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How Statistical Learning Can Help to Estimate the Number of Modes in Switched System Identification?

This paper deals with hybrid dynamical system identification, and focuses more particularly on the estimation of the number of modes. An evaluation of a recent method based on model selection techniques from statistical learning is proposed, together with its comparison with more standard approaches based on algebraic arguments. Overall, three methods are benchmarked in various settings, including different noise conditions and data set sizes. The results provide insights into the respective advantages and weaknesses of the methods, thus yielding a set of guidelines on the choice of the most suitable method in a given situation for the practitioner.

INTRODUCTION

Hybrid systems are dynamical systems composed of multiple subsystems, among which only one is active at a given time. Different classes of hybrid systems can be defined depending on the form of the subsystems and on how the switchings between the different subsystems, or operating modes, occur. This paper focuses on the identification of switched linear systems, for which the continuous dynamics of the subsystems are linear and the switching mechanism is arbitrary. More precisely, this entails the estimation of several linear submodels, one for each mode, from input-output data, without knowledge of the active mode associated to each data point, and also often without knowledge of the true number of modes.

The literature offered a number of efficient methods to estimate these systems over the last 20 years. Two types of methods can be distinguished: those that work with a fixed number of modes, such as [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF]; [START_REF] Lauer | A continuous optimization framework for hybrid system identification[END_REF]; [START_REF] Lauer | Estimating the probability of success of a simple algorithm for switched linear regression[END_REF], and those that estimate the minimal number of submodels satisfying a predefined threshold on the error, such as [START_REF] Bemporad | A bounded-error approach to piecewise affine system identification[END_REF]; [START_REF] Bako | Identification of switched linear systems via sparse optimization[END_REF]; [START_REF] Ozay | A sparsification approach to set membership identification of switched affine systems[END_REF] (see, e.g., [START_REF] Lauer | Hybrid system identification: Theory and algorithms for learning switching models[END_REF] for a more comprehensive review of the field). Thus, all these methods require tuning a set of parameters to yield a model with a suitable number of modes. Regarding the estimation of this number, algebraic arguments developed in [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF] for the noiseless case offer a technique based on the analysis of the rank of a feature matrix computed from the data. This technique was later refined in [START_REF] Ozay | Set membership identification of switched linear systems with known number of subsystems[END_REF] to deal with noisy data, but with a significant increase of the computational cost.

More recently, a method based on statistical learning theory [START_REF] Vapnik | Statistical Learning Theory[END_REF] was introduced in [START_REF] Massucci | Structural risk minimization for switched system identification[END_REF]. The idea is to derive probabilistic error bounds, that can be used as guarantees on the model accuracy, and consider their minimization with respect to the number of modes in a model selection framework called Structural Risk Minimization (SRM). In the statistical learning literature, the derivation of such bounds often relies on an independence assumption of the data, which does not hold in the context of system identification. This issue is tackled in [START_REF] Massucci | Structural risk minimization for switched system identification[END_REF] using results on mixing processes [START_REF] Yu | Rates of convergence for empirical processes of stationary mixing sequences[END_REF], thus resulting in a sound framework to analyze the statistical performance of switched dynamical models and optimize their structure.

The aim if this paper is to go beyond the preliminary results reported in [START_REF] Massucci | Structural risk minimization for switched system identification[END_REF] and provide a more thorough evaluation of the ability of the SRM method to estimate the number of modes, in particular in comparison with the more standard algebraic approaches.

Paper organization. Section 2 introduces the switched system identification problem. Section 3 gives a presentation of the algebraic methods, for the noiseless case in Sect. 3.1 and the noisy case in Sect. 3.2. Then, Section 4 exposes the SRM method, introducing the general idea of estimating the number of modes from error bounds. Next, Section 5 details the experiments conducted for all these methods, with remarks on the conditions in which they should be considered. Finally, Section 6 concludes the paper and discusses open issues.

PROBLEM STATEMENT

In this paper, we focus on discrete-time Single Input Single Output (SISO) Autoregressive with external input (ARX) hybrid systems of the form

y i = x T i θ qi + e i (1) 
with y i ∈ R the output, x i ∈ R d the regression vector, q i ∈ {1, . . . , C} the active mode at time i, C the number of modes, θ j the parameter vector of the jth mode and e i ∈ R a noise term. The regression vector x i ∈ R d , d = n a + n b , with the model orders n a and n b , is given by

x i = [-y i-1 , . . . , -y i-na , u i-1 , . . . , u i-n b ] T , (2) 
where y i k and u i-k denote the delayed outputs and inputs, respectively.

The goal of switched system identification is to find a model f = {f j } C j=1 made of C component submodels f j that estimate the continuous behavior of the system in the different modes. The problem can be set as follows. Problem 1. Given a data set D = {(x i , y i )} n i=1 and a set of possible submodels F, estimate the number of submodels C, the submodels

f = {f j } C j=1 , f ∈ F C , with F C = F × F × • • • × F and the switching sequence q = (q i ) 1≤i≤n ∈ {1, . . . , C} n .
In this paper, we concentrate solely on the model selection subproblem, which consists in determining the number C of submodels.

ALGEBRAIC METHODS

3.1 Noiseless Case [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF] The algebraic method, originally proposed by [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF], relies on the assumption of noiseless data and works with a predefined and fixed number of modes. This method is based on the Hybrid Decoupling Constraint (HDC) defined as ∀i ∈ {1, . . . n}, C j=1 (y i -x T i θ j ) = 0.

(3)

At each instant i, a particular mode j = q i is active. Since the data is assumed to be noiseless, the error y i -x T i θ j for this particular j is zero and thus the product of all the subsystem errors is also zero. This framework decouples the estimation of the parameters θ j from that of the switching sequence q. In particular, solving the polynomial equations in (3) for the parameter vectors θ j allows one to recover the system parameters without requiring the estimation of the active mode for each time step.

In addition, this algebraic approach can be used to identify the true number of modes of a switched system. To see this, let us first rewrite the HDC (3) as

∀i ∈ {1, . . . n}, C j=1 (β T j z i ) = 0, (4) 
with

β j = 1 θ T j T ∈ R d+1 and z i = y i -x T i T ∈ R d+1 .
For any vector z ∈ R d+1 , we can define the homogeneous polynomial

P C (z) = C j=1 (β T j z) = h T ν C (z), (5) 
where h ∈ R M C (d+1) is a vector depending on the β j 's, d+1) is the Veronese map of degree C,

ν C : R d+1 → R M C (
and M C (d + 1) = C + d d .
Mapping the input-output data {z i } n i=1 into a higherdimensional feature space with the Veronese map, we can thus rewrite (4) as a system of linear equations with respect to the new variables h:

L C h = 0, with L C =    ν T C (z 1 ) . . . ν T C (z n )    . (6) 
According to [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF], for n > M C (D), the rank of the matrix L C can lead to the estimation of the number of modes as the smallest j such that L j is rank deficient:

C = min{j ∈ N : rank(L j ) < M j (D)}. (7) Algorithm 1 summarizes the practical steps required to estimate C. Algorithm 1 Algebraic method (ALG) Require: The data set D = {(x i , y i )} n i=1 ⊂ R d × R
, a maximum number of modes C and a threshold σ on the singular values for the computation of the rank.

for C = 1 to C do Compute M C (d + 1) and the matrix L C in (6) if rank(L C ) < M C (d + 1) then return
The number of modes C end if end for return An error indicating that C > C 3.2 Noisy case [START_REF] Ozay | Set membership identification of switched linear systems with known number of subsystems[END_REF] The algebraic method has been adapted in [START_REF] Ozay | Set membership identification of switched linear systems with known number of subsystems[END_REF] to handle the noisy case. The idea is to solve a version of (3) that includes noise while simultaneously estimating a noise sequence that satisfies a predefined constraint, typically on the amplitude of the noise entries (therefore assuming that the noise is bounded). From the algorithmic viewpoint, this leads to the minimization of the rank of a matrix whose entries are linear in the optimization variables under a convex constraint. In practice, this problem is then reduced to a more tractable sequence of semi-definite optimization programs.

In the presence of noise, the noisy equivalent of ( 5) is

P C (z i , η i ) = C j=1 (β T j zi ) = h T ν C (z i ) = 0, (8) 
where zi = [y i +η i , -x T i ] T and η = (η i ) 1≤i≤n corresponds to the noise sequence. According to (8), a noisy version of the feature matrix can be defined as

LC (η) =    ν T C (z 1 ) . . . ν T C (z n )    . (9)
Then, the problem is to first estimate the noise sequence η, and then estimate h according to (6), with LC (η) in place of L C . Under the assumption that the noise is bounded, the constraint |η i | < is imposed to identify the noise sequence η. Since, we aim at a feature matrix LC (η) that is rank deficient, [START_REF] Ozay | Set membership identification of switched linear systems with known number of subsystems[END_REF] proposes to solve the following rank minimization problem:

min η∈R n rank( LC (η)), s.t. |η i | ≤ , i = 1, . . . , n. (10) 
To solve (10), the matrix LC (η), which is polynomial in η, is first linearized with the method of moments [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF]. Then, a standard convex heuristic based on the nuclear norm [START_REF] Fazel | Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices[END_REF] is used to minimize the rank. The complete procedure to estimate C is given in Algorithm 2.

Algorithm 2 Algebraic method with noise (ALG-N) The two algebraic techniques presented in Sections 3.1 and 3.2 yield the number of modes of the hybrid system by computing the rank of the feature matrix L C . In the next section, an alternative method based on statistical learning theory is described.

Require: The data set D = {(x i , y i )} n i=1 ⊂ R d × R,

STRUCTURAL RISK MINIMIZATION METHOD

Structural risk minimization is a model selection method from statistical learning theory. The idea is to derive statistical guarantees on the prediction error, and then select the model with the best guarantees. In the context of switched system identification, this amounts to search for the number of modes C that minimizes an upper bound on the prediction error.

Error bounds for switched system identification

In order to present error bounds, we first introduce the statistical framework. In particular, data points z i = (x i , y i ) are assumed to come from a realization of the stationary sequence of random variables

Z i = (X i , Y i ) taking values in R d × [-M,
M ] (outputs are assumed to be bounded by M ) and distributed as (X, Y ). Then, the prediction error of a switched model f composed of C submodels f j is computed as the expected value of the pointwise loss defined as smallest error with respect to all submodels:

L(f ) = E min j∈{1,...,C} |Y -f j (X)| p , (11) 
where f and f j are saturated versions of the models yielding outputs in [-M, M ]. Here, p ∈ {1, 2} provides a choice between the absolute and the squared loss. The prediction error (11) is known as the risk and measures the ability of the model to make accurate predictions on new data points, whereas the empirical risk,

L(f ) = 1 n n i=1 min j∈{1,...,C} |Y i -f j (X i )| p ,
measures the ability of the model to fit the available data sample of size n.

Bounds on the risk L(f ) are typically uniform, meaning that they hold for all models f within the model class F C .

For linear submodels, the class

F = {f : f (x) = θ T x, θ ∈ R d , θ ≤ R θ }
, with a predefined radius R θ , is usually considered. However, most algorithms do not constrain the parameter vectors θ j and the estimates are not guaranteed to satisfy θ j ≤ R θ . To circumvent this issue, bounds can be adapted to handle a radius computed a posteriori as

R θ = max j∈{1,...,C} θ j (12)
from the estimated θ j 's. In order to achieve this, a grid of

K discretized values G = {R 1 , . . . , R K }, (13) 
with R K = R max must be predefined. Then, we can derive a bound in which the radius R θ is replaced by its discretized value Rθ = min

k∈{1,...,K} R k , s.t R k ≥ R θ , with R θ as in (12). ( 14 
)
This leads to the following upper bound on the prediction error for switched system identification: Theorem 1. [START_REF] Massucci | Structural risk minimization for switched system identification[END_REF]). Given a maximum number of modes C, a maximum radius R max and a grid of K values as in ( 13), let

F = {f : f (x) = θ T x, θ ∈ R d , θ ≤ R max }.
Then, for a sample Z n of size n drawn from a stationary β-mixing distribution, and for any µ, a > 0 with 2µa = n, and δ > 4CK(µ -1)β(a), with probability at least 1 -δ,

∀C ∈{1, . . . , C}, ∀f ∈ F C , L(f ) ≤ L(f ) + 2p(2M ) p-1 C Rθ µ i=1 X 2a(i-1)+1 2 µ + 3(2M ) p log(CK) + log 4 δ 2µ , (15) 
where δ = δ -4CK(µ -1)β(a) and Rθ is as in ( 14).

The main advantage of this bound compared with standard ones in learning theory is that it holds for dynamical systems. This problem is discussed in [START_REF] Massucci | Structural risk minimization for switched system identification[END_REF]: the idea is to assume that the data are β-mixing, which basically means that the dependence between data points decreases with the time interval between them.

Then, the bound depends on the mixing coefficient β(a) that characterizes the speed at which the dependence decreases (see [START_REF] Bradley | Basic properties of strong mixing conditions. a survey and some open questions[END_REF] for more details on mixing processes and this coefficient). The main difference with the more common bounds in statistical learning that only hold for independent data is that the confidence interval in Theorem 1 is computed over µ = n/2a blocks, each composed of a < n/2 data points, instead of n data points.

The bound can be used to obtain guarantees on the model accuracy after computing the mixing coefficient β(a). However, in this paper, we can spare the computation of this parameter since it does not influence the model selection method described below.

4.2 Model selection method [START_REF] Massucci | Structural risk minimization for switched system identification[END_REF] Using the error bound in Theorem 1, a model selection method for estimating the number of modes is described in [START_REF] Massucci | Structural risk minimization for switched system identification[END_REF]. It implements SRM and estimates C by minimizing the error bound. More precisely, a criterion can be devised by leaving aside constant terms that neither depend on C nor on the estimated model f in the bound:

J(C) = 1 n n i=1 min j∈{1,...,C} |Y i -f j (x i )| p (16) + 2p(2M ) p-1 C Rθ µ i=1 x 2a(i-1)+1 2 µ .
Based on this criterion, the method is defined in Algorithm 3, in which any generic algorithm for switched system identification that works with a fixed number of modes can be used. On the one hand, as the number of modes C increases, the empirical risk (the first term of ( 16)) decreases, since the model has more flexibility to fit the data. But on the other hand, the complexity of the model increases, which is taken into account in the second term of ( 16). Therefore, minimizing J(C) yields a trade-off between these two terms. In this section, the aim is to compare the methods presented above. As each method has pros and cons in different settings, the objective is also to show what method to apply in a specific context. Some main experimental parameters have been identified, such as the size of the data set n, the number of modes C, or the type and level of noise. In Section 5.1, we present the main characteristics of the experiments, while Section 5.2 details a few preliminary observations on the applicability of the methods and further precises the experimental settings for each of them.

Then, the results are reported in Section 5.3 and further discussed in Section 5.4.

Experimental Setup

We consider the same basic experiment as in [START_REF] Massucci | Structural risk minimization for switched system identification[END_REF]. The case study is the following switched system composed of C = 3 linear subsystems of orders n a = n b = 2 with parameter vectors θ 1 = [-0.4 0.25 -0.15 0.08] T , (17)

θ 2 = [1.55 -0.58 -2.1 0.96] T , θ 3 = [1 -0.
24 -0.65 0.30] T . This system is used to generate a data set of n points with (1)-( 2). The excitation input u i is a zero-mean Table 1. Computing time of the ALG-N method applied with a maximum number of modes C to data sets of n points. The methods are confronted to data sets generated with different noise levels, corresponding to a Signal-to-Noise Ratio (SNR) of either 30 dB, 20 dB or 10 dB, and different types of noise: white uniform noise, white Gaussian noise, and colored Gaussian noise.

We use the Matlab implementations of the methods made available by their authors, running on a laptop with an i7 processor (4 cores) at 1.7 GHz and 16 GB of memory.

Preliminary observations and specificities of the methods

Some preliminary experiments led to the following considerations regarding the applicability of the methods.

SRM method (Sect. 4, [START_REF] Massucci | Structural risk minimization for switched system identification[END_REF]). This method yields relevant results only with large data sets. Indeed, it is effective only if the complexity term of the bound in Theorem (1), i.e., the second term in ( 16), is of the same order of magnitude as the empirical risk. Due to the conservatism of the bound implied by its uniform nature, a large data set is needed to obtain this configuration.

Regarding the computing time, preliminary experiments using the k-LinReg algorithm as the generic switched system identification method in Algorithm 3 show that it is rather efficient with times in the order of tens of seconds for data sets of a few hundred thousand points.

Algebraic method with noise (ALG-N) (Sect. 3.2, [START_REF] Ozay | Set membership identification of switched linear systems with known number of subsystems[END_REF]). A few preliminary experiments reported in Table 1 show that the ALG-N method has difficulties to handle large data sets due to the high computational burden of solving a sequence of semi-definite programs, whose size and number of variables increase with the number of data n. In addition, the computing time is also influenced by the number of modes C, which directly governs the degree of the polynomial (8) and thus affects the overall complexity.

The main hyperparameter of the ALG-N method is the threshold on the amplitude of the noise in (10). For uniform noise, we use a value based on the amplitude of the true noise sequence. For Gaussian noise, we use a value based on the standard deviation σ e of the noise instead.

Algebraic method (ALG) (Sect. 3.1, [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF]. This method can be applied to small as well as large data sets, with computing times in the order of tens of seconds for data sets of a few hundred thousand points. However, the number of modes C influences the degree of the polynomial (5), which might slightly hinder the computing time, but also prevent the estimation of the parameter vectors, for which one has in practice to find the roots of another polynomial of similar degree. However, if we only consider the estimation of the number of modes, Algorithm 1 merely requires the computation of the rank of L C , which remains feasible for most values of C.

Regarding the lower limit on the number of data, the only condition is that n > M C (d + 1), which implies that for d = 4 and n = 100, C ≤ 4.

The ALG method itself has no hyperparameter. However, in practice, when dealing with noisy data, L C is always full rank and one has to set a threshold σ on the singular values considered as zero to compute the effective numerical rank.

In our experiments, σ was tuned so that the method yields a 100% success rate on noiseless data. Similarily, the rank( LC (η)) used in Algorithm 2 for the ALG-N method is computed with respect to a threshold σ whose value influences the results.

Summary. Taking into account these specificities, data sets of different sizes are considered in the experiments below.

Similarly, the maximum number of modes C used by the algorithms is set in order to avoid unreasonable computing times. The precise settings and hyperparameter values for all methods are given in Table 2.

Results

The results are reported in Table 3 for the different types of noise and noise levels in terms of the success rate, i.e., the percentage of trials for which the true number of modes C was recovered.

ALG method. As expected, the ALG method is very successful in very low noise situations which are close to the noiseless case, for which it was designed. However, the estimation of C highly depends on the threshold σ and Table 3 shows that tuning its value on randomly generated noiseless data can also yield good results in other cases. Figure 1 illustrates the sensitivity of the method with respect to this parameter, whose optimal value as well as the global form of its influence depend on the number of data.

ALG-N method. Similarly to the ALG method, the accuracy of ALG-N heavily depends on the value of the threshold σ and could largely be improved by a proper tuning of this parameter. Indeed, using σ = 10 -3 , the method recovered the true number of modes in all experiments. However, the correct value for deciding the rank highly depends on the data itself and might be different for other data sets. Also note that using the default rank function of Matlab based on a threshold involving the matrix size failed in all cases.

SRM method. Table 3 shows that the SRM method correctly recovers the true number of modes with a success rate above 90% in all cases, even for large noise levels (SNR = 10 dB). While it can easily handle to large data sets, this method failed to yield satisfactory results on small data sets for which its application should not be considered.

Discussion

First of all, the results above carry a positive message: in many of the considered scenarios, at least one of the considered methods was successful. Yet, these experiments also highlighted a case which seem to be outside the range of applicability for these three methods. To help the characterization of this case, as well as to provide a "practitioner's guide" for the determination of the most suitable method, we propose a decision tree depicted in Figure 2. On the one hand, this tree provides a rather rough approximation of the capabilities of the methods, but on the other hand, it should help to quickly identify a suitable method in a given situation. As can be seen from Fig. 2, to the best of our knowledge, there is a lack of method to estimate a large number of modes from only a few data points perturbed by large noise.

CONCLUSION

In this paper, a focus has been made on the difficult task of estimating the number of modes in switched system identification. More specifically, several methods are available in the literature: two of them are based on algebraic techniques and a new one makes use of the structural risk minimization principle from statistical learning. Gathering these three approaches in a single paper allows the presentation of a thorough empirical analysis of their pros and cons along with a practitioner's guide.

Future work will concentrate on improving the method based on structural risk minimization order to increase its accuracy with less data points or consider other measures of the model complexity, as in [START_REF] Massucci | Regularized switched system identification: a statistical learning perspective[END_REF]. The proposed practitioner's guide also highlights some open issues related to situations for which none of the methods could provide accurate results. For instance, significant advances would be related to extensions of the algebraic method that can deal with non-uniform noise or with uniform noise in larger data sets.
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 1 Fig. 1. Success rate of the ALG method on noiseless data versus σ for n = 100 (left) and n = 80 000 (right).
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 2 Fig. 2. Guide to select a suitable method to estimate C.
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 2 Experimental settings used for the different methods, in particular regarding the number of data n and the maximum number of modes C.

Table 3 .

 3 Success rates (in %) of the methods in different noise conditions

	White Uniform Noise	
	SNR	30dB	20dB	10dB
	ALG	100	100	100
	ALG 100	90	81	85
	ALG-N σ = 10 -5	84	44	3
	ALG-N σ = 10 -3	100	100	100
	SRM	100	100	100
	White Gaussian Noise	
	SNR	30dB	20dB	10dB
	ALG	100	96	0
	ALG 100	84	84	72
	ALG-N σ = 10 -5	8	0	0
	ALG-N σ = 10 -3	100	100	100
	SRM	100	100	92
	Colored Gaussian Noise	
	SNR	30dB	20dB	10dB

Results reported in the submitted paper are obtained with 10 trials and will be updated in the final version upon acceptance.