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Abstract 8 

With the growing interest in urban scale simulation, urban building energy modelling tools (UBEM) are being 9 

developed. The purpose of these UBEM is to tackle multiple issues that can range from buildings retrofit potential to 10 

the sizing of thermal and/or electrical network or to the assessment of renewable energy sources potential. Unlike the 11 

modelling of a single building, collecting accurate building information data at district scale is nearly impossible and 12 

therefore the uncertainties increase. In this context, the selection of the most relevant and adequate models with regard 13 

to the available data and simulation objectives is challenging and often a trade-off between accuracy and 14 

parametrization feasibility has to be found. A novel approach is proposed to choose the right level of model complexity 15 

for thermal heating demand simulation in buildings at district or city scale, by assessing in particular the impact of 16 

different thermal zoning methods with the UBEM tool DIMOSIM. This method for assessing the parsimony in 17 

modelling is applied to a selection of models from the literature in order to find a compromise between the available 18 

data, the different modelling levels of detail, the expected output and the computation time, according to the district and 19 

buildings characteristics. By applying this approach, it has been found that a division per floor for building modelling is 20 
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in most cases the most parsimonious choice for thermal heating demand simulation at district scale. Eventually, the 21 

coupling between thermal zoning models and solar shading models is analysed through the same methodology for 22 

assessing the modelling parsimony. The results show that the combination of simpler models (in particular a thermal 23 

zone per floor or mono-zone buildings for thermal zoning models, and a solar shading coefficient calculated per floor or 24 

facade for solar models) can be parsimonious enough to be used to determine the annual heating demand, speeding up 25 

strongly the simulation at the same time.  26 

Keyword 27 

Urban building energy simulation, thermal zoning design, solar shading calculation, parsimonious modelling 28 

1 Introduction 29 

The building sector is one of the most energy consuming sectors in the world, accounting for more than one third of the 30 

final energy consumption [1]. With the growing urbanization, approximately 68% of the world population will be 31 

residing in cities in 2050 [2]. In order to analyse and limit the impact of these trends, urban-scale building energy 32 

modelling (UBEM) tools are developed (DIMOSIM [3], SMART-E [4], City Energy Analyst [5], CitySIM [6],…). 33 

These UBEM can be used in very different contexts: the purposes of UBEM simulations can range from buildings 34 

retrofit potential ([7], [8]) to the sizing and control of thermal and/or electrical network ([9], [10]), to the calculation of 35 

renewable energy potential ([11], [12]) or to district multi energy system optimization ([13], [14]). It requires both a 36 

detailed level of building-scale modelling and a representation of the interactions that arise at district-scale. Moreover, 37 

the energy simulation at a district level leads to an increase of uncertainties. Collecting exhaustively building 38 

information data for parameterization is nearly impossible and the use of very detailed models becomes too expensive 39 

in computational time. The right models for each UBEM end-user must be identified to respond to these problems.  40 

One of the urban simulation issues for the modeller is the thermal zoning design. The latter can create significant 41 

thermal variations as the solar gains are directly function of facade orientation, as the occupancy differs following the 42 

zone use (internal gains or HVAC set-points) or as the zones do not have the same external wall surfaces. Thermal 43 

division at district scale must a priori bring a better precision, but the models are difficult to set up with the lack of data 44 

and the simulation becomes rapidly too costly in computation time. As the simulation and set up times can be restrictive 45 

for urban simulation, the precision gain must justify the additional computation time. The multi-zone division of 46 

building is also related to the conductive and convective exchanges inside a building. Perez et al. [15] showed that 47 
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adiabatic walls in a multi-zone simulation can lead to more than 11% difference in thermal heating demand on one 48 

building. Nevertheless, further questions arise, in particular on the impact of the ventilation exchanges modelling, or on 49 

the sensibility of the multi-zone thermal modelling to solar gains calculation. For a mono-zone approach the solar gains 50 

are aggregated but for a multi-zone approach the solar gains are applied for each orientation and each altitude, 51 

influencing the HVAC systems. The modeller must then find and choose the solar gain models to keep the increase in 52 

accuracy from the thermal zoning models.  53 

Indeed, the aim for the modeller is to find a trade-off between the availability and quality of inputs data and the level of 54 

detail of the models regarding the simulation’s objectives, namely a parsimonious modelling. However, two opposite 55 

trends exist at urban scale: to develop more detailed urban models to gain in accuracy and to simplify more the models 56 

to accelerate the simulation. These developments are often done without knowing the relevance of such details 57 

regarding the simulation’s objectives or the interaction with other models. Several studies have compared different 58 

modelling approaches but the conclusions are seldom generic since the analysis relies on specific districts or buildings. 59 

Frayssinet et al. ([16], [17]) compared different building sub-models as well as some interactions between buildings. 60 

The two most impactful models on the simulated district are the internal long wave model and the model taking the 61 

external convective heat transfer coefficients into account, with an underestimation of respectively 13 and 10 % on the 62 

mean heating power. The results are however not showing the interaction between the sub-models and are only applied 63 

on one district where the buildings show similar thermal characteristics. Han et al. [18] compared the inter-building 64 

effects (mutual shading and mutual reflection) at district scale on different cities in order to take the impact of climate 65 

into account. They showed a greater impact of the models on warmer climatic cities. Nevertheless, the study was 66 

applied on only one dense urban area. Robinson and Stone [19] developed a simplified solar radiation model, compared 67 

it to RADIANCE [20] (a reference tool for solar calculation) and validated it on a district. This simplification allows to 68 

reduce the computation time but can still be considered as a detailed algorithm for some simulation cases. Chen and 69 

Hong [21] compared 3 different zoning methods on 3 cities with results showing till 17 % difference in space heating 70 

load at district scale between two models. They advise to use one combination of models that balance precision and 71 

computation time, but do not propose to adapt it according to the district characteristics. 72 

The diversity of models for each phenomenon at urban scale can be misleading for modellers and users, who have to 73 

choose the right adapted model and at the same time manage the time constraints and data accuracy. The multi-scale 74 

urban simulation implies various models for each phenomenon, which are linked to each other, and consequently 75 
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several interdependencies between families of models increasing the difficulty to select the complexity of multiple 76 

models.  77 

The parsimony of a given model can be considered as the trade-off between the complexity and the accuracy of the 78 

model. This objective is presented in various studies ([22]–[24]), but most of them take the complexity only as the 79 

number of parameters, as the Aikake and Bayesian Information Criterion do ([25], [26]).  80 

The paper proposes to investigate the influence of thermal zoning on energy demand of buildings at district scale, to 81 

couple it with the solar calculation models compared in [27], and to apply a parsimonious criterion. This criterion will 82 

allow to find the right combination of models that balance precision, time simulation and the amount of data required 83 

for parameterization, with the expected accuracy from the user. The purpose is twofold: to analyse the impact of the 84 

simplified models and to find the different parsimonious combinations of models that respond to specific simulation 85 

objectives according to district characteristics. For the latter, the final objective is to guide UBEM users on the choice 86 

of models to use on real simulation cases. Firstly, following the methodology framework proposed in [27], parsimony 87 

of multi-zone thermal modelling in buildings is investigated both at building scale and then at district scale. These 88 

zoning models are coupled with conductive and convective exchanges models to highlight the relevance of such model 89 

implementation, without direct shading: within this first step, the aim is to assess the impact of such models without any 90 

interference with shading models. Secondly, the coupling of a subset zoning/exchanges models and solar shading 91 

models is investigated. Finally, the study proposes perspectives of further work on the zoning division and more 92 

generally about the parsimonious modelling.  93 

2 Methodology 94 

In most of UBEM, models are quite often adapted from building to district scale. They are separately tested on a 95 

specific district, but are seldom all compared on a variety of districts. In order to make a parsimonious choice between 96 

these existing model adaptations, it is necessary to quantify the complexity of each model and their parsimonious 97 

nature. Therefore, a proposition for the analysis of modelling parsimony is presented, which relies on the definition of a 98 

parsimonious criterion and an inter-comparison process of models selected from the literature. Eventually, the results 99 

are analysed in regard to main districts characteristics in order to suggest key guidance indicators (KGI) for further 100 

decision-making processes.  101 
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2.1 Proposal for the analysis of modelling parsimony 102 

2.1.1 Model complexity and parsimony quantification 103 

For a specific model, a parsimonious criterion must be calculated to quantify its complexity in the most objective way. 104 

Modelling parsimony for urban energy simulation can be understood regarding numerous factors: the number of 105 

parameters, their complexity of recovery and their uncertainty, the model development time (and the time to parameter 106 

it), the accuracy of simulation, etc. Heidarinejad et al. [28] proposed a parsimonious approach for building sector that 107 

takes as complexity both computation and data recovery time. They applied it on a building simulation and compared it 108 

with the accuracy of their models. Here, we propose to quantify a parsimony criterion for urban scale simulation that 109 

takes into account multiple characteristics (Table 1). We considered four different entities related to urban simulation: 110 

parameters, time (computation or parametrization), models and simulation context. The latter was discarded for the 111 

creation of the criterion, as it is mostly linked to the KPIs (e.g.: the scale of the simulation is considered when choosing 112 

the KPI at building or district scale) and to simulation constraints (limit of computation time). The remaining 113 

parameters were combined to create several criteria that were tested on simple occupant models. A subset of these 114 

criteria was selected based on their results diversity and their ease of reading. Then, different weights were tested on 115 

their composition elements. In order to leave room for flexibility to the user, the criterion with coherent variation of 116 

results following the weights was selected. We propose then a parsimony criterion Pdelta(M) for a model M, with NM 117 

parameters, that takes into account some of the characteristics of Table 1: 118 

 ��������	 = �� ∗ �
 + 
���������	 − ���� Eq. 1 

With AC the accuracy criterion (normalized root-mean square error, percentage error, etc.), and where: 119 

 
��������� =  � ∗ � ��
��

���
+ � ∗  ��	 Eq. 2 

 !"#$ =  % ∗ � &'
()*+
'�,  Eq. 3 

With wi the weights associated to the parameters of the model, H(M) the number of simplifying hypothesis and a, b, c 120 

weight factors chosen by the user. wi combine the complexity and the uncertainty related to data recovery and are 121 

determined thanks to a simple table (Table 2). This table was created with a combination of time recovery (based on 122 

Heidarinejad et al. [28]) and reliability (as proposed by the Cerema [29]). H(M) is evaluated against the reference: the 123 

aim is not to list every single simplifying hypothesis but to list the ones that enhanced the differences between the 124 

models. For example, if all thermal building models and their reference do not model the humidity, this assumption is 125 
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not accounted for. But if the reference is modelling it, then the models that do not consider the humidity must add a 126 

simplifying hypothesis to H(M). The weight factors a, b and c are chosen by the user following his needs. For instance, 127 

if other AC are chosen (not based on percentages but with other units), it is possible to adapt the factor a to have 128 

comparable elements (number of hypothesis and parameters).  129 

Parsimony topic Topic characteristics Determination 

Parameters 

Number of parameters According to the models 

Data recovery complexity According to the available databases 

Uncertainty According to the enrichment tools† 

Time 

Model development time According to the implementation complexity 

Model sizing time According to the number of parameters and data recovery  

Computation time According to the simulation type 

Models 

Accuracy Accuracy measurement (NRMSE, PE,…) to choose 

Simplifying hypothesis 
Number of neglected phenomena / simplifying hypothesis to 
represent the phenomena compared to the chosen reference 

Simulation context Description 

Simulation scale Spatial (zone, building, district) and temporal (min to year) 

Study output Establish the order of precision to obtain 

Simulation type 
Establish the order of limit simulation time following the 
type of simulation (sensibility study, individual case…) 

Table 1: Characteristics of the urban-scale parsimony 130 

Weight wi Description 

1 Reliable and easily accessible data (e.g.: public database) – Data 
recovery < 10-15 min 

2 Reliable data but difficult to access (e.g.: cross-referencing of 
databases...) – Data recovery > 10-15 min 

3 Unreliable data but no additional information available to 
corroborate them. 

5 Data almost impossible to recover, so use default data. 
Table 2: Description of weights for data recovery and uncertainty 131 

The analysis is completed with the assessment of computation time. The latter is not used directly in the parsimony 132 

criterion as it is too dependent of processing power or computer equipment. The AC is related to the KPI (for example 133 

if a time series is studied, the normalized root-mean square or the Pearson coefficient can be used) and the researched 134 

accuracy. 135 

                                                           

† Method/tool completing missing data 
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Some of the characteristics in Table 1 are put aside because they are already accounted for in other parameters: model 136 

sizing time is considered in the wi as it is strongly related to data recovery time, and simulation scale is included in the 137 

AC. Model development time is not considered here as it is too difficult to quantify. 138 

2.1.2 Modelling parsimony analysis 139 

A comparative methodology is proposed in order to benchmark existing urban models. This process allows a 140 

comparison, ceteris paribus, of the models with each other. These models are taken from a representative sample 141 

selected from the literature and are compared to a common reference chosen from this sample. As validation data are 142 

indeed difficult to obtain at urban level, an inter-comparison approach appears as the most appropriate way for 143 

benchmarking. The selected models are, whenever possible, all implemented in one common simulation framework 144 

which removes any obstacles and biases linked to the comparison of models that are initially used with different 145 

simulation tools: in the present study DIMOSIM [3] has been used. These analyses are then performed following the 146 

methodology below (represented on Figure 1): 147 

1) Selection of existing models and choice of a reference 148 

2) Definition of KPI (Key Performance Indicator) 149 

A KPI is quantifiable value directly calculated or derived (postprocess) from a model. Here two indicators are chosen: 150 

the thermal heating demand, assessed with the total percentage difference (PE), and the thermal heating load, assessed 151 

with the normalized root-mean square error (NRMSE). For a studied KPI - = �., , .0, … .2	 and a model M : 152 

 �3��, 4	 = 4�54���4��� ∗ 6��  Eq. 4 

 789:;�9, -	 =  <∑ �.' −  .>'	?2'�0 @ ∗ 1-B  Eq. 5 

3) Selection of districts, whose characteristics are adapted to the context of the inter-model comparison. 153 

The districts must present characteristics that are responsive enough to the studied phenomenon, so that the inter-model 154 

comparison makes sense. They are virtually created, based on existing morphologies (heights, densities and design are 155 

taken from GENIUS [30] results). They are selected with various characteristics to avoid realizing sensitivity analysis 156 

on parameters beforehand. The thermal parameters are created with data from the literature and French databases as 157 

well as projects TABULA [31] and PACTE [32]. 158 

4) Simulation of models at different temporal and spatial scales on a set of districts 159 
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This inter-comparison is done by investigating the model combinations space with experimental designs. Here, the 160 

number of simulations for each single family being manageable, all the model and combinations (zoning with 161 

exchanges models) are used. When the combination of several model families imply to many simulations to launch, it is 162 

possible to do pre-simulations (either by using extreme districts, by using fractional factorial design (Saltelli et al. [33]) 163 

or by selecting manually the combinations) to discard the too inaccurate models before simulating all the districts. 164 

When combining zoning and solar shading models, a manual selection is done to simulate only the relevant 165 

combinations at urban scale. 166 

5) Calculation of the parsimony criteria and selection of models 167 

The parsimony criterion is applied on the KPI after determining the models characteristics. The results of the parsimony 168 

analysis are introduced through selection criteria (called Key Guidance Indicator, KGI) based on intrinsic properties of 169 

the districts (mean height, vegetation’s area…). They help the modeller to choose, before any simulation, which type 170 

and level of detail of each model to use (see 2.1.3). Parsimony figures and tables are produced to ease the reading of 171 

results. The parsimony figure shows the parsimony criteria compared to the user's acceptable accuracy limit (called 172 

limit error) and the parsimony of the reference (at 0, see Eq. 1). 173 

In the context of the present paper, the previously proposed approach is implemented three times to analyse the 174 

parsimony of zoning and shading modelling as well as their coupling. Firstly, the parsimonious analysis is carried out 175 

on single model family to avoid biased analysis through error compensation and to select the relevant parsimonious 176 

models for both families. Then, all the selected models are combined and analysed with the same parsimonious analysis 177 

frame. Therefore, the results sections of the present paper present the following developments: 178 

1) Parsimony analysis of zoning models, combined with conductive and convective exchanges; 179 

2) Parsimony analysis of shading models; 180 

3) Parsimony analysis of the combination of the previously selected solar shading and zoning models. 181 
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 182 

Figure 1: Parsimony analysis proposal 183 

2.1.3 Key indicators for analysis (KGI) 184 

In order to analyse the outcomes of the inter-comparison process according to buildings and districts main 185 

characteristics, building and district Key Guidance Indicators (KGI) are created. These analysis parameters have been 186 

named “Key Guidance Indicators” in order to be used in fine as selection parameters of a parsimonious modelling 187 

approach by the users of UBEM tools. 188 

These indicators are designed on parameters that must remain global enough to be available at district scale. At building 189 

scale, geometry parameters (e.g.: height, ground surface), usage parameters (e.g.: internal gains, usage type), but also 190 

thermal parameters (e.g.: U-values, window-to-wall ratio) are relevant candidates. At the district scale the mean and the 191 

standard deviation of those parameters can be used to reflect the diversity of some parameters among buildings in a 192 

district. In the present paper, parameters composing the KGI have been chosen by using Spearman coefficient to detect 193 

the most correlated ones with the differences between models. This coefficient is a non-parametrical measurement of 194 

statistical dependency between two variables. It indicates if a monotonic dependency exists, without being necessarily 195 

linear, with a formula on the ranks: 196 

 �C������D�E, 4	 =  ��F���DGE, ��DG4	H��DGE ∙ H��DG4
 Eq. 6 
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These parameters are combined, tested and adapted to the simulation results to elaborate the best KGI to help the 197 

modeller choose which model is the most parsimonious before any simulation. This last step is done mostly with 198 

“expert knowledge” to choose the KGI allowing the least result diffusion and the best readability.  199 

2.2 Thermal zoning and demand modelling of buildings 200 

At building scale numerous studies were undertaken on the thermal zoning of building ([15], [34]–[37]). The multi-201 

zone approach takes into account the disparities in building, whereas the mono-zone modelling blends the internal and 202 

solar gains. To compensate a possible lack of accurate data, some tools propose to divide automatically the buildings 203 

into perimeter and core zones, for example Autodesk [38] from the ASHRAE recommendation. However, the methods 204 

are neither adequately described nor open source. Smith [37] compared 7 zoning configurations (one with one zone per 205 

floor, the other with core/perimeter zones per floor with different depth and zone length) on 3 building geometries, to 206 

the ASHRAE recommendations. The differences to the reference went till 40 % for fuel consumption, but only 10 % for 207 

electricity consumption. Martin et al. [34] compared several zoning models (mono-zone, one zone per floor and 208 

perimeter/core zones per floor) on an office building with EnergyPlus. If simpler models helped reduce the computation 209 

time, they also increased the error (1 to 13 %) in cooling consumption. Shin et al. [39] showed through a literature 210 

review that today no precise thermal zoning rules exist but only simple guidance principles and parameters to take into 211 

account. 212 

If at the building scale it is already difficult to propose general guidance principles, it is even more complicated at urban 213 

scale. Few studies are applied at this scale. Chen and Hong [21] compared different thermal zoning on three different 214 

climatic cities, showing till 80% differences at building scale and 20% at district scale for annual source energy use. 215 

They compared a one zone per floor zoning, a core/perimeter per floor zoning method based on the AHRAE 216 

recommendations, and a prototype method which use prototypes buildings with given zoning models. In this method, 217 

offices are divided with 4 perimeter zones, 1 core zone and 1 plenum zone. Dogan et al. ([40], [41]) developed an 218 

algorithm to automatically divide every floor of a building into core and perimeter zones (one per orientation). They 219 

coupled it with a simplifying simulator to only simulate a set of zones for entire buildings, and therefore achieved to 220 

reduce computation time for entire districts. When looking at UBEM tools, some of them allow the modelling of 221 

buildings in a detailed manner, but thermal zoning is simplified when simulating an entire district because of 222 

computation time cost and lack of data. Because of it, only general zoning methods following the type of building usage 223 

can be used on entire districts. This geometry zoning is part of the building thermal model that influences the energy 224 
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results. This study proposes then to investigate the impact of several zoning layouts on residential and office buildings 225 

only. 226 

However, the thermal zoning issue cannot be separated from the question of thermal exchanges between zones. These 227 

thermal exchanges are composed of conductive exchanges through walls or convective ones with air movement 228 

(buoyancy or mechanical ventilation). With a mono-zone building these phenomena cannot be modelled, but as soon as 229 

multiple zones are created the exchanges can be impacting, especially when the zones are divided by orientation. The 230 

exchanges allow to mitigate the gains through the building and to account for the impact of multiple uses with different 231 

temperature or gain profiles. Therefore, this study investigates the coupling between several geometry modelling with 232 

thermal exchanges models. 233 

2.2.1 Thermal and heat transfer models 234 

In the present study, simulations are done on the UBEM DIMOSIM [3] developed by CSTB. DIMOSIM is an 235 

integrated simulation tool for the analysis of feasibility, conception and operation of district energy systems. Based on 236 

building and thermal zone models DIMOSIM can deal with various energy systems at building (generators, emitters, 237 

hydronic distribution, storage, etc.) and district scale (thermal and electricity networks). 238 

The thermal model in DIMOSIM is a simplified physical model from the grey RC model family. The model is a RiCj 239 

model that can adapt himself on the input data. The model is briefly described in [42]. Two variants developed in 240 

DIMOSIM are to be tested: 241 

- Ex0: The exchanges through walls or floors are neglected between zones (adiabatic walls) and only the 242 

thermal inertia is considered.  243 

- Ex1: The exchanges between adjacent zones are taken into account thanks to a R2C3 model for each wall. We 244 

suppose the wall symmetrical and with the same composition. 245 

For each zoning configuration the building total thermal mass is the same. 246 

2.2.2 Ventilation models 247 

In a building there are several air exchanges: infiltration, mechanical ventilation and buoyancy ventilation (through 248 

doors and interstices). At building scale, it is possible to model them from pressure calculation or fluxes balance. For 249 

example, TRNSYS and EnergyPlus propose several methods of calculation with nodal models in order to couple 250 

thermal and aeraulic modelling. More detailed models simulate the effect of the wind on walls to evaluate air flows 251 
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entering the building, as the Envi-MET [43] or Design Builder [44]. In this study only the inside air flows are studied, 252 

we suppose that the outside air flows are constant and not interacting with the ventilation.  253 

The multi-zone ventilation models can be solved simultaneously with the thermal model, with a pressure balance which 254 

requires the knowledge of very detailed parameters such as the window position or the size of the interstices. For the 255 

urban ventilation we consider here that the recovery of all these data is too difficult to obtain and that this type of 256 

simulation would be intrinsically un-parsimonious. A simple ventilation is then proposed for residential and office 257 

buildings to still take the exchanges into account but only with air flows on floors, with no vertical connections: 258 

- V0: A common air change rate scenario is applied for infiltration and ventilation and the ventilation losses are 259 

calculated from a simple ventilation system or a ventilation system with heat recovery: 260 

 JF�D�������D,��CC�C = �K ∗ ����� ∗ �6 − L	 ∗ �M��� − M���	  Eq. 7 

With NK  the air flow rate, O the ventilation efficiency and T the outdoor and thermal zone air temperatures 261 

- V1h: Ventilation for residential buildings. Central zones are often common spaces for circulation, and 262 

ventilation is managed per dwelling. Nevertheless, air exchanges happen naturally by buoyancy between the 263 

perimeter zones (the dwellings) and the core zone (corridor). This type of ventilation is modelled with the 264 

correlation from Caciolo [45] as a single-faced natural ventilation for each door. 265 

- V1b: Ventilation for office buildings. Ventilation of central areas plays an important role as they are often 266 

subject to overheating. Therefore, an air exchange is added to V1h: the air flows from the perimeter to the core 267 

zone on a single floor thanks to the mechanical ventilation. 268 

2.2.3 Thermal zoning models 269 

From the literature five models were chosen and implemented in DIMOSIM. As the computation time depends on the 270 

number of zones and surfaces, the chosen models must cover a wide range of zoning division, from the simplest one, to 271 

a detailed one used for urban simulation. Two groups of models are taken into account: the floor models (based on the 272 

idea of one zone per floor) and detailed models (based on orientation) (Figure 2). 273 

 274 



13 

 

Figure 2: The zoning geometries on a building – from left to right: unique, 3 floors, multiple floors, detailed, detailed floor 275 

Floor geometries 276 

Three different geometry with vertical zoning are proposed 277 

- Unique: The mono-zone building with only one zone per building. It is mostly used in urban simulation 278 

because of the computation time and the basic information on geometry. 279 

- 3 floors: A simplified floor model is implemented. As for Chen and Hong [21], only three zones are created in 280 

the building: the top floor, the bottom floor and a unique zone with all other floors in between. It allows to 281 

speed up the simulation for very tall buildings by assuming that all middle floors have the same occupation, 282 

usage and systems. 283 

- Multiple floors: One zone is created per floor with a floor height taken as 3 m. It is assumed that no uncertainty 284 

is present for the mean floor height. It is then possible to differentiate the usages per floor and to take different 285 

solar radiation per height if the solar masks are taken into account. 286 

Detailed geometries 287 

Two different horizontal geometries based on orientation are implemented: 288 

- Detailed: The division is done to have a thermal zone per wall orientation around a central zone. An area is 289 

created within the convex polygon to represent the central zone and perimeter zones are created around it, one 290 

per wall segment. If the building footprint is too small, no central zone is created and the perimeter zones are 291 

determined from the centroid of the polygon. The perimeter zones are 5 m or 3 m deep, according to the size of 292 

the building. For concave building, the zone division can lead to too narrow or twisted zones like presented by 293 

Dogan et al. [40]. As the study uses virtual buildings, a central line is implemented also virtually to help create 294 

more realistic zones. 295 

- Detailed floor: This model is the combination of the multiple floors and the detailed model. All the central 296 

zones per floor are combined in one to accelerate the simulation and to keep modelling consistency: it is 297 

assumed that all the central zones are connected to each other through stairs or lifts with the same usage and 298 

gains. 299 

2.2.4 Buildings characteristics and occupation 300 

Thermal parameters are taken from TABULA and PACTE (U-value of the walls, roofs, floors and windows, the 301 

window transmission factor, the window share and the infiltration rate) and are randomly attributed to a building 302 
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geometry (created from uniform distribution on the height, the orientation and the ground floor size). The European 303 

project TABULA analysed the residential building stock of several countries, and for each created typologies (40 for 304 

France) by classifying them following architecture and energetic parameters. Different levels of renovation are 305 

proposed for each typology. The French PACTE program aimed also to analyse the French building stock thanks to 306 

existing studies and data in order to obtain a classification of residential buildings in the light of national energetic 307 

objectives. The information of both databases have been cross-referenced and linked together to get more accurate 308 

building distribution and characteristics. The objective is to have representative buildings of French building stock for 309 

the simulations, with the right representativeness by weighting each typology to their existing proportion in the stock 310 

when creating the building sample. To introduce more diversity, a sizing factor for internal gain is applied for each 311 

building profile to modify their order of magnitude. 312 

When dividing a building per zone, it is possible to consider different uses and occupation profiles. In this study, two 313 

occupancy scenarii are presented for the analysis: 314 

- Same: all thermal zones have the same internal gains, set-point temperatures and usages.  315 

- Centre: Central zones for the detailed zoning have different scenarii, with no heating and cooling. For 316 

residential building the central internal gains (W/m²) are reduced to 10% of their initial value. For the office 317 

they are reduced to 80% of their initial value, as the meeting rooms and informatics centres are considered 318 

there. For the floor geometries, it is considered that the user doesn’t take this central zone into account when 319 

applying the gains and temperatures. The simulations are then the same with the scenario same or centre. 320 

Other occupation scenarii were studied but are not presented, as zones vacancy in residential buildings, internal gains 321 

and temperature variation between zones within one building, or usage variation with tertiary occupancy at the bottom 322 

floors. 323 

Here only full residential and full office buildings are considered, with custom profiles for each usage (see Figure 3) 324 

through the week. Heating (September to May) and cooling (June to end of August) seasons are implemented.  325 
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  326 
Figure 3: Internal gains (left) and set-point temperatures (right) for one week for residential and office buildings 327 

Other occupancy profiles could be added with different thermal zoning design following the usages of buildings. For 328 

example, Chen and Hong [21] adapted the zoning design for retail usages to take into account storage zones. 329 

In the simulations, all buildings are in a rectangular shape, with ideal building generators and ideal control. For the 330 

parsimony analysis of thermal zoning modelling, no shading mask is calculated. 331 

2.2.5 Computation implementation 332 

Simulations are run on a computer server, which can run up to 64 simulations simultaneously (64 cores). Simulations 333 

are done over one year with a time step of 10 min. For the office building simulations, the time step is reduced to 5 min 334 

because of convergence constraints due to the ventilation model. The Paris Montsouris weather (TMY2-71560) is used. 335 

3  Comparative assessment of solar shading and thermal models without coupling 336 

3.1 Results for thermal zoning models 337 

The models being focused on the building itself and not intrinsically on the district, it is necessary to first analyse the 338 

results at building scale: it allows to detect the most influential families (zoning, thermal exchange, ventilation 339 

exchanges) and discard the too inaccurate models. Then, an analysis can be undertaken on the remaining models to find 340 

both the right KGI and the most parsimonious combinations of models at district scale. At the same time, it will be 341 

possible to assess whether the diversity at district scale can reduce errors. 342 

The modelling reference is taken as the combination of the most detailed models for each type of model: detailed floor 343 

with conductive (Ex1) and convective exchanges (V1).  344 
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3.1.1 Computation time 345 

Table 3 presents the computation time for two buildings of different heights with a floor height of 3 meters. The first 346 

building is 6 m high (equivalent to 9 thermal zones for the detailed floor zoning), while the second is 21 m high 347 

(equivalent to 29 thermal zones). The use of a ventilation model does not have much impact on the computation time, 348 

with only a speed-up factor of 1.1. The conductive exchange model has a significant impact on the computation time 349 

when the building is higher, with almost 40 s difference for the detailed floor zoning. But eventually, it is the zoning 350 

models that affect the most the computation time: the simpler models accelerate the simulation, with speeding-factors 351 

from 5 to 29. The higher the building, the greater the impact of simpler models on the computation time. 352 

Table 3: Simulation time for two buildings (V0: without convective exchanges, V1: with convective exchanges) 353 

Models 
H = 6m H = 21m 

t [s] Speeding factor t [s] Speeding factor 

With conductive exchanges (Ex1) 

Detailed floor – V1 29 1 123 1 

Detailed floor – V0 28 1 116 1.1 

Detailed – V1 17 1.7 18 6.9 

Detailed – V0 16 1.7 17 7.4 

Multiple floors 8 3.7 24 5.1 

3 floors 8 3.5 11 11.5 

Without conductive exchanges (Ex0) 

Detailed floor – V1 26 1.1 81 1.5 

Detailed floor – V0 26 1.1 69 1.8 

Detailed – V1 16 1.8 15 8.4 

Detailed – V0 15 1.9 14 9 

Multiple floors 7 4 18 6.7 

3 floors 7 4 9 14.1 

Unique 4 6.5 4 29.3 

3.1.2 Heating demand simulation at building scale 354 

A first comparison of the influence of thermal zoning models at building scale on heating demand simulation is 355 

presented. By comparing the buildings results to the reference, it is possible to visualize the errors (Figure 4) in order to 356 

quickly discard the unsuitable models and to understand the discrepancies. 357 

Following the scenario, the models have different results. For the same scenario, ventilation exchanges do not have a 358 

significant influence on the detailed models. On the other hand, the use of this model for the centre scenario reduces the 359 

differences when no conductive exchanges are modelled (around 10%). Ventilation with the central zone tempers 360 

actually the temperatures of the perimeter ones. The differences for the floor division models are smaller for the same 361 

scenario because of the homogeneity of the internal gains and temperatures on one floor. However, except for the 362 
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ventilation’s impact, the relative differences between models for both occupancy scenarii are quite similar, with higher 363 

errors for the center scenario. For the rest of the study, only the center scenario is analysed. 364 

Both detailed floor and detailed models without any conductive exchanges present the worst results compared to the 365 

reference. Therefore, if the zones are “orientation” divided, it becomes mandatory to take into account thermal 366 

exchanges between thermal zones in order to achieve acceptable results.  367 

 368 

 369 

Figure 4: Annual thermal heating demand differences (PE) for residential buildings - Scenarii: up same - down center 370 
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The multiple floors model presents good accordance with the reference, as most errors are approximatively within ±10 371 

% when the thermal exchanges models are used. If they are not, the model presents almost the same results as the 3 372 

floors model. These results are in agreement with the conclusions of Martin et al. [34], who found out that the multi-373 

floor models give better estimates of cooling demand than other simple models. When buildings are wider, the 374 

influence of the central zone increases compared to the perimeter zones, until a balance is reached where the global 375 

heating demand is the same as a simple floor zone. The unique model has discrepancies in the same range as the other 376 

floor models (between -5 and -30 %), with a significant difference in time. These differences are similar than the ones 377 

from other thermal zoning comparisons on heating demand in the literature, as for example Perez et al. [15] who found 378 

-18 % error between a detailed division and a unique zone, or Heo et al. [36] who calculated an error of -24 % between 379 

a 11-zone model and a mono-zone building. Almost all of the floor division models underestimate the heating demand 380 

due to the counterbalance of the orientation by the floor aggregation: the core and perimeter zones cancel out each other 381 

heating demand. This underestimation in thermal demand for zoning that do not consider orientation was also found by 382 

Smith [37]. 383 

From these results, and by choosing a maximal acceptable error of 10% in heating demand, only the detailed models 384 

without any conductive exchanges are put aside. The most accurate ones are the detailed floor, multiple floors, detailed 385 

with conductive exchanges (with or without ventilation exchanges). However, the floor models show errors between 386 

±10 % for some buildings and present at the same time low computational times (4 to 30 times faster). They are then 387 

kept for the district aggregation. In the following text, the conductive exchanges models are name EX, and the 388 

convective V. 389 

The NRMSE on the heating loads was also studied (not shown here): the relative difference between models are the 390 

same, with a median NRMSE between 3 % (detailed floor with exchange and without ventilation) and 36 % (detailed 391 

floor without exchange and ventilation). For the latter model, the NRMSE reaches a maximum of 57 %. The same 392 

conclusions on the choice of models are reached. 393 

The same analysis was also done with office buildings, where only the internal gains and temperatures profiles 394 

parameters are modified. It shows similar results than for the residential buildings with higher differences, especially 395 

for the NRMSE with a median for office buildings between 5 and 47 % (maximum of 110 %). 396 

3.1.3 Heating demand simulation at district scale 397 

At a district scale there is a diversity of buildings, allowing error compensation. Given the previous results, some 398 

models should have the same impact than at building scale regarding the constant difference to the reference. Others 399 
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have differences that should mitigate the global discrepancies at district scale. To highlight these spatial differences, 400 

2000 districts of 50 buildings are randomly created with the centre scenario (buildings with residential or office uses). 401 

The heating demand is simply taken as the sum of all building heating demands. 402 

Figure 5 presents the variation of error as a function of the mean Ubat of the district (weighted by the ground floor area 403 

of each building). This parameter is taken for each building as the mean U-value of the opaque and window U-values 404 

weighted by the surfaces: 405 

 P��� = ∑ P���QR�∗S���QR�TP��D���∗S��D���S�����  UV/�². Z[  Eq. 8 

As expected, the model multiple floors - EX shows good agreement with the reference thanks to the diversity of 406 

buildings. This is in concordance with the simulations of Chen and Hong [21] at district scale without any thermal 407 

exchanges. Indeed, they advised the use of a multi-floor design for thermal demand simulation, as well as an adapted 3-408 

floors model to speed up the simulations for high-rise buildings. Without exchanges, the multiple floors and 3 floors are 409 

indeed in the same range of errors: the 3 floors model could be used to accelerate the simulation for high-rise buildings 410 

(Table 3).  411 

 412 

Figure 5: Percentage difference of the district annual heating demand following the mean Ubat of the district 413 

According to the mean Ubat of the district, it is possible to identify trends: the more the district incorporates new 414 

generation buildings, the more the detailed zoning models are useful. Indeed, in old buildings the thermal losses reduce 415 

the overheating in southern parts and mitigate temperatures differences: deviations of floor zoning models are then 416 

reduced.  417 
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In order to have a less diffuse set of results for determining the switching values between the use of different models, 418 

the sensitivity of errors to various parameters is studied. For each model and KGI-parameters, the Spearman coefficient 419 

is calculated on the percentage difference to the reference. Only the parameters with an absolute value higher than 0.5 420 

are kept. Then, to have only parameters with different impacts on the errors, a Pearson coefficient matrix is calculated 421 

and only several parameters are kept:  422 

- The Ubat [W/m².K] (see Eq. 8) 423 

- The compactness [m-1]: all building envelope surfaces divided by its volume; 424 

 
������D�CC = S�����D��\�R����DG  U�56[ Eq. 9 

- The infiltrations rate [h-1] 425 

- The ground floor area A^_`abc de``_ [m²] 426 

At district scale the mean value of each parameter weighted by the ground floor area of building is used (except for the 427 

fg"hi2j $khh").  428 

Various combinations of these parameters are done, until the identification of a KGI (called UAC) composed of the Ubat, 429 

the ground floor area and the compactness: 430 

 P�
 = P��� ∗ �G��RD� ����� ∗ 
������D�CC UV/�. Z[ Eq. 10 

On Figure 6, the parsimony criterion Pdelta (see Eq. 1) is applied on the previous results. The weight factors a, b and c are 431 

taken as 1 (we consider here all parsimony elements of equal importance). The considered parameters for thermal 432 

zoning models are building geometry, building usages, interior zones repartition and floor height. Conductive exchange 433 

model parameters differ only by the consideration of the inner walls composition. As for convective exchanges models, 434 

air change rate, ventilation type and opening areas for ventilation are considered. Each parameter is linked to a wi value 435 

(adapted for the French context) and to one or several models. The simplifying hypothesis are based on the type of 436 

building zoning and the consideration of conductive and/or convective exchanges. 437 

We consider that the inaccuracy of the models must not exceed 10 % for the heating demand. Therefore, a limit error of 438 

10 % for each model (AC is taken as 10 % in Pdelta to have the right criterion considering the complexity) is plotted 439 

(dotted line) to eliminate easily the too inaccurate models. The parsimony of the reference is the line 0 (solid line): if 440 

Pdelta is under this value the model is considered as parsimonious. 441 
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 442 

Figure 6: Parsimony criterion of district annual heating demand following the KGI UAC – Zoning models 443 

When taking into account models complexity, detailed models have high criteria value: mostly above the parsimony of 444 

the reference (0) and partly above the acceptable error (dotted line). On the other hand, floor models without conductive 445 

exchanges have mostly criteria below 0, but still above the acceptable error. However, for high UAC values, i.e. mostly 446 

leaky buildings, the criterion Pdelta has good values. Given the gain in terms of computation time, floor models become 447 

even more interesting than the detailed floor – EX, and could be chosen as part of the most parsimonious models. 448 

Nevertheless, the most parsimonious model whatever the UAC remains the multiple floors – EX. Only the unique 449 

model achieves equivalent criteria for high UAC.  450 

The previous figure (Figure 6) highlights the spread of results. However, to help UBEM users, a simplified table is 451 

created expressing the previous results (Table 4) as follows: 452 

- “Dark green” is the most parsimonious model, according to Pdelta value: it is under the reference parsimony (0-453 

value) and the acceptable error (here 10 %). 454 

- “Light green” models are the recommended ones: they are parsimonious (under the 0-value) and with 455 

acceptable errors (here less than 10 %). 456 

-  “Yellow” models are possible to use: they are below the acceptable error (here 10 %) but they are not 457 

parsimonious (above the 0-value).  458 

- “Red” models are to be avoided: they are neither parsimonious nor accurate enough (at least above the 459 

acceptable error, and at worst above the acceptable error and 0-value). 460 
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If the colour is shaded with another colour, models can be used either as the background colour or as the shaded colour: 461 

results are too spread to determine one category in these cases. The choice of model must be then cautious. This table 462 

can be combined with computation time to help choose the right model for a given simulation. 463 

Table 4: Models to prioritize for a district energy simulation following the UAC for annual heating demand – Zoning models (EX : 464 

with conductive exchanges, V: with convective exchanges) 465 

Models 
UAC [W/K.m] 

150 < 200 250 < 320  

Reference      

Detailed floor – EX      

Detailed – EX - V      

Detailed – EX      

Multiple floors – EX      

3 floors – EX      

Multiple floors      

3 floors      

Unique      

A specific study was undertaken on the influence of climate on districts by using weathers from Strasbourg (continental 466 

climate) and Nice (hot climate). The results are not shown here, but as for Chen and Hong [21], the impact of such 467 

change in weather on heating demand has been calculated to be greater in warmer climates. These larger differences 468 

limit the number of parsimonious models available. 469 

3.1.4 Conclusion and selection of models 470 

In conclusion, for a district with mono-usage buildings (office or residential) under Paris weather, the zoning division 471 

per orientation without considering floors is mostly inaccurate and not parsimonious enough. The division per floor 472 

with conductive exchanges is however a good compromise between accuracy and complexity: it is a parsimonious 473 

choice for urban simulation. To speed up the simulation it is possible to choose between other parsimonious models for 474 

specific districts as 3 floors – EX and unique. 475 

With these parsimony results, a selection of models is done for coupling purposes. The floor models multiple floors – 476 

EX, 3 floors – EX and unique are kept as they present parsimonious results and low computation times. The detailed – 477 

EX is preferred to detailed – EX – V as it presents better results. The reference and detailed floor – EX are also 478 

selected. The other models are discarded. 479 
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3.2 Results for solar shading models 480 

As presented in [27], solar shading can strongly impact thermal dynamics as well as visual comfort or solar potential 481 

([46], [47]). In the study, the compared models are based on ray-tracing algorithm and static shading (3CL-DPE and 482 

simple shading factors). The solar shading reference model is initially validated with DAYSIM [48]. Other 483 

complementary studies on these models were performed on district size, weather and thermal building performance. 484 

The seven solar models studied in [27] are summarised in Table 5.  485 

Table 5: Initial solar shading models 486 

Model 

Software 

Characteristic Representa

tion 

Mask-L 0.0 Without mutual shading - 

Mask-L 1.1 
Constant annual factor of 0.5 on all buildings, mean value 

used when no mask model is implemented 
- 

Mask-L 2.1 
SMART-E 

Constant annual factor calculate for each building based on 
urban morphology 

- 

Mask-L 3.2 
DIMOSIM 

Dynamic calculation at the centre of each building 
 

Mask-L 4.2 
DIMOSIM 

Dynamic calculation at the centre of façade of each 
building  

Mask-L 5.2 
DIMOSIM 

Dynamic calculation at the centre of each building floors 
facade  

Mask-L 6.2 
DIMOSIM 

Dynamic calculation with simple mesh 
 

The same method is applied on the solar shading models, with a KGI composed of the density of the district (D) and the 487 

mean height weighted by the building ground floor area (H). Figure 7 and Table 6 present the parsimony analysis 488 

results for the thermal heating demand for districts with 36 buildings. As models do not differ much on the number of 489 

parameters or simplifying hypothesis, the parsimony is never better than the reference model Mask-L 6.2. Only the 490 

computation time for large districts and high buildings can advise to choose simpler solar shading models. The model 491 

without shading (Mask-L 0.0) is only suitable for diffuse districts with small heights. 492 
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 493 

Figure 7: Parsimony criterion of district annual heating demand following the KGI DH – Solar shading models 494 

Table 6: Models to prioritize for a district energy simulation following the DH for annual heating demand – Solar shading models 495 

Modèles 
DH [m] 

<5 8 >12  

Mask-L 6.2     

Mask-L 5.2     

Mask-L 4.2     

Mask-L 3.2     

Mask-L 2.1     

Mask-L 1.1     

Mask-L 0.0     

As the choice of solar shading models is very dependent on computation time because of the similar accuracy between 496 

models and similar complexity, most of them are kept for the combination with zoning models. Only the Mask-L 1.1 is 497 

put aside because of his arbitrary factor and poor results for low-rise districts. Even if the Mask-L 0.0 is the one with 498 

the most non parsimonious results, it is kept as it has been used for the zoning comparison and as it is still used in 499 

several UBEM tools. 500 
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4 Comparison assessment of solar shading and thermal models with coupling 501 

4.1 Selection of solar shading and thermal zoning models for coupling  502 

Solar shading models become more and more detailed as the mesh of the sky vault and the walls become finer. This 503 

discretisation of walls is closely related to zoning as the solar gains vary according to geometry, altitude and 504 

orientation. The objective here is to see the impact on error when considering a more detailed zoning division. 505 

The reference is taken as the combination of the two reference models: Mask-L 6.2 and detailed floor – EX – V. The 506 

detailed floor - EX shows very good parsimony results compared to the reference with a lower computation time. The 507 

model Mask-L 5.2 also presents few differences from the reference (Mask-L 6.2), with also lower computation time. 508 

Therefore, the models used for the combined reference are only used for it and are not combined with other models, 509 

reducing the number of model combinations. Table 7 summarises the zoning and solar shading models taken into 510 

account, with the models detailed floor – EX – V and Mask-L 6.2 only used as a reference combination. For 511 

simplification, abbreviations are used on the figures and when models are combined. 512 

Table 7: Zoning and solar models selected for the combinations (EX: with conductive exchanges, V: with convective exchanges) 513 

Zoning models Solar shading models 

Model Abbreviation Model Abbreviation 

Detailed floor – EX – V Reference Mask-L 6.2 Reference 

Detailed floor – EX DF Mask-L 5.2 M52 

Detailed – EX D Mask-L 4.2 M42 

Multiple floors – EX MF Mask-L 3.2 M32 

3 floors – EX 3F Mask-L 2.1 M21 

Unique U Mask-L 0.0 M00 

4.2 Simulation and districts specifications 514 

Solar complementary studies allow to select districts morphologies on which the combination of zoning and solar 515 

models can be applied. In [27], 3 typologies of grid districts were taken from Bonhomme [49] (GENIUS project):  516 

- low-rise: low buildings (3 – 20 m high) and sparse district (ground density from 0.05 to 0.38) 517 

- mid-rise: mid-rise buildings (6 – 30 m high) with mid and high densities (ground density from 0.05 to 0.6) 518 

- high rise: tall buildings (21 – 85 m high) and mid to high densities (ground density from 0.06 to 0.6) 519 

3 districts from each typology are selected. For each, different district thermal performances are chosen:  520 

- An old district with buildings before 1960 (single glazing windows, wall U-value between 1.6 and 3 W/m².K 521 

and high infiltrations of 0.4) 522 
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- A common district with building between 1970-1990 with the first thermal regulations (single glazing 523 

windows, wall U-value between 0.4 and 2.4 W/m².K and medium infiltrations of 0.2) 524 

- A new district with buildings after 2006 (double glazing windows, wall U-value around 0.3 W/m².K and very 525 

low infiltrations of 0.1) 526 

- A mix district with 70% of new buildings and 30% of old buildings 527 

Districts were randomly created with 16 and 36 buildings of different sizes and heights (i.e. 72 different districts). The 528 

buildings are randomly placed in the district until expected density is reached (Figure 8). Thermal characteristics are 529 

then set for each building, with a variation (max 10 %) from the initial value in order to have more diversity inside a 530 

district. As for the thermal zoning comparison, all systems and emitters are ideal and a one-year simulation with a 10 531 

min time step under Paris weather is used. 532 

 533 

Figure 8: Example of a low-rise random district 534 

4.3 Results for simulation of models coupling 535 

4.3.1 Computation time 536 

Table 8 shows the different computation times for 2 mean districts of 16 buildings (the 6 meters high is the equivalent 537 

of a low-rise district and 39 m of a high-rise district). As for the application on a unique district, the use of simplified 538 

thermal zoning models highly accelerates the computation time, far more than the use of simplified solar shading 539 

models. However, these simplified solar shading models are useful for high districts, especially with the detailed floor – 540 

EX model. Indeed, using the simplest shading model Mask-L 0.0 reduces the computation time by more than one hour 541 

(with an acceleration factor of 1.5). The taller the building, the greater the number of thermal zones in the detailed floor 542 

– EX and multiple floors – EX models. The multiple floors – EX model shows a good speeding factor up to 11.4, but it 543 
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is more than 3 times lower than the other zoning models. When comparing differences between models for parsimony, 544 

it is important to take into account computation time as there are many discrepancies between models. 545 

Table 8: Computation time for two districts of 16 buildings 546 

Zoning 

models 

Solar 

models 

H = 6m H = 39m 

t [s] Speeding 

factor 

t [s] Speeding 

factor 

Reference 910 1 15 810 1 

DF 

M52 940 1 16 160 1 

M42 940 1 15 010 1.1 

M32 930 1 12 040 1.3 

M21 950 1 11 040 1.4 

M00 920 1 10 730 1.5 

D 

M52 380 2.4 540 29.1 

M42 380 2.4 550 28.9 

M32 380 2.4 530 30 

M21 380 2.4 480 33.1 

M00 380 2.4 460 34.2 

MF 

M52 210 4.4 1400 11.3 

M42 210 4.4 1390 11.4 

M32 210 4.4 1450 10.9 

M21 200 4.5 1480 10.7 

M00 200 4.6 1430 11 

3F 

M52 180 5.1 310 50.9 

M42 170 5.2 280 55.8 

M32 170 5.3 250 63.7 

M21 170 5.3 240 66.1 

M00 170 5.5 240 65.9 

U 

M52 80 11.7 90 183.9 

M42 80 11.8 80 198.8 

M32 80 11.6 80 195.3 

M21 80 12 80 205.2 

M00 70 12.6 70 215.4 

4.3.2 Impact of models coupling on heating demand 547 

Figure 9 shows the differences between models according to thermal zoning and solar shading models. As in previous 548 

simulations: the detailed floor – EX model shows accurate results; the multiple floors – EX and detailed – EX models 549 

are close to each other; the 3 floors – EX and unique models are also close, but with higher discrepancies. 550 
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 551 

Figure 9 : Annual thermal heating demand differences for the combination of solar shading and thermal zoning models on districts 552 

However, when simulating a whole district, solar shading between buildings impacts the results. The detailed floor – 553 

EX model which was very close to the reference, shows differences up to 30 % if the solar shading is not modelled. The 554 

errors increase quite homogeneously regardless of the thermal zoning model used. As in [27], the solar shading models 555 

Mask-L 5.2 and 4.2 show close results. Although Mask-L 3.2 model has dynamic calculation, its results are not as good 556 

as for Mask-L 2.1. At last, the Mask-L 0.0 model gives widely distributed results, with differences from less than 1 % 557 

to more than 45 %. 558 

With all these results, it is necessary to look deeper in the origin of the differences. In particular, the more thermally 559 

efficient the district is (mix new, new), the greater the discrepancies. Figure 10 illustrates this trend with the unique 560 

zoning model. In addition, differences increase with the height and density of the district: low-rise districts show 561 

smaller differences than high-rise districts. 562 

 563 

Figure 10: Annual thermal heating demand differences for the combination of the Mask-L 0.0 model and thermal zoning models 564 

following the thermal performance of districts 565 
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4.3.3 Parsimony analysis of heating demand modelling 566 

The objective is to find a KGI that takes into account the thermal and the morphological characteristics of districts. As 567 

in the thermal zoning study, Spearman coefficients are calculated giving (as expected) the same sensible parameters as 568 

previously, with the addition of the height and density from the solar shading models. Several combinations of 569 

parameters were tested to elaborate a KGI close to the previous one, with a stronger impact of the compactness (link to 570 

the morphology of buildings and so to the shading): 571 

 Zlm��D�� = P��� ∗ �G��RD� ����� ∗ 
������D�CCn = P�
n UV/Z. �²[ Eq. 11 

The density could be taken into account in the KGI, but it only improves the parsimony trends for couple of models. As 572 

not all models behave the same according to one KGI, opq$'2rk  is finally considered as the most balanced one for all 573 

models. 574 

The Figure 11 presents the parsimony criterion for the annual heating demand according to the opq$'2rk  and district 575 

typology. As before, the accuracy limit is set at 10 % (dotted line), the parsimony of the reference is 0 (solid line) and 576 

the weight factors of the criterion as 1. Table 9 is the transcription of the figure in a simpler way to help the user.  577 

Low values of UAC² represent high-rise districts with good thermal performance. For these types of districts, the choice 578 

of models is restricted to detailed ones, as 3 floors – EX and unique models are not accurate enough. But as the UAC² 579 

increases, the use of simple models becomes legitimate, even the simplest combination U – M00 for a UAC² greater 580 

than 150 W/K.m². However, the thermal zoning model that could almost be used regardless of the KGI and solar model 581 

is the detailed floor – EX model. 582 
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 583 

Figure 11: Parsimony criterion Pdelta for annual heating demand following the UAC² - 16 and 36 buildings per district 584 

The parsimony criterion values for the 3 floors – EX and unique models are similar, with only a slight difference for the 585 

Mask-L 2.1 solar shading model. However, all the simulated buildings have only one usage, so the influence of floor 586 

division is reduced. Therefore, as the 3 floors – EX model is 4 times faster than the multiple floors – EX model, 3 floors 587 

– EX could make a good compromise between the models unique and multiple floors – EX when several usages in the 588 

building must be modelled. 589 

Contrary to the previous results, the detailed – EX zoning model shows a good parsimony when used with detailed 590 

solar models: by taking into account the inter-effects between buildings, thermal zoning division per orientation shows 591 

a good accuracy with a better solar gains distribution. Nevertheless, the multiple floors – EX model still presents better 592 

results than this model, in particular with simpler solar models. 593 
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Solar models differ from each other especially through the solar calculation mesh used to determine the shading factors. 594 

The Mask-L 5.2 and 4.2 have similar results, with slight differences for low KGI value. The static solar shading model 595 

Mask-L 2.1 shows for all zoning models better results than the dynamic model Mask-L 3.2.  596 

Table 9: Models to prioritize for a district energy simulation following the UAC² for annual heating demand - 16 and 36 buildings 597 
per district 598 

Zoning 

models 

Solar 

models 

P�
² UV/Z. �²[ 
25 50 60 80 90 100 120 130 150 190 200 220 320  

Reference Reference               

DF M52               

DF M42               

DF M32               

DF M21               

DF M00               

D M52               

D M42               

D M32               

D M21               

D M00               

MF M52               

MF M42               

MF M32               

MF M21               

MF M00               

3F M52               

3F M42               

3F M32               

3F M21               

3F M00               

U M52               

U M42               

U M32               

U M21               

U M00               

Finally, the most parsimonious models are the DF – M52 for low UAC², then the MF – M52 and at the end the U – 599 

M52. The solar shading model Mask-L 4.2 is not the most parsimonious one, but gives good results and could be used 600 

for high-rise districts to speed up the simulation (see Table 8). Indeed, the computation time can be restrictive for the 601 

use of the DF – M52 model and may then lead the user to choose simpler models. Thus, the choice of models must be 602 

adapted to the district in order to have a parsimonious modelling as well as an acceptable computation time. 603 
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5 Discussion 604 

While the issue of thermal zoning design has already been closely studied at building scale, few studies address this 605 

issue at urban scale, and even less with the problematic of solar shading calculation. Nevertheless, the two types of 606 

models are strongly linked since zones distribution and shaded solar gains influence the overheating distribution. The 607 

present study is therefore contributing to the analysis of the impact of such inter-effect and to the assessment of the 608 

complexity and accuracy of such coupling. 609 

This study has shown that the use of very detailed models gives in some cases worse results that simpler models, 610 

especially when the thermal exchanges between zones are not modelled. This illustrates the importance of global 611 

consistency when choosing and coupling thermal models. Furthermore, the lack of data at district level implies the 612 

simplification of the inter-zone ventilation model. This simplification certainly does not model these exchanges 613 

properly, especially when interior design is almost neglected. The extension of the initial simulation to various climates 614 

also shows how difficult it can be to give a single answer to the question: “what is the good combination of models, and 615 

how the diversity of the urban characteristics influences the parsimony?”. In the future, other urban contexts should be 616 

studied to extend this analysis.  617 

Indeed, the diversity of simulations objectives, districts and models is difficult to manage. Here, only the KPI “thermal 618 

heating demand” has been studied on specific buildings and districts. The methodology has been applied on other KPIs, 619 

showing differences in the determination of KGIs and the choice of models. Moreover, the considered buildings are 620 

only composed of dedicated profiles and uses that are similar. Other variants have to be studied to take into account the 621 

diversity of occupation and uses in districts. Other building geometries or zoning designs must then be developed. Even 622 

if the aim of using virtual districts was to create realistic diversity, the methodology should be tested on real districts.  623 

The study is here only comparative without any validation as the gathering of energy consumption data at district scale 624 

is too complex nowadays. This introduces a bias because the reference is taken as the most detailed model. Moreover, 625 

the parameters are considered valid, simply taking into account the complexity of the data recovery as a disadvantage. 626 

Therefore, data determination in an uncertain context should be also undertaken. 627 

This paper contributes to the discussion on the complexity of models and on the issues of how and when to choose 628 

them, especially here for thermal zoning design and solar shading calculation. A simple decision colour table has been 629 

produced to guide the modellers and users and help them understand the complexity of urban building energy 630 
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simulation. It can also be used as a decision support depending on the stage of a project, finding a good trade-off 631 

between required accuracy, time allowed for the project stage and available data. 632 

6 Conclusion 633 

This paper proposes a methodology to apprehend parsimonious modelling of urban scale energy simulation. This 634 

methodology first identifies different modelling families to compare them independently. Then it determines a 635 

simulation design plan to simulate virtual districts (created to generate diversity) with the chosen models. The results 636 

are then used to calculate a parsimony criterion, which is used in conjunction with key guidance indicators (KGI). 637 

These KGIs help to detect the most parsimonious models for a given output according to district characteristics. These 638 

KGIs have been built on macro parameters of the district to guide the user. A first sensibility analysis with Spearman 639 

coefficients allows to reduce the number of parameters to consider. Then, knowledge from building expert is used to 640 

combine them. A further methodology has to be constructed to identify these KGIs in a more systematic way. In order 641 

to apprehend parsimony at urban scale, a definition of parsimony is proposed as a trade-off between the number of 642 

parameters, the number of simplifying hypothesis, the accuracy of the model and the computation time for a given 643 

simulation objective. A parsimony criterion is created based on the first three characteristics, leaving the time cost to 644 

the subjective choice of the user, as the computing power at user disposal can be too variable. The methodology has 645 

been demonstrated on the UBEM DIMOSIM in this article. It would be interesting to apply it to other tools in order to 646 

confirm its reproducibility and the use of identical KGIs. Furthermore, this methodology must be then combined to data 647 

uncertainty in the context of urban simulation in order to have a more complete analysis of UBEM models: on data and 648 

on models. 649 

This methodology is first applied on thermal zoning models coupled with conductive and convective exchanges models 650 

for the simulation of annual heating demand. Several independent buildings are simulated with all the models 651 

combinations. From the simulated buildings, entire districts are randomly created to create a representative diversity of 652 

the French building stock. The parsimony criterion is applied on each district for all the selected models, and a limit of 653 

accuracy of 10 % compared to the reference is taken. A KGI is created, namely UAC², based on compactness, thermal 654 

performance and buildings area. The lower the KGI, the greater the differences. This comparison led to the 655 

determination of two main parsimonious models, both simulated with conductive exchanges: detailed floor and multiple 656 

floors. The simplest thermal zoning models are only relevant for high values of KGI, without being the most 657 

parsimonious ones. When taking the computation time into account, detailed floor models show a high computational 658 
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cost, encouraging the use of the multiple floors model. These conclusions must be confirmed by further tests on real 659 

cases with more complex building geometries.  660 

Thermal zoning design is strongly related to solar radiation, as the discretisation of facades can influence the calculation 661 

of shading factors due to urban morphology. Therefore, a subset of the previous models is selected to be coupled with 662 

several solar shading models and applied to virtual districts with different heights, densities and thermal performances. 663 

The same methodology is applied on these model combinations and a new KGI is created to take into account the 664 

district morphology impact. The results show that the choice of model combination varies strongly according to the 665 

morphology and the thermal performance of district. Three different parsimonious models following the KGI value are 666 

identified: detailed floor with conductive exchanges, multiple floors with conductive exchanges and unique, all coupled 667 

with solar shading model Mask-L 5.2. However, considering the computation time, the detailed floor model could be 668 

replaced by another parsimonious model giving sufficient accuracy to speed up the simulation. 669 

This study shows the impact of thermal zoning designs, but also their relative influence with solar shading. This 670 

highlights the importance of considering solar shading models at district scale. Understanding these impacts and the 671 

idea of parsimony could lead to more balanced and consistent district simulations, which need to be specifically adapted 672 

to the case study. 673 
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