
proposal of such a problem-solving learning activity as a step
towards better understanding these transversal competencies,
thus tackling a key challenge in learning science (also referred
to as educational science, from the French terminology).

Problem solving: Problem solving in everyday life takes
different forms depending on the task and context. Despite the
pioneering work of [19] aiming to develop a general problem-
solving framework, human problem solving is dependent on
the task and context, requiring to consider prior knowledge
but also the knowledge construction that is developed through
the task process based on the different operations the subject
performs on the task. Research on problem solving has focused
on a diversity of tasks, most of all on well-defined problems
such as the chess game or the Tower of Hanoi, allowing to
define task models and problem-solving methods. In short, the
idea is to represent the problem space, including the positions
of the initial state and of the desired goal (possibly a region
of the space if the goal is not defined as a unique position but
specified through instructions) and to define a path between
the positions. This can be done in both forward and backward
directions, where knowledge can provide rules for moving in
the space or constraints to obey.

Using tangible artifacts: Taking into account the need to
consider the set of specific knowledge required to solve a task,
we focus our study on a specific problem-solving task with
tangible material. Using tangible artifacts allows not only to
infer cognitive process but also to observe behavioral patterns
[21]. At a more concrete level, we aim to study creative
problem solving through screen-less activities, also known
as unplugged activities [12], for instance, using pedagogical



robots or connected objects [21]. These activities require a
non-trivial setup in order to track the learning process through
the activity. They aim to consider the problem-solving process
instead of considering only performance scores of the task.
Methodological challenges in process-based data collection
also take into account the ethical issues of collecting human
data in a way that ensures data privacy. One challenge is the
use of efficient measurement devices of reasonable cost and
it appears that a precise model of the task allows to define
specific observables that are thus more robust to estimate
[21]. Another key point is the bias induced by the fact that
the learner is observed and monitored, and one solution is
to take this as a chance to involve the learner in their own
learning process, but this is to be properly studied, see [6] for
a discussion on these points. In both cases, the construction
of a precise model of the task and of the learner involved in
this task is a lever to take up this challenge.

The data challenge: A step further, the challenge here is
to work from a relatively small batch of data (a few dozen to
compare with the thousands of data used with classic statistical
methods). In order for the results to be meaningful, we need
to introduce a maximum of prior information upstream to
the analysis of the observables, resulting in highly structured
data. An ontology is an appropriate tool when it comes to
describing and structuring data. We are thus making use of
ontology modeling to model the learner and the task, including
the observables collected during such a learning activity. This
model will then be applicable to the observed learning ana-
lytics and allow to interpret them. Phenomenological models,
indeed, already exist: the ICAP framework [7] proposes to
categorize cognitive engagement behaviors into four modes
(Interactive, Constructive, Active,and Passive) and links these
behaviors to learning outcomes, while the activity theory [9]
is an appropriate framework providing the theoretical context
of this study. Based on these epistemological frameworks, our
present study is positioned at an operational level.

II. MATERIAL AND METHOD

A. The #CreaCube task

In the #CreaCube study1, we aim to analyze problem-
solving strategies using modular robotic cubelets, targeting
children between 8 and 12 years old. The task engages the
participants into building an autonomous vehicle, composed
of 4 items, able to move from a point A to another point
B. In this context, the participant is given a set of 4 mod-
ular robotic cubelets which differ in their appearances (e.g.
different colors) and affordances (e.g. wheels, switch...). The
learner is expected to understand that the 4 ”items” mentioned
by the guideline are the 4 cubelets on the table, and that they
should assemble those cubelets into a certain configuration
which will be able to move autonomously. It is worth noting
that this problem does not have a unique solution as several
configurations may satisfy the goal. The task is relatively easy

1See https://creamaker.wordpress.com/2019/02/06/publications-
within-the-creamaker-project for full details

in the sense that most participants come up with a solution in
less than 15 minutes, but complex to model because of the
large problem space and the lack of specification (e.g. the
possible actions are not clearly stated).

The #CreaCube task engages the participant in an ill-defined
problem, for which the participant has no prior experience
of the modular robotic cubelets. Considering this lack of
knowledge, there is a need in exploratory orientation, which
is defined from a learning science perspective, as a way
to gather information from the environment [13] in order
to complete the task. Throughout the task, the participant
moves towards the goal by mobilizing prior knowledge which
appears to make sense in relation to their experience with the
material being manipulated and the requirements defined by
the guideline. Specifically, in this particular task, exploration
aims to understand the artifacts, their characteristics and
technological affordances, allowing to formulate hypotheses
on the material and define sub-goals to solve the problem.
The exploration of the means given to solve the task should
facilitate the generation of new stimuli which can then help
to make progress towards the goal, by fulfilling sub-goals and
validating or invalidating hypotheses.

The task is modeled based on the knowledge needed to
solve it but also on the initial states of the hardware and the
final state for its success, as detailed in Fig. 1. We can see
the different observables taken into account, i.e. the possible
configurations of the cubelets (disassembled or assembled
into a certain shape), the discovery of affordances, i.e. the
practical possibilities offered by an element (e.g. there is a
switch, so it can be flipped), the different results obtained
(e.g. at the motion level), but also elements linked to the
subject, such as their emotions or their attitude (perseverance,
abandonment) regarding the task. All of these observables will
serve as a basis for modeling the task in the form of structured
knowledge.

The file model generated from this interface has been
developed in a typed hierarchical format (JSON syntax, with
both the raw and computed data as well as the description of
each type of information and its relationships to other types) to
allow its formal manipulation and to best represent the struc-
ture of the collected information, in order to make the link with
knowledge representations related to the computational notion
of ontology (as used in the Semantic Web) and integrated as
an interactive platform to facilitate the ergonomics of manual
video analysis [23]. Each video for the #CreaCube task is
encoded as a temporal sequence of states corresponding either
to a configuration of the task or to a state of the learner in the
task as explained above (Fig. 1). Here is an example of such a
JSON file generated from the interface, describing for a given
participant at which moment he reached which observable:
{"clicks": [

{"time": "46","click": "AS01"},
{"time": "50","click": "AS02"},
{"time": "58","click": "AS01"},
{"time": "67","click": "AS00"},
{"time": "82","click": "AS01"},
{"time": "93","click": "AS00"},

https://creamaker.wordpress.com/2019/02/06/publications-within-the-creamaker-project/
https://creamaker.wordpress.com/2019/02/06/publications-within-the-creamaker-project/


Fig. 1: Interface for the identification of observables, this figure describes a part of the system states to which is added, for example, the
identification of each cubelet (recognizable by its color: navy blue battery, black sensor, white motor, red inverter) and the states of the
cubelets (e.g. ”connected/disconnected” or ”on/not on wheels”). This sub-ensemble of the possible states corresponds to the observables that
have been chosen to analyse the task (see http://aide-line.inria.fr/public/doc/vid.mp4 for a video of the experiment.)

{"time": "101","click": "AS01"},
{"time": "109","click": "AS02"}

],"idParticipant": "p362"}

The methodology for generating an organized set of learning
analytic log from video analysis has been developed from
a learning sciences perspective through the ANR CreaMaker
project to study problem-solving activities. These videos serve
a double purpose: (i) analysis of the observables (ii) and
training of the teachers [1].

In order to allow for the analysis of the learner’s activity
and the context of the learning activity, the description of the
learning activity is developed in the form of ontology in the
computational sense that we will now explicit.

B. The ontology approach

Terminology: Ontologies, as used in the Semantic Web,
allow to represent structured knowledge by defining concepts
as well as relationships and hierarchies between these con-
cepts. In the following, we use the Web Ontology Language
(OWL) terminology:

(i) Individuals represent atomic, real-world objects
(ii) Classes represent concepts; a class may therefore be a

collection of individuals (which are called instances of
the class)

(iii) Individuals may be linked by relationships, which are
labeled by properties. Properties may have a domain,
i.e. the class that they can be applied to, and a range, i.e.
the class that they can take values from.

OWL also defines both class hierarchy and property hierar-
chy.

This formalism allows to perform logical reasoning in order
to validate the model, as well as logical inference to find
all the assertions that can be deduced from the user-defined

statements. Indeed, under certain constraints2, OWL specifi-
cations correspond to description logics, providing computa-
tional completeness and decidability (a didactic introduction
can be found in the guide [5]).

Ontologies in education: Here we consider the ontology
approach to model a very specific problem-solving task, as
it has been done with well-defined tasks such as the Tower
of Hanoi [10]. A rather large literature is already available
regarding the use of ontologies in e-learning systems, as
reviewed in [11]. These approaches attempt to model the
learning contents, or the learner (rarely both), in order to
perform semantic inference on the observables (e.g [14]). They
generally aim to propose adaptive learning resources in order
to improve the learner’s performances, while our main purpose
is to better understand the learner behavior. Other related work
includes the ontology specification of serious games [24] 3

which is inspiring although it does not apply to the description
of unplugged activities. In our case, we want to use the OWL
vocabulary to specify the #CreaCube task on two levels: (i) the
material environment (cubelets, points...) and its affordances,
and (ii) the learner in the context of this task, their behaviour
and their cognition. A step further, we wish to query our model
against the JSON data, using logical reasoning,in order to
validate its relevance regarding the observable analysis. We
also introduce here computational and cognitive neuroscience
knowledge in the modeling process, which does not seem a
current practice.

C. Borrowing from cognitive and learning sciences

Goal-driven vs stimulus-driven behavior: In order to
advance in the understanding of creative problem solving, we

2Implemented in OWL DL, a sub-language of OWL
3Implemented in the Ludo Ontology: http://ns.inria.fr/ludo

http://aide-line.inria.fr/public/doc/vid.mp4
http://ns.inria.fr/ludo/v1/gamemodel


propose to observe a specific problem-solving task — in this
case, the aforementioned #CreaCube task — for which we aim
to consider a functional neurocognitive model of the brain [3]
and the specific knowledge related to the task in terms of the
subjects’ prior knowledge, the technological affordances they
might discover and their potential interpretation in the process
of problem solving (how these affordances might contribute
to the task). The behavior of the participant in relation to her
or their concurrent goals during the task (choosing among
the sub-goals to be addressed in the task, performing the
task as fast as possible, preserving their ego when facing
problems, etc.) is considered in relation to two main potential
strategies/behaviors to reduce the problem space into the
solution-space: (i) a top-down goal-driven strategy (a sub-
goal is considered and it is questioned which existing skills
might be recruited to solve it) and (ii) a bottom-up stimulus-
driven strategy (affordances generate stimuli that are selected
and explored, potentially leading to revise the sub-goals).
Globally, the behavior can be voluntarily goal-driven when the
participant regulates the problem-solving process at the meta-
cognitive level. However, we assume that the situation will
engage the participant in stimulus-driven behavior in certain
situations when the participant is lost or confronted with
unknown stimuli (such as the robotic cubelets) that drive their
actions to satisfy their curiosity. The stimulus-driven behavior
could be considered within a larger goal-directed mechanism
(see, e.g., [17]). We then assume that when a participant is
engaged in a problem-solving activity, the main goal accepted
by the participant is to solve the problem. The sub-goals for
advancing towards one of the potential configurations which
will satisfy the requirements of the problem, will engage the
participant in behaviors which can sometimes be stimulus-
driven, alternating with analysis of the stimuli based on the
main goal of the task, exploiting previous knowledge and skills
and also possibly with discovery and creativity [2].

Related cognitive functions in the brain: In addition, also
based on the same neurocognitive model of the brain [3], we
consider different ways of specifying and identifying a goal
by defining (i) What is this goal (its sensory description), (ii)
Why (and how) it answers current motivation or specification,
(iii) Where it is located and can be accessed and (iv) How
it can be manipulated and more generally addressed by a
skill. These different motivational and sensori-motor aspects
of information representation in the brain, as described in our
cerebral architecture, represent an operational way to deal with
all aspects of a goal to be considered in problem solving.

Exploration vs Exploitation: Having made the distinction
between goal-driven and stimulus-driven behavior, we can now
discuss the notions of exploration and exploitation. While
this pair is well known in cognitive science and in machine
learning at the level of reinforcement learning, they are two
distinct conceptualizations that we will now make explicit.
In problem-solving activities, subjects alternate between two
main strategies: exploration, which aims at experimenting
with new alternatives or at acting on the environment in
order to generate new stimuli [13], and exploitation, which

is the use of existing knowledge (declarative, procedural) in
a given situation. At this level of description, we can draw
parallels with these notions in reinforcement-based machine
learning, but in this second domain exploration is mostly
random, whereas in problem solving, exploration is seen as a
strategy for generating new stimuli or new ideas or behaviors
by recombining pre-existing knowledge or behaviors, or by
manipulating the environment. These are therefore two quite
distinct notions, one corresponding to an internal process of
generating new internal representations, and the other to a
behavior that is only defined in relation to a direct interaction
with the environment.

III. RESULTS

We implemented the ontology4 using the software Protégé5.
First, we have formalized, on one hand the classes corre-
sponding to the material environment of the task, on the
other hand the classes referring to the learner’s cognition
and behavior. Then, we have extensively instantiated these
classes, listing their individuals based on the task design itself
and the observations collected during the experiments. Finally,
we have defined some properties to express the relationships
between these instances in order to describe the task process
from both a goal-driven and a stimulus-driven point of view.

A. Modeling the task and the material environment

The task involves several objects (cubelets, points), which
have characteristics or features (colors of the cubelets, visual
and functional affordances, functions, etc.) and states (as-
sembled/disassembled cubelets, wheels facing the ground/not
facing the ground, switch on/off, complete/incomplete cubelet
configuration, etc.). These concepts allow to a class hierarchy
that characterizes the task material as shown on Fig. 2.

The material states represent the problem space of the task
in the sense of [19]: indeed, the goal states of the task are
those where the cubelets are in a configuration that satisfies the
guideline, i.e. in an ”assembled” state, ”stable” and ”moving”
”into the right direction”, with the switch ”on”, and the wheels
”on the ground”. The learner may interact with the material
and change its state through their actions, as described in the
next section.

The objects have different functions (e.g the white cubelet
rolls, the black cubelet detects nearby objects, etc). The learner
may guess these functions, or at least some of them, by looking
for clues provided by affordances. These affordances may
be either perceptible (i.e. suggested by sensitive information
obtained through the discovery of objects), or functional (i.e.
discovered through the interaction of one object with others).
In the #CreaCube task, the perceptible affordances are all
visual. For example, the switch of the blue cubelet, or the
wheels of the white cubelet are visual perceptible affordances.
Conversely, the red cubelet has no specific visual affluence :
there is nothing on its surface that shows its usefulness for the

4This ontology is publicly available here:
https://gitlab.inria.fr/line/aide-group/creaonto.

5https://github.com/protegeproject

https://gitlab.inria.fr/line/aide-group/creaonto
https://gitlab.inria.fr/line/aide-group/creaonto
https://github.com/protegeproject


Fig. 2: Main classes defined in our ontology. Classes related to the task material are encompassed in the upper frame, while the lower frame
includes classes that characterize the learner. Some of the properties are also represented through their domains and ranges, to show how
those classes are related to each other. (Figure edited using the Protégé OntoGraph plugin; lower-level classes and individuals are not shown)

task at hand. However, by making it interact with the other
cubelets, the learner may understand its functionality and its
operating principle, which is inverting the sensor’s behaviour,:
hence disclosing a functional affordance. Affordances partici-
pate in the construction of memory traces, since they allow the
learner to discover, little by little, their material environment
and its logic, in order to know how to use it to solve the
problem.

B. Modeling the learner’s cognition and the knowledge con-
struction

Stimuli and actions: Throughout the task, the learners
discover and manipulate the material environment, from which
they receive various stimuli, i.e. events that cause them organic
reactions. In #CreaCube, the stimuli are sensory in nature
and give the learner new information about the material
environment of the task; this information can then be processed
by the learner to constitute traces of stimuli that are kept active
during the task, before being consolidated as knowledge (as
we will described further).

In the #CreaCube task, stimuli occur when the learner
proactively interacts with their environment; for instance,
when they flip the switch on the blue cubelet, a diode lights up
as a response to their action. The only exception is at the very
beginning of the task when the material is revealed (visual
stimulus) and the guideline is played (auditory stimulus),
without any previous action from the learner.

Some actions are only available to the learner in some
particular states of the material environment; those states de-
fine the preconditions of the action. Similarly, post-conditions
define changes of state that an action results in. These pre-
and post-conditions (specified by the ontology properties, see
III-C) also constitute knowledge to acquire.

Knowledge retrieval and acquisition: In order to com-
plete the task, the learner needs to retrieve prior knowledge
that has been acquired in the course of past experiences and
learning. Most of the time, this prior knowledge is activated
through the discovery of affordances: for instance, after finding
of the wheels, the learner might retrieve the fact that wheels
on a vehicle must be in contact with the ground to allow
it to move. However, prior knowledge may not always be
transferable to the situation at hand: for example, the fact that
wheels automatically start to turn after the user has pulled
the vehicle backwards is only applicable in certain situations
- most often, this mechanism is found in children car toys.
However, in this task, trying to press down on the white cubelet
by manually rolling it backwards will not cause it to move
forward autonomously. This piece of knowledge might even
hinder the completion of the task, if it is too strongly anchored
(i.e., if it considered to be a general truth when it is actually
valid only in a limited set of situations): as long as the learner
keeps on trying to make the wheels work this way, they will
not go on their research any further.

Confronting their prior knowledge to stimuli perceived



through their interactions with the material, allow the learner to
maintain a representation of their environment. We refer to this
representation as contextual knowledge in our ontology, i.e.
facts that are related to the specific context of the task. Some of
this contextual knowledge is acquired when the learner listens
to the instruction and is thus directly related to the goal; the
other part is built up during the task and relates to the resources
available to complete the task.

Hypotheses and goals: In order to refine their represen-
tation of the environment, the learner needs to understand
which pieces of prior knowledge are effectively applicable in
the context of the task and relevant to solve it. For example,
the learner might want to test the hypothesis that the wheels
on the white cubelet can be activated by pull-back action,
because they have previously seen such a mechanism on other
toys. The outcome of the pull-back action will allow them
to either discard this hypothesis or confirm it and store it
as contextual knowledge. Testing hypotheses thus define sub-
goals to acquire knowledge that will help solve the task. As
previously described in section II-C, goals are a way for
the participant to organize their understanding of the task
and plan their actions hierarchically. Global goals (essentially
responding to the cognitive questionings What and Why, in
link with high-level executive functions [3]) may be instructed
by an external direction — in this case, the guideline — or
a metacognitive reflexion. These high-level goals yield new
questionings, inducing (Where, How) behavior mechanisms [3]
thus resulting in sub-goals at a more local level, in link with
sensori-motor behavior.

C. Modeling the task process

Instantiating the concepts: Having defined the previous
concepts, we have instantiated them by extensively (although
not exhaustively) listing all possible hypotheses, actions, stim-
uli, goals... of the learner, as well as all states, affordances,
functions... of the material. This instantiation was based on the
task design itself, e.g. the cubelet operating modes, and on the
expected behaviors predicted by the theory, but also updated
during the course of the experiments to account for newly ob-
served behaviors. These instances (also known as individuals,
see II.B) are linked to each other through relationships that
describe the interactions between the material and the learner,
the knowledge construction and the goal hierarchy, all of these
contributing to better understand the task process.

Describing relationships: Relationships between individ-
uals are represented by properties for which we specify the
domain and the range, i.e. the classes they link, as shown on
Fig. 2. These relationships allow us, for example, to identify
preconditions and post-conditions of an action (respectively
represented by the properties technicallyRequires
and changesTheStateOf), describe the goal intricacy
(mayBeAnUnderGoalOf) or the knowledge dependence
(operationallyRequires, mayBeInducedBy). These
properties have been defined with regard to the goal-driven and
stimulus-driven behaviors described in section II-C, as shown
on Fig 3. It is worth noting that we are using modal verbs when

the relationship may exist while not being systematic. This
representation could be improved using a numerical weighting
of RDF statements based on the notions of possibility and
necessity (in the sense of [8]) as discussed in [16].

Fig. 3: Goal-driven behavior on the left versus stimulus-driven
behavior on the right. Accordingly relevant properties defined in our
ontology are represented in blue.

IV. APPLICATION

A. Modeling as an interdisciplinary tool

This work allowed us to confirm the multiple interest of
working with ontological modeling when we bring together
three disciplines (educational, cognitive and computer sci-
ences) to tackle a problem:

• terminological interest to begin with: beyond periphrases
and phenomenological descriptions in each discipline,
constraining us to define things through lexical choices
and fully specified properties and relations between these
key words, forces us to clearly posit what we are talking
about ;

• interest in formalization: this approach allows, without
even using algorithmic reasoning skills at this stage, to
take stock of what can be defined rigorously, to formalize
completely.

Defining a well-formulated ontology is therefore already
by itself a structuring exercise, an epistemological tool in a
way, before even using it. As with any modeling, it gives an
exhaustive and explicit view of what is to retain compared to
what is neglected. Once the specification has been set, the use
of available reasoners such as Pellet or Hermit allows to check



(a) An example of SPARQL query

(b) SPARQL results returned for the query (a): we enquired about which actions
change the state of the blue switch, what stimuli may have provoked them, or
what goal they might be aiming at, and if that goal might be the sub-goal of
another one, as well as what knowledge they are using and what hypothesis
might be tested. We used the Protégé Snap-SPARQL plugin 6(which allows us
to perform logical inference and answer queries not only based on asserted data
but also inferred data).

Fig. 4: Example of inferences performed by the Hermit reasoner and retrieved by SPARQL.

its consistency and query the data on the consequences that
may or may not be drawn from it. It also allows us to evaluate
the order of magnitude of such development, showing that it
is quite a huge work but feasible.

This being done, we also have an immediate check of
the model properties, in particular its logical coherence and
soundness. It not only allows us to verify the absence of
contradictory statements, but we also experimented that if
our definitions are not sufficiently specified, we can easily
deduce spurious or odd consequences (e.g., mixing categories
of concepts). We thus have an operational tool to verify the
completeness of our formalization.

B. Reasoning about the model

1) Inferring internal observable of the learner from outer
observable:

Having stored these behavioral processes in an ontology al-
lows to retrieve them to interpret new data. A query language,
such as SPARQL in the case of RDF data, may fulfill that
purpose. For example, we may observe a new action which
changes the state of the switch, and wonder what motivated
the learner to execute this action. As illustrated by Fig. 4, a
SPARQL query on the model helps us retrieve that the action
may have been a simple reaction to the stimulus of seeing
the switch, in the case of a stimulus-driven behavior, or, in a
goal-driven mode, the result of a more elaborate reasoning
such as an attempt to understand the function of the blue
cubelet (thus testing the hypothesis that it is indeed a switch)
or, this hypothesis being verified, to activate the movement of
the vehicle.

Characterizing whether the learner is rather in a goal-driven
or stimulus-driven mode for a given sequence of observables
might be inferred from the timestamps recorded in the data,
thus helping us to decide which statements of the ontology
are more appropriate to describe the observed situation. For
example, we could assume that once the learner has identified

6https://github.com/protegeproject/snap-sparql-query

a goal and the means and resources at their disposal to fulfill it,
the flow of their actions might be smoother, whereas in an ex-
ploration situation, there might be more pauses corresponding
to the wait between new stimuli. However, this link between
timestamps and switch of strategy is not well understood yet
and needs further investigation.

2) Predicting the learner’s behavior:
Instead of querying the model using backward chaining as

in the previous example, we can also use forward chaining
in order to simulate the learner’s deduction, hence predicting
their behavior. For example, we might wonder how the learner
would react to the visual stimulus of seeing the switch. In
a stimulus-driven mode, they would likely touch it or try
to flip it (assuming that the knowledge relative to switches
being flipped has become a procedural knowledge, that is
to say automated into an almost reflex behavior). In a goal-
driven mode, we may infer that the learner will elaborate the
hypothesis that the affordance is indeed a switch and can be
used to activate the vehicle, which will result in planning goals
(flip the switch, connect the cubelet to the figure) and sub-
goals (they have to grasp the cubelet before connecting it to
the others).

Again, this ontology provides a subset of plausible behav-
iors, however we still need a way to decide which of these
behaviors to choose to simulate the learner. Such mechanisms
are still to be developed to explain what the learner’s attention
is more focused on in a given situation. Moreover, we need
to take into account inter-individual differences: some partic-
ipants might be more interested in achieving a performance
goal, thus appealing for a predominant exploitation strategy,
whereas others might pursue a mastery goal and try to under-
stand as much as possible about the environment of the task,
displaying more exploratory behaviors.

V. DISCUSSION AND CONCLUSION

This study introduces the operationalization of a creative
problem-solving task. Within this type of task, we need to
consider first extrinsic motivation (e.g., task performance)

https://github.com/protegeproject/snap-sparql-query


and intrinsic motivation (e.g., increase knowledge), i.e., the
”Why”. Then consider the ”What”, i.e., both exploration and
exploitation strategies directed toward different concurrent
goals (performance goal versus mastery goal in relation to the
knowledge related to the task). Our ontology formalizes these
behaviors involved in the creative problem-solving process to
model the learner’s behavior in interaction with the educational
robots, with regard to a cognitive model of the brain. Through
this process, we take into account the stimuli received during
the interactions with the modular robots, the perception and
interpretation of the different technological affordances that
will support the problem-solving activity through concrete
actions to be developed. The learner’s prior knowledge is
mobilised to understand current perceptions and transform
knowledge into a way that makes sense within the context
of task [18], formulating and testing in-task hypotheses.

The key point is that the description does not remain
phenomenological, that is to say, guided by a theoretical
framework expressed in human language to guide the analysis
of the data, while we hereby reformulate these notions at
a computational level to give oneself the means to process
them in a more systematic way using an algorithmic approach,
as discussed here, formalizing in a precise language the
concepts invoked. We also consider, based on this formalism,
biologically plausible implementations of internal reasoning
mechanisms in a companion work [16] in order to contribute to
cognitive neuroscience modeling of related mental processes.

This is only a first step, which already shows that formal-
izing such a learning task is definitely a rather huge, but
attainable work. Next steps will be to complete this formal
description, and develop reasoning mechanisms to better infer
the subject internal motivation and behaviors. We will also
complete the linking between this task and learner modeling
and experiment observables (e.g., learner state observation,
post-activity evaluation).

Though we have the feeling that it is a rather disruptive
approach with respect to learning science, we are really aware
that it is still a very preliminary work. Eventually, the key
point is to consider a triple multi-disciplinary approach from
learning science, cognitive neuroscience and computer science,
something that might be called computational learning science
[20].

Acknowledgments

Hugo Chateau-Laurent and Lola Denet are highly acknowl-
edged for their contribution to scientific discussions in link
with this work.

REFERENCES
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l’Association Française pour l’Intelligence Artificielle, (108), Apr. 2020.

[21] M. Romero, D. David, and B. Lille. CreaCube, a Playful Activity with
Modular Robotics. In M. Gentile, M. Allegra, and H. Söbke, editors,
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