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Sham Method

Jacques K. Desmarais,1, 2, ∗ Alessandro Erba,1 Jean-Pierre Flament,3 and Bernard Kirtman4, †
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(Dated: August 12, 2021)

A non-canonical coupled-perturbed Kohn-Sham density functional theory (KS-DFT)/Hartree-
Fock (HF) treatment of spin-orbit coupling (SOC) is provided. We take the scalar-relativistic
KS-DFT/HF solution, obtained with a relativistic effective core potential, as the zeroth-order ap-
proximation. Explicit expressions are given for the total energy through 4th-order, which satisfy
the 2n + 1 rule. Second order expressions are provided for orbital energies and density variables
of spin-current DFT. Test calculations are carried out on the halogen homonuclear diatomic and
hydride molecules, including 6p and 7p elements, as well as open-shell negative ions. The computed
properties through second- or third-order match well with those from reference two-component self-
consistent field calculations for total and orbital energies as well as spin-current densities. In only
one case (At−2 ) did a significant deviation occur for the remaining density variables. Our coupled
perturbation theory approach provides an efficient way of adding the effect of SOC to a scalar
relativistic single-reference KS-DFT/HF treatment, in particular because it does not require diago-
nalization in the two-component spinor basis, leading to saving factors on the number of required
floating point operations that may exceed one order of magnitude.

Keywords:

I. INTRODUCTION

Relativistic effects are typically accounted for in mod-
ern electronic structure programs through self-consistent
field (SCF) treatments, either in a two- or four-
component spinor basis (2c-SCF or 4c-SCF).1–18 Such
variational treatments have been made efficient, in
particular for closed-shell systems, within a Kramers-
restricted framework. In that context approaches have
been developed to exploit time-reversal and double-group
symmetries, which greatly reduce the computational task
of diagonalizing the associated secular equations.15,18–21

In practice, however, the symmetries are usually not ex-
ploited for diagonalization, due in part to a lack of effi-
cient algebraic routines.

An alternative to the 2c-SCF or 4c-SCF treatment of
relativistic effects is to include them from a perturbation
theory approach. The all-electron four-component Direct
perturbation theory (DPT) of Rutkowski and Kutzel-
nigg follows such a prescription.22–30 One advantage of
such a perturbation treatment is the possibility of ac-
counting for multi-reference character based on quasi-
degenerate perturbation theory (QDPT), which could
provide a framework for developing a cost effective com-
putational procedure.31–39

A particularly convenient representation of the Dirac
equation from a computational perspective is provided
through the relativistic effective core potential (RECP)
approach, which allows for treating scalar-relativistic
(SR) effects in a manner that is no more expensive
than a one-component non-relativistic calculation (1c-
SCF).40,41 Such one-component SR RECP treatments,

however, do not include spin-orbit coupling (SOC) ef-
fects. In Part I of this series we presented a double per-
turbation theory for adding SOC and dynamical electron
correlation effects to the SR RECP solution.42 This wave-
function treatment also provides a convenient starting
point for the generalization to QDPT.

In this paper (Part II of the series) we develop a
coupled perturbed Kohn-Sham (CPKS) treatment for
including SOC effects within density functional theory
(DFT). Our treatment follows along lines related to those
developed for the response of molecular and periodic
systems to external fields.43–53 The perturbation theory
treatment represents an efficient means of adding the ef-
fect of SOC to an SR single-reference KS-DFT/HF solu-
tion, in particular because it does not require diagonal-
ization in the enlarged 2c-SCF spinor basis.

For SOC in a two-component spinor basis, the appro-
priate generalization is based on so-called spin-current
DFT (SCDFT), which was developed originally for treat-
ing molecules in an external magnetic field by Vignale
and Rasolt54,55 and subsequently generalized for SOC by
Bencheikh.56 In SCDFT, the exchange-correlation (xc)
functional depends, not only on the particle-number den-
sity, n, and z-component of the magnetization, mz, (as
in the usual spin-DFT of von Barth and Hedin),57 but
also on the other Cartesian components of the magneti-
zation, mx and my, as well as the orbital- j and spin-
current Jx, Jy and Jz densities. The dependence of the
SCDFT functionals on such a large set of auxiliary den-
sity variables renders their parametrization a formidable
task. Thus, SCDFT has seldom been used in actual ap-
plications to material systems.58,59 However, some of the
present authors have recently shown that j, Jx, Jy and
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Jz, can be naturally included in xc functionals formu-
lated within local-density and generalized-gradient ap-
proximations (LDA and GGA) of SCDFT by including a
fraction of non-local Fock exchange in the single-particle
Hamiltonian.60 This paper provides the corresponding
perturbation theory formulation.

Our paper is organized as follows. In section II we out-
line the perturbation theory formulation including non-
canonical solution of the perturbation equations, 2n +
1 rule energy expressions, and determination of orbitals
energies as well as the density variables. Section III pro-
vides a step-by-step outline of the computational pro-
cedure whereas the specific details of our CPKS calcu-
lations are given in Section IV along with those for the
preliminary 1c-SCF and reference 2c-SCF treatments. In
section V we present results for the halogen homonuclear
diatomic and hydride molecules. Section VI provides a
comparison of computational requirements for the CPKS
vs. 2c-SCF approaches. Conclusions and suggestions for
future work are drawn in section VII. Additional math-
ematical details on the derivation of the order-by-order
energy expressions are provided in the Appendix.

II. FORMALISM

A. Statement of the Problem

Following Ref. 60, the adiabatic connection of the spin-
current density functional theory (SCDFT) allows us to
write the exchange-correlation (xc) energy Exc in terms
of fully-interacting EFI and non-interacting ENI contri-
butions. In the local-density and generalized-gradient ap-
proximations (LDA and GGA) of the SCDFT, we have:60

Exc
[
n,m, j,Jx,Jy,Jz

]
= EFI [n,m]

+aENI
[
n,m, j,Jx,Jy,Jz

]
, (1)

where, n is the particle-number density, m is the Carte-
sian magnetization vector, j is the orbital-current density,
Jx, Jy, Jz are the three Cartesian spin-current densities
and a is the dimensionless fraction of exact-exchange.
The xc energy of the fully interacting system is, then,
written as the sum of pure exchange, Ex, and correla-
tion, Ec, contributions:

EFI [n,m] = (1− a)Ex [n,m] + Ec [n,m] . (2)

As was the case in Part I,42 the formalism presented
here is based on the relativistic effective-core potential
approximation (RECP). Both scalar-relativistic (SR) and
spin-orbit coupling (SOC) effects are treated in a compu-
tationally convenient way by writing the Hamiltonian in
a basis of two-component spinors. The two-component
spinors |i〉, in turn, are expanded in the chosen basis as:

〈r|i〉 =
∑
µ

cαµ,i〈r|µ〉 ⊗ |α〉+ cβµ,i〈r|µ〉 ⊗ |β〉 , (3)

where the cαµ,i are the KS orbital coefficients and ⊗ rep-
resents the direct product with the spin functions |α〉
and |β〉. Here, the 〈r|µ〉 = χµ (r) are contracted atom-
centered Gaussian functions = atomic orbitals (AOs).

In using the expansion of Eq. (3) in an AO basis with
a size NB, we define bold matrices with two spin indices
as being of dimension NB×NB, while bold matrices with
only one spin index will have the dimension 2NB × NB.
Then the orthonormality condition involving the spin-
blocks of the overlap matrix Sσσ, for σ = α or β and
those of the KS orbital coefficients cσ may be written:[

cα

cβ

]† [
Sαα 0
0 Sββ

] [
cα

cβ

]
= I , (4)

where I is the identity matrix. We will use an underlined
notation to denote super-matrices that contain all of the
spin-blocks, so that Eq. (4) can be written in a more
compact way as:

c† S c = I . (5)

The corresponding SCDFT single-particle equation in
matrix form reads:

H c = S c ε . (6)

or, equivalently:[
Hαα Hαβ

Hβα Hββ

] [
cα

cβ

]
=

[
Sαα 0
0 Sββ

] [
cα

cβ

]
ε , (7)

where

Hσσ′ = hσσ
′
+ Cσσ′ − aKσσ′ + Vσσ′ , (8)

in which hσσ
′

contains the matrix elements that can be
built from mono-electronic integrals:

hσσ
′

= δσ,σ′ [v + uAR] + uσσ
′

SO . (9)

Here, v consists of the electronic kinetic energy and
electron-nuclear interaction terms, uAR and uσσ

′

SO are, re-
spectively, the averaged and spin-orbit relativistic effec-
tive potential (AREP and SOREP) matrices; and Cσσ′

and Kσσ′ are the usual Coulomb and exact-exchange
terms. We also define Vσσ′ as

Vσσ′ =
[
Vσσ′

c + (1− a)Vσσ′

x

]
, (10)

where Vσσ′

c and Vσσ′

x are the matrices that represent the
DFT correlation and exchange potentials. The connec-
tion between the xc energy and potentials is discussed in
detail in sections II H and the Appendix.

uσσ
′

SO is the matrix (expressed in the basis of AOs) of
the SOREP operator ûSO, which, in turn, is a sum of one-
electron operators ûSO,i that have the general form:42

ûSO,i = ζ̂i

(
L̂z,iŜz,i +

1

2
L̂+,iŜ−,i +

1

2
L̂−,iŜ+,i

)
(11)
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where ζ̂i is a linear combination of one-electron oper-
ators with a radial part given by solid Gaussian func-
tions multiplied by powers of the electron-core distance
and an angular part given by projectors for each or-
bital angular-momentum component. L̂z,i (Ŝz,i) is the
z-component of the one-electron orbital (spin) angular-

momentum operator, and L̂±,i (Ŝ±,i) are the rbital (spin)
angular-momentum ladder operators.

From Part I we recall that (assuming real AOs)
the diagonal spin-blocks of uSO in Eq. (9) are pure
imaginary:42

R [uσσSO] = 0 , (12)

whereas the off-diagonal spin-blocks are complex.

B. Expansion of the Hamiltonian Matrix in Orders
of Perturbation Theory

In general Eq. (6) can be expanded as a power se-
ries in orders of the dimensionless perturbation-strength
parameter λ:

[
H(0) + λH(1) + λ2H(2) + . . .

] [
c(0) + λc(1) + λ2c(2) + . . .

]
= S

[
c(0) + λc(1) + λ2c(2) + . . .

] [
ε(0) + λε(1) + λ2ε(2) + . . .

]
.

(13)

We take the SR Hamiltonian as the zeroth-order approx-
imation:

Hσσ′(0) = δσ,σ′
[
v + uAR + Cσσ(0) − aKσσ(0) + Vσσ(0)

]
.

(14a)
In first-order

Hσσ′(1) = Cσσ′(1) − aKσσ′(1) + Vσσ′(1) + uσσ
′

SO , (14b)

and for all orders greater than one (N > 1):

Hσσ′(N) = Cσσ′(N) − aKσσ′(N) + Vσσ′(N) . N > 1
(14c)

The Coulomb and exchange matrices in Eqs. (14a)-(14c)
are defined as usual through the elements of the density
matrix Pσσ′(N) (for the definition of the latter see Eq.
(34) below). Thus, for the Coulomb matrix:

Cσσ
′(N)

µν = δσ,σ′
∑
τω

R
[
Pαα(N)
ωτ + P ββ(N)

ωτ

]
(µν|τω) ,

(15a)
which includes only the real part of the density matrix
since the contribution of the imaginary part cancels due
to the Hermiticity of Pσσ(N) and the fact that the AOs
are real; while for the exchange matrix:

Kσσ′(N)
µν =

∑
τω

Pσσ
′(N)

τω (µτ |ων) , (15b)

where the bi-electronic integrals have been written in
Mulliken notation.

In considering the contribution to Eqs. (14a)-(14c)
from the xc potential, it is convenient to introduce the
spin-density nσ(N):

nσ(N) (r) =
∑
µν

R
[
Pσσ(N)
µν

]
χµ (r)χν (r) , (16)

which may be expanded in powers of λ:

nσ (r) = nσ(0) (r) + λnσ(1) (r) + λ2nσ(2) (r) + . . . (17)

For the specific case of a collinear formulation, Eqs. (16)
and (17) allow us to define orders of perturbation theory
for the matrix elements of the xc potential through the
expansion:

V σσ
′

µν = V σσ
′(0)

µν + λV σσ
′(1)

µν + λ2V σσ
′(2)

µν + . . .

= δσσ′〈µ|
δEFI

[
nα, nβ

]
δnσ

|ν〉 . (18)

The V
σσ′(N)
µν are, then, obtained by taking the derivative

through order N of Eq. (18) and evaluating the result
at λ = 0. This leads to expressions that have been de-
veloped elsewhere in the context of one-component SR
theory, for the case in which the AOs are independent
of the perturbation.52,61 Here, we recall the results for
the simplest case represented by the local spin-density
approximation (LSDA). Given that

EFI

[
nα, nβ

]
=

∫
Fxc

(
nα(r), nβ(r)

)
dr (19)

then

V σσ
′(0)

µν = δσ,σ′〈µ|
∂Fxc

(
nα(0), nβ(0)

)
∂nσ(0)

|ν〉 , (20)

V σσ
′(1)

µν = δσ,σ′
∑
σ′′

〈µ|
∂2Fxc

(
nα(0), nβ(0)

)
∂nσ(0)∂nσ′′(0)

nσ
′′(1)|ν〉 ,

(21)
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and:

V σσ
′(2)

µν = δσ,σ′

[ ∑
σ′′,σ′′′

× 〈µ|
∂3Fxc

(
nα(0), nβ(0)

)
∂nσ(0)∂nσ′′(0)∂nσ′′′(0)

nσ
′′(1)nσ

′′′(1)|ν〉

+
∑
σ′′

〈µ|
∂2Fxc

(
nα(0), nβ(0)

)
∂nσ(0)∂nσ′′(0)

nσ
′′(2)|ν〉

]
. (22)

Corresponding formulas can be obtained for non-
collinear generalizations of EFI .

62–64 This is achieved by,
first, recasting EFI in terms of both the particle-number
density n and the z-component of the magnetization mz:

n(N) (r) = nα(N) (r) + nβ(N) (r) (23a)

m(N)
z (r) = nα(N) (r)− nβ(N) (r) (23b)

Substitution of Eqs. (23a) and (23b) in Eq. (19)
yields the energy of the fully interacting system EFI
in terms of n and mz. Subsequently, a non-collinear
generalization can be obtained by replacing mz with

m =
√
m2
x +m2

y +m2
z = |m| (see Eqs. (68a) and (68b)

below for definitions of mx and my).62–64 For function-
als beyond the LSDA, we note that the development
of numerically stable implementations that include non-
collinear magnetizations is significantly more challenging.
In particular, for GGA functionals, a careful treatment
of otherwise unstable terms appearing in the xc energy
and potential expressions is required, taking into account
the need for proper reduction to the closed-shell and
collinear limits to ensure rotational invariance in prac-
tical calculations.65–71

C. Order by Order Expressions for the
Orthonormality Conditions

For further development we turn now to the perturba-
tion expansion of the orthonormality condition given by
Eq. (5). In this context it is useful to write the KS or-
bital coefficients c in terms of NB ×NB spin-blocks with
double spin-indices, so that Eq. (4) can be recast as:

[
cαα cαβ

cβα cββ

]† [
Sαα 0
0 Sββ

] [
cαα cαβ

cβα cββ

]
= I . (24)

In Eq. (24) and throughout this paper, the dagger † op-
erates simultaneously on the spatial and spin parts of the
orbital coefficients (i.e. the dagger swaps both the spa-

tial and spin indices, so that
[
cβαi,ν

]†
=
[
cαβν,i

]∗
). cβα, for

example, represents the α 2c spinor coefficients that are
generated by perturbation of the β MOs of the reference
SR solution — see Eq. (28) below. Carrying out the
multiplication of the spin-blocks in Eq. (24), we obtain

[
[cαα]

†
Sαα

[
cαβ
]†

Sββ[
cβα
]†

Sαα
[
cββ
]†

Sββ

] [
cαα cαβ

cβα cββ

]
= I . (25a)

whence

∑
σ

[
cσ
′σ
]†

Sσσcσσ
′′

= Iσ
′σ′′ ⊗ δσ′,σ′′ , (25b)

Then, expanding Eq. (25b) as a power series in orders of
λ gives

∑
σ

[
cσ
′σ
]†

Sσσcσσ
′′

=
∑
σ

([
cσ
′σ′(0)

]†
δσ′,σ + λ

[
cσ
′σ(1)

]†
+ λ2

[
cσ
′σ(2)

]†
+ . . .

)
Sσσ

×
(
cσ
′′σ′′(0)δσ′′,σ + λcσσ

′′(1) + λ2cσσ
′′(2) + . . .

)
. (26)

which leads to [
cσσ(0)

]†
Sσσcσσ(0) = Iσσ (27a)∑

σ

[
cσ
′σ(1)

]†
Sσσcσ

′′σ′′(0)δσ′′,σ +
[
cσ
′σ′(0)

]†
δσ′,σSσσcσσ

′′(1) = 0 (27b)

∑
σ

[
cσ
′σ(2)

]†
Sσσcσ

′′σ′′(0)δσ′′,σ +
[
cσ
′σ′(0)

]†
δσ′,σSσσcσσ

′′(2) +
[
cσ
′σ(1)

]†
Sσσcσσ

′′(1) = 0 (27c)

. . . .

At this point it is convenient to introduce the Nth order
matrix Uσ′σ(N), defined through the relation:

cσ
′σ(N) = cσ

′σ′(0)Uσ′σ(N) . (28)

Substituting Eq. (28) in Eq. (27), we obtain the follow-
ing constraints through fourth-order:

Uσ′σ(1) = −
[
Uσ′σ(1)

]†
, (29)
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[
Uσ′σ′′(2)

]†
+ Uσ′σ′′(2) = −

∑
σ

[
Uσ′σ(1)

]†
Uσσ′′(1) ,

(30)[
Uσ′σ′′(3)

]†
+ Uσ′σ′′(3) = −

∑
σ

( [
Uσ′σ(2)

]†
Uσσ′′(1)

+
[
Uσ′σ(1)

]†
Uσσ′′(2)

)
, (31)

and, finally[
Uσ′σ′′(4)

]†
+ Uσ′σ′′(4) = −

∑
σ

( [
Uσ′σ(3)

]†
Uσσ′′(1)

+
[
Uσ′σ(1)

]†
Uσσ′′(3) +

[
Uσ′σ(2)

]†
Uσσ′′(2)

)
.(32)

D. Order by Order Expressions for the Density
Matrix

The single-particle density matrix may be written in
terms of the KS orbital coefficients of Eq. (24), as -

Pσσ′ =
∑
σ′′

cσσ
′′
fσ′′
[
cσ
′′σ′
]†

= Pσσ′(0) + λPσσ′(1) + λ2Pσσ′(2) + . . . , (33)

where fσ′′ is the diagonal matrix of (in the general case
fractional) occupancies of the KS orbitals. For the or-
dinary gapped systems considered in the examples pro-
vided in section V, the elements of fσ′′ are simply 1 for
occupied orbitals and 0 for virtual orbitals. Expanding
the orbital coefficients in Eq. (33) following Eq. (26),
and using also Eq. (28), we obtain explicit expressions

for the Pσσ′(N). In zeroth order:

Pσσ′(0) = δσ,σ′c
σσ(0)fσ

[
cσσ(0)

]†
, (34)

in first order:

Pσσ′(1) = cσσ(0)fσ

[
Uσσ′(1)

]† [
cσ
′σ′(0)

]†
+ cσσ(0)Uσσ′(1)fσ′

[
cσ
′σ′(0)

]†
, (35)

and in second order:

Pσσ′(2) = cσσ(0)fσ

[
Uσσ′(2)

]† [
cσ
′σ′(0)

]†
+ cσσ(0)Uσσ′(2)fσ′

[
cσ
′σ′(0)

]†
+
∑
σ′′

cσσ(0)Uσσ′′(1)fσ′′
[
Uσ′′σ′(1)

]† [
cσ
′σ′(0)

]†
,(36)

The corresponding expressions in third and fourth order
are provided in the Appendix.

E. The SCDFT Perturbation Equations

For convenience we introduce the Hermitian matrices
G(N), corresponding to the perturbed Hamiltonian ma-
trices in the KS orbital basis:

G(N) =
[
c(0)

]†
H(N) c(0) =

[
G(N)

]†
. (37)

Returning to Eqs. (12) and (14b), we see that the con-

tribution from uSO to the diagonal spin-blocks of G(1)

are pure imaginary. As we will see later on, it turns out

that the diagonal spin blocks of P(1) (and, hence H(1))
are also pure imaginary, so that:

R
[
Gσσ(1)

]
= 0 . (38)

After multiplication of the left by c(0)† Eq. (13) may be

recast in terms of the matrices G(N) and U(N), which
gives at order zero:53

G(0) = ε(0) , (39)

in first order:

G(1) + ε(0) U(1) = U(1) ε(0) + ε(1) , (40)

in second order:

G(2)+ε(0) U(2)+G(1) U(1) = U(2) ε(0)+U(1) ε(1)+ε(2) ,
(41)

in third order:

G(3) + G(2) U(1) + G(1) U(2) + ε(0) U(3)

= U(3) ε(0) + U(2) ε(1) + U(1) ε(2) + ε(3) , (42)

and in fourth order:

G(4) + G(3) U(1) + G(1) U(3) + G(2) U(2) + ε(0) U(4)

= U(4) ε(0) + U(3) ε(1) + U(1) ε(3) + U(2) ε(2) + ε(4) .(43)

We note that ε(N) and U(N), for N = 1 − 4 are, to an
extent, arbitrary since any definition is acceptable, pro-
vided that it is consistent with Eqs. (29)-(32) and (40)-
(43). As discussed below in section II F, here, we solve
Eqs. (40)-(43) making the simplest choice possible in

terms of computation for ε(N) and U(N). Our treatment
is “non-canonical”, in the sense that we obtain expres-
sions for ε(N) that are non-diagonal.

F. Non-Canonical Solution of the Perturbation
Equations

Eqs. (39)-(43) can be solved following the non-
canonical treatment of Karna and Dupuis53 as adapted
for our purposes. In that treatment one takes advantage
of the fact that the occupied-virtual (occ-virt) blocks of



6

the perturbed Lagrange multiplier matrices vanish. That
is to say, for m ∈ occ and p ∈ virt (N = 1− 4):

εσσ
′(N)

mp = εσ
′σ(N)
pm = 0 , (44)

Inserting Eq. (44) into Eq. (40) with N = 1, we obtain

an explicit expressions for the occ-virt blocks of U(1):

Uσσ
′(1)

mp =
G
σσ′(1)
mp

ε
σ′(0)
p − εσ(0)

m

= −
[
Uσ
′σ(1)

pm

]∗
. (45a)

Returning to the first order orthogonality condition, we
find that the anti-Hermiticity of the occ-virt blocks of

U(1) in Eq. (45a) is consistent with Eq. (29). On

the other hand, we make the (arbitrary) choice U
(1)
OO =[

U
(1)
OO

]†
and U

(1)
V V =

[
U

(1)
V V

]†
for the occ-occ and virt-

virt blocks of U(1), respectively, in Eq. (29), so that (for
n ∈ occ and q ∈ virt):

Uσσ
′(1)

mn = 0 , (45b)

and:

Uσσ
′(1)

pq = 0 . (45c)

From Eqs. (14b), (15a), (15b), (35), (37) and (45a), U(1)

depends on G(1), and G(1) depends on P(1), which is

itself built from U(1). Therefore U(1) depends on itself
and must be determined by an iterative solution of the
first order perturbation equation.

If the self-consistent CPHF/KS procedure is initiated
with a null perturbed density matrix as a starting guess

P(1)
guess = 0, then from Eqs. (12), (15a), (15b), (21) and

(14b), R
[
G
σσ(1)
guess

]
= 0 at the first iteration. Hence, from

Eqs. (45a), (45b) and (45c), R
[
U
σσ(1)
guess

]
= 0. Then,

taking into account Eq. (35) as well, subsequent cy-
cles of the CPHF/KS procedure will simply include non-

zero elements of P(1) through the self-consistently calcu-

lated U(1). The initial R
[
U
σσ(1)
guess

]
= 0 is carried on to

subsequent cycles of the self-consistent procedure. We
conclude that the diagonal spin-blocks of the first order

perturbed-density matrix, as well as those of U(1) are
pure imaginary:

R
[
Pσσ(1)

]
= 0 (46)

and:

R
[
Uσσ(1)

]
= 0 (47)

In the non-canonical formulation the occ-occ and virt-
virt blocks of the Lagrange multiplier matrices are non-
diagonal. The requisite expressions in first order are
found by substituting Eqs. (45b) and (45c) in Eq. (40).
For the occ-occ blocks

εσσ
′(1)

mn = Gσσ
′(1)

mn (48a)

and for the virt-virt blocks

εσσ
′(1)

pq = Gσσ
′(1)

pq (48b)

Substituting Eqs. (44)-(48b) in the second order per-
turbation equation, Eq. (41), we obtain explicit expres-

sions for the occ-virt blocks of U(2):

Uσ
′σ(2)

pm =
1

ε
σ′(0)
p − εσ(0)

m

(∑
σ′′

occ∑
n

Uσ
′σ′′(1)

pn Gσ
′′σ(1)
nm

−
∑
σ′′

virt∑
q

Gσ
′σ′′(1)
pq Uσ

′′σ(1)
qm −Gσ

′σ(2)
pm

)
. (49)

Using Eqs. (45b) and (45c) in the second-order orthogo-
nality relation, Eq. (30), we find that:

Uσ
′σ(2)

pm = −
[
Uσσ

′(2)
mp

]∗
. (50)

Eq. (50) shows that the occ-virt blocks of U(2) are anti-
Hermitian, which is, of course, consistent with Eq. (49).
To find an expression for the occ-occ and virt-virt blocks

of U(2), we return to Eq. (30) to obtain:

Uσσ
′(2)

mn = −1

2

∑
σ′′

virt∑
p

[
Uσ
′′σ(1)

pm

]∗
Uσ
′′σ′(1)

pn , (51)

for the occ-occ blocks and

Uσσ
′(2)

pq = −1

2

∑
σ′′

occ∑
m

[
Uσ
′′σ(1)

mp

]∗
Uσ
′′σ′(1)

mq . (52)

for the virt-virt blocks by making the (arbitrary) choice:

Uσσ
′(2)

mn =
[
Uσ
′σ(2)

nm

]∗
, (53a)

and

Uσσ
′(2)

pq =
[
Uσ
′σ(2)

qp

]∗
. (53b)

The above procedure can be extended to higher order to

find expressions for U(3) and U(4) from the third and
fourth order orthogonality conditions and perturbation
equations. However, as we show below in section II H,

only the occ-occ and virt-virt blocks of U(3) alone are
necessary to obtain the energy through fourth-order. Us-
ing Eq. (31), together with Eqs. (45b) and (45c), we find:

Uσσ
′(3)

mn =
[
Uσ
′σ(3)

nm

]∗
= −1

2

∑
σ′′

virt∑
p

( [
Uσ
′′σ(2)

pm

]∗
Uσ
′′σ′(1)

pn

+
[
Uσ
′′σ(1)

pm

]∗
Uσ
′′σ′(2)

pn

)
, (54a)

for the occ-occ blocks and:

Uσσ
′(3)

pq =
[
Uσ
′σ(3)

qp

]∗
= −1

2

∑
σ′′

occ∑
n

( [
Uσ
′′σ(2)

np

]∗
Uσ
′′σ′(1)

nq

+
[
Uσ
′′σ(1)

np

]∗
Uσ
′′σ′(2)

nq

)
, (54b)

for the virt-virt blocks.



7

G. Order by Order Contributions to the Orbital
Energies

Occupied and virtual orbital energies can be found, in-
cluding first order corrections, by diagonalizing the occ-

occ – ε
(0)
O + ε

(1)
OO – and virt-virt – ε

(0)
V + ε

(1)
V V – blocks

of the matrix of perturbed Lagrange multipliers given by
Eqs. (48a) and (48b). Second order contributions to the
occ-occ and virt-virt blocks can be found by substitut-
ing Eqs. (44), (45a)-(45c) and (48a)-(48b) in the second
order perturbation equation, Eq. (41), to obtain:

εσ
′σ′′(2)
nm =

1

2

(
εσ
′(0)
n − εσ

′′(0)
m

)∑
σ

virt∑
p

Uσ
′σ(1)

np Uσσ
′′(1)

pm

+
∑
σ

virt∑
p

(
εσ(0)
p − εσ

′(0)
n

)
Uσ
′σ(1)

np Uσσ
′′(1)

pm

+ Gσ
′σ′′(2)
nm , (55)

for the occ-occ blocks and

εσ
′σ′′(2)
qp =

1

2

(
εσ
′(0)
q − εσ

′′(0)
p

)∑
σ

occ∑
m

Uσ
′σ(1)

qm Uσσ
′′(1)

mp

+
∑
σ

occ∑
m

(
εσ(0)
m − εσ

′(0)
q

)
Uσ
′σ(1)

qm Uσσ
′′(1)

mp

+ Gσ
′σ′′(2)
qp . (56)

for the virt-virt blocks.

H. 2n+1 Rule Energy Expressions

The SCDFT total energy can be written using the den-
sity and Hamiltonian matrices of Eqs. (8) and (33):

E =
1

2
RTr

[
(h + H) P

]
= E(0) + λE(1) + λ2E(2) + . . . . (57)

By expanding these matrices, following Eqs. (9), (14a)-
(14c) and (33), taking the derivative w.r.t. λ of Eq. (57)
at order N , and evaluating the result at λ = 0, it is
possible to obtain simplified expressions for the E(N) that
are consistent with Wigner’s 2n+1 rule. More details on
the derivation are provided in the Appendix. Here we
simply quote the final results.

To write the energy contributions at low order, it
proves useful to define the following matrix built from
zeroth order quantities:

Θσσ′ = δσ,σ′
[
cσσ(0)

]† (
v + uAR + Hσσ(0)

)
cσσ(0) .

(58)
At order zero the energy is obtained from a previous one-
component SR calculation, which can be written in terms
of Θσσ

OO as (see Appendix):

E(0) =
1

2

∑
σ

RTr [fσOΘσσ
OO] . (59)

The first order energy contribution is (see Eqs. (A4) and
(A5) of the Appendix):

E(1) =
∑
σ

RTr
[
fσOΘσσ

OV U
σσ(1)
V O

]
= 0 . (60)

E(1) vanishes because Θσσ
OV is pure real and, from Eq.

(47), U
σσ(1)
V O is pure imaginary.

For the second-order contribution to the energy it is
expedient to introduce the quantity:

Ξσσ′ =
[
cσσ(0)

]†
uσσ

′

SO cσ
′σ′(0) . (61)

In terms of the above matrix, we obtain the following
energy expression in second order (see Eqs. (A6)-(A12)
of the Appendix):

E(2) =
∑
σσ′

RTr
[
fσOΞσσ′

OV U
σ′σ(1)
V O

]
. (62)

In third order, we find (see Eqs. (A13)-(A22) of the Ap-
pendix):

E(3) =
∑
σσ′

RTr

[
G
σσ′(1)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(1)
OV

]†
− 1

2
(fσO + fσ′O) G

σσ′(1)
OO

∑
σ′′

[
U
σσ′′(1)
OV

]†
U
σ′′σ′(1)
V O

]
,(63)

and, finally, in fourth order (see Eqs. (A23)-(A36) of the
Appendix):



8

E(4) =
∑
σσ′

RTr

[
ε
σ(0)
O (fσ′O − fσO)

[
U
σσ′(2)
OO

]†
U
σ′σ(2)
OO + G

σσ′(2)
V O fσ′O

[
U
σ′σ(2)
OV

]†
+
(
ε
σ(0)
O − ε

σ′(0)
V

)2U
σσ′(1)
V O

∑
σ′′

U
σ′σ′′(2)
OO fσ′′O

[
U
σ′′σ(1)
OV

]†
− fσO

[
U
σσ′(2)
OV

]†
U
σ′σ(2)
V O


+

1

2
(fσO + fσ′O)

G
σσ′(2)
OO U

σ′σ(2)
OO −G

σσ′(1)
OO

∑
σ′′

([
U
σ′σ′′(1)
OV

]†
U
σ′′σ(2)
V O +

[
U
σ′σ′′(2)
OV

]†
U
σ′′σ(1)
V O

)
+

1

2
G
σσ′(2)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(1)
OV

]†
+ 2G

σσ′(1)
V V

∑
σ′′

U
σ′σ′′(2)
V O fσ′′O

[
U
σ′′σ(1)
OV

]† ]
. (64)

Thus, in accordance with Wigner’s 2n+1 rule, we are able
to calculate E(2) and E(3) using only first order quantities
whereas E(4) depends on second order quantities as well.

I. Density Variables of the SCDFT in Orders of
Perturbation Theory

Following Refs. 60 and 72, we can write the perturbed
density variables (N ≥ 1) of the SCDFT in terms of the
density matrix. To write them in a compact way, it is
useful to introduce the notation:

Xµν (r) = χµ (r)χν (r) , (65)

Yµν (r) = χµ (r)
[
∇χν (r)

]
−
[
∇χµ (r)

]
χν (r) ,(66)

This gives rise to the perturbation expressions:

n(N) (r) =
∑
µν

R
[
Pαα(N)
µν + P ββ(N)

µν

]
Xµν (r) , (67)

for the particle number density and

m(N)
x (r) =

∑
µν

R
[
P βα(N)
µν + Pαβ(N)

µν

]
Xµν (r) ,(68a)

m(N)
y (r) =

∑
µν

I
[
P βα(N)
µν − Pαβ(N)

µν

]
Xµν (r) ,(68b)

m(N)
z (r) =

∑
µν

R
[
Pαα(N)
µν − P ββ(N)

µν

]
Xµν (r) .(68c)

for the magnetization. The perturbed orbital-current
density reads

j(N) (r) = −1

2

∑
µν

I
[
Pαα(N)
µν + P ββ(N)

µν

]
Yµν (r) ,(69)

while the perturbed spin-current densities are

J(N)
x (r) = −1

2

∑
µν

I
[
P βα(N)
µν + Pαβ(N)

µν

]
Yµν (r) ,(70a)

J(N)
y (r) =

1

2

∑
µν

R
[
P βα(N)
µν − Pαβ(N)

µν

]
Yµν (r) ,(70b)

J(N)
z (r) = −1

2

∑
µν

I
[
Pαα(N)
µν − P ββ(N)

µν

]
Yµν (r) .(70c)

Substituting Eq. (46) in Eqs. (67) and (68c), we find
that the first order perturbed particle-number density
and z-component of the magnetization vanish:

n(1) (r) = 0 , (71a)

m(1)
z (r) = 0 . (71b)

From Eqs. (60)-(64), we conclude that the perturbed

n(N) and m
(N)
z only affect the total energy in fourth or-

der. On the other hand, all of the other perturbed den-

sity variables m
(N)
x , m

(N)
y , j(N), J

(N)
x , J

(N)
y and J

(N)
z have

non-vanishing contributions for N = 1, and therefore af-
fect the total energy in second order.

Eq. (71) or, equivalently, Eq.(46), has consequences
with regard to which electron-electron repulsion terms
need to be evaluated in a calculation. For instance, sub-
stituting Eq. (46) in Eq. (15a), we find that the first
order Coulomb matrix elements vanish:

Cσσ
′(1)

µν = 0 , (72)

The perturbed Coulomb potential, therefore, does not
affect the total energy until fourth order. Furthermore,
for collinear formulations of the xc potential, substituting
Eqs. (23) and (71), in Eqs. (21) and (22), we obtain in
first order:

V σσ
′(1)

µν = 0 , (73)

and in second order:

V σσ
′(2)

µν = δσ,σ′

[∑
σ′′

〈µ|
∂2Fxc

(
nα(0), nβ(0)

)
∂nσ(0)∂nσ′′(0)

nσ
′′(2)|ν〉

]
.

(74)
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Therefore, the perturbed collinear xc potential also does
not affect the total energy until fourth order. Table I
summarizes the minimum order of the energy affected by
the various terms of the electron-electron potential, both
for closed-shell and open-shell systems. As can be seen
from the table, in most cases a calculation can be carried
out through third order in the energy by including only
the exact-exchange contribution to the electron-electron
potential.

TABLE I: Minimum order of the total energy affected by
the various terms of the electron-electron potential. V̂ is
the SCDFT xc potential in an LDA or GGA treatment (ei-

ther from a collinear or non-collinear formulation), Ĉ is the

Coulomb potential and K̂ is the exact-exchange potential.

V̂ Ĉ K̂

Collinear Non-Col.

Closed-Shell 4 4 4 2

Open-Shell 4 2 4 2

III. STATEMENT OF THE PROCEDURE

Our CPKS calculation procedure is described in the
following. In this context a quantity obtained at cycle k

is denoted as, for example, as P(1)(k):

1. Solve the reference one-component SR KS-DFT

problem, which yields, P(0), c(0) and ε(0).

2. Set k = 1.

3. Set P(1)(k) = 0 and H(1)(k) = uSO.

4. Start first order CPKS procedure:

(a) Calculate G(1)(k) using H(1)(k) and Eq. (37).

(b) Calculate U
(1)
OV (k) from Eq. (45a).

(c) Calculate E(2)(k) and E(3)(k) from Eqs. (62)
and (63).

(d) If k > 1, check for convergence on E(2)(k) and
E(3)(k):

i. If convergence on the energy is reached,
exit to step 5, otherwise continue to step
4e.

(e) Calculate P(1)(k + 1) from Eq. (35).

(f) Calculate H(1)(k + 1) from Eq. (14b), us-
ing subset of electron-electron terms needed
through order three in the energy, as deter-
mined from Table I.

(g) Set k → k + 1 and go back to step 4a.

5. If occupied orbital energies are desired at first order

(i.e. without ε
(2)
OO), calculate ε

(0)
O + ε

(1)
OO from Eq.

(48a) and diagonalize the resulting matrix.

6. If virtual orbital energies are desired at first order

(i.e. without ε
(2)
V V ), calculate ε

(0)
V + ε

(1)
V V from Eq.

(48b) and diagonalize the resulting matrix.

7. If E(4) and/or P(2) and/or ε(2) are desired, set k =
1. Otherwise, exit to step 12.

8. Set P(2)(k) = 0 and H(2)(k) = 0.

9. Start second order CPKS procedure:

(a) Calculate G(2)(k) using H(2)(k) and Eq. (37).

(b) Calculate U(2)(k) from Eqs. (49)-(53).

(c) Calculate E(4)(k) from Eq. (64).

(d) If k > 1, check for convergence on E(4)(k):

i. If convergence on the energy is reached,
exit to step 12, otherwise continue to step
9e.

(e) Calculate P(2)(k + 1) from Eq. (36).

(f) Calculate H(2)(k + 1) from Eq. (14c).

(g) Set k → k + 1 and go back to step 9a.

10. If occupied orbital energies are desired at second

order calculate ε
(0)
O +ε

(1)
OO+ε

(2)
OO from Eq. (55) and

diagonalize the resulting matrix.

11. If virtual orbital energies are desired at second or-

der calculate ε
(0)
V + ε

(1)
V V + ε

(2)
V V from Eq. (56) and

diagonalize the resulting matrix.

12. End

TABLE II: SOC contributions to the total energy (in Eh) as
calculated by the CPKS method, using the PBE0 functional,
for the homonuclear diatomic molecules of the halogen series.
Our results were obtained using the fully relativistic shape-
consistent RECPs, with associated basis sets, of the Colum-
bus group available at Ref. 73. Seven electrons were included
in the valence space of each atom. The first row reports the
reference 2c-SCF result, while subsequent rows report the dif-
ference through Nth order between the CPKS and reference
2c-SCF values (e.g. ∆2 = E(2) − ESOC(2c-SCF))

F2 Cl2 Br2 I2

2c −7.03×10−05 −2.94×10−04 −7.13×10−03 −3.82×10−02

∆2 +7.59×10−08 −2.81×10−07 −1.18×10−04 −1.13×10−03

∆3 −7.95×10−10 −4.00×10−08 −3.33×10−05 −6.58×10−04

∆4 −4.25×10−10 +5.80×10−09 −2.59×10−07 +2.37×10−04
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IV. COMPUTATIONAL DETAILS

Reference one-component SR KS-DFT calculations
were performed with a developer’s version of the Crys-
tal17 code,74 in which we also implemented our CPH-
F/KS treatment of SOC. The CPHF/KS cycles were ini-
tiated after convergence of the reference 1c-SCF calcu-
lations within a criterion of 1×10−12 Hartree a.u. (Eh)
on the total energy. The same tolerance was used as a
convergence criterion for the perturbed energies obtained
from the first- and second-order CPHF/KS procedures.

As was the case in Part I,42 our calculations were per-
formed using RECPs of the energy- and shape-consistent
kinds, with their associated basis sets, from the libraries
available in Refs. 75 and 73. Experimental bond lengths
of 1.42, 2.00, 2.28, 2.67 and 3.00 Å were used for F2, Cl2,
Br2, I2 and At2, respectively. Calculations were also per-
formed on the halogen hydride molecules HBr, HI, HAt
and HTs, using bond lengths of 1.41, 1.61, 1.72 and 1.72
Å , with the basis set of Gatti et al.76 for the hydrogens.

The xc contribution was calculated by numerical
quadrature using Gauss-Legendre radial and Lebedev
angular point distributions,77–79 with the quadrature
weights proposed by Becke.80 We used a pruned grid con-
sisting of 99 radial points and 1454 angular points (key-
word XXLGRID in the Crystal17 manual).81 The Xc-
Fun library82 was employed for taking the xc functional
second derivatives required for the second-order CPKS
procedure (i.e. for a calculation of the xc contribution to
E(4)).

Energies calculated by the CPHF/KS method were
compared to those obtained from the 2c-SCF implemen-
tation in the Crystal code.60,72,83–85 The CPKS calcu-
lations on the closed-shell (F2, Cl2, Br2, I2, At2, HBr,
HI, HAt, HTs) and open-shell (F−2 , Cl−2 , Br−2 , I−2 , At−2 )
systems were performed with the standard collinear for-
mulation of the SVWN5, BHandH (i.e. SVWN5 with
a 0.5 fraction of exact exchange), PBE and PBE0 xc
functionals.86–90

V. COMPUTATIONAL RESULTS FOR THE
HALOGEN SERIES OF DIATOMIC

HOMONUCLEAR AND HYDRIDE MOLECULES

The CPKS approach corresponds to a perturbation
theory treatment of a 2c-SCF calculation for SOC. Below
we compare the two with regard to i) total energy ii) or-
bital energy levels and iii) spatial distribution of SCDFT
density variables.

A. Convergence of Perturbation Series for the
Total Energy

In this sub-section we compare total energies. Our cal-
culations were performed on halogen diatomic molecules,
because of the large contribution of SOC to their total

TABLE III: Same as Table II, but using instead the energy-
consistent RECPs and associated basis sets of the Stuttgart
group, available at Ref. 75, with 7 electrons in the valence
space of each atom. The asterisk denotes a calculation on the
I2 molecule using the larger valence basis set of Ref. 91

Br2 I2 I∗2 At2

2c −3.52×10−03 −7.82×10−03 −7.38×10−03 −7.34×10−02

∆2 −3.12×10−05 −2.26×10−04 −2.11×10−04 −1.73×10−02

∆3 +4.88×10−07 −5.20×10−05 −4.54×10−05 −3.52×10−03

∆4 −6.83×10−07 +4.70×10−06 +4.29×10−06 +1.14×10−02

FIG. 1: Ratio of |E(2)| over the HOMO-LUMO gap (plotted
on a log scale) for the series F2 to At2 (black circles), for the
calculations of Table II (F2 and Cl2), and Table III (Br2, I2
and At2), with the large-core Columbus and Stuttgart RECPs
and the PBE0 functional. The red horizontal line denotes the
value |E(2)|/Egap = 0.43, and the blue triangle and asterisk
(also shown in close-up panel) are for At2 with the SOC op-
erator scaled down by a factor of 0.68 and 0.69, respectively.

energies as well as the availability of many sets of RECPs
and associated valence basis sets. The tables provide re-
sults obtained with the PBE0 functional; similar results
for the SVWN5, BHandH, and PBE functionals, as well
as the HF method, are provided in the electronic sup-
porting information (ESI).

TABLE IV: Same as table II, but now for the open-shell
radicals, in which one electron has been added to the lowest
unoccupied orbital.

F−2 Cl−2 Br−2 I−2

2c −5.96×10−05 −2.37×10−04 −5.65×10−03 −3.11×10−02

∆2 +1.04×10−07 +2.51×10−07 +4.70×10−06 +6.96×10−04

∆3 +3.13×10−10 −9.13×10−09 −8.12×10−06 −6.10×10−05

∆4 −1.03×10−10 −8.76×10−10 −4.04×10−07 +5.69×10−07

The first row of Table II reports the SOC contribution
to the total energy (in Eh), as calculated using the refer-
ence 2c-SCF approach with the shape-consistent RECPs
of Ref. 73 and 7 electrons in the valence space of each
atom. Lower rows report the energy differences, through



11

Nth order ∆N (N = 2, 3 or 4), for the CPKS approach
w.r.t. the reference 2c-SCF. The ∆N are found to be
more than one order of magnitude smaller than the SOC
contribution itself (in absolute value), indicating that
even just through second-order the CPKS energy is an
excellent approximation to the 2c-SCF value. Moreover,
through fourth-order the ∆N are monotonically decreas-
ing (in absolute value). Similar results are obtained for
the same systems using other functionals in Table S1 of
the ESI.

TABLE V: Same as table III, but now for the open-shell
radicals in which one electron has been added to the lowest
unoccupied molecular orbital.

Br−2 I−2 I−
∗

2 At−2

2c −3.28×10−03 −6.14×10−03 −5.71×10−03 −5.72×10−02

∆2 −3.29×10−05 −2.56×10−05 −2.57×10−05 −3.09×10−03

∆3 +3.18×10−06 −1.17×10−05 −1.12×10−05 −1.15×10−03

∆4 −4.61×10−07 −1.71×10−07 +6.99×10−08 +8.95×10−04

In Table III we report the results of similar calcula-
tions, which were performed instead with the energy-
consistent RECPs and associated basis sets from Ref. 75.
These potentials were available for the systems Br2, I2

and At2, again including 7 electrons in the valence space
of each atom. The reported ∆N indicate that, again, the
second-order CPKS values represent excellent approxi-
mations to the 2c-SCF energies, except for At2 which
requires the third-order correction to reduce the devia-
tion from roughly 25 to 5 %. We can see from Table III
that At2 is significantly more challenging than the other
lighter-element systems. In this case the perturbation
series is no longer monotonically convergent at fourth-
order. This suggests the desirability of using a third-
order treatment in general, for the energy, especially con-
sidering the reduction in computational effort since it is
only necessary to solve the first-order perturbation equa-
tion. Moreover a calculation through third-order in the
energy requires only the exact-exchange contribution to
the electron-electron potential, as may be recalled from
Table I. These conclusions are unchanged when calcula-
tions are performed with other xc functionals, as can be
seen from Table S2 of the ESI. Finally, we note that in
the case of Br2, for some functionals (namely PBE, PBE0
and SVWN5), the ∆N are not monotonically convergent
at fourth-order (because |∆4| > |∆3|), however the E(N)

are monotonic, as |E(2)| > |E(3)| > |E(4)|.
Tables IV and V provide results for systems related to

those of Tables II and III, by the addition of one electron
to the lowest unoccupied molecular orbital. These results
reenforce the conclusions that were drawn from tables II
and III. In fact, the deviations from the 2c-SCF reference
are now monotonically decreasing through fourth-order
in all cases. Similar results are provided in Tables S3
and S4 of the ESI with other functionals and the HF
method.

TABLE VI: Same as table III, but now for the halogen
hydride molecules (instead of the homonuclear halogen di-
atoms). For the super-heavy element Ts, 25 electrons are
treated in the valence space with the associated double-zeta
valence basis set.

HBr HI HAt HTs

2c −1.59×10−03 −3.11×10−03 −2.80×10−02 −7.23×10−01

∆2 −1.57×10−05 −1.29×10−05 −8.70×10−04 −1.01×10−01

∆3 +1.59×10−06 −5.33×10−06 −4.14×10−04 −2.67×10−02

∆4 −2.05×10−07 −1.38×10−06 −3.52×10−05 +1.05×10−02

Table VI provides results that, again, use the energy-
consistent potentials, this time for the halogen hydride
molecules. The hydrides have a wider HOMO-LUMO
gap than the homonuclear diatomics and, thus, might
be considered more suitable for our perturbation treat-
ment. Indeed, in comparing Tables III and VI we do see
improved agreement in every common instance.

Results are also provided for Tennessine hydride (HTs,
Ts being the super-heavy element No. 117). In that
case, we used the ECP92MDFQ potential available from
Ref. 75 with the associated double-zeta valence basis set.
Our perturbation theory treatment appears well-behaved
also for this p-block super-heavy element system. Similar
results are provided in Table S5 of the ESI by using other
xc functionals and the HF method.

In summary, the proposed CPKS treatment leads to
a perturbation series through 3rd order in the total en-
ergy that converges monotonically to a value close to the
2c-SCF result for the neutral closed-shell, and singly neg-
ative open-shell systems considered here (i.e., F2 to At2,
F−2 to At−2 , HBr to HAt, as well as HTs). In one instance,
At2, this monotonically convergent behavior breaks down
in 4th order. For At2, monotonicity is restored by scal-
ing the SOC operator (scaling factor ≤ 0.68). Simul-
taneously, the ratio of the second-order energy to the
HOMO-LUMO gap (= 2.7 eV) is reduced to less than
0.43. By examining a plot of |E(2)|/Egap for the whole
series from F2 to At2, (see Figure 1) we see that this
ratio increases monotonically with atomic number and,
therefore, speculate that it can be used as a test for, at
least, asymptotic convergence through 3rd order in the
total energy.

Of course, other types of system may not exhibit the
same convergence behavior as found in this initial in-
vestigation. In fact, our preliminary studies indicate
that the SOC perturbation series does not converge in
low order for the singly positive homonuclear halogen
diatomics (even for F+

2 ). In that case, the significant
multi-reference character of the ground state caused by
quasi-degeneracies leads to failure of the CPKS proce-
dure. For such cases (and also to improve the treat-
ment of molecules like At2 with a small bandgap), we
have begun to extend our single-reference approach so
as to include low-lying electronic states through quasi-
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FIG. 2: KS eigenvalue spectrum calculated with the energy-
consistent RECPs and PBE0 functional for I2, I−2 and At−2 .
The eigenvalues are provided also in Tables S6-S8 of the ESI.

degenerate perturbation theory (QDPT).36,37

FIG. 3: KS eigenvalue spectrum calculated with the energy-
consistent RECPs and PBE0 functional for the specified hy-
drides. The eigenvalues are also provided in Tables S9-S11 of
the ESI.

B. Convergence of Perturbation Series for Orbital
Energies

We now provide the KS eigenvalue spectrum calculated
by our perturbation treatment, at first and second order,
for a representative set of the most challenging systems
considered above. Energy levels for I2, I−2 and At−2 are
given in Figure 2 and for the halogen hydrides HI, HAt
and HTs in Figure 3. The orbital energies are plotted on
the vertical axis as differences with respect to the HOMO,
i.e. ε − εHOMO, in atomic units. Panels (b) and (c) of
Figure 2 show the spin splitting of the energy levels for
the negatively charged open-shell ions I−2 and At−2 due
to SOC. The plots show that the eigenvalue spectrum is
nearly exactly reproduced, at just first order, except for
the two most challenging cases represented by At−2 and
HTs. For both of these the second order treatment yields
significant improvement, leading to close agreement with
the reference 2c-SCF calculations, for the virtual as well
as the occupied energy levels.
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C. Convergence of Perturbation Series for SCDFT
Density Variables

Finally, we test the ability of our perturbation theory
approach to reproduce the density variables of SCDFT.
Results are presented for the halogen homonuclear di-
atoms, rather than hydrides, because we have already
shown in sections V A and V B that the agreement be-
tween the perturbation theory and 2c-SCF approaches is
superior for the hydrides, which means that the diatoms
represent a more challenging test.

Insight into the physical meaning of the density vari-
ables of SCDFT is provided by the corresponding conti-
nuity equations.54,56 In the absence of SOC, but in the
presence of an external magnetic field, these equations
(Eqs. 6.8a and 6.8b of Ref. 54) show that the orbital-
current density j can be interpreted as the velocity field
for n, while the ith Cartesian component of the spin-
current density Ji is the velocity field for mi. In the
presence of SOC, however, both the orbital- and spin-
current densities j and Jx, Jy, Jz couple all variables n,

mx, my and mz.

A difference plot of the density variables as calculated
from the 2c-SCF and the order-by-order CPKS meth-
ods provides a visual representation of the ability of the
perturbation theory approach to reproduce the eight dif-
ferent spin blocks (see Eqs.(67) - (70c)) of the SOC con-
tribution to the density matrix. Figure 4 provides such
a representation for the system I−2 obtained using the
PBE0 functional and the energy-consistent RECP. The
columns of panels represent (from left to right) the den-
sity variables n, m, j, Jx, Jy and Jz. The first row of
panels (denoted as ∆2c) is the SOC contribution to the
density variables, as calculated by taking the difference
between the 2c-SCF and 1c-SCF distributions (the 1c-
SCF distributions is non-zero only for n and mz). Sub-
sequent rows denote the differences between the first and
second order perturbation theory and the 2c-SCF values.
All values are in atomic units, with a common color for
each density variable, and in which the intensity of the
coloration correspond to associated values provided with
the color bar on the right of individual columns.

FIG. 4: Spatial distribution of differences of the SCDFT density variables for the system I−2 in the xz plane, with the molecular
axis along z, as obtained using the PBE0 functional and the energy-consistent RECPs. The quantities in the first row are the
differences ∆2c = 2c − 1c where 2c denotes the distribution of the density variable calculated by 2c-SCF and 1c denotes a
1c-SCF calculation. Subsequent rows report ∆PT1 = PT1− 2c and ∆PT2 = PT2− 2c, where PT1 (PT2) denote the density
variables obtained from a first- (second-)order perturbation theory treatment. From left to right the columns show the particle
number density n, the magnetization m, the orbital-current density j and the three spin-current densities Jx, Jy and Jz. When
vector fields are plotted, the length and direction of the arrows represents the projection in the xz plane. The color intensity
represents the magnitude of the three dimensional vector. All quantities are plotted in atomic units.
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Figure 4 shows that all three spin-current densities
are well-reproduced by the first-order perturbation the-
ory treatment. On the other hand, the first-order per-
turbed n and mz vanish (see Eqs. (71a), (71b); as a result
there are important differences in first order for the par-
ticle number density, magnetization and orbital-current
density (which couples strongly with the magnetization).
Thus, for open-shell systems with non-vanishing magne-
tization, a second order treatment is necessary. It is also
sufficient as can be seen from the bottom row of Figure
4 for the case of I−2 .

Figure 5 provides a similar plot, this time for the sys-
tem At−2 . In this case, we again see that first-order per-
turbation theory is able to reproduce the spin-current
densities of the reference 2c-SCF. However, in this more
challenging case, visible differences remain in the distri-
butions of n, m and j, even with a second-order treat-

ment. Although the error in the total energy (cf. Table
V) is quite small, it is much more significant in the dis-
tribution of the n, m and j density variables.

VI. COMPARISON OF COMPUTATIONAL
REQUIREMENTS BETWEEN 2C-SCF AND

CPKS

Although we have not yet developed a fully optimized
CPHF/CPKS computer code, it is possible to compare
the timing of this procedure with that of the alternative
2c-SCF approach analytically. Our analysis shows that in
the case of large systems (as defined below) the number of
floating point operations required for the former is more
than an order of magnitude the lesser of the two.

FIG. 5: Same as Figure 4, but this time for At−2 with the PBE0 functional and the energy-consistent RECPs.

We start by analyzing the computational scaling with
system size for the 2c-SCF approach. One cycle of the
latter is composed of three computationally intensive
steps: i) evaluation of two-electron integrals ii) transfor-
mation of Hamiltonian matrix from atomic orbital (AO)
to molecular orbital (MO) basis iii) diagonalization of
MO Hamiltonian matrix.92 In the following discussion of

these three aspects, the terms “small system” and “large
system” are utilized to describe systems for which cpu
time is dominated by step i), or by steps ii) and iii), re-
spectively.

In step i), the calculation of bielectronic integrals for-
mally scales as the fourth power of the number of AOs,
NAO, but may be reduced to linear scaling for large sys-
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tems by using standard approaches for integral screening,
such as the Tolinteg strategy used in the Crystal
code,81,93 Schwarz integral estimates, and others.94 On
the other hand, steps ii) and iii) scale according to the
third power of NAO, although, with a smaller prefactor.
Thus, for small systems (typically containing ten to a few
dozen atoms or less) the cpu time is dominated by step
i) while, for large systems, (typically containing tens to
hundreds of atoms or more), it is dominated by steps ii)
and iii). Note that the exact size thresholds are variable,
depending, for instance, on the number of processors be-
ing used.95

The conversion in Step ii) from H to H′ = c† H c
is done via two successive 3-index transformations. This
process scales as (3/2) × 4(a + m) (2NAO)

3
= 48(a +

m)N3
AO (a and m denote, respectively, floating point ad-

dition and multiplication. Here the multiplicative factor
of 2 is for spin; the factor of 4 = 2 × 2(a + m) accounts
for the fact that each matrix element is complex; and,
finally, the factor of 3/2 = 1 + 1/2 (rather than 2) occurs
because the second transformation results in an Hermi-
tian matrix, thereby halving the number of independent
elements.

The diagonalization in Step iii) can be achieved, for
example, using the Jacobi algorithm96, which is the pro-
cedure currently used in our 2c-SCF code. At each Jacobi
iteration, a “pivot” element (the largest off-diagonal el-
ement) is selected and a 2 × 2 rotation of the basis is
performed. The updating of the Hamiltonian matrix re-
quires a total of (4NAO)×(4a+4m) operations where the
factor of 4NAO arises because 2 columns (or rows) con-
taining 2NAO elements must be updated and the factor of
4(a+m) is due to the complex arithmetic involved. The
eigenvectors (MO coefficients) are given by the product
of Jacobi rotation matrices. As it was for the Hamilto-
nian, updating the eigenvector matrix involves another
(4NAO) × (4a + 4m) operations. After the update has
been performed, a new pivot element is chosen until all
of the (1/2)(2NAO)2 off-diagonal matrix elements have
been considered. Thus, one Jacobi “sweep” consists of
(1/2)(2NAO)2 rotations. The procedure is repeated for
K sweeps until all the off-diagonal elements are smaller
than a pre-set criterion. In our 2c-SCF calculations we
have found that, typically, K >> 1 on the first SCF cy-
cle, but << 1 on subsequent cycles. This gives a total
scaling of the 2c-SCF diagonalization per cycle for large
systems of 128K ′×(a+m)×N3

AO where K ′ is an average
over all cycles.

Next we turn to the CPKS treatment. For small sys-
tems some savings are obtained through third-order in
the energy by the fact that only SOC and Fock exchange
integrals need be calculated (no SR mono-electronic,
Coulomb or exchange-correlation integrals are necessary,
see Table I). This is particularly significant if non-hybrid
functionals are used. On the other hand, no savings is
expected for small systems if E(4) is needed.

For large systems the story is quite different. Diag-
onalization is avoided and the calculation of the first

order coefficients scales as Nocc × Nvirt × NAO, with
Nocc << NAO. Thus, there is just one significant time-
consuming step that scales as N3

AO, namely the calcula-

tion of Gσσ′(N) =
[
cσσ(0)

]†
Hσσ′(N)cσ

′σ′(0) with N = 1

(and N = 2 if E(4) is needed). This closely resembles
step ii) of the 2c-SCF procedure. The only difference is
that, here, the relevant orbital coefficients are the 1c-
SCF, rather than 2c-SCF, coefficients. They are real
rather than complex and, therefore, the factor of 4 in
the 2c-SCF expression above is halved.

In furthering the analysis it is convenient to treat
the spin blocks Gσσ′(N) individually. Then, the factor
(2NAO)3 in the 2c-SCF expression above reduces to N3

AO
for each spin-block. Within the diagonal spin-blocks of

G(1) the real matrix elements vanish (cf. Eq.(38)), so
we must divide by another factor of 2, to obtain a total
of (3/2)(a + m)(NAO)3 operations needed to calculate
each Hermitian diagonal spin-block. Unlike the diagonal
spin-blocks, the individual off-diagonal spin blocks are,
in general, non-Hermitian, which means that the factor
of 3/2 is replaced by 2 × 2 = 4. There are two diagonal
spin-blocks and one-independent off-diagonal spin-block
(the other is its Hermitian conjugate). Hence, the total
number of operations is [2×(3/2)+4] = 7(a+m)(NAO)3.

For G(2) there is an extra multiplicative factor of 2 in the
formula for the diagonal spin-blocks (since the real ma-
trix elements do not vanish) and, then, the number of
operations becomes 6 + 4 = 10(a+m)(NAO)3.

Comparing the combination of steps ii) and iii) for
2c-SCF with those above for CPKS, we conclude that,
through E(3), the CPKS approach yields a saving fac-
tor for the number of floating point operations (Nflops)
of (48 + 128K ′)/7 for large systems. From our expe-
rience we expect K ′ to be typically greater than 1/6,
which would lead to an order of magnitude savings in
cpu time. If E(4) is needed, then the savings reduces to
(48 + 128K ′)/(7 + 10).

We note that even further savings of cpu time may
be achievable since: 1) no diagonalization is required for
CPKS so that it is unnecessary to construct irreducible
representations of the double-group in order to fully ex-
ploit symmetry; and 2) the number of iterations required
for convergence in the CPKS method is likely to be less
than for 2c-SCF. As regards memory usage, a saving fac-
tor of 2 may be expected vis-à-vis 2c-SCF. This is be-
cause the diagonalization step of the 2c-SCF necessitates
simultaneously storing both the upper and lower trian-
gular halves of the Hamiltonian and molecular orbital
coefficient matrices. On the other hand, for the CPKS
calculation, the Lower triangular elements may always be
determined by (anti-)Hermiticity.

We expect to develop an optimized implementation
of the CPKS procedure within the CRYSTAL code in
the near future and will, then, present actual timings for
comparison with 2c-SCF in conjunction with new appli-
cations.
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VII. CONCLUSIONS

We have presented a non-canonical coupled perturbed
Kohn Sham DFT/HF perturbation treatment of spin-
orbit coupling (SOC). Our treatment, based on an ini-
tial relativistic effective core potential approximation
(RECP) accounts for spin- and orbital-current densities
as well as the particle number density and magnetization.
Perturbation expressions that satisfy the 2n + 1 rule are
given through fourth-order. Working procedures for ob-
taining orbital energies that are correct through second
order, along with magnetization and density variables,
are also provided.

Tests on the halogen homonuclear diatomic and hy-
dride molecules, including 6p and 7p elements, show that
the proposed approach is capable of providing property
values through second- or third-order that essentially
match those from 2c-SCF calculations. The only excep-
tion was for At−2 , in which case second-order differences
remained in the particle-number density, magnetization
and orbital-current density.

Our spin-current density functional perturbation the-
ory treatment provides an efficient means of adding SOC
effects to the SR KS-DFT/HF approximation. In partic-
ular, diagonalization in the two-component spinor basis
is avoided, leading to saving factors on the number of re-

quired floating point operations that may exceed an or-
der of magnitude. We intend to adapt this treatment for
solid state calculations in the near term. Applications
to systems with small gaps or, in general, with strong
multi-reference character would require the use of quasi-
degenerate perturbation theory (QDPT) as in ensemble
DFT97–114, which we leave for further in the future.

Supporting Information

See Supporting Information at URL for a comparison a
benchmark of the total energies calculated from our per-
turbation theory approach with the SVWN5, BHandH
and PBE functionals, as well as the HF method. Also
provided are tables containing the orbitals energies for
Figures 2 and 3.
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Appendix A: Details on the Derivation of the
Energy Expressions

Taking the Nth derivative w.r.t. λ (N = 0, 1, . . . 4) of
Eq. (57), and using Eqs. (14a)-(14c), (15a), (15b) and
(72), to evaluate the result at λ = 0 we obtain:

E(0) =
1

2

∑
σ

RTr

[(
v + uAR + Hσσ(0)

)
Pσσ(0)

]
,

(A1a)
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1
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σ

RTr

[(
v + uAR + Hσσ(0)

)
Pσσ(1)

]
+

1
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σ

RTr

[(
Vσσ(1) − aKσσ(1)

)
Pσσ(0)

]
+
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σ

RTr
[
uσσSOPσσ(0)

]
, (A1b)
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[(
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)
Pσσ(0)

]
+
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RTr
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uσσ
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SOPσ′σ(1)

]
, (A1c)
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, (A1d)

and
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Eqs. (A1d) and (A1e) make use of the third and fourth
order perturbed density matrices:

Pσσ′(3) = cσσ(0)fσ

[
Uσσ′(3)

]† [
cσ
′σ′(0)

]†
+ cσσ(0)Uσσ′(3)fσ′

[
cσ
′σ′(0)

]†
+
∑
σ′′

{
cσσ(0)Uσσ′′(2)fσ′′

[
Uσ′′σ′(1)

]†
cσ
′σ′(0)

+ cσσ(0)Uσσ′′(1)fσ′′
[
Uσ′′σ′(2)

]†
cσ
′σ′(0)

}
.(A2)

and

Pσσ′(4) = cσσ(0)fσ

[
Uσσ′(4)

]† [
cσ
′σ′(0)

]†
+ cσσ(0)Uσσ′(4)fσ′

[
cσ
′σ′(0)

]†
+
∑
σ′′

{
cσσ(0)Uσσ′′(3)fσ′′

[
Uσ′′σ′(1)

]†
cσ
′σ′(0)

+ cσσ(0)Uσσ′′(1)fσ′′
[
Uσ′′σ′(3)

]†
cσ
′σ′(0)

+ cσσ(0)Uσσ′′(2)fσ′′
[
Uσ′′σ′(2)

]†
cσ
′σ′(0)

}
.(A3)

In deriving Eqs. (A1a)-(A1e) we have used Hσσ′(0) =

Pσσ′(0) = 0 for σ′ 6= σ, as given by Eq. (14a).

1. Zeroth Order Energy

Substituting Eqs. (58) and (34) in Eq. (A1a), we
obtain Eq. (59).

2. First Order Energy

Using Eqs. (12), (46) and (15b), we find that the terms
appearing in the second and third lines Eq. (A1b) must

vanish since R
[
Vσσ(1)

]
= 0, R

[
Kσσ(1)

]
= 0, which

follows directly from Eq. (46) and I
[
Pσσ(0)

]
= 0. Then,

substituting Eq. (35) in the first line of Eq. (A1b), we
find:

E(1) =
1

2

∑
σ

RTr

[(
v + uAR + Hσσ(0)

)
×

(
cσσ(0)fσ

[
Uσσ(1)

]† [
cσσ(0)

]†
+ cσσ(0)Uσσ(1)fσ

[
cσσ(0)

]†)]
. (A4)

Since the trace is invariant to a cyclic permutation of the
matrices in Eq. (A4) we obtain:

E(1) =
1

2

∑
σ

RTr
[
Θσσ
OV U

σσ(1)
V O fσO −Θσσ

V OfσOU
σσ(1)
OV

]
.

(A5)
using Eqs. (45a)-(45b), as well as Eq. (58).

Finally, given that Θσσ is real Hermitian and U
σσ(1)
OV

is imaginary anti-Hermitian, both terms in Eq. (A5) can
be combined to yield Eq. (60).

3. The Second Order Energy

From Eqs. (A1c) and (14b), we find:

E(2) =
∑
σ

RTr
[
Hσσ(0)Pσσ(2)

]
+

1

2

∑
σσ′

RTr
[
Hσσ′(1)Pσ′σ(1)

]
+

1

2

∑
σσ′

RTr
[
uσσ

′

SOPσ′σ(1)
]
. (A6)

We obtain the first line of Eq. (A6) by combining the
first and third lines of Eq. (A1c) and noticing that, as
an example, for the exchange operator, from Eq. (15b):

RTr
[
Kσσ(2)Pσσ(0)

]
= RTr

[
Kσσ(0)Pσσ(2)

]
. (A7)

and for the xc operator:

RTr
[
Vσσ(2)Pσσ(0)

]
= RTr

[
Vσσ(0)Pσσ(2)

]
. (A8)
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We obtain the second and third lines of Eq. (A6) by
combining the second and fourth lines of Eq. (A1c) while
using the expression for the first order Hamiltonian ma-
trix from Eq. (14b).

Let us now first consider the contribution in the first
line of Eq. (A6). Using Eq. (36) we obtain:∑

σ

RTr
[
Hσσ(0)Pσσ(2)

]
=

=
∑
σ

RTr

[([
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]†
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)(
fσ
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∑
σ′
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[
Uσ′σ(1)

]† )]
. (A9)

Since
[
cσσ(0)

]†
Hσσ(0)cσσ(0) = εσ(0) it follows from the

Hermiticity of U
σσ(2)
OO (see Eq. (53)), as well as Eqs.

(45a)-(45b), that:∑
σ

RTr
[
Hσσ(0)Pσσ(2)

]
=

=
∑
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RTr
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+ ε
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V
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=

=
∑
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′
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)
R
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Uσ
′σ(1)

pm

]∗
Uσ
′σ(1)

pm

}
.(A10)

To get the last line of Eq. (A10), we have used Eq. (51).
Let us now consider the term in the second line of Eq.

(A6). Proceeding as in Eqs. (A4) and (A5), we obtain:∑
σσ′

RTr
[
Hσσ′(1)Pσ′σ(1)

]
=

=
∑
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RTr
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}
.(A11)

where, in the last passage, we have used Eq. (45a). If
we now insert Eqs. (A10) and (A11) in Eq. (A6) the
second-order energy reduces to:

E(2) =
1

2

∑
σσ′

RTr
[
uσσ

′

SOPσ′σ(1)
]
. (A12)

Finally, substituting Eq. (35) and (61) in Eq. (A12), we
obtain Eq. (62).

4. Third Order Energy

From Eq. (A1d) and Eqs. (14a)-(14c) we find that:

E(3) =
∑
σ

RTr
[
Hσσ(0)Pσσ(3)

]
+
∑
σσ′

RTr
[
uσσ

′

SOPσ′σ(2)
]

+
∑
σσ′

RTr

[(
Vσσ′(1) − aKσσ′(1)

)
Pσ′σ(2)

]
. (A13)

The first term of the first line of Eq. (A13) is obtained
by combining the first and fourth lines of Eq. (A1d) and
using the relation (for N,M = 0, 1, 2, 3, 4):

∑
σσ′

RTr
[
Kσσ′(N)Pσ′σ(M)

]
=
∑
σσ′

RTr
[
Kσσ′(M)Pσ′σ(N)

]
,

(A14)
as well as:

∑
σσ′

RTr
[
Vσσ′(N)Pσ′σ(M)

]
=
∑
σσ′

RTr
[
Vσσ′(M)Pσ′σ(N)

]
.

(A15)
The second line of Eq. (A13) is obtained in a similar way,
by combining the second and third lines of Eq. (A1d) and
using:

∑
σσ′

RTr
[
Cσσ′(N)Pσ′σ(M)

]
=
∑
σσ′

RTr
[
Cσσ′(M)Pσ′σ(N)

]
,

(A16)
Substituting Eqs. (14b) and (14c) in Eq. (A13) we obtain
the simplified expression:

E(3) =
∑
σ

RTr
[
Hσσ(0)Pσσ(3)

]
+
∑
σσ′

RTr
[
Hσσ′(1)Pσ′σ(2)

]
, (A17)

Let us now consider the term in the first line of Eq.
(A17). Using Eq. (A2), as well as Eqs. (37) and (39),
we find:

∑
σ

RTr
[
Hσσ(0)Pσσ(3)

]
=
∑
σ

RTr

[
εσ(0)

×
(
fσ

[
Uσσ(3)

]†
+ Uσσ(3)fσ +

∑
σ′

{
Uσσ′(2)fσ′

[
Uσ′σ(1)

]†
+ Uσσ′(1)fσ′

[
Uσ′σ(2)

]† })]
. (A18)

Using the third order orthogonality condition of Eq. (31)
in Eq. (A18) and the fact that the diagonal matrices εσ(0)
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and fσ commute, we obtain:

∑
σ

RTr
[
Hσσ(0)Pσσ(3)

]
=
∑
σ

RTr

[
− εσO

×
∑
σ′

([
U
σσ′(2)
OV

]†
U
σ′σ(1)
V O +

[
U
σσ′(1)
OV

]†
U
σ′σ(2)
V O

)
fσO

+ εσV
∑
σ′

(
U
σσ′(2)
V O fσ′O

[
U
σ′σ(1)
OV

]†
+ U

σσ′(1)
V O fσ′O

[
U
σ′σ(2)
OV

]† )]
. (A19)

Next, we turn to the second term of Eq. (A17). With
the aid of Eqs. (36) and (37), we obtain:

∑
σσ′

RTr
[
Hσσ′(1)Pσ′σ(2)

]
=
∑
σσ′

RTr

[
Gσσ′(1)fσ′

×
[
Uσ′σ(2)

]†
+ Gσσ′(1)Uσ′σ(2)fσ

+ Gσσ′(1)
∑
σ′′

Uσ′σ′′(1)fσ′′
[
Uσ′′σ(1)

]† ]
(A20)

Then, taking advantage of the first order perturbation
equation (Eq. (40)) in Eq. (A20) we find:

∑
σσ′

RTr
[
Hσσ′(1)Pσ′σ(2)

]
=
∑
σσ′

RTr

[
U
σσ′(1)
V O εσ

′

O

× fσ′O

[
U
σ′σ(2)
OV

]†
− εσV U

σσ′(1)
V O fσ′O

[
U
σ′σ(2)
OV

]†
+ ε

σσ′(1)
OO fσ′O

[
U
σ′σ(2)
OO

]†
+ U

σσ′(1)
OV εσ

′

V U
σ′σ(2)
V O fσO

− εσOU
σσ′(1)
OV U

σ′σ(2)
V O fσO + ε

σσ′(1)
OO U

σ′σ(2)
OO fσO

+ G
σσ′(1)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(1)
OV

]† ]
. (A21)

Substitution of Eqs. (48a) and (51) in Eq. (A21), leads
to: ∑

σσ′

RTr
[
Hσσ′(1)Pσ′σ(2)

]
=
∑
σσ′

RTr

[
U
σσ′(1)
V O

× εσ
′

O fσ′O

[
U
σ′σ(2)
OV

]†
− εσV U

σσ′(1)
V O fσ′O

[
U
σ′σ(2)
OV

]†
− 1

2
G
σσ′(1)
OO fσ′O

∑
σ′′

[
U
σσ′′(1)
OV

]†
U
σ′′σ′(1)
V O


+ U

σσ′(1)
OV εσ

′

V U
σ′σ(2)
V O fσO − εσOU

σσ′(1)
OV U

σ′σ(2)
V O fσO

− 1

2
G
σσ′(1)
OO

∑
σ′′

[
U
σ′σ′′(1)
OV

]†
U
σ′′σ(1)
V O

 fσO

+ G
σσ′(1)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(1)
OV

]† ]
. (A22)

Finally, using Eqs. (A19) and (A22) in Eq. (A17), terms
one through four of Eq. (A19) cancel with terms 1, 5,
4, 2, respectively, of Eq. (A22), such that we obtain Eq.
(63).

5. Fourth Order Energy

From Eq. (A1e), we find the following simplified ex-
pression by using Eqs. (14a)-(14c), as well as Eqs. (A14)-
(A16):

E(4) =
∑
σ

RTr
[
Hσσ(0)Pσσ(4)

]
+
∑
σσ′

RTr
[
Hσσ′(1)Pσ′σ(3)

]
+

1

2

∑
σσ′

RTr
[
Hσσ′(2)Pσ′σ(2)

]
. (A23)

The first term of the first line of Eq. (A23) is obtained
by combining the first and fifth lines of Eq. (A1e). The
second term of the first line of Eq. (A23) is obtained
by combining the second, fourth and sixth lines of Eq.
(A1e). Finally, the second line of Eq. (A23) is obtained
directly from the third line of Eq. (A1e) using Eq. (14c).

We begin by considering the term Hσσ(0)Pσσ(4) in Eq.
(A23). Using the expression in Eq. (A3) for the fourth
order density matrix, we find:

∑
σ

RTr
[
Hσσ(0)Pσσ(4)

]
=
∑
σ

RTr

[
εσ
(
fσ

[
Uσσ(4)

]†
+ Uσσ(4)fσ +

∑
σ′

{
Uσσ′(3)fσ′

[
Uσ′σ(1)

]†
+ Uσσ′(1)fσ′

×
[
Uσ′σ(3)

]†
+ Uσσ′(2)fσ′

[
Uσ′σ(2)

]† })]
. (A24)

Given that fσ and εσ commute, substitution of the
fourth-order orthogonality condition (Eq. (32)) in Eq.
(A24) yields:

∑
σ

RTr
[
Hσσ(0)Pσσ(4)

]
=
∑
σ

RTr

[
− εσ

(∑
σ′

×
[
Uσσ′(3)

]†
Uσ′σ(1) +

[
Uσσ′(1)

]†
Uσ′σ(3)

+
[
Uσσ′(2)

]†
Uσ′σ(2)

)
fσ + εσ

(∑
σ′

Uσσ′(3)

× fσ′
[
Uσ′σ(1)

]†
+ Uσσ′(1)fσ′

[
Uσ′σ(3)

]†
+ Uσσ′(2)fσ′

[
Uσ′σ(2)

]†)]
(A25)

Eq. (A25) may be written in terms of occ-occ occ-virt
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and virt-virt blocks, as:

∑
σ

RTr
[
Hσσ(0)Pσσ(4)

]
=
∑
σ

RTr

[
− εσO

×

(∑
σ′

[
U
σσ′(3)
OV

]†
U
σ′σ(1)
V O +

[
U
σσ′(1)
OV

]†
U
σ′σ(3)
V O

+
[
U
σσ′(2)
OO

]†
U
σ′σ(2)
OO +

[
U
σσ′(2)
OV

]†
U
σ′σ(2)
V O

)
fσO

+ εσV

(∑
σ′

U
σσ′(3)
V O fσ′O

[
U
σ′σ(1)
OV

]†
+ U

σσ′(1)
V O fσ′O

[
U
σ′σ(3)
OV

]†
+ U

σσ′(2)
V O fσ′O

[
U
σ′σ(2)
OV

]†)
+ εσO

∑
σ′

U
σσ′(2)
OO fσ′O

[
U
σ′σ(2)
OO

]† ]
.(A26)

Moving onto the term Hσσ′(1)Pσ′σ(3) in Eq. (A23) and
using the expression for the third order density matrix
from Eq. (A2), we find:

∑
σσ′

RTr
[
Hσσ′(1)Pσ′σ(3)

]
=
∑
σσ′

RTr

[
Gσσ′(1)

×

(
fσ′
[
Uσ′σ(3)

]†
+ Uσ′σ(3)fσ +

∑
σ′′

{
Uσ′σ′′(2)fσ′′

×
[
Uσ′′σ(1)

]†
+ Uσ′σ′′(1)fσ′′

[
Uσ′′σ(2)

]† })]
. (A27)

By taking advantage of the first order perturbation equa-
tion, Eq. (40), Eq. (A27) can be re-expressed as:

∑
σσ′

RTr
[
Hσσ′(1)Pσ′σ(3)

]
=
∑
σσ′

RTr

[
Uσσ′(1)

× εσ
′
fσ′
[
Uσ′σ(3)

]†
− εσUσσ′(1)fσ′

[
Uσ′σ(3)

]†
+ εσσ

′(1)fσ′
[
Uσ′σ(3)

]†
+ Uσσ′(1)εσ

′
Uσ′σ(3)fσ

− εσUσσ′(1)Uσ′σ(3)fσ + εσσ
′(1)Uσ′σ(3)fσ

+ Gσσ′(1)

(∑
σ′′

{
Uσ′σ′′(2)fσ′′

[
Uσ′′σ(1)

]†
+ Uσ′σ′′(1)fσ′′

[
Uσ′′σ(2)

]† })]
. (A28)

We now write Eq. (A28) in terms of occ-occ occ-virt and

virt-virt blocks and use Eq. (48a), to find:

∑
σσ′

RTr
[
Hσσ′(1)Pσ′σ(3)

]
=
∑
σσ′

RTr

[
U
σσ′(1)
V O

× εσ
′

O fσ′O

[
U
σ′σ(3)
OV

]†
− εσV U

σσ′(1)
V O fσ′O

[
U
σ′σ(3)
OV

]†
+ G

σσ′(1)
OO fσ′O

[
U
σ′σ(3)
OO

]†
+ U

σσ′(1)
OV εσ

′

V U
σ′σ(3)
V O fσO

− εσOU
σσ′(1)
OV U

σ′σ(3)
V O fσO + G

σσ′(1)
OO U

σ′σ(3)
OO fσO

+ G
σσ′(1)
V O

∑
σ′′

U
σ′σ′′(2)
OO fσ′′O

[
U
σ′′σ(1)
OV

]†
+ G

σσ′(1)
OV

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(2)
OO

]†
+ G

σσ′(1)
V V

∑
σ′′

U
σ′σ′′(2)
V O fσ′′O

[
U
σ′′σ(1)
OV

]†
+ G

σσ′(1)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(2)
OV

]† ]
. (A29)

Then we substitute Eqs. (A26) and (A29) into Eq.
(A23). In doing so, terms 1, 2, 5 and 6 of Eq. (A26)
cancel with terms 1, 5, 4 and 2 of Eq. (A29), respec-
tively, leading to:

E(4) =
∑
σσ′

RTr

[
− εσO

[
U
σσ′(2)
OO

]†
U
σ′σ(2)
OO fσO

− εσO

[
U
σσ′(2)
OV

]†
U
σ′σ(2)
V O fσO + εσV U

σσ′(2)
V O fσ′O

[
U
σ′σ(2)
OV

]†
+ εσOU

σσ′(2)
OO fσ′O

[
U
σ′σ(2)
OO

]†
+ G

σσ′(1)
OO fσ′O

[
U
σ′σ(3)
OO

]†
+ G

σσ′(1)
OO U

σ′σ(3)
OO fσO + G

σσ′(1)
V O

∑
σ′′

U
σ′σ′′(2)
OO fσ′′O

×
[
U
σ′′σ(1)
OV

]†
+ G

σσ′(1)
OV

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(2)
OO

]†
+ G

σσ′(1)
V V

∑
σ′′

U
σ′σ′′(2)
V O fσ′′O

[
U
σ′′σ(1)
OV

]†
+ G

σσ′(1)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(2)
OV

]† ]

+
1

2

∑
σσ′

RTr
[
Hσσ′(2)Pσ′σ(2)

]
. (A30)

Substituting Eq. (54a) for the occ-occ blocks of U(3) in
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Eq. (A30), we obtain:

E(4) =
∑
σσ′

RTr

[
− εσO

[
U
σσ′(2)
OO

]†
U
σ′σ(2)
OO fσO

− εσO

[
U
σσ′(2)
OV

]†
U
σ′σ(2)
V O fσO + εσV U

σσ′(2)
V O fσ′O

[
U
σ′σ(2)
OV

]†
+ εσOU

σσ′(2)
OO fσ′O

[
U
σ′σ(2)
OO

]†
− 1

2
G
σσ′(1)
OO fσ′O

×
∑
σ′′

([
U
σσ′′(1)
OV

]†
U
σ′′σ′(2)
V O +

[
U
σσ′′(2)
OV

]†
U
σ′′σ′(1)
V O

)
− 1

2
G
σσ′(1)
OO

∑
σ′′

( [
U
σ′σ′′(2)
OV

]†
U
σ′′σ(1)
V O

+
[
U
σ′σ′′(1)
OV

]†
U
σ′′σ(2)
V O

)
fσO + G

σσ′(1)
V O

∑
σ′′

U
σ′σ′′(2)
OO

× fσ′′O

[
U
σ′′σ(1)
OV

]†
+ G

σσ′(1)
OV

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

×
[
U
σ′′σ(2)
OO

]†
+ G

σσ′(1)
V V

∑
σ′′

U
σ′σ′′(2)
V O fσ′′O

[
U
σ′′σ(1)
OV

]†
+ G

σσ′(1)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(2)
OV

]† ]

+
1

2

∑
σσ′

RTr
[
Hσσ′(2)Pσ′σ(2)

]
. (A31)

Let us now consider the term Hσσ′(2)Pσ′σ(2) in the last
line of Eq. (A31). Writing the second order density ma-
trix as in Eq. (36), we obtain:

∑
σσ′

RTr
[
Hσσ′(2)Pσ′σ(2)

]
=
∑
σσ′

RTr

[
G
σσ′(2)
OO

× fσ′O

[
U
σ′σ(2)
OO

]†
+ G

σσ′(2)
V O fσ′O

[
U
σ′σ(2)
OV

]†
+ G

σσ′(2)
OO U

σ′σ(2)
OO fσO + G

σσ′(2)
OV U

σ′σ(2)
V O fσO

+ G
σσ′(2)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(1)
OV

]† ]
. (A32)

Then, using Eq. (A32) in Eq. (A31), yields:

E(4) =
∑
σσ′

RTr

[
− ε

σ(0)
O

[
U
σσ′(2)
OO

]†
U
σ′σ(2)
OO fσO

− ε
σ(0)
O

[
U
σσ′(2)
OV

]†
U
σ′σ(2)
V O fσO + ε

σ(0)
V U

σσ′(2)
V O fσ′O

[
U
σ′σ(2)
OV

]†
+ ε

σ(0)
O U

σσ′(2)
OO fσ′O

[
U
σ′σ(2)
OO

]†
− 1

2
G
σσ′(1)
OO fσ′O

×
∑
σ′′

( [
U
σσ′′(1)
OV

]†
U
σ′′σ′(2)
V O +

[
U
σσ′′(2)
OV

]†
U
σ′′σ′(1)
V O

)
− 1

2
G
σσ′(1)
OO

∑
σ′′

( [
U
σ′σ′′(2)
OV

]†
U
σ′′σ(1)
V O

+
[
U
σ′σ′′(1)
OV

]†
U
σ′′σ(2)
V O

)
fσO + G

σσ′(1)
V O

∑
σ′′

U
σ′σ′′(2)
OO

× fσ′′O

[
U
σ′′σ(1)
OV

]†
+ G

σσ′(1)
OV

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

×
[
U
σ′′σ(2)
OO

]†
+ G

σσ′(1)
V V

∑
σ′′

U
σ′σ′′(2)
V O fσ′′O

[
U
σ′′σ(1)
OV

]†
+ G

σσ′(1)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(2)
OV

]†
+

1

2
G
σσ′(2)
OO fσ′O

[
U
σ′σ(2)
OO

]†
+

1

2
G
σσ′(2)
V O fσ′O

[
U
σ′σ(2)
OV

]†
+

1

2
G
σσ′(2)
OO U

σ′σ(2)
OO fσO +

1

2
G
σσ′(2)
OV U

σ′σ(2)
V O fσO

+
1

2
G
σσ′(2)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(1)
OV

]† ]
. (A33)

We can combine terms seven and eight of Eq. (A33) by
writing:

∑
σσ′

RTr

[
G
σσ′(1)
V O

∑
σ′′

U
σ′σ′′(2)
OO fσ′′O

[
U
σ′′σ(1)
OV

]† ]

+
∑
σσ′

RTr

[
G
σσ′(1)
OV

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(2)
OO

]† ]
=

=
∑
σσ′σ′′

occ∑
mn

virt∑
p

R

{
Gσσ

′(1)
pm Uσ

′σ′′(2)
mn fσ′′n

[
Uσσ

′′(1)
pn

]∗
+Gσ

′σ(1)
mp Uσσ

′′(1)
pn fσ′′n

[
Uσ
′σ′′(2)

mn

]∗}
=

= 2
∑
σσ′σ′′

occ∑
mn

virt∑
p

R

{
Gσσ

′(1)
pm Uσ

′σ′′(2)
mn fσ′′n

[
Uσσ

′′(1)
pn

]∗}
=

= 2
∑
σσ′

RTr

[
G
σσ′(1)
V O

∑
σ′′

U
σ′σ′′(2)
OO fσ′′O

[
U
σ′′σ(1)
OV

]† ]
.(A34)

The ninth and tenth terms of Eq. (A33) can be combined
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similarly:

∑
σσ′

RTr

[
G
σσ′(1)
V V

∑
σ′′

U
σ′σ′′(2)
V O fσ′′O

[
U
σ′′σ(1)
OV

]† ]

+
∑
σσ′

RTr

[
G
σσ′(1)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(2)
OV

]† ]
=

=
∑
σσ′σ′′

occ∑
m

virt∑
pq

R

{
Gσσ

′(1)
pq Uσ

′σ′′(2)
qm fσ′′m

[
Uσσ

′′(1)
pm

]∗
+Gσσ

′(1)
pq Uσ

′σ′′(1)
qm fσ′′m

[
Uσσ

′′(2)
pm

]∗}
=

= 2
∑
σσ′

RTr

[
G
σσ′(1)
V V

∑
σ′′

U
σ′σ′′(2)
V O fσ′′O

[
U
σ′′σ(1)
OV

]† ]
.(A35)

Finally, using Eqs. (A34) and (A35), as well as the
Hermiticity/anti-Hermiticity of the different blocks of

G(1), G(2), U(1) and U(2), Eq. (A33) becomes:

E(4) =
∑
σσ′

RTr

[
ε
σ(0)
O (fσ′O − fσO)

[
U
σσ′(2)
OO

]†
U
σ′σ(2)
OO

− fσO

(
ε
σ(0)
O − ε

σ′(0)
V

) [
U
σσ′(2)
OV

]†
U
σ′σ(2)
V O

+
1

2
(fσO + fσ′O) G

σσ′(2)
OO U

σ′σ(2)
OO + G

σσ′(2)
V O fσ′O

[
U
σ′σ(2)
OV

]†
+

1

2
G
σσ′(2)
V V

∑
σ′′

U
σ′σ′′(1)
V O fσ′′O

[
U
σ′′σ(1)
OV

]†
− 1

2
(fσO + fσ′O)

× G
σσ′(1)
OO

∑
σ′′

( [
U
σ′σ′′(1)
OV

]†
U
σ′′σ(2)
V O +

[
U
σ′σ′′(2)
OV

]†
U
σ′′σ(1)
V O

)
+ 2

(
ε
σ(0)
O − ε

σ′(0)
V

)
U
σσ′(1)
V O

∑
σ′′

U
σ′σ′′(2)
OO fσ′′O

[
U
σ′′σ(1)
OV

]†
+ 2G

σσ′(1)
V V

∑
σ′′

U
σ′σ′′(2)
V O fσ′′O

[
U
σ′′σ(1)
OV

]† ]
. (A36)

Terms one through six of Eq. (A36) are obtained, re-
spectively, by combining terms one plus four, two plus
three, eleven plus thirteen, twelve plus fourteen, fifteen,
and five plus six of Eq. (A33). Finally Eq. (A36) can be
simplified algebraically to Eq. (64) by factorization.


