N

N

Perturbation Theory Treatment of Spin—Orbit Coupling,
Part I: Double Perturbation Theory Based on a
Single-Reference Initial Approximation

Jacques Desmarais, Alessandro Erba, Jean-Pierre Flament, Bernard Kirtman

» To cite this version:

Jacques Desmarais, Alessandro Erba, Jean-Pierre Flament, Bernard Kirtman. Perturbation Theory
Treatment of Spin—Orbit Coupling, Part I: Double Perturbation Theory Based on a Single-Reference
Initial Approximation. Journal of Chemical Theory and Computation, 2021, 17 (8), pp.4697-4711.
10.1021/acs.jctc.1c00343 . hal-03324092

HAL Id: hal-03324092
https://hal.science/hal-03324092v1
Submitted on 15 Jul 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03324092v1
https://hal.archives-ouvertes.fr

Downloaded viaUNIVERSITY LILLE on July 15, 2024 at 14:26:57 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

]‘ I ‘ Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Perturbation Theory Treatment of Spin—Orbit Coupling, Part I:
Double Perturbation Theory Based on a Single-Reference Initial

Approximation

Jacques K. Desmarais,™ Alessandro Erba, Jean-Pierre Flament, and Bernard Kirtman

Cite This: J. Chem. Theory Comput. 2021, 17, 4697-4711

I: I Read Online

ACCESS | Lt

Metrics & More |

Article Recommendations ‘

@ Supporting Information

Hlpr) =

[BO9 4 XG0 + D] [6f*”) + A

(1,0)

) + vy

(0,1)) +/\2W)§2,0)> +#2|¢;0’2)> + )\HWJSI'I)) +]

- [E}""” FAEMO 4 uBOY 4 N2EPO 4 2B 4 BN 4 ]

X

(62 + AEO) + ) + X2 + 2 p0?) + M) + ..

ABSTRACT: We develop a perturbation theory for solving the many-body Dirac equation within a given relativistic effective-core
potential approximation. Starting from a scalar-relativistic unrestricted Hartree—Fock (SR UHF) solution, we carry out a double
perturbation expansion in terms of spin—orbit coupling (SOC) and the electron fluctuation potential. Computationally convenient
energy expressions are derived through fourth order in SOC, second order in the electron fluctuation potential, and a total of third order in
the coupling between the two. Illustrative calculations on the halogen series of neutral and singly positive diatomic molecules show that the
perturbation expansion is well-converged by taking into account only the leading (nonvanishing) term at each order of the electron
fluctuation potential. Our perturbation theory approach provides a computationally attractive alternative to a two-component self-consistent
field treatment of SOC. In addition, it includes coupling with the fluctuation potential through third order and can be extended (in
principle) to multireference calculations, when necessary for both closed- and open-shell cases, using quasi-degenerate perturbation theory.

I. INTRODUCTION

The treatment of relativistic effects in solids and molecular
systems is usually carried out, nowadays, starting from a self-
consistent field (SCF) treatment. This can be achieved using
two- or four-component representations of the Dirac equation.
Some of the most popular two-component variational approaches
include the zeroth (and higher)-order regular approximations
(ZORAs),'~* the Douglas—Kroll—Hess family of methods,”~"”
and methods based on the eXact-2-component (X2C)
approach.m_28 Four-component variational treatments are
also in use both for molecules””*® and solids.”"

The computational bottleneck in performing variational
relativistic calculations is the need to explicitly diagonalize the
secular equations in a large two- or four-component spinor basis
(2c-SCF or 4c-SCF). “Diagonalization-free” methods have also
been discussed, but they usually necessitate a small number
of diagonalizations.”” ** Diagonalization cost can be greatly
reduced by exploitation of the double-group symmetry if the
corresponding irreducible representations (IRREPs) can be
built. While algorithms exist for constructing the IRREPs of
the double group, they are generally limited to the treatment
of states that preserve time-reversal symmetry (the so-called
Kramer’s restricted, KR, variant of the theory) but could also be
extended to Kramer’s unrestricted theory.””**™*” KR theory
is best suited to treat closed-shell electronic configurations
although, even in this context, the symmetries are usually not
exploited for diagonalization due, in part, to a lack of efficient
algebraic routines. As for open-shell systems, a single-reference
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2c-SCF or 4¢-SCF is insufficient for treating those cases with a
strong multireference character. Attempts for a multireference
generalization of such self-consistent treatments lead to approaches
that are either prohibitively expensive or lack the property of size
extensivity.’”**~*> Both cases represent important obstacles
for the application of multireference approaches to extended
systems.

Perturbation theory represents an alternative to the SCF
treatment of relativistic effects. Some spin—orbit configuration-
interaction (CI) algorithms include a part of the spin—orbit
coupling (SOC) effects both in the CI diagonalization and by a
perturbation theory treatment. As a matter of fact, the CIPSO
algorithm of Teichteil, Pelissier, and Spiegelmann% isapartofa
class of algorithms sometimes referred to as CI™ + SO, in which
SOC is partly included through perturbation theory in a target
space determined from the correlated scalar-relativistic (SR)
wave function and its quasi-degenerate complement. Double
group CI methods are somewhat similar in spirit, with one
important difference being that the diagonalization of the full
Hamiltonian is achieved in a target space that may be enlar§ed
by configurations, which are selected by a SOC criterion.””"*
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Some success in the perturbation theory treatment of
relativistic effects has been achieved for methods based on the
two-component Pauli or Breit—Pauli equations.*”>* A possibly
more accurate alternative, however, is to directly solve a suitable
approximation for the four-component Dirac equation by a
perturbation expansion, following the direct perturbation theory
(DPT) developed 1ndependently by Rutkowski** ™" and by
Kutzelnigg and co-workers.”> Most total energy DPT calculations
reported thus far involve the perturbation theory treatment of
both SR (generally more important for the total energy) and SOC
effects. DPT has been applied in the context of density functional
theory (DFT) calculations®® and Hartree Fock calculations®* ¢
and with coupled-cluster wave functions.’” The extension of DPT
to open-shell systems by means of quasi- de%enerate perturbation
theory (QDPT) has also been discussed. Coincidentally,
QDPT also allows for some otherwise nondynamical electron
correlation to be included in a size-extensive way.”>~"°

An alternative to the traditional two- or four-component
representations of the Dirac equation is the use of relativistic
effective-core potentials (RECPs).””~** In fact, the RECP approxi-
mation is probably the most popular approach to treat relativistic
effects (albeit, only at the SR level) and is implemented in most
first-principles programs.””*'~”” The SR RECP approach
represents a very convenient means to treat relativistic effects
because it is no more expensive than a one-component non-
relativistic (NR) calculation. However, SOC effects are not included.
If they were, the RECP approach could lead to a computational
method that is more accurate than the costlier four-component
Dirac—Coulomb approach.”””® The main drawback of the RECP
methodology is the use of the frozen-core approximation, which
can be inappropriate for calculating properties that directly
involve core orbitals (e.g., nuclear magnetic resonance chemical
shifts, Mossbauer isomer shifts, and X-ray spectroscopies).””

Given the widespread use of the SR RECP approach, it is
desirable to develop a means of including SOC effects per-
turbatively. We intend to provide the necessary theory for such
treatments in a series of papers. The first paper of this series
(part I), presented here, provides an appropriate (noniterative)
double perturbation theory for solving the many-body Dirac
equation in a given RECP approximation, starting from the
corresponding SR single-reference unrestricted Hartree—Fock
(UHF) solution. Part II will present an iterative single-reference
approach based on the coupled-perturbed Hartree—Fock/
Kohn—Sham (CPHF/CPKS) spin—current density functional
perturbation theory formalism.” Further additions to the series
will consider multireference generalizations of the theory, based
on QDPT, as well as the treatment of periodic systems. This
series complements work by some of the present authors to
provide a program for two-component spin—current DFT calcu-
lations on periodic systems within the CrysTar code.'**~'*°

In this paper, we present a formalism for solving the many-
body Dirac equation starting from the SR UHF solution. Our
formalism is based on a double perturbation treatment of SOC
and the electron fluctuation potential. Computational results are
provided for the halogen series of diatomic molecules (F,, Cl,,
Br,, I,, and At,). Although the formalism could be used to
calculate the density matrix and the related properties, as well as
orbital energy levels, we limit our considerations in this first
paper to the convergence of the perturbation series for the
energy. The illustrative calculations show that the perturbation
series in SOC, both zeroth order and first order in the electron
fluctuation potential, converge rapidly to the expected values.
Thus, our treatment provides a convenient starting point for

the extension to include, for example, ordinary Meller—Plesset
second-order correlation energy (second order in the electron
fluctuation potential and zeroth order in SOC) and higher-order
coupling between SOC and the electron fluctuation potential.
Detailed formulas are provided through total order three for this
purpose. Moreover, a brief discussion is included regarding cases
where the application of QDPT may become necessary.

Il. FORMALISM

Il.I. Statement of the Problem. Our treatment is
formulated within the RECP approximation. Thus, the many-
electron problem is partitioned into one involving only the core
electrons and one describing valence—valence and core—valence
interactions. We assume that the core electron problem has
already been solved within a sufficiently accurate approximation
to the many-electron four-component Dirac equation (e.g.,
Dirac—Coulomb, Dirac—Coulomb—Breit, or generally any other
variant, possibly including higher-order corrections from quantum
electrodynamics) and that the parameters of the RECPs have
been extracted. The reader is referred to excellent reviews of the
RECP method for more explicit details on the procedure for
extraction of the RECP operators.”””?71067109

Our task is to solve the remaining problem involving the
valence—valence and core—valence interactions. The starting
point is the many-electron time-independent Dirac equation in
the RECP approximation

ﬁh//l) = EI|I//I> (1)

where E; are the energies of the stationary states ly;) labeled by
the index I. Our approach could, in principle, be used to treat
excited states, but here we limit our discussion to approximating
the ground-state ly). In general, eq 1 can be written in terms of a
two- or a four-component representation. Although some RECP
calculations have been performed within an explicitly relativistic
four-component representation of the valence Hamiltonian H,
these calculations have not found appreciable differences with
respect to a computationally less demanding two-component
ansatz.” /11074 We, therefore, write H in a two- component
basis wherein all explicitly relativistic effects are accounted for by
the SR URFP (the averaged relativistic effective potential) plus
the spin-dependent parts higg of the effective-core potential

I+ ﬁso ()

Here, 7, is the 2 X 2 identity matrix and Hyg is the many-
electron NR valence Schrodinger Hamiltonian. The operator ©®
ensures that the direct product @ with 7, is taken once for the
one-electron part and twice for the two-electron part of the
Hamiltonian. All spin-dependent relativistic effects (SOC, spin-
other-orbit coupling, spin—spin coupling, etc.) are included in
hso (sometimes called the spin—orbit relativistic effective
potential, SOREP). The two-electron scalar and spin-dependent
relativistic effects are included in the core—valence interactions
but are assumed to be negligible for the valence—valence inter-
actions. U*R¥F and hso can, in turn, be written as a sum of
one-electron operators (labeled by the index i)

A AREP z AAREP

ﬁ:]zo[HNR+fJAREP

(3a)

val
hgo = hSO,i
Zf: (3b)
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where val indicates that the index i runs over the set of valence
electron coordinates including both space and spin. The operators
hgo,; may be expressed in terms of the components of the one-

electron spin S; and angular momentum L; operators as follows'*
A 2~ a 1~ 4 1, 4
hSO,i =¢ Lz,isz,i + EL+,iS—,i + EL—,iS+,i (4)

where ¢ ;is a linear combination of radial and angular operators
that depend on the parameters obtained from the RECP fitting,
S.iand L,; are the z-components of the one-electron spin and
angular momentum operators (the product L,; S,; is purely
imaginary), respectively, and S, ; and L, ; are the one-electron
spin and angular momentum ladder operators, respectively.

Our choice for H®? is the analog of the usual Moller—Plesset
sum of one-electron Fock operators' ">

A = f} £=

val
Z [ﬁl + ﬁiAREP + (él - Iz.i)]
i (%)

where iz,- contains the NR electronic kinetic energy and electron—
nuclear attraction terms, while C; and K; are the usual Coulomb
and exchange operators, respectively. Practically, F; is determined
by the self-consistent solution of the one-component SR
unrestricted Hartree—Fock—Roothaan equations

Elm) = ¢, lm)

(6)

where Im) are singly occupied orbitals. In eq 6, the spin index is
implicit; when desirable to make it explicit, we write

Elm, 6) = €lm, o)

7)

where ¢ = a or f. We note that lm, 6) can be expanded in the
atomic orbital (AO) lv) basis (here a set of atom-centered
Gaussian functions) as follows

lm, 6) = Z o V) ® lo)
v (8)

With the above definition of I:I(O’O), the first-order Hamil-
tonians associated with SOC and the electron fluctuation
potential, i.e., H and H(O'l), become

ﬁ(w) = ﬁso (92)
o1 1 1 val
g% = Y ==Y (-K)
j#i i i
=V, - (C-K) (9b)

We solve eq 1 with H given by the sum of Hamiltonians in
eqs S, 9a, and 9b by expanding the valence energy and wave
function, including core—valence interactions, in a conventional
Dalgarno double perturbation series''”

A ~(0,0) ~(1,0) ~(0,1)
Ay =" + 28" + ul )

+ Uy + by + 21y >0
+ yzh//l(o’z)) + ﬂylyfl(l’l)) + -]

=[E{® + B + Y + 2EPO)
+ 2B 4 uEMY 4 ]
x[ll//I(O’O)) + Ml//l(l’o)) + ,ull//I(O’l)) + AZIV/I(Z’O))

+ 12O + gDy + -] (10)
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The energy terms of zeroth order in SOC and arbitrary order
M =0, 1,2, .. in the electron fluctuation potential, EOM are
elements of the well-known SR MP series. The energy terms
of arbitrary order N = 0, 1, 2, ... in SOC and zeroth order in
the electron fluctuation potential, ENO) represent pure SOC
contributions to the energy. All other terms couple SOC with
the electron fluctuation potential. A key issue, of course, is the
convergence properties of the various energy subseries.

ILIl. Energy Contributions. In accordance with the
standard MP theory, the sum of the terms E®? and E©V give
us the SR UHF energy

Evur = E(O'O) + E(O,l) (11a)
with
00 _ <W(o,0)|131(0,0)|w(0,0)> _ 2 e,
m (11b)

where occ denotes the set of occupied SR UHF valence orbitals;
similarly, virt later denotes the set of virtual (or unoccupied)
orbitals. For the MP1 term, we have

EOD = (0O Oy, 0.0y

1
=—_ [(mmlnn) — (mnlnm)]
2 % (11¢)

wherein the bielectronic integrals are written in Mulliken notation.

ILILL. Terms of Order Zero in the Electron Fluctuation
Potential. Expressions for the contributions EN®) (N = 1—4) in
terms of the many-electron wave functions %0 of eq 10 are
readily obtained from ordinary nondegenerate (see further below)
Rayleigh—Schrodinger perturbation theory (RSPT). In first order

E(l'o) — <W(0r0)|ﬁso|y/(0:0)> (12)
and in second order
~ o 5(0,0)~
E(ZIO) — <W(0’0)|hSOR hsohll(olo)) (13)

where the nondegenerate RSPT resolvant operator RO g
written as

ﬁ(o,O) _ Z / |WI(0,0)>(E(0,0) _ EI(O,O))—1<WI(O,0)| "
I 14

where the sum is over all configurations spanned by the SR UHF
valence orbitals of the (0, 0) problem and the prime over the
summation indicates that the ground state is excluded. The
occurrence of the energy denominators E®9 — EP9 i eq 13,
and in higher-order terms of the series, implies that the pertur-
bation theory expansion may not converge if degenerate and/or
quasi-degenerate configurations interact with the ground state,
as is the case, for example, in many open-shell systems.
An adequate treatment of such cases would require, in general,
a QDPT approach, which is postponed until later papers of this
series. The corresponding third- and fourth-order expressions
can be found in Appendix A, along with a demonstration of how
these expressions can be reduced to a computationally manageable
form in terms of one-electron SR UHF orbitals.

Here, we simply quote the final orbital formulas from
Appendix A. In first order

g0 = Z (mlhgolm) = 0

m

(13)
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An explanation for why EM) vanishes is provided in the 3,1) _ 007 500 -(01) _ 1(01)
discussion associated with eq Al of Appendix A. To write the B2 = 2Ry hsoR ™ (H ETT)
energy contributions of higher order, it is convenient to RO p007 (0,0)
) . e . hsoR' hgo )]
introduce the following complex-Hermitian matrix
’ r , 00OV 00 5(00)
GZZ (1,0) _ (m, olhgolp, o) (162) +2R[(y )35 hgo
and the following complex-anti-Hermitian matrix XhSOR(O O)h 1/1(0’0) ) (22)
66'(1,0)
yeo (o) _ e The terms E®Y and E®" can be conveniently re-expressed in the
" e:’ — € (16b) AO basis (see the discussion associated with eqs BL0—BB22b of
Appendix B). For E?Y, we obtain
In terms of these matrices, we obtain, in second order
occ virt
2,0 0 0 oo o'c’
520 — z Z Z G(m (1, )Ua (1,0) gD Z R Z [Pw(lo) ZMYT (1’0)(w1/|1y)
m (17) 0,0’ wv Ty
in third order
occ virt — R P(m'(l,O) * MO'(’,(LO) wylty
EGO _ z [z z Uaa (1, o)U ’ ”(10)Ga (1,0) g E[ wv ] ; re (wrlzw) (23)
c,6',6" mn p
occ virt where P77 (19 are elements of the complex-Hermitian first-order
- Z Z U(m @ 0)G(; @ 0)U‘;n”(l'o)] perturbed-density matrix and Mff/(l’o) are elements of a complex
m (18) non-Hermitian matrix (for definition, see eqs B15 and B17 in

and in fourth order

occ virt U(m' (1, O)Gﬁ " (1, O)G{F o’ (1, O)U;n”tr"’(l,o)

N »>
€ — ¢
o,0',6",6" mn  pq m q
occ virt 06'(1,0) 6’6" (1,0) 26" 6" (1,0)1 76" 5(1,0)
B p o
o o
m  par €, — €q
occ virt 700'(1,0)~0"0(1,0) 20" 6" (1,0)r 700" (1,0)
Z Z Ump Gnm Gon Upa
P p
mno p €Vl - €P
occ virt 066'(1,0) ~0'6" (1,0)1 76" (1,0) 0" 6" (1,0)
U"”P GI’” U'lm G"‘i
+ 22X ]
eﬂw _ eﬂf
mn  pq n p

(19)
The energy denominators in eqs 17—19 make explicit the
possibility, discussed above, that near degeneracies due, for
example, to a small highest occupied molecular orbital
(HOMO)—lowest unoccupied molecular orbital (LUMO) gap
may occasion the need for a QDPT treatment.

ILILIl. Terms of Order One in the Electron Fluctuation
Potential. We now proceed to the energy contributions EMY
through third order in SOC. Detailed derivations can be found
in Appendix B. For the case N =1

EMY = 2Ry " hgoly @)1 = 0 (20)

where R denotes the real part of the argument. Here,
E™Y vanishes since, according to Brillouin’s theorem, |l/l(01)>
consists only of doubly excited configurations, whereas hsor
given by eq 3a, consists only of monoelectronic operators.
For N=2

F@D — 2R[<1//(0 O)IH(O ,1)5(0, O)h OR(O O)h W(o,0)>]
+(y g R(O 0)( 400 _ g, ) 209 °> SO0
(21)
and for N = 3

4700

Appendix B). Both these matrices are defined in terms of the
o of eq 8 and the matrix of first-order orbital
rotations U?(" 9 whose elements are defined in eq 16b.

For E(3‘1), we obtain

orbital coeflicients ¢

2 )R

E(Srl) oo’

Z [Pao(l ,0)7 35 Z Md (2, 0)((01/'1_7/)

wv

—227%

2%

Z [P‘if/(l'o)]* Z M,,”f/(z’o)(a)ylw)}

7%

+4 ) R

oo’ wv

z Mzr(r(l 0) Z [On '(2,0) Vzr o'(2, 0>](wu|r}/)]

- TR T

wv

Vy”f/(z’o)](wylw)

Z [an’ (2,0) _
yT
Ty

(24)

where M7 '20), oy 29 and %4 "2 are elements of non-
Hermitian matrices that are defined in terms of the occupied—
virtual, occupied—occupied, and virtual—virtual blocks, respec-
tively, of the second-order matrix of orbital rotations U
(see eqs BB21a—BB22b of Appendix B).

ILILIII. Terms of Order Two in the Electron Fluctuation
Potential. Finally, we consider terms that are second order in the
fluctuation potential and through first order in SOC. Although
these terms are not calculated here, it is of interest to establish
that they can both be obtained without a significant increase in
computational effort.

For E®% , we have the usual sum-over-state expression obtained,
as before, from ordinary nondegenerate RSPT

02 — <ll/(0 0 OVR OO 0D (o,o)> (25)
On the other hand, for the E(2) term, a derivation is provided
in the discussion associated with eq C1 of Appendix C, which
yields

https://doi.org/10.1021/acs.jctc.1c00343
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g2 = 27€[<y/(00)|h R(OO)
x(ﬁ(o’l) E(m))R(OO) (01) (oo)>]
(o, 1) (0,0)1 A(O,O)A(O,l)
+(p VA hooRVH 00y (26)

Writing the configurations ly{®®) in eq 25 as doubly excited
Slater determinants ly£l) and evaluating matrix elements using
the Slater—Condon rules, we obtain the well-known SR MP2
energy formula'"®

occ virt

|(mplng) — (mqlnp)l2

E(O:Z)
z z € +€ —€ —€
mn  pq m n q p (27)
The corresponding expression for EM? in eq 26 is derived in the

discussion associated with e(}s C2—C6 of Appendix C. To write
our working expression for E ) in a compact way, it is expedient
to introduce the following four-index tensors

[(mplnq) — (mqlnp)]

m,mp,q =

(e, + €, — €, = eq) (28a)
virt
m,n,q,r = Z Am,n,p,q<p|h80|r>
) (28b)
occ
n ,0,0,9 Z Am np, q<0|hSO >
(28¢)
occ
1,0
Lipgr="— Z m,n,p, qu(nr )
m (28d)
virt
— (1,0)
mno,q _Z mn,quop
(28e)
K, 4 = (rplng) — (rqlnp) (28)
and
Lm,n,a,q = ("OlmQ) - (”‘1'"‘0) (28g)
With these tensors, we obtain
occ virt
(1,2) _
E Z Z mp,q,r ,p,q,r]
n pqr
occ virt
+ 2 2 m n,0,9 m ";0»‘1]
mno
1 occ virt
+z Z Z Bm,n,q,rAm,n,r,q
mn qr
1 occ virt
_E Z Z Dn,a,p,un,n,p,q
no  pq (29)

ILIIl. Computational Cost for Calculation of £, From
eq 27, a determination of E©? involves calculating N2 X N2,
four-index bielectronic integrals, where there are N, occupied
orbitals and N,y virtual orbitals. If the bielectronic integrals are
calculated and stored in an AO basis, it is well-known that they
can be transformed to molecular orbitals (MOs) one index at a

time for a cost approximately proportional to N, Nio. The
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integrals in the molecular orbital basis (including those involvin
three virtual orbital indices) can also be used to calculate E?
from eq 29 for a modest additional cost, as shown below.

The tensor A of eq 28a is constructed, using the bielectronic
integrals in the MO basis, for a cost that is proportional to N2 X
N2, Then, to include SOC in the third line of eq 29, for
example, we need to calculate the tensor B of eq 28b, which
involves a computational cost proportional to N2 X N, Similarly,
for the fourth line of eq 29, we require the tensor D of eq 28c,
which may be obtained at a lesser cost proportional to N2 . X
NZ.. Then, the above tensors can be used to calculate both

energy contributions as

occ virt

—ZZ
mn

(30)
for the term in the third line of eq 29 and
occ  virt
Y Z Z 0,000,
no (31)

for the term in the fourth line of eq 29. Once the energy
contributions in the third and fourth lines of eq 29 are calculated,
we can concentrate on the energy contributions in the first and
second lines. At this point, the tensors B and D can be deallocated.
Then, to include the first line of eq 29, we can calculate the tensor I
of eq 28d, which is an N2 X N3, step. Similarly, for the second
line of eq 29, we require the tensor J of eq 28, an N> X N2, step.
At this point, the tensor A may be deallocated to free up space
for the tensors K and L of eqs 28f and 28g. Finally, the above
tensors can be used to calculate both remaining energy con-
tributions as

occ virt
Z Z mp,q,r ,pyq,r]
nopar (32)
for the term in the first line of eq 29 and
occ virt
Z Z RUm n,0,9 m n U;q]
mno (33)

for the term in the second line of eq 29. In summary, the total
computational cost of calculating both E©?) and E!"?) involves
only a modest increase over that of an SR MP2 calculation. As in
the case of the latter, the computational bottleneck is the time
needed for transforming the bielectronic integrals from the
AO to the molecular orbital basis, a cost that is approximately

proportional to N, . Nio.
lll. COMPUTATIONAL DETAILS

The zeroth-order SR UHF calculations were carried out with a
developer’s version of the Crystarl7 code.'”' These were
performed with the RECPs and associated basis sets from the
libraries available in refs 118 and119. The experimental bond
lengths of 1.42, 2.00, 2.28, 2.67, and 3.00 A were used for the
molecules F,, Cl,, Br,, and I, respectively, whereas for At,, the
bond length was estimated from the trend along the series.'*
All SCF procedures were converged to a total energy difference
of less than 1 X 107'% hartree atomic units (E,). After the last
SCF cycle, the SR UHF eigenvectors and eigenvalues were used
to calculate the various perturbation theory energy contribu-
tions of section II. These were compared with reference energies
determined from our previously existing two-component SCF
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Table I. SOC Perturbation Theory Contributions to the SV Energy (in E;,) Calculated for the Diatomic Molecules of the Halogen

Series”
F, cl,
E?0 —4.09 x 107% —1.60 X 107
EGO —6.98 X 107 —2.16 X 10777
E®0) —3.02x 107 +1.59 X 107%
E@D —1.19 X 107% —6.08 X 107%
EGD —2.82 % 107 —6.38 X 107
PTco —4.10 X 107% —1.61 x 107
PTool —5.30 % 107% —222%x107%
SV -530%x 107% —221%x107%
Ay, +9.55 X 107% +1.98 x 10777
A —2.81x107% —2.96 x 107

ool

Br, I,
—3.60 X 107 —2.07 x 107
—2.08 X 107% -7.19 x 107%
+1.47 x 107% —6.10 X 107%
-1.57 x 107% -791 x 107%
+7.41 X 107% —2.09 x 107*
—3.62%x107% —2.15 x 107
—5.19%x107% —2.96 X 1072
—5.18x107% —2.95 x 107
+5.65 X 107% +8.24 x 107
-1.36 x 107% —1.64 x 107%

“Our results were obtained with the fully relativistic shape-consistent RECPs and associated basis sets of the Columbus group available at ref 119,
with seven electrons included in the valence space. See the text for definition of individual entries.

(2c-SCF) implementation in the CrysTAL code as described in
section IV.

IV. COMPUTATIONAL RESULTS FOR THE HALOGEN
SERIES DIATOMIC MOLECULES

We investigated the convergence of the perturbation series by
calculating the terms E®M for values up to order four in SOC
and order one in the electron fluctuation potential (N = 0—4 and
M =0, 1). In analogy to eq 11a, we may partition the HF energy
obtained after one iteration of the SCF procedure Egy into
terms of zeroth and first order in the fluctuation potential (i.e.,
M=0,1)

Eg, = E© + EY (342)

Expanding both the MPO E® and MP1 EW terms of eq 34a in
orders of SOC, we obtain a double perturbation series for Egy

Eg, = EO9 4 E10 4 5O 4 60
oo EOU 4 EOV 4 EOD L EGD 4 (34b)

Thus, according to eq 34b, a calculation of all terms ENM (N=
0,1,2,3,4,..and M =0, 1) up to order one in the fluctuation
potential corresponds to a perturbation theory expansion of
the second-variational (SV) approach to SOC in solid-state
physics.'**~"** The reference SV energy Egy is simply calculated
using the zeroth-order SR UHF density matrix as a starting guess
for performing one iteration of the 2¢c-SCF.

A comparison of the perturbation theory approach with an
SV calculation, performed with our 2¢c-SCF implementation,
also in the CrystaL code,'*”'*"%3~1% is given in Table I for the
members F,, Cl,, Br,, and I, of the halogen diatomic molecule
series. This set of molecules was chosen because of the avail-
ability of many sets of RECPs and the large contribution of SOC
to their energy. The results in Table I were obtained from large-
core shape-consistent RECPs,"*>~"*" with seven electrons in the
valence space for each atom. The pure SOC contribution to the
energy is reported for E(z,o), E®0 , and E(4’0), as well as for the
sum E®Y + EGO) 4 E40) 4 ... extrapolated to infinite order, using
an extrapolation formula from ref 130 (PToo). The addition of
E®Y and E®Y to PToo is denoted in the table as PTool. The
quantities A,, and A, in the last two rows represent the difference
between E(Z’OS +E®V and SV (=Egy — Eyyr) and between PToo +
E®Y 4 EGY and SV, respectively.

It is clear from the first three rows of the table that the
individual perturbation theory energy contributions, E?0 : EGO) s
E®O monotonically decrease (in absolute value), such that
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the pure SOC perturbation series is rapidly convergent for all
systems. Moreover, the reported differences in the last row of the
table are very small (about 2—4 orders of magnitude smaller
than the energy of the SV approach). We note also that EGY s
always much smaller than E®Y_ In fact, a simple calculation
through E®® and E?Y is sufficient to adequately reproduce the
SV energy. Thus, the coupling between SOC and the fluctuation
potential is well described using only the leading (nonvanishing)
term for order M = 0, 1 of the fluctuation potential. We speculate
that this is likely to extend to M = 2 so that a first-order treatment
in SOC would satisfactorily describe the coupling with corre-
lation through MP2.

In Table II, we report similar calculations (again with large-
core potentials, including seven electrons in the valence space of
each atom), this time using RECPs and associated basis sets
generated by the energy-consistent method from ref 118. These
RECPs are available for the systems Br,, I,, and At,. We see
that the difference reported in the last row of Table II is now
2—3 orders of magnitude smaller than the SV energy for the
systems Br, and I,. For the most challenging system, At,, the
difference is —7.24 X 10™** E, which represents an error of 1.4%
in approximating the SV energy. The difference A,, is —9.04 X
107 E,; it represents an error of 1.7%. The energy contri-
butions E(Z’O), E(3’0), E(4'O), ..., as well as E(Z’l), E(3’1), ..., again
monotonically (and rapidly) decrease. Thus, the perturbation
series through order 2 in SOC and order 1 in the electron
fluctuation potential again provides an excellent approximation
for the SV energy.

Table III gives results for the systems Br,, I, and At,,
now using a smaller core shape-consistent potential, with 17
electrons included in the valence space of each atom. Again, the
differences between perturbation theory and the SV approach
are 2—3 orders of magnitude smaller than the SV energy for Br,
and I,. Once more, At, shows a larger discrepancy (about 3.8%
for A,; or 1.8% for A,,). Thus, the small-core RECPs behave in
the same way as the large-core potentials.

Table IV provides results for systems that are identical to
those reported in Table I, except that now one electron has been
removed from the highest occupied molecular orbital, such that
they represent open-shell electronic configurations. The reported
energy differences between perturbation theory and the SV value
remain small as in the case of the closed-shell configurations in
Table L In the worst case (I3), the perturbation theory approach
overestimates the SV energy by 1.7% (for A,;). This difference is
reduced to 0.1% for A,,. As for the closed-shell systems, the
perturbation series E(Z'O), E(3'0), E(4’0), ..and E(Z'l), E(3'1), ... converge
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Table II. Same as Table I but Using Instead the Energy-Consistent RECPs and Associated Basis Sets of the Stuttgart Group,
Available in Ref 118, with Seven Electrons in the Valence Space”

Br, I,
E?0 —2.86 x 107 —3.86 x 107
EGO +4.17 x 107% —232x107%
E®0) —4.39 x 107% +1.72 X 107%
E@D —2.98 X 107 —1.63 X 107%
EGD —6.14 x 107% +6.41 x 107%
PToo —2.82x107% —3.88%x107%
PTool —3.12%x 107 —5.50%x 107
SV —3.12%x107% —549 x 107
A, -329 % 107% +1.28 x 10777
A —1.68 x 107% —1.49 x 107%

ool

I At,
—3.59%x107% —3.70 x 107
-1.68 x 107% —5.59 x 107%
+1.90 x 107% +1.91 x 107%
-1.58 x 107% —1.74 x 107%
+7.72 x 107% +5.49 x 107
—3.61%x107% —3.74 x 107
—5.18x107% —5.42 %1072
—5.17x107% —5.35x 107
—8.31x107% —9.04 x 107
—1.55x107% —7.24 x 107%

“The asterisk denotes a calculation on the I, molecule using the larger valence basis set of ref 121.

Table III. Same as Tables I and III Above but This Time
Using a Smaller Core Shape-Consistent RECP from the
Columbus Group, in which 17 Electrons Are Treated
Explicitly in the Valence Space

Br, L At,
E@0 —5.73 x 107 —2.83 X 1072 —2.40 x 107
EG0) —2.78 X 107% —9.04 x 107 —1.69 X 107
E®O +1.45 x 107% —8.28 x 107% +2.03 X 107
E@D —1.83 x 107% —8.80 X 107% —8.62 X 107
EGD —2.54 X 107% —2.48 X 107 —3.53x107%
PTco —5.75%107% —2.93 X 107 —2.54x 107"
PTool -7.59 X 107% —3.83 X 107 —3.44 x 107"
Y% —7.57 x107% —3.82 X 107 —-332x107%
A, +1.40 X 107% +1.09 X 107 +5.84 X 107
Aoy —1.49 x 107% —1.49 x 107 —125x 107"

rapidly. A more-than-adequate treatment is obtained, again,
simply by calculating E@9 and E®V , since the terms E®0) . EW0) .
and E®Y are around 2—3 orders of magnitude smaller than the
SV energy.

To provide results on other challenging cases for perturbation
theory, in Table S1 of the Supporting Information (SI), we
report on calculations for selenium oxide (Se0)"! (using the
experimental bond length of 2.648 A from ref 132) and the
positively charged homonuclear diatomic tennessine Ts;
molecule (bond length of 3.00 A). The ECP10MDF and
ECP92MDEFQ_Stuttgart potentials were used for Se and Ts,
respectively, along with the associated double-{ valence basis
sets,"'® while the basis set of ref 133 was used for O. Excellent
agreement between the double perturbation and SV methods is
obtained in both cases (see Table S1), as the reported A,; and

A, values are smaller than the SV energy by around 1 order of
magnitude for Tsj and 4 orders of magnitude for SeO. In the
case of Tsj, monotonicity of the E@9 EGO E®O - series
breaks down in fourth order because E“® (=0.0504) is slightly
larger in absolute value than EGO (=—0.0459). For Tsj,
monotonicity is restored by scaling down the SOC operator
(scaling factor <0.90) to ensure that the ratio of IE?9)| and the
HOMO-LUMO gap E,, is less than 3.9. Coincidentally, this
criterion on IE(Z‘O)I/Egap < 3.9 also ensures monotonicity for the
whole positively charged homonuclear diatomic halogen series
through fourth order, as shown in Figure S1, as well as Table S2.

V. CONCLUSIONS

We have presented a double perturbation theory approach to the
solution of the many-body Dirac equation in a given relativistic
effective-core potential (RECP) approximation. The zeroth-
order approximation is the corresponding scalar relativistic
unrestricted Hartree—Fock (SR UHF) solution. This is followed
by a double perturbation theory expansion in terms of the spin—
orbit coupling (SOC) and electron fluctuation potential. Practical
perturbation energy expressions are provided up to a total order of
three with most higher-order terms included.

Tests on the neutral halogen diatomic molecules F,, Cl,, Br,,
I,, and At,, as well as their single positive open-shell ions, show
that the proposed approach is well-converged to the second-
variational (SV) value through second order in SOC and first
order in the fluctuation potential. Since the double perturbation
treatment is no more difficult to carry out than the SV procedure,
it is a computationally attractive alternative to performing a
2¢-SCF for treatment of SOC and, in addition, represents a
convenient starting point for further improvements.

Table IV. Same as Table I but Now for the Open-Shell Radicals, in which One Electron from the Highest Occupied Molecular

Orbital Has Been Removed

F Cly
E?0 —4.45 % 107% —1.90 X 107
EGO —7.99 X 107 —327 %1077
E®O —3.09 x 1071° +4.66 X 107%°
E@D —1.93 x 107% —1.05 X 107
EGD —2.49 X 1078 +2.75 X 10777
PToo —4.45%x107% —1.90 x 107
PTool —6.38 X 107% -2.95 x 107
SV —6.38 X 107% —2.94 x 107%
Ay +5.58 x 107% —7.10 X 1077
Ay, —4.93 X 107 -7.57 x 10777
4703

Brj I
—435%x107% —2.43 x 1072
-3.13x 107" —8.98 x 107*
+3.62 X 107% —1.82%x107%
—2.68 x 107 -1.33 x 107
+5.30 X 107% +3.20 X 107
—438x107% —2.52 x 107
—7.00 X 107 —3.81 X 1072
—6.94 x 107 —375x107%
—8.36 x 107% —428 X 107%
—5.84 X 107% —6.39 x 107
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A calculation of E(O‘Z), that is to say, the familiar SR MP2
energy, a procedure that represents an O(N,.N4c) computational
problem for a calculation with N, atomic and N, occupied
orbitals, would provide a computationally tractable, relativistic
correlated approach. A further calculation of E! involves only
a modest additional cost and allows for a full treatment of the
coupling between SOC and the fluctuation potential through
total order three. Furthermore, the present approach gives rise
to the possibility of a multireference treatment through quasi-
degenerate perturbation theory (QDPT) that could be used in
those cases where it is necessary (i.e., open-shell or closed-shell
systems of a strong multireference character).

B APPENDIX A: ENERGY CONTRIBUTIONS OF
ZEROTH ORDER IN THE ELECTRON FLUCTUATION
POTENTIAL IN TERMS OF SR UHF ORBITALS

Since izﬂ, ?Sm is purely imaginary, it follows from eq 4 that the real
part of the matrix elements of kg involving orbitals of like spin
(the real part of diagonal spin-block matrix elements of hgn)
vanishes

R[(m, alhgoln, a)] = 0 (A1)

On the other hand, the off-diagonal spin-block matrix elements
of hgq are complex. It follows that E" in eq 15 vanishes because
hso is Hermitian, which means that diagonal matrix elements
must be real.

In second order, ordinary nondegenerate RSPT reduces to
eq 17 since hgq is a sum of one-electron operators and only single
excitation configurations contribute to the sum-over-states. Our
choice for the (0, 0) problem ensures that the E©% — E{®©)
denominators of eq 13 become only a difference of SR UHF
eigenvalues.

Ordinary nondegenerate RSPT, in third order, gives

£30 — <W(O’0)|ﬁsoﬁ(o’wﬁsoﬁ(o’o)ﬁso“ﬁ(o’o)) (A2)

and in fourth order (using intermediated normalization)

5(0,0)

, 07} 5(0,0)p
E&0 — <1//(O 0)|hsoR

r 50000 ,
hsoR™""hgoR hsohl/(oo)>
= Mgk VVECOR gy %) ()

To simplify eq A2, we denote singly excited configurations
by Iyf,) where virtual orbital Ip) is substituted for occupied
orbital Im); and the associated energy is Ef,. Doubly excited
configurations are denoted as ly£l). On expanding eq A2 in
singly excited Slater determinants, we find

EGO f wzrt (W(O’O)msohlf,f)<1//,f|ﬁsohlf,z>(W,Z'ﬁsohlf(o'o)>
- -~ (E(O,O) _ EP)(E(O’O) —E9)
+
S WO Nhgoly? )yl (yr ol )
. (E(O,O) _ Ep)(E(O’O) — EP)
(A4)
which can be written in terms of one-electron orbitals as
occ virt ~ ~ ~
E3O) — Z Z (mlhsolp){plhsolq){glhgolm)
- (e,—¢€,)(e,—¢€,)
~ Z Z (mlisgolp) (nlhgolm) (plhgoln)
mn p €n—ey)(€,¢,) (As)

Expressing eq AS in terms of the matrices reported in eq 16a, we
obtain eq 18.

A similar demonstration can be carried out in fourth order,
starting from eq A3 to obtain eq 19. The full derivation is
reported in the SL

B APPENDIX B: ENERGY CONTRIBUTIONS OF FIRST
ORDER IN THE ELECTRON FLUCTUATION
POTENTIAL IN TERMS OF SR UHF ORBITALS

Equation 20 is obtained by combining the (1,1), (1,0), and (0,1)
RSPT equations. We use intermediate normalization here and
throughout this paper

(p OOy Ny = On,0 Ou0 (B1)
The (1,1) RSPT equation

[I:I(O‘U) _ E(O’O)]h//(l‘l)) + [ﬁso _ E(I’O)]ly/(o‘l)) + [I:I<O'l> _ E(o,l)]|w(1,o)>
_ E(171)|W(070)> =0 (BZ)
may be multiplied on the left by (y(®°)| to yield

EOD = (O @Dy + (00O

Similarly, for the (1,0) RSPT equation

iy (83)

(0,0 A
[H( ) _ E(O'O)]h//(l’o)) + [hSO _ E(l'o)]h//(o’o)) =0 (B4)

we multiply on the left by (y(®"], which gives

7(0,0)

<U/(0’1)|H _E(O,O)hl,(llo)) + <W(0,1)|ﬁso|w(0,0)> =0 (B)

Finally, the (0,1) RSPT equation leads to

7(0,0)

(WO OO g0y, 01y 4 (w(1,0)|ﬁ(0'1>|w(0,0)> -0

(B6)
after multiplication on the left by (y(**)l. The sum of eq B3
minus the complex conjugate-transpose of eq B6 plus eq BS
leads directly to eq 20.

Below, we provide an outline of the derivation that allows us
to obtain expressions for E®Y and E®Y. More details on the
derivation can be found in Section H.6 of ref 134. A procedure
analogous to that developed in eqs B2—B6 can be used for E®Y
by combining the (1,0), (0,1), (1,1), (2,0), and (2,1) RSPT
equations to obtain

FD = 273[(l//(0'0)|1:1(0’l)lw(2‘0)>]
" (W(I,O)@(O’l)_E(o,1>|W(1,0)> (87)

For E(3’1), we combine the (1,0), (0,1), (1,1), (2,0), (2,1), (3,0),
and (3,1) RSPT equations

EGD = 2R[ (10 fOo0_ E© Dy, (0]

+ ZRKV/(O'UmsolW(Z’O))] _ ZE(Z‘O)R[Q//(I‘O)WI(O’1))]
(B8)
The last term in eq B8 vanishes since, from Brillouin’s theorem,
%Y consists only of doubly excited configurations, while
1) consists only of singly excited configurations because

the SOC operator is a sum of monoelectronic operators. Thus,
eq B8 reduces to

EGD = 2Ry PO OV gDy, 20y
+ 2Ry Vligoly )] (B9)
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Then, expanding 20, 1y, and V) in eqs B7 and B9 in
eigenfunctions of the (0,0) problem, we obtain eqs 21 and 22.
Taking into account the form of the perturbation operators from
eq 9a for the case of E®Y Jeads to

occ virt (0,0)
. (W hgolyr?) (yr gy )

EC =2 3 DRIy 0y (500 _ g7
n<m q<p (E - Emn)(E - Em)

(W golyr?Y (Pl olyr )

(B0 — BID(EY - BD)

(! Mhgoly ) ulhsoly @) (ut oy t) y oy )
{E(U’O) _ qu}(Em,o) — E%) (E(O.O) _ qu)(Em,o) - E9

occ virt

oo gy (s oly
p q m n
* 2 2 ) on g

(0r0)>

n#m qFp
occ virt (oo)m w? wlh (0,0)
i Yy lhsoly ™)
+ 2D 0 (R el
m q#p ( (0 0 Ep)(E(O‘O) - sz)

occ virt

©0)
+ 00 2 (W —(C-R)ly?) )

(W(O’O)”A‘so"//,f)(%pmsohil
(B9 = ED(ECY - ED)

n#Fm p
— OV E Wzﬂ (" 0)|hso|'lfp>(W,f'hsoh//(o'o)>
- (oo) Ep)(E(o,o) —EY)
occ virt (y (0,0)) hso"/’,f)(‘/’plhsohl/(oo))

+ 2 D w1~ (C=R)ly?)

r

(B0 — B (EY - E])
(B10)

Based on the Slater—Condon rules, we can evaluate all of the
integrals in eq B10 and express E®Y as a sum of two terms E(Y)
and EZY, arising, respectively, from singly excited and doubly
(as well as singly) excited configurations

E®V = gV 4+ ESY (B11)
where
oce virt
ECY = 37 Y {(pming) — (pglnm) )
mn pq
(mlhgolp){qlhsoln)
(€, — €,)(€, — €) (B12)
and
occ virt

E(“) 5 z ZR (mplng) — (mqlnp)

€, te€ —€ —¢€

n<m q<p 14 q
% {(qmsom@lﬁso'm) _ <‘1|ﬁsolm><Pmso|n>
€, — € €, — €
_ (plhsolnXglholm) <plﬁsolm><qlﬁsoln>}
€y — € €, — &
(B13)

Since the contribution to EZ" in eq B13 from the terms m = n
and p = q vanish, we can extend the summations over orbital
indices to all values of the occupied and virtual sets occ and virt.
Then, using the fact that (mplnq) — (mglnp) = —{(nplmq) —
(nglmp)}, eq B13 can be simplified to

pubs.acs.org/JCTC
occ virt
E](Dz’l) = Z Z Rr {(mplnq) - (mqlnp)}
mn - pq

(glhgoln)(plhsolm)
G eq)(em - ep) (B14)
Equations B11, B12, and B14 can be combined to write a
computationally convenient expression for E®Y by introducing
the complex non-Hermitian matrix

occ virt
:;;r "(N,0) _ Z Z mp[cym]*U(m "(N,0)

(B15)

where the orbital coeflicients ¢, are defined through eq 8 and

wp
the elements of the matrix of orbital rotations U™ M9 are
defined for the case N = 1 in eq 16b. Combining eqs B11, B12,

B14, and B1S, we obtain

E®Y = ZR

v

Z {[Ma)o'(lo)]* + MM(IO)} ZM;"/(I‘O)(wvl‘r}/)l
Ty

_ZQ

oo’

Z {[M(m (1, 0)]* + M‘7 ‘a(1, O)} Z ]\4”‘7 (1, O)(myl‘w)\

v

(B16)

Finally, to write eq B16 in a more compact way, it proves
useful to define the elements of the first-order perturbed-density
matrix

sz’(l,o) — M;Z’(l,o) + [M;a’)a(l,o)]* (B17)
Substituting eq B17 in eq B16, we obtain eq 23.

A similar demonstration to that provided in eqs B10—B13 can
be developed for E®V starting from eq 22. The full derivation is
provided in the SI. We write E®Y as a sum of two terms E"
and E§Y, arising, respectively, from singly excited and doubly
(as well as singly) excited configurations

EGD = gD 4 g3V (B18)

After evaluation of all of the integrals employing the Slater—
Condon rules, the corresponding expressions for E§*") and E§'V
in eq B18 are

occ virt

EY =23 3 RI{ (pming) — (pqinm)}
mn  pqr
<m|flso|P><q|ﬁso|’><1’|f’so|">
(e, — €,)(e, — €)(e, — €)

~2 )7 Y RI{(pming) — (pqlnm)}
mno  pq
(mmso'P)(Omso'")(qmso"’)
(e, — €p)(€n - €q)(€o - €q) (B19)

and
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occ virt
ESY =23 Y RI{(rplng) — (rqlnp)}
mn  pqr

(mlhgolr)(qlhsoln)(plhgolm)
(em - €r)(€n - €q)(€m - ep)

occ virt

+2 z z R[{ (mgqlno) — (molng)}
mno  pq
<0lﬁso|P>(‘lmso")(Plﬁso'm)
(© — )€, — &)(en — )

occ virt

+2 )7 > Ri{(mplng) — (mqlnp)}
mn  pqr
(qlhgoln)(plhgolr)(rlhgolm)
(e, — €)(€, — €,)(e, — €,)

occ virt

-2 Y Ri{(mplng) — (mglnp)}
mno  pq
(glhgoln){olhgolm){plhgolo)
(en_eq)(em_ep)(eo_ep) (B20)

We can represent E®Y in the AO basis by introducing the

elements of the matrix of second-order orbital rotations U(Z’O),
which reads as follows for the occupied—virtual block

occ

Uo”a'(Z,O) Z Z Uo' " (1, O)Go' 5(1,0)
pm
ep € =
virt
_ 6’6" (1,0)7 16" 6(1,0)
Z GP‘Z qu
q (B21a)

For the virtual—virtual blocks

occ

o6’ (2, 0) 6"6(1,0) ¢"6'(1,0)
Ugr [(Unq 1*U,,
Z Z (B21b)
and for the occupied—occupied blocks
U(m’(Z,O) — Z Z [U(r " 6(1,0) *U(r "6'(1,0)
(B21c)

U’q’f’(z’o) and U9 are used to represent E®Y in the basis of
AOs through the following matrices

occ

Oo‘o"(Z,O) — Z [ ]*Uo'o' '(2,0)
wv Cwo
on (B22a)

and

virt

AR WACA RS
ar (B22b)

Substituting eqs BB21a—BB22b and B15 into eqs B19 and B20,
we obtain eq 24 (see the SI for more details).

B APPENDIX C: E7? CONTRIBUTION IN TERMS OF SR
UHF ORBITALS

For eq 26, we proceed in a manner similar to that outlined in eqs
B2—B6 and combine the (0,1), (1,0), (1,1), (0,2), and (1,2)
RSPT equations to find

E1D = 2Ry POV gDy, 0y

+ (p Mgy V) (c1)

Then, expanding DY and ly"*) in the basis of configurations
of the (0,0) problem, we obtain eq 26. Only singly- and doubly
excited configurations contribute to the double sum, which
leads to

_, Z Z WAy OO [ O hgoly?) (y 1V~ (C—R) )
bt E(OO) EM E(OO) _ E,ﬁ
<w<°°>|hsolw*’><w,flvee (c R)ly?)
E(OO)

. (s Ihqolww,zme (C=R)ly)
E(OO) E‘Z
o WO Mooy (Rt }]

0,0
E©O _ g1

occ  virt virt

=P

n<m q<p r

. AL
(0 0) _ E"l

by ) [ (sl V2t
0,0) 0,0 ’
FO9 _ g E® — E;

occ  occ virt

BN (%) [ G sl ) w1V dy )
< S 09 g l g0 _ pr
n<m o 'mn 0
L sl (T, Jys k)
g0 _ g1

SN OOy sl (el Vel )

sDIDID)

rm 10 (Y~ EfDEY ~ B
) OOy ool Ve )
n<m r<p<q (E(O’O) - Erﬁﬁ)(E(O’O) - E’,ﬁ;)

Z Z & (OO gy Mg by 2y 1T by )
+ ,
n<m o a<p (E®9 - ERY(ECY - EE?)

& 00y P (g ol ) (P e ©.0)y

(
+ XX

e (E@ — E(ECY - EPY)

‘mo

(C2)

where the symbol ” on the sum over r, for example, indicates that
it extends to all r that satisfy r # p, q. Evaluating all of the
integrals in eq C2 gives
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occ  virt

=LY Yg

m#n p#q
{<mlﬁsolp>u<nqlpp> — (nplpg)] = [(nglmm) = (nmimg)])

Em_ep

(pmlgn) — (qmlpn)
€, +€,—€ —¢

. (nlhgolp)([(mglnn) — (mnlng)] — [(mqlpp) — (mplpqg)1)
N €= ¢

: (mlhsolg)([(nplmm) — (nmimp)] — [(nplag) — (nqlqp)1)

€ — €
+ (lhsolq) ([(mplag) — (malgp)] — [(mplnn) — (mnlnp)])
€ =€
1S N N | (prlan) — (gmlpn) [ (mllgolr) [(rplng) — (rglnp)]
+2£}£;Rem+en—ep—eq{ €, — €,
N (nlhgolr)[ (mplrq) — (mqlrp)]}
€, — €,

occ  occ virt

DAL

(pralqn) — (qmlpn) { (olfisolp) [ (nolimg) — (nglmo)]

e e € =€
+ (olhsolg)[(molnp) — (mplno)]
6= ¢

occ  virt

+i Z Z [(mplng) — (mqlnp)](plﬁsolr)[(rmlqn) — (gmlrn)]

(€, +€,—€ —€)e, +e,—¢€—¢)

m#n p#riq

occ virt

+i Z Z [(mplng) — (mqlnp)](qlf[solr)[(pmlm) — (rmlpn)]

(e, + € — € —€)e, +e,—¢,—¢)

m#n pFqFEr

occ virt

_i z Z [(mplng) — (mqlnp)](olﬁsolm>[(po|qn) — (qolpn)]

(e, + €, —€ —¢€)e,+e,—€—¢)

m#o#En p#q

occ virt

B i 3y [(mplng) — (malnp){olhsoln)[(prmigo) — (qmlpo)]

(€, +€,—¢€ —€)e, +e—¢,—¢)

m#En#o p#q
(C3)

The double and triple sums in eq C3 can now be extended to
all values by realizing that the cases m=n,p=q,0=m,0=n,r=
p, and r = q have vanishing contributions to EU?

g - 1 ic: f: R
2
mn pq
{<mlﬁsolp>u<nqlpp> — (nplp)] = [(nglmm) — (nmimq)])

Gm_ep

(pmlgn) — (qmlpn)
€nt € —€— ¢

. (nlhgolp) ([(mglnn) — (mnlng)] — [(mqlpp) — (mplpq)1)
N €, — ¢,

, {mlhgola)([(nplmm) — (nmimp)] — [(nplgq) — (nqlgp)1)
I €y — €
+ (nlflsolq)([(mpqu) — (mqlgp)} — [(mplnn) — (mnlnp)]) }]

€, — €

occ virt virt

LYY

(pmlgn) — (gmlpn) { (mlisolr)[(rplng) = (rqinp)]

e €+t € —€—¢ €, — €
+ (nlhgolr)[(mplrq) — (mqlrp)]}
€YI - €Y

occ occ virt

53 B

(prlgn) = (qmilpn) [ (olisolp)[(nolmg) — (nglmo)]

i o Rt €= ¢
+ <u|ﬁsolq)[(m0|np) — (mplno)]
€ =€

occ virt

+i Z z [(mplng) — (mglnp)(plhgolr)[(rmign) — (gmlrn)]

(ente—€—¢€)e, +e,—¢—¢)

mn  prq
1 occ virt
+—
)

mn pqr

[(mplng) — (mqlnp)](qlflsolr)[(pmlm) — (rmlpn)]
(e, +€,—€ —¢€)e, +e,—¢€—¢)

occ virt

1 Z Z [(mplng) — (mqlnp)](olﬁsolm)[(palqn) — (qolpn)]

(e, + €, — € = eq)(eu te,—¢ - eq)

mon pq

occ  virt

1 Z z [(mplng) — (mqlnp)](olﬁsoln)[(pmlqo) — (gmilpo)]

4 (€, +€,—€ —€)e, +e—€,—¢)

mno  pq

(C4)

Then, we use (pmlgqn) — (qmlpn) = —[(pnlgm) — (gqnlpm)]
and interchange the indices m and n in (i) the second line, (ii)
the second term in the third line, (iii) the second term in the
fourth line, and (iv) the last line of eq C4, which yields
5N | (prlan) — (qmlpn)

(12) _
E _EZR €t e, —€—¢

mn pq 4
{(mlﬁsolw([(nqlpp) — (nplpq)] — [(nglmm) — (nmimq)1)

€y = €,

+<m|f’so|q>([(nplmm) = (nmlmp)] = [(nplqq) — (nqlqp)])}‘
€ = €

occ virt virt

8w

mn pq r

(prlgn) = (qmipn) [ (mlhsolr)[(rpng) — (fqlnp)l}'

€nt € =€ — € €, — €

occ occ  virt

SR

(pmlgn) — (qmlpn) I {olhsolp)[(nolmq) — (nqlmo)]

P, €m+€n_€p_€ql € =€,
+ (olhsolq)[(molnp) — (mplno)]
6 —¢

occ virt

+i 3y [(mplng) = (mqlnp)){plhsolr)[(rmlgn) — (gmlrn)]

(e, + €, — €~ eq)(em +e€,—€ — eq)

occ  virt

1 Z Z [(mplng) — (mqlnp)]<q|ﬁsolr)[(pm|m) — (rmlpn)]

4 (e, +e€ —€ —¢€)e, +e,—¢—¢)
1 Z Z [(mplng) — (mqlnp)(olhsolm)[(polqn) — (golpn)]
2 (en+ € — € —€)e+e,—¢ —¢)

(Cs)

Similarly, in eq CS, we interchange the indices p and q in (i)
line 2, (ii) the second term in line 4, and (iii) the next-to-last line
to obtain
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occ  virt

=23 YR

mn  pq

(mlflsolp)([(nqlpp) — (nplpq)] — [(nglmm) — (nmlmq)])
€ =€,

(pmlgn) — (gmlpn)

€, +€ —€—€

|

(mlﬁsolr)[(rplnq) — (rqlnp)]
em - €Y

occ virt virt

DI

mn pq r

Qﬂnwn)—-(man){

€, +t€ —€—€

}I
H

occ occ virt

)Rk

mn o rq

(prnlgn) — (qmlpn) [ (olisolp) [(nolmg) — (nglmo)]
€, te —¢€—¢ € — €,

1 occ  virt
5 zX

mn pqr

[(mplng) — (mqlnp)](plh}dr}[(rmlqn) — (gmlrn)]
(e, + € —¢, —€)E, +e, —€—¢€)

1 occ  virt
=5))

mno  pq

[(mplng) — (mqlnp)](olftsolm)[(polqn) — (qolpn)]
(e, + € —€,—¢)e+e, —€—€)

(Ce)

Finally, we recognize that the first line of eq C6 is equivalent to
a combination of the cases r = p and r = q in the second line, as
well as the cases 0 = m and 0 = n in the third line, so that eq C6
reduces to eq 29.
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