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Object Localization, Deep Learning, Metric Loss.

Localizing objects is a key challenge for robotics, augmented reality and mixed reality applications. Images
taken in the real world feature many objects with challenging factors such as occlusions, motion blur and
changing lights. In manufacturing industry scenes, a large majority of objects are poorly textured or highly
reflective. Moreover, they often present symmetries which makes the localization task even more complicated.
PoseNet is a deep neural network based on GoogleNet that predicts camera poses in indoor room and outdoor
streets. We propose to evaluate this method for the problem of industrial object pose estimation by training
the network on the T-LESS dataset. We demonstrate with our experiments that PoseNet is able to predict
translation and rotation separately with high accuracy. However, our experiments also prove that it is not
able to learn translation and rotation jointly. Indeed, one of the two modalities is either not learned by the
network, or forgotten during training when the other is being learned. This justifies the fact that future works
will require other formulation of the loss as well as other architectures in order to solve the pose estimation

general problem.

1 INTRODUCTION

Over the past decades, the growing interest for Deep
Convolutional Neural Networks for image and object
recognition (Le Cun et al., 1990; Krizhevsky et al.,
2012; Szegedy et al., 2015; Simonyan and Zisserman,
2014) has seen more ambitious works emerged for
image segmentation (Ronneberger et al., 2015) and
object localization (Kendall et al., 2015; Rad and Le-
petit, 2017; Do et al., 2018; Li et al., 2018; Xiang
et al., 2017). Object localization is a key component
for augmented reality applications where information,
visual effects or data are added to real world objects.
This allows the user to be better informed about his
environment, most often by wearing an augmented
reality headset (Microsoft Hololens®), 2017). Aug-
mented reality is applied in video-game industry and
shopping Industry (IKEA, 2017). It is also useful in
the medical domain (Collins et al., 2014) and in ma-
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nufacturing industry (Didier et al., 2005).

Typical augmented reality headsets have a trans-
parent screen inserting visuals on the foreground of
the user’s field of view. As for now, headsets such
as the (Microsoft Hololens®), 2017) provide limi-
ted data about user environment (RGB video, surface
mesh of nearby objects). They have also limited me-
mory and computational power. It is thus difficult to
align the created visuals on the real world objects, es-
pecially if high precision is required as it is the case
in many industrial or medical applications. To ena-
ble the deployment of such technologies in applica-
tive fields with high robustness constraints, the preci-
sion of object localization as to be drastically increa-
sed. Moreover, challenging objects (namely: objects
without texture, objects with metallic materials and
symmetric objects) have to be correctly handled.

In this paper we are interested in localizing indus-
trial objects with high precision for augmented reality
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applications in the manufacturing industry. We aim
to deploy such solutions on augmented reality head-
sets. To that extent, we selected PoseNet (Kendall
et al., 2015) as the backbone architecture and trai-
ned it on the T-LESS dataset(Hodan et al., 2017) as
it features 30 industrial objects and it consists in very
detailed training data which perfectly suits our needs
in order to train a CNN to localize objects. In this
particular setup, we will focus on the influence of the
two parameters of PoseNet in order to find the best
weighting to ensure optimal pose estimation. These
two parameters weigh the importance of the transla-
tion estimation and rotation estimation respectively.
Therefore, we provide a thorough evaluation of their
impact on the training using PoseNet when applied to
the T-LESS dataset. Our experiments will show that
the network is not able to correctly learn both moda-
lities together as one modality always overtakes the
other.

Overview of the Paper. In the next part we present
the state of the art in object localization and available
datasets. Then we detail the experimental protocol
used measure if translation and rotation can be lear-
ned jointly, starting with the dataset: T-LESS (Hodati
et al., 2017), the network proposed by A. Kendall and
al: PoseNet (Kendall et al., 2015), the loss function
optimized during training, and the accuracy measu-
rement performed. Following section describes the
results we obtained that prove that translation and ro-
tation can be learned separately but not together. Fi-
nally we interpret these results with regards to the task
of augmented reality for manufacturing industry, and
we propose possible solutions that we intent to ex-
plore in the near future.

2 STATE OF THE ART

The task of object / camera pose estimation has been
widely covered in previous works. Structure-From-
Motion algorithms (Himing and Peters, 2010) can re-
trieve the position and orientation of a camera given a
set of images using descriptors such as SIFT (Lowe,
1999) or SURF (Bay et al., 2006) and RANSAC re-
gression. More recently, deep-learning methods have
overpassed manual descriptors as they are now able
to learn more specific features for each application,
providing better results on most challenges. Modern
CNNs such as PoseNet (Kendall et al., 2015) can be
used to directly predict the pose of an object. These
methods were extended to predict the pose of multi-
ple parts (Crivellaro et al., 2015a) in order to increase
the robustness of the network towards occlusions. Ot-

her approaches aim at regressing the position of the
8 corners of the bounding-box of the object in the
image plane to recover 3D coordinates using PnP al-
gorithms (Rad and Lepetit, 2017). Methods with mul-
tiple regression branches have also been proposed in
(Do et al., 2018; Xiang et al., 2017). Finally, methods
with iterative refinement on the estimated pose have
recently appear (Li et al., 2018) in order to increase
overall precision. Pose detection applied to augmen-
ted reality requires real-time performances as well as
low memory consumption. Thus, multi-part / multi-
branches approaches are oversized for our application
scenario. Moreover, object of attention is usually lo-
cated in the center of the image, on the foreground.
Therefore, the robustness towards occlusion is not re-
levant here. Therfore, we chose the PoseNet architec-
ture as the backbone of the presented work.

The Extented ACCV (Crivellaro et al., 2015b) da-
taset is designed for training methods on 3D models.
However, it has shown limitations in its usage as each
image has to be rendered to generate training data-
set. Datasets for autonomous driving such as (Gei-
ger et al., 2012) have been widely used because of
their high quality. However, such datasets focus on
outdoor scenarios at metric precision. On the other
hand, the T-LESS (Hodan et al., 2017) dataset focu-
ses on industrial objects with centimetric precision in
the groundtruth. Moreover, it depicts objects without
textures that are typically found in industrial environ-
ment (electrical parts). Thus, the T-LESS dataset per-
fectly fits our requirements in terms of precision and
object diversity.

3 EXPERIMENTAL SETUP

We aim to find the 3D position of industrial objects in
RGB video for augmented reality applications using
deep learning techniques. The goal of the experiments
reported in this paper are to show that the Euclidean
loss does not allow training the (Kendall et al., 2015)
network to predict accurate pose estimation of trans-
lation and rotation on the selected dataset. In this
section we first present in depth the dataset we use:
T-LESS(Hodan et al., 2017), then we describe the ar-
chitecture of the network proposed in (Kendall et al.,
2015), followed by the loss function used to train the
network, and finally the accuracy metrics that are ap-
plied in our experiments.

T-LESS Dataset. The T-LESS dataset (Hodan
et al., 2017) features objects with no discriminating
colors, metallic parts, intern similarities and symme-
tries. Therefore, it is a very challenging dataset to
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work on. The training set only depicts a single ob-
ject on a black background in each image. On the
opposite, the testing set consists in many objects on
various backgrounds for each image. As we are fo-
cused on selecting the optimal o and 3 parameters of
the loss function Equation (1), the network is trained
on a split of the training set and accuracy is computed
on the rest of the training set.

PoseNet Architecture. PoseNet (Kendall et al.,
2015) is among the first networks that successfully
tackled the problem of camera re-localization. It is a
20 modules deep convolutional neural network. The
fact that it based on GoogleNet (Szegedy et al., 2015)
gives it interesting properties: low memory usage
(only 4 million parameters), fast evaluation and the
ability to work with features at different scales. We
apply the same weight to the auxiliary classifier as in
(Szegedy et al., 2015) (0.3,0.3,1) For details about
the complete architecture of the network we invite the
interested reader to read the work of (Szegedy et al.,
2015) and (Kendall et al., 2015) but we also provi-
ded a graphical representation of the architecture in
the Figures 1,2 in appendices.

Joint Euclidean Loss. The network is trained to op-
timize the following joint euclidean loss function:

(D

L(G t0.Giq) =00 | |G —1i] ‘2+BX

qi_\l%lb ,
Where i € [0,b] is the index of the example in a batch
of size b, 1; is the predicted translation (3D vector),
g; the predicted rotation, f; is the translation label (3D
vector) and g; is the rotation label.

The weighting factors o and [ are used to respecti-
vely weight the translation error, and the rotation er-
ror. The quaternion error if both ¢ and ¢ are unit
length, is bounded in [0,2] although in the first step
where the network weight are randomly initialized,
this loss value could actually be higher. The same is
true for the translation error but it is mostly influenced
by the scale and the unit in which data are presented
to the network. T-LESS data are provided in milli-
meters, the maximum distance is 700mm. This me-
ans that the error could be of at least of 3880mm x b!
and more for the 3 classification branches used during
training (where b is the batch size).

Such high values for a loss are challenging be-
cause they can lead to numerical error when compu-
ting the gradient. Thus the o and B parameters have
tremendous impact on the training stability and as we
will see on accuracy of the network at prediction time.

Yoss = /(2 x (700mm + 700mm))? = 2800mm, and
lossglobal = loss + 0.6 x loss = 3880mm
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Figure 1: Backbone architecture of PoseNet(Kendall et al.,
2015) with parameters of each layers. The two auxiliary
classifiers detailed in figure 2 and the dropout layers are
only used during training.
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Figure 2: Architecture of the two auxiliary classifiers of Po-
seNet(Kendall et al., 2015) with parameters of each layers
used only during training.

The intuition here is that scaling oo down will prevent
the translation from dominating the loss, allowing ro-
tation to train as well and ensuring computational in-
tegrity. P can also be scaled up to better focus the
training on rotation.

Euclidean Accuracy. We advocate that the accu-
racy is directly influenced by the ability of the net-
work to learn jointly translation and rotation which is
controlled by the o and B parameters in Equation (1).

The translation accuracy can be measured by the
euclidean distance to T:

b o], <

ACC(‘m(?J,’C):Zi,V:O { N 2

0 otherwise

A predicted translation 7 (in cm) is considered correct
if the euclidean distance between the prediction 7
(in cm) and the label ¢ (in cm) is less than a given
threshold T (in cm).

One way to compute the rotational accuracy is
using the angle at T:

N 1 : -~ IXT
~ ifangle(q,q) < %2
Aceo(G.at) = N g 180 3
(@4 lz;g{o otherwise )
angle(q,q) = arccos(2 x (AL, L>2 -1 @
gl " [l

A predicted rotation ¢ (quaternion) is considered cor-
rect if the angle (in degree) between the prediction g
(quaternion) and the label g (quaternion) is less than

a given threshold 7 (in degree). Note that angle(q,q)
gives an angle in radians thus we convert the threshold
7T to radians in the above equation.

Complete Setup. We train the PoseNet net-
work(Kendall et al., 2015) to regress translation (3D
vector) and rotation (4D quaternion) by optimizing
an euclidean loss as defined in Equation (1) like in
(Kendall et al., 2015) on data from the T-LESS data-
set (Hodan et al., 2017). The images of a subset of
the training set of the dataset are re-sized to a fixed
size of 224x224 (RGB). We do not take crops nor ap-
ply any data augmentation. The learning rate is set
to Y= 0.0001 for all training runs. We do this trai-
ning several time with various values of a and 3 to
show the effect of these two parameters on the trai-
ning in terms of convergence speed, stability, and on
the accuracy for both translation and rotation (measu-
red on the remaining examples of training set).

4 RESULTS

Choosing the right value for o and f is a very com-
plicated task. In this section we detail all the training
run and provide interpretation of the results. We first
produced baseline results for translation and rotation
where one of the two weight is set to 0 only allowing
one of the two to train. Then following our intuition
we fixed B to 1 and attempted to scaled down o.. And
finally we fixed o and scaled B up in an attempt to
better learn rotation.

Baseline Results. We first set the parameters to oL =
0.01, = 0 (only optimizing translation). Results are
presented in Figure 3 (a). In order to visualize the re-
sults we rendered the objects at ground truth position
and ground truth rotation in green, and overlay a ren-
der of the object at predicted position and at ground
truth rotation in transparent red. As expected the net-
worked learned to predict accurate translation but not
rotation. The accuracy for the translation is equal to
20% for T = 5cm and is equal to 100% for T > 20cm.

Then we set the parameters to o0 = 0, = 1 (only
optimizing rotation). Figure 3 (b) features objects
rendered at the ground truth position and ground truth
rotation in green and objects rendered at the ground
truth position but predicted rotation in red. This time
the network is very accurate on rotation and inaccu-
rate on translation. With Accu,(q,q,5°) = 26% and
for T > 20° then Accu,(q,q,T) ~ 100%. Translation
accuracy is close to O for any values of T < 65cm.
We recall that object are at most 70cm away from the
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(@a=0,p=1

(b)a=0.01,=0

Figure 3: (a) Results for a network trained to only optimize rotation (o = 0, = 1). Green: objects at the ground truth
t and g, red: objects at the ground truth 7 but predicted g. (b) Results for a network trained to only optimize translation
(a=10.01, = 0). Green: object at the ground truth 7 and ¢, red: objects at the ground truth ¢ but predicted 7.

camera in T-LESS so for any value of T > 65¢m the
accuracy will always be close to 100%.

Together these two classifiers provide a good so-
lution to the problem of object localization in terms
of accuracy. But we would like to combine these two
results in one network following the work of (Kendall
et al., 2015) to save memory and computational time
as well as providing a unified solution to the problem.

Down-scaling Translation. In order to prevent the
translation loss from taking to large values with re-
spect to the rotation loss, and also to ensure compu-
tational integrity of the gradient we fixed the B para-
meter to 1 and started tuning the o parameter. Results
on the loss (translation and rotation) can be found in
Figure 4 (a) and results on the accuracy can be found
in Figure 4 (b).

Setting o > 0.0075 does not allow rotation to be
trained at all. This is equivalent to the baseline result
where [ is set to 0. Then if we set o to 0.005 or 0.006
we can see on Figure 4 (b) (second row) that rotation
is learned but then as training progresses, it is forgot-
ten to allow translation to be learned. This is also
visible in Figure 4 (a): as soon as translation loss de-
creases, rotation loss increases drastically. Even if the
rotation loss then slowly decreases, it never returns to
its previous minimum, and accuracy never increases
again. Finally o < 0.001 does not allow translation
to be trained. Loss and accuracy are equivalent to the
ones for o = 0 (baseline result).

As we can see, setting only o is not enough. If
we do no not decrease it, rotation will not be learned
for sure. But decreasing it (without changing ) will
only delay the translation from taking over. And if we
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decrease it too much we quickly fall back to the case
where it is equal to 0.

Up-scaling Rotation. In the previous experiment
we saw that oo = 0.005 is a key value where the loss
“hesitates” between the translation and rotation. We
also concluded that only tuning o is not enough to
balance translation and rotation. In this set of experi-
ments we wanted rotation to train just like it did be-
fore in the early stages of training, thus we set o to
0.005. But we also wanted it to not be forgotten by
the network. To ensure this we increased 3 in values
ranging from 1 to 3.Results are presented in Figure 5
(a) and (b). We first set B to 0.5 and we saw as ex-
pected that this leads to rotation not being learned at
all just like in our baseline result where [ was set to
0. Then we increased 3 to 1.2 and 1.5. Results pre-
sented in Figure 5 (b) (second row) show that rotation
is indeed learned longer, thus better. But we see the
same phenomena as before: when translation is lear-
ned, rotation is forgotten. Thus we decided to furt-
her increase B and set it to 2 and 3. For these values
translation accuracy did not increased, and the corre-
sponding loss remains constantly high. This result is
equivalent to the baseline result where o0 = 0.

Once again this set of experiment shows that trans-
lation is favored to rotation during training. Trans-
lation and rotation can never be learned jointly with
high accuracy for both. Rotation is either not lear-
ned at all, or forgotten. This is due to the fact that it
is more profitable for the network to learn translation
with respect to the implemented loss.



Limitations of Metric Loss for the Estimation of Joint Translation and Rotation

£ 20000

((((((((

O(: 0.0060,[3: 1.0
OL: 0.0075,8: 1.0

‘‘‘‘‘‘

2000 40000 60000 8000 100000 0 20000 4000 60000 80000
llllll

200

xxxxx

o 0.00SO,ﬁ: 1.0 == 0.0100,ﬁ: 1.0

o: 0.0000,ﬁ: 1.0
O(: 0.0010 B 1.0

(((((((((((((((((((((((((((((

(a) Translation and rotation losses

00 4000 G000 o0 100000 0 20000 4000 60000 80000

(b) Translation and rotation accuracies (c) Legend

Figure 4: First row: translation, second row: rotation. (a) Euclidean loss over training steps for different o values and p = 1.0
(b) Accuracy at T = 20 and T = 5 over training steps for different o values and f = 1.0.

S CONCLUSIONS

Regressing both translation and rotation using a sin-
gle regression branch is a very hard task for a network
as it has to model different concepts (with different
units) at the same level of abstraction. They are no va-
lues of the weighting parameters o and 3 that enable
the network to learn jointly rotation and translation.
If oo > 0, conflicts between translation and rotation
occur, and translation overtakes rotation. The only ef-
fect of increasing 3 was to delay the overtaking of the
translation.

The fact that we can see so clearly the PoseNet
(Kendall et al., 2015) forgetting one of the two mo-
dality in favor of the other in the results proves that
when used on the T-LESS dataset it is failing to le-
arn translation and rotation jointly. This is mainly be-
cause the scale, and the range of viewpoints of the
data is not the same as the original use case. Pose-
Net is meant for large scene where object are bigger
and observed from further away and from less point
of views. In our case the positional data in millime-
ter leads to large translation error that is not bounded.
The rotational loss on the other hand is bounded by
definition. Thus the translation always takes over in
the training at some point.

Perspectives. To solve the problem of the euclidean
loss not being able to learn jointly the translation and
rotation, one could investigate the use of other los-
ses that already exist, such as 3D geometrical loss for
application that require absolute precision, or 2D ge-
ometrical loss computed in the image plane that are

suitable for augmented reality applications (Brégier
et al.,, 2016). These losses are very interesting be-
cause they can be modified to include symmetries.
Other networks architectures that have separate re-
gression branches for translation and rotation can also
help training the two jointly (Do et al., 2018; Xiang
et al., 2017). New types of network such as Capsu-
les Network (Hinton et al., 2011; Sabour et al., 2017)
that have vectorial activation values could better mo-
del translation and rotation that are vectorial data.
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APPENDICES

A T-LESS Viewpoints

Figure 6: Position where each object is photograp-
hed to produce the training data-set. Objects 19
and 20 have a full vertical symmetry, this is why
they are only sampled from one side of the sam-
pling sphere.  All point-of-view are bounded in the
rectangle (—652.975mm,—652.252mm,—635.481mm) to
(651.928mm, 653.682mm, 635.049mm).

The Figure 6 presents the positions where the ca-
mera shot the picture used to create the training set of
the T-LESS dataset.

B Network Architecture

The architecture of the network as well as configura-
tion parameters of every layers are provided in Figure
1. The auxiliary classifiers used during training are
both designed following the Figure 2.

C Combined Loss

During training the euclidean loss is applied to all 3
classification branches. It is integrated using the fol-

lowing formula:

Léiobal :1,3,) = Mo X Lauxo (faux0st, Qa0 )
+}\-l XLAuxl(th?q/Al;7Q)
+ A2 X L1op(trop,t,q1op,q)  (5)

Where Lr,p, Laux1 and Layy> are computed using
Equation (1) with the same labels but with predictions
coming from the different regression branches.

The authors of GoogleNet (Szegedy et al., 2015)
suggested to use Ag = 0.3, A; = 0.3 and A, = 1.0, this
is what is used in PoseNet (Kendall et al., 2015), thus
we stick with these values for all our experiments.

D Remarks

Baseline Architecture. Setting oo = 0.01,f =0 is
not equivalent to having a network predicting only
translation (7 logits instead of 3), and setting o0 =
0,p = 1 is not equivalent to having a network pre-
dicting only rotation (7 logits instead of 4): the extra
“unused” weights (4 or 3) in the network contribute
to the gradient computations and to the regularization
terms. Indeed ||W ||, is often used to prevent the weig-
hts values from taking too large values, where W is the
matrix containing all the weights of the network.

Unit Quaternion. The predicted quaternion g is not
normalized but the network is optimized with respect
to a normalized “’label” quaternion ﬁ, thus it is trai-

ned to predict unit length quaternion, but they are no
hard constraints for it. This is actually a better idea
than to normalize the predicted quaternion g in the
loss, as it would not penalize the training if a non-unit
quaternion was predicted by the network. Although at
test time the predicted quaternion can be normalized
for example to later convert it to Euler angles.
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