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ABSTRACT

Context. The PSR J2222−0137 binary system has a set of features that make it a unique laboratory for tests of gravity theories.
Aims. To fully exploit the system’s potential for these tests, we aim to improve the measurements of its physical parameters, spin and
orbital orientation, and post-Keplerian parameters, which quantify the observed relativistic effects.
Methods. We describe an improved analysis of archival very long baseline interferometry (VLBI) data, which uses a coordinate
convention in full agreement with that used in timing. We have also obtained much improved polarimetry of the pulsar with the Five
hundred meter Aperture Spherical Telescope (FAST). We provide an improved analysis of significantly extended timing datasets taken
with the Effelsberg, Nançay, and Lovell radio telescopes; this also includes previous timing data from the Green Bank Telescope.
Results. From the VLBI analysis, we have obtained a new estimate of the position angle of the ascending node, Ω = 189+19

−18 deg
(all uncertainties are 68% confidence limits), and a new reference position for the pulsar with an improved and more conservative
uncertainty estimate. The FAST polarimetric results, and in particular the detection of an interpulse, yield much improved estimates
for the spin geometry of the pulsar, in particular an inclination of the spin axis of the pulsar of ∼84 deg. From the timing, we
obtain a new ∼1% test of general relativity (GR) from the agreement of the Shapiro delay parameters and the rate of advance of
periastron. Assuming GR in a self-consistent analysis of all effects, we obtain much improved masses: 1.831(10) M� for the pulsar and
1.319(4) M� for the white dwarf companion; the total mass, 3.150(14) M�, confirms this as the most massive double degenerate binary
known in the Galaxy. This analysis also yields the orbital orientation; in particular, the orbital inclination is 85.27(4) deg – indicating
a close alignment between the spin of the pulsar and the orbital angular momentum – and Ω = 187.7(5.7) deg, which matches our new
VLBI estimate. Finally, the timing also yields a precise measurement of the variation in the orbital period, Ṗb = 0.251(8)×10−12 s s−1;
this is consistent with the expected variation in the Doppler factor plus the orbital decay caused by the emission of gravitational waves
predicted by GR. This agreement introduces stringent constraints on the emission of dipolar gravitational waves.

Key words. binaries: close – gravitational waves – pulsars: general – pulsars: individual: J2222−0137 – stars: neutron – white dwarfs

1. Introduction

PSR J2222−0137 is a pulsar with a spin period (P) of 32.8 ms,
which was discovered in the Green Bank Telescope (GBT)
350 MHz drift-scan pulsar survey (Boyles et al. 2013). It is in
a binary system with an orbital period (Pb) of 2.44576 days and
a projected semi-major axis of the pulsar’s orbit (x)1 of 10.848
light-seconds (lt-s).
1 x ≡ a sin i, where a is the semi-major axis of the pulsar’s orbit and i
is the orbital inclination.

The small spin period derivative (5.8 × 10−20) implies that
the pulsar was recycled by accretion of matter from its compan-
ion, during which event tidal torques would have circularised the
orbit (Verbunt & Phinney 1995; Sepinsky et al. 2010). The fact
that the orbit has a low eccentricity at present (e = 0.00038)
implies that the companion has since become a white dwarf star
(WD): Had it become instead a neutron star (NS), the associ-
ated supernova event would have caused a significant instanta-
neous mass loss and possibly a large kick that would in turn
have, with very high probability, increased the eccentricity of the
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system by about three orders of magnitude (Tauris et al. 2017).
The mass function of 0.229 M� implies that this WD is relatively
massive. Optical observations have not detected the companion
(Kaplan et al. 2014), implying that it is the coolest WD currently
known.

As discussed by Cognard et al. (2017), this system has sev-
eral characteristics that make it a unique gravitational labora-
tory. First, with a dispersion measure of 3.28 pc cm−3, it is one
of the closest pulsars to the Solar System. This motivated a very
long baseline interferometry (VLBI) astrometric campaign, from
which Deller et al. (2013) obtained the most precise VLBI dis-
tance for any pulsar as well as precise values for the position
and proper motion. Second, it is one of the very few systems
where the orbital motion of the pulsar can be detected from
VLBI astrometry, yielding a measurement of the longitude of
ascending node, Ω.

Third, the edge-on orbit, the good timing precision, and
the large mass of the companion allow a highly significant
detection of the Shapiro delay, which was originally detected
by Kaplan et al. (2014). From this effect, Cognard et al. (2017)
obtained mp = 1.76(6) M� and mc = 1.293(25) M�, where M�
represents the solar mass parameter2 and the numbers in paren-
theses represent, as in the remainder of the work, the 68% uncer-
tainties in the last digit. This is the most massive double degen-
erate system known in our Galaxy3. Furthermore, it is also the
largest NS birth mass known.

Fourth, the timing precision and the small but highly signifi-
cant x · e product allow a measurement of the rate of advance of
periastron (ω̇) for this system (Cognard et al. 2017). This allows
precise and redundant measurements of the masses of the com-
ponents of the system, and therefore a test of general relativity
(GR).

Fifth, the timing precision and the large x/Pb ratio allow an
unusually precise measurement of the variation in the orbital
period (Ṗb). This can be compared to unusually precise theo-
retical predictions: The kinematic contributions to Ṗb owe their
precision to the distance measurement; the predictions for the
orbital decay according to GR and alternative gravity theories
owe their precision to the well-measured masses.

Sixth, in this regard, the large difference in the compact-
ness of the components of the system – a pulsar and a WD –
is very important. Several alternative theories of gravity predict,
for such systems, the emission of dipolar gravitational waves
(DGWs) in addition to the quadrupolar gravitational waves pre-
dicted by GR (Eardley 1975; Damour & Esposito-Farèse 1992;
Gérard & Wiaux 2002). This could potentially be detected in the
measurement of Ṗb.

Finally, the system is exceptional even among the pulsar–
WD systems that have been used to derive stringent limits on
DGW emission, such as PSR J1738+0333 (Freire et al. 2012)
and PSR J0348+0432 (Antoniadis et al. 2013). There are two
reasons for this. Firstly, its mass estimates are more precise
than for these two systems (Antoniadis et al. 2012, 2013); this is
important for the interpretation of the measurements. Secondly,
previous authors (Shibata et al. 2014) have made it clear that
these tests should be carried out for a variety of NS masses in
order to exclude strongly non-linear phenomena, such as sponta-

2 This is an exact quantity defined in SI units as GMN
� = 1.3271244 ×

1020 m3 s−2, which is similar to the precisely known product of New-
ton’s gravitational constant G and the mass of the Sun (Prša et al. 2016).
3 If GW190425 were a double NS system before its merger, then its
mass was likely larger than that of PSR J2222−0137, about 3.4 M�,
(see Abbott et al. 2020).

neous scalarisation (Damour & Esposito-Farèse 1993). Interest-
ingly, the precise mass of PSR J2222−0137 places it in an inter-
mediate, previous unexplored mass range. For this reason, even
the relatively low-precision measurement of Ṗb by Cognard et al.
(2017) has already provided useful constraints on alternative the-
ories of gravity (Shao et al. 2017).

The dataset described by Cognard et al. (2017) ends in
January 2017. Since then, regular pulsar timing observations
with the 100 m Effelsberg radio telescope, the Lovell 76 m
radio telescope, and the Nançay radio telescope have contin-
ued, using the same observing setups described by Cognard et al.
(2017). The Effelsberg observations in particular were obtained
in a set of orbital campaigns: To the two campaigns men-
tioned by Cognard et al. (2017), three more were added, which
occurred in January 2018, August 2019, and October 2020.
The last observation used in this work was taken in May
2021.

In addition, most of the pulse times of arrival (ToAs) derived
from early discovery and follow-up data with the GBT, which
were used by Boyles et al. (2013) and Kaplan et al. (2014), have
now been included in our analysis. The addition of these ToAs
significantly extends our timing baseline into the past, which
now starts on June 23, 2009, and has a length of almost 12 years.
This improves the precision of the measurements of proper
motion, the rate of advance of periastron (ω̇), and, especially,
the derivative of the orbital period, Ṗb.

Finally, we have observed the pulsar with the central beam
of the 19-beam receiver of the Five hundred meter Aperture
Spherical Telescope (FAST, Yao et al. 2021). These FAST data,
taken at a frequency range between 1.0 and 1.5 GHz (40 MHz
at each edge of the band is excised in the data reduction), pro-
vide the best polarimetric profile of PSR J2222−0137 to date,
which is discussed below. The FAST observations will, in the
near future, contribute greatly to improving the timing of this
system.

In this work we address the proximate objective of this long-
term timing project, which is to improve the precision of the
physical parameters of the system, especially the post-Keplerian
(PK) parameters (which quantify, in a theory-independent way,
the observed relativistic effects, such as the aforementioned
Shapiro delay, ω̇, and Ṗb). The ultimate objectives of the project
– improved constraints on the nature of gravitational radiation
and the behaviour of gravity for strongly self-gravitating systems
– will be addressed in subsequent work.

The remainder of the paper is structured as follows: In Sect. 2
we revisit the VLBI astrometry of this pulsar using a coordinate
convention for the pulsar’s orbit that is in full agreement with
that used in pulsar timing. We also derive an absolute position
for the pulsar with more realistic uncertainties. In Sect. 3 we
present the new results on the polarimetry of the pulsar from
a high S/N detection with FAST. In Sect. 4 we describe the
processing of the radio timing data. In Sect. 5 we present the
main timing results, with a detailed review of the different tim-
ing parameters and how they compare with previous estimates.
In Sect. 6 we make a self-consistent estimate of the compo-
nent masses and orbital orientation of the system and compare
these with the VLBI results and the orientation of the pulsar
obtained from the polarimetry. In Sect. 7 we list in detail the
different contributions to Ṗb and estimate the observed excess
variation relative to the GR prediction, which appears to be con-
sistent with zero. Finally, in Sect. 8 we summarise our results and
briefly point to further work on the implications of these timing
results.
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Fig. 1. Geometric parameters to be used throughout the paper according
to the ‘observer’s convention’, which is used throughout the text. For the
description of the fundamental reference frame (axes in yellow) and the
orbital reference frame (axes in blue), see Sect. 2. For the orientation
of the pulsar angular momentum, S, and its magnetic axis, µ, relative to
this frame, see the detailed explanation in Sect. 3. In this figure, S is rep-
resented as being parallel to the direction of the orbital angular momen-
tum, k. This is true for binaries such as PSR J2222−0137, where the
pulsar was fully recycled by mass accretion from the companion and
the companion then evolved into a WD. If the second-formed object
in the system were a NS, then the kick from the supernova event that
formed it might substantially change the orientation of the orbit (and
thus the orientation of k) relative to S and greatly increase its eccentric-
ity. The figure is by Vivek Venkatraman Krishnan.

2. Re-analysis of the VLBI astrometry

2.1. Reference frame

Before describing the re-analysis of the VLBI data, we must
first define the geometric parameters used in this paper. We
use the ‘observer’s convention’, which is assumed for calcu-
lating all kinematic effects in the Damour-Deruelle-Kopeikin
(DDK) orbital model in tempo and the T2 orbital model used
in tempo2. This is different from the convention described by
Damour & Taylor (1992) and used by Kramer et al. (2021) (see
their Fig. 7).

To illustrate this convention, we refer the reader to Fig. 1.
In this figure, the fundamental reference frame is centred at the
centre of mass of the binary and has three axes, depicted in yel-
low: one towards the north (as seen by the observer), the second
points to the east – both of these define the plane of the sky, in
yellow – and the perpendicular direction towards the observer
(n).

The orbital plane is indicated in blue. It crosses the plane of
the sky in the line of nodes. The ascending node is one of the two
points where the pulsar, in its orbital motion, crosses the plane
of the sky, it is the one where its distance from the observer is
increasing. Its opposite point is the descending node. The orbital
reference frame is defined by the three blue axes: the line point-
ing to the ascending node i, a perpendicular direction within the
orbital plane, j, which defines superior conjunction, and finally a

direction perpendicular to the orbital plane, k; which is parallel
to the orbital angular momentum (not represented in the figure).

The full orientation of the orbital plane relative to the refer-
ence is defined by two angles. The first is Ω. This is a ‘position
angle’ (PA); these are measured in the plane of the sky, starting
from the north-pointing axis and then increasing anti-clockwise,
as seen from the observer. Ω is the PA of the ascending node
(the PA of the descending node is given by Ω ± 180 deg). The
second angle, the orbital inclination (i), is the angle between k
and n. We can therefore see that, for i < 90 deg, the line of sight
(LOS) component of the orbital angular momentum would point
towards the Earth.

2.2. Re-analysis of the differential astrometry

In the analysis of Deller et al. (2013), it was assumed that
the vector from the centre of mass to the pulsar (the pulsar’s
‘position vector’) follows the same convention as the angular
momenta: its LOS component is positive when it points to us,
the same sense as n in Fig. 1. This would imply, as described
there, that orbital longitudes are measured from the descending
node. However, and unlike the Damour & Taylor (1992) conven-
tion, the observer’s convention is not coherent in this respect: in
pulsar timing, the LOS component of the position vector – the
geometric component of the quantity measured most directly in
pulsar timing, the time delays of the radio pulses – is always
positive if it points away from us. This means that the orbital
longitudes are always measured from the ascending node.

This prompted us to perform a re-analysis of the VLBI
data, this time using a convention fully in agreement with the
convention used in pulsar timing. We make use of the code
binary_pulsar_MCMC.py4, which infers the pulsar reference
position, proper motion, parallax, and unknown orbital parame-
ters in a Bayesian fashion using the measured VLBI positions
and uncertainties. This contrasts with Deller et al. (2013), in
which the astrometric and orbital parameters and their uncer-
tainties were estimated using bootstrap sampling and linear least
squares fitting. The refined timing ephemeris also allowed us to
place updated prior ranges on the orbital inclination during the
fitting process: The inclination was restricted to 85.25±0.25 deg
or 94.75 ± 0.25 deg, whereas in Deller et al. 2013 only two
values were trialled (86.9 and 93.1 deg). We do not apply any
constraints based on the value of ẋ measured by pulsar timing
(described in subsequent sections).

The numerical values of the resulting parameters and their
symbols, to be used in the remainder of the paper, are presented
in Table 1 together with the earlier estimates, their difference,
and the significance of the change; the position coordinates,
α′ and δ′, are calculated for the same epoch as Deller et al.
(2013), and assuming the same position for the in-beam cal-
ibrator, FIRST J222201−013236 (hereafter J2222−0132); the
results refer to the position of the pulsar as seen from the Solar
System barycentre. Figure 2 shows a correlation plot for these
parameters.

By far the most significant change is that of Ω. Within mea-
surement uncertainties, it is about 180 deg offset from the esti-
mate by Deller et al. (2013). This is consistent with the idea
that, basically, there was an exchange between descending and
ascending node. When doing such an exchange, we find that the
orbital offset of the pulsar relative to the centre of mass in δ′

is nearly symmetric under that change; for that reason, δ′ and

4 https://github.com/adamdeller/astrometryfit/
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Table 1. Barycentric astrometric parameters derived from our re-analysis of the VLBI data on PSR J2222−0137, compared to the orbital-motion-
corrected parameters estimated by Deller et al. (2013) and the difference between the former and the latter.

Measured parameters This work Deller et al. (2013) Difference Significance (sigma)
Epoch (MJD) 55743 55743 – –
Right Ascension, α′ (J2000) 22h:22m:05s.9690982(16) 22h:22m:05s.969101(1) −0s.0000028(16) −1.8
Declination, δ′ (J2000) −01 deg:37′:15′′.72443(4) −01 deg:37′:15′′.72441(4) −0′′.00002(4) −0.5
Absolute Right Ascension, α (J2000) 22h:22m:05s.96907(7) − − −

Absolute Declination, δ (J2000) −01 deg:37′:15′′.725(2) − − −

Proper motion in α, µα (mas yr−1) 44.70(4) 44.73(2) −0.033(38) −0.9
Proper motion in δ, µδ (mas yr−1) −5.69(8) −5.68(6) −0.008(80) −0.1
Parallax, $ (mas) 3.730+15

−16 3.742+13
−16 −0.012(16) −0.7

PA of the ascending node, Ω (deg) 189+19
−18 5+15

−20 184(19) ∼10
Orbital inclinations sampled, i (deg) 85.25 ± 0.25, 94.75 ± 0.25 86.9, 93.1 – –
Derived parameters
Galactic longitude, l (deg) 62.0185
Galactic latitude, b (deg) −46.0753
Ecliptic longitude, λ (deg) 336.7319
Ecliptic latitude, β (deg) 7.9771
Distance, d (pc) 268.1+1.2

−1.1 267.3+1.2
−0.9 +0.7(1.2) +0.7

Total proper motion, µ (mas yr−1) 45.057(38) 45.09(2) −0.033(38) −0.9
PA of proper motion, Θµ (deg, J2000) 97.25(10) 97.24(8) 0.01(10) +0.1
Transverse velocity, vT (km s−1) 57.26(25) 57.1+0.3

−0.2 0.16(25) +0.6

Notes. PA stands for ‘position angle’. The errors on the difference are those of our uncertainty estimate. The estimates of α′ and δ′ do not take
into account the newly derived position for the in-beam calibrator (J2222−0132) or its related uncertainties; these are taken into account in the
estimate of the absolute VLBI position, α and δ (see Sect. 2.3).

µδ are 0.5 and 0.1-σ consistent with the values published by
Deller et al. (2013).

However, this is not exactly true regarding α′: the orbital off-
set in α′ changes somewhat under the inversion (and to a smaller
extent because of the slightly lower orbital inclination we derive
compared to the earlier value by Kaplan et al. 2014). For this rea-
son, it changes by about −1.8σ. It is also for this reason that µα
has the second most significant change, about −0.9σ. The paral-
lax changes by about −0.7σ; from its new value we obtain a new
distance estimate of 268.0(1.2) pc.

2.3. Absolute VLBI position

The pulsar position provided by Deller et al. (2013) can be con-
sidered a relative position (α′ and δ′) with respect to the assumed
position for the primary in-beam calibrator, J2222−0132. In
order to compare with the timing position, an absolute VLBI
position is required.

The absolute barycentric VLBI position of PSR J2222−0137
shown in Table 1 was estimated using the approach described by
Ding et al. (2020). Our values of α and δ are different from the
α′ and δ′ provided by Deller et al. (2013) for two reasons: (1)
The absolute position of J2218−0335, the primary out-of-beam
calibrator, is updated to the most recent estimate5, an update that
directly shifts the absolute position of PSR J2222−0137 by the
same amount, and (2) our estimate of the relative position of
J2222−0132 with respect to J2218−0335 is refined using the
archival VLBI data.

To obtain the uncertainty of α and δ, we have to take
into account three additional contributions on top of the uncer-
tainty in the relative separation between PSR J2222−0137
and J2222−0132: (1) the uncertainty of the absolute posi-
tion of J2218−0335, (2) the uncertainty of the relative posi-

5 http://astrogeo.org/sol/rfc/rfc_2021b/rfc_2021b_cat.
html

tion of J2222−0132 with respect to J2218−0335 and (3) the
unknown frequency-dependent source structure (‘core shift’) of
J2218−0335 between the higher frequencies at which its refer-
ence position is defined and the lower frequencies at which it is
observed here. In Deller et al. (2013), the first term (with a value
of ∼0.1 mas) was assumed to dominate, but we show here that
this is not the case. Using the scatter in the per-epoch positions
of J2222−0132 obtained via phase referencing to J2218−0335
without self-calibration, we conservatively determined that the
second term contributes errors of 0.6 mas in right ascension and
2.3 mas in declination (using a weighted mean of these per-
epoch positions would yield a smaller uncertainty on this mean
absolute position, but one that would depend sensitively on the
assumed input uncertainties). For the core shift contribution, we
adopted 0.8 mas in each direction, which is the median core
shift between 1.5 GHz and 8 GHz reported by Sokolovsky et al.
(2011), and added it in quadrature with other uncertainties.

The uncertainties of α and δ are ∼50 times larger than the
uncertainties of α′ and δ′; this quantifies the difference in preci-
sion of in-beam astrometry and absolute astrometry for this sys-
tem. Future multi-frequency observations targeting J2222−0132
could considerably reduce the uncertainty in α and δ. Regardless,
we note that the estimation of α and δ is independent from (and
has no impact on) α′, δ′, and the other parameters in Table 1,
which are derived purely from in-beam astrometry.

In all our subsequent analysis, when referring to the VLBI
astrometry, we use the re-derived values in Table 1.

3. Pulse polarisation results

We now refer again to Fig. 1 in order to define the angles used to
describe the geometry of the pulsar. We now place the pulsar at
the origin, in order to compare the directions of the orbital and
pulsar vectors. The angle between the magnetic axis of the pulsar
(µ) and the spin axis (S) is known as αp. The closest approach of
µ to the LOS (n) is an angle known as the impact parameter, β;
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Fig. 2. Correlation plots for the astrometric parameters measured by VLBI listed in Table 1. All parameters have well-defined uncertainties,
except for i: Systems with inclinations of 85.25 and 94.75 deg will have nearly identical motions in the plane of the sky. For this reason, the orbital
inclinations were sampled for two intervals that correspond to the best estimate of sin i from timing: 85.0−85.5 deg and 94.5−95.0 deg. We present
the offsets (∆) relative to our best values of α′ and δ′ in the first column of Table 1.

this has to be smaller than the total radius of the pulsar emission
cone (ρ), otherwise the pulsar beam does not intersect our LOS.
Thus, the angle between S and n is known as ζ, and is given by
αp +β. The polarisation angle ψ is the PA of the projection of the
spin axis of the pulsar in the plane of the sky, Sp. If the spin axis
of the pulsar is aligned with the orbital angular momentum, then
ζ = i and ψ = Ω + 90 deg.

In Fig. 3 we present a high-sensitivity (S/N = 23 000),
high-resolution pulse profile of PSR J2222−0137 obtained with
FAST at a central frequency of 1250 MHz, the integration time
is 1735 s. The observing setup and data reduction is similar to
that described by Yao et al. (2021). This profile is shown in the
PSR/IEEE convention (van Straten et al. 2010).

The quality of the profile not only allows the resolution of a
number of features in the total, linear, and circular intensity but
also reveals a number of faint profile components. Firstly, the
main pulse shows polarised low-intensity components on both
its leading and trailing side. Secondly, and most crucially, the
sensitivity of FAST also uncovers a faint interpulse component
separated from the main pulse by about half a period. The detec-
tion of these faint components is not a mere curiosity; it reveals

the large-scale dipolar structure of the magnetic field of the pul-
sar, which is crucial for a determination of its geometry.

Inspecting the profile, the sense reversal of Stokes V (cir-
cular polarisation) underneath the main peak suggests that this
longitude range can be identified with the location of the fidu-
cial plane that is defined by the spin vector, the magnetic axis
and the direction of the observer (see e.g., Lorimer & Kramer
2005). At the same time, the sudden drops in linearly polarised
intensity, combined with the very rapid variation in V resolved
in the FAST profile, reveal the existence of orthogonal polarisa-
tion modes (OPMs). These are clearly responsible for the large
variation in the PA of the linear polarisation at these longitudes,
which we mark in grey in Fig. 3.

Overall, however, the PA swing under the main pulse shows
a positive slope, which in terms of the ‘rotating vector model’
(RVM; Radhakrishnan & Cooke 1969) implies a negative value
of β. This is confirmed by a blind fit of the RVM to the black
PA values, which results in the solid black line shown in the
bottom panel of Fig. 3. The grey PA points corresponding to
the rapid changes in PA and V are ignored here, even though
including those PA values does not change the overall result.
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Fig. 3. Polarisation profile as observed with FAST at a central frequency
of 1250 MHz, averaged over a bandwidth of 420 MHz. Top panel: total
intensity (black), the linear intensity (red), and circular polarisation
(blue) as a function of longitude. The inset shows an enlarged version
of the main pulse. Middle panel: low intensity level of the profile across
the full rotational period, revealing the existence of an interpulse that
is separated from the main pulse by about half a period. Bottom panel:
values of the PA of the linear emission as a function of the longitude.
An RVM has been fitted to the black PA values. The result is shown
as a solid black line, while the dashed line indicates the RVM solution
separated by 90 deg.

Instead, the presence of the interpulse with well-defined PA val-
ues provides important leverage and helps to break the usu-
ally existing co-variances between the RVM parameters (see
e.g., Johnston & Kramer 2019).

We determine the geometry of the pulsar by fitting the RVM
model using a Bayesian optimisation method as described by
Johnston & Kramer (2019) and Kramer et al. (2021). Using uni-
form priors, we derive ζ, β, as well as Φ0 (the location of
the aforementioned fiducial plane relative to an arbitrary refer-
ence longitude on the neutron star; see Fig. 3) and the abso-
lute PA defined by the linear polarisation at Φ0, ψ0. The code
we used allows for the possible existence of OPMs, and indeed
a number of PA values, especially those of the interpulse, fol-
low an RVM swing (dashed line) that is separated from the main
pulse swing (solid line) by 90 deg. This observation, that main
pulse and interpulse emit in different modes, is quite common
(Johnston & Kramer 2019).

The mean and 99% percentiles of the posterior distribution
for these quantities are well defined and symmetric. They are
ψ0 = 40(1) deg, Φ0 = 188.8(6) deg, ζ = 84.0(8) deg, and
β = −7.2(6) deg; thus, α = 77(1) deg. We refer to Kramer et al.

(2021) for a critical discussion of the assumptions and reliability
of RVM fits in this context.

Apart from ζ, the second parameter that defines the 3D ori-
entation of the pulsar spin is ψ. To determine it, we first remark
that ψ0 is measured at 1250 MHz (i.e., after it has been affected
by Faraday rotation in the interstellar medium). Taking the rota-
tion measure and its uncertainties into account, we obtain the
de-rotated PA ψ′0 = 30(10) deg. Because of the aforementioned
OPMs, ψ′0 can differ from ψ by 0,±90 deg. Thus ψ can have the
following values: −60(10), 30(10) and 120(10) deg.

Regarding the fidelity of polarisation measurements with
FAST, we conducted tests on the centre beam of the FAST 19-
beam system by observing some bright millisecond pulsars and
solving for the full Muller matrix based on their known polar-
isation profiles. We found the cross-coupling between the two
polarisations to be smaller than 1%. When tracking an object
such as PSR J2222−0137, the FAST telescope measures and
maintains the orientation of its 19-beam receiver at a fixed angle
on the sky with a precision better than 0.1 degrees. Therefore,
the systematic errors in the polarimetry of the 19-beam observ-
ing system should be negligible in our observations.

We now compare the polarisation profile from FAST with
that presented by Cognard et al. (2017), which was taken with
the Nançay Ultimate Pulsar Processing Instrument (NUPPI).
There, we see the same modest degree of linear and circular
polarisation; however, both the PA swing and the sign of the cir-
cular polarisation differ. We identify this change with a swap
in the previous NUPPI data in both Stokes Q and V . Indeed,
this was discovered before the FAST polarimetric data became
available by a comparison of the NUPPI polarimetric profiles
of other pulsars with previously published pulse profiles (see
Guillemot et al., in prep.). New NUPPI data agree with the
data presented here, albeit with lower sensitivity. Even though
the PA swing presented by Cognard et al. (2017) showed the
opposite sense to that shown here, an estimate of the geome-
try led to the same results (with much larger uncertainty), the
reason is that instead of the PSR/IEEE convention, that work
used the RVM convention, which reversed the sign of β a second
time.

Finally, we can also compare the FAST profile to the recently
published MeerKAT data (Kramer et al. 2021). The time resolu-
tion of the profile shown here is a factor of ∼20 better, so that
the MeerKAT PA swing is smeared out in comparison and there-
fore appears to be different. We confirmed the consistency and
correctness of both results by smearing the FAST data to the
MeerKAT resolution.

4. Processing of the timing data

The timing observations used for this project are summarised in
Table 2. As in Cognard et al. (2017), the reduction of our timing
data (mainly radio frequency inference mitigation and polarisa-
tion calibration) was performed using the psrchive package6

(Hotan et al. 2004). For the observations and data analysis of the
GBT data, we refer the reader to Kaplan et al. (2014). Here we
used the 820 MHz and the L-band ToAs only, as these are the
most extensive and useful datasets; the addition of the smaller
P- and S -band ToA sets does not change any parameters
noticeably, only increasing the complexity of the analysis.
In what follows, we describe the improvements of the data
analysis.

6 http://psrchive.sourceforge.net/
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Table 2. Observations of J2222−0137 and data reduction parameters.

Telescope Effelsberg GBT-820 GBT-1500 Lovell Nançay L Nançay S

Start of observations (MJD) 57321 55005 55600 56251 56191 56204
End of observations (MJD) 59236 55639 55921 59336 59215 59059
Bandwidth (MHz) 200/400 200 800 400 512 512
Bandwidth per ToA (MHz) 50 200 800 80 64 64
Centre frequency (MHz) 1400 820 1500 1532 1484 2539
Number of ToAs used in solution 3228 106 783 1157 5138 360
Time per ToA (s) 900 variable 60/360 600 600 600
Weighted residual rms (µs) 2.27 4.16 2.40 9.33 2.90 12.31
EFAC 0.85 1.50 1.72 1.10 0.82 0.97

Notes. GBT: Green Bank Telescope.

4.1. Derivation of the pulse times of arrival

As mentioned in Sect. 3, we now have a better understanding
of the polarisation characteristics of the Nançay telescope. In
order to take full advantage of these new polarimetric profiles,
we used the matrix template matching (MTM) method imple-
mented in the PAT routine of psrchive (van Straten 2006) to
derive ToAs from the Nançay, but also from the Effelsberg data.
In addition to the total intensity, the MTM method exploits the
timing information available in the polarisation of the pulsar sig-
nal, by modelling the transformation between two polarised light
curves in the Fourier domain.

This method seems to overestimate the ToA uncertainty to
some extent (we had to multiply the ToA uncertainties from
these two datasets by numbers smaller than 1 in order to obtain
a reduced χ2 of 1.0, see Table 2). However, it helped achieve a
reduction of the root-mean-square (rms) of the timing residuals
(which are the ToA minus the model prediction for its rotation
number): The current weighted residual rms of 2.8 µs is signifi-
cantly better than the global weighted rms of 3.4 µs reported by
Cognard et al. (2017).

4.2. Dispersion measure model

Another change is the use of the piecewise-constant function
(‘DMX’ model, Demorest et al. 2013) to describe the disper-
sion measure (DM) variations. In Cognard et al. (2017), a sim-
ple model using the DM and its first derivative was used. As we
describe later in the paper, there are DM variations on relatively
short timescales (tens of days), which are not captured by any
simple model with a few DM derivatives and are large enough to
influence our measurements of parameters that have long-term
time signatures, like the spin period, its derivative, the position
and especially the proper motion. For this reason, we used the
DMX model. Our DMX model does not fit for a DM offset for
the earlier GBT data since for those a single ToA was produced
for the whole band.

4.3. Timing analysis and orbital models

The timing analysis is performed with tempo7, using the lat-
est available version, 13.103. The telescope ToAs are first con-
verted to the Bureau International des Poids et Mésures 2019
(BIPM2019) timescale, and then converted to the Solar Sys-
tem barycentre using a) the latest information on the Earth rota-
tion (the Universal Time) provided by the International Earth

7 https://sourceforge.net/projects/tempo/

Rotation Service and b) the Jet Propulsion Laboratory’s DE440
solar system ephemeris (Park et al. 2021). The resulting tim-
ing parameters are presented in Barycentric Dynamical Time
(TDB). We use three orbital models to describe the orbital
motion of the pulsar and the propagation of the radio signals
to the Earth, all based on the Damour & Deruelle (DD) timing
model (Damour & Deruelle 1986).

The first, the general relativity version of the DD model
(DDGR), is a theory-dependent model that assumes the valid-
ity of GR and fits directly for the total mass of the system (M)
and the companion mass (Mc). This model does not do a fully
coherent analysis of the kinematic information.

The second, DDK, is a theory-independent model that takes
into account the kinematic effects described by Kopeikin (1995,
1996) and implemented in tempo by Ingrid H. Stairs. We used
this particular model as the basis of a self-consistent Bayesian
analysis of the system, which also assumes the validity of GR.

The third, ELL1H+, is a theory-independent model based
on the low-eccentricity approximation of the DD model known
as ELL1 (Lange et al. 2001). Instead of the Keplerian orbital
parameters of time of passage through periastron (T0), longitude
of periastron (ω), and orbital eccentricity (e) used in the DDGR
and DDK models, the ELL1 and ELL1+ models use the times
of ascending node (Tasc), and the Laplace-Lagrange parameters
ε1 = e sinω and ε2 = e cosω. For the ELL1H+ model, we imple-
mented the orthometric parameterisation of the Shapiro delay
using its exact expression, Eq. (31) of Freire & Wex (2010).

The latest versions of the third model (referred to with the +
sign) include extra terms for the expansion of the Rømer delay
in orbital harmonics of order xe2 (Zhu et al. 2019); these were
implemented in tempo distributions 13.102 and later. Thus, and
unlike the original ELL1 model, the new ELL1+ and ELL1H+
models can describe the orbit of PSR J2222−0137 well: The
neglected xe3 terms of the Rømer delay are of the order of 0.6 ns,
a quantity that is small in comparison with our timing precision.
The advantage of these models is the avoidance of the strong cor-
relation between T0 andω observed in the DD-like models. Also,
by re-defining Pb as the time between passages through ascend-
ing node, we avoid its strong correlation with ω̇ seen in the DD-
like models. Finally, by using the orthometric parameterisation,
we avoid the large correlation between the Shapiro delay param-
eters r and s seen in the DD, DDK, and ELL1+ models (−0.86 in
our timing); the correlation between the orthometric parameters
is −0.54.

This lack of correlations has practical advantages: as we see
below, for PSR J2222−0137, the Tasc and Pb measured in the
ELL1H+ model are, respectively, ∼5400 and ∼4040 times more
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precise than the T0 and Pb measured by the DDGR and DDK
models. This has a consequence: we can state these parameters
to their actual precision and still retain enough accuracy in the
description of the orbital motion to do the timing. The DDGR
and DDK values of T0 and Pb in Table 4, also stated to their own
uncertainties, are not precise enough for this purpose8.

4.4. Template alignment

Another important improvement in the data analysis was the use
of pulse profile templates that have consistent phase definitions
for all our datasets. In this way, the ToAs refer to a consistent
longitude of the NS.

Normally, when combining data from different telescopes,
the different datasets are not entirely consistent, because of dif-
ferent delays in the signal paths of the different observing sys-
tems. In order to take that into account, an arbitrary time offset
∆t between datasets is fitted; this is done in tempo by bracket-
ing the ToAs from a particular observing system with two JUMP
statements. In a first iteration, tempo assumes these are phase
offsets, unless they are provided by the ephemeris. Thus, no esti-
mates of ∆t are taken into account at this stage. At the end of
that first iteration, these phase offsets are converted into the val-
ues of ∆ts, which are then added to the ToAs of the different
datasets in subsequent iterations. These values should accurately
characterise the different delays between the different observing
systems.

However, if the templates have no consistent phase defini-
tions, these ∆ts will be biased. We imagine two datasets taken at
the same observing times, where the second has an extra signal
delay relative to the first given by ∆t. The ToAs for both datasets
are derived with two different templates, where the second has a
phase difference of −0.5 < ∆φ < 0.5 relative to the first. At the
end of the first tempo iteration, the total observed phase differ-
ence between the two datasets is converted into a time offset for
the second dataset (relative to the first) given by ∆t′ = ∆t + ∆φP
(where P is the spin period of the pulsar). In subsequent iter-
ations this biased estimate is added to the ToAs of the second
dataset.

This has implications for our measurement of the orbital
motion. If we measure Tasc for both datasets separately, without
providing any time offsets (as in the first tempo iteration), we
find that the second Tasc will differ from the first by ∆Tasc = ∆t.
If we do a second iteration where we use the previously deter-
mined ∆t′s, we find that ∆Tasc = ∆φP.

This is not a problem if the uncertainty of this measurement,
δTasc, is larger than ∆Tasc. If δTasc < ∆t, then the orbital phases of
the two datasets are not consistent at the first iteration, a normal
situation that gets fixed in following iterations with the ∆t esti-
mates. However, if δTasc < ∆φP, then this also happens for the
second and following iterations. In particular, if ∆φP > ∆t, we
even have a degradation of the quality of the tempo fit between
the first iteration (which assumes all differences are phase off-
sets, including ∆t) and later iterations (which assume all differ-
ences are time offsets, including ∆φP). This does provide an easy
way of diagnosing the problem, and is indeed is how we identi-
fied it in the first place.

For PSR J2222−0137, a template misalignment of 1/3 in spin
phase – typical of the misalignments still present in the analysis

8 For this reason, timing solutions based on the DD and DDGR models
are often published with many more digits for ω and T0 than indicated
by their uncertainties; occasionally this is also done for Pb in case of a
significant measurement of ω̇.

of Cognard et al. (2017) – yields ∆Tasc = ∆φP ∼ 10 ms. For
δTasc we have a value of 0.17 ms (see Table 3). Therefore, for
this pulsar it is important to align the profiles to a phase precision
of at least δTasc/P = 0.005. One can alternatively make tempo
run with a single iteration, but this is only safe to do if we know
in advance that, for all datasets, ∆t < δTasc.

Fixing this problem resulted in a major improvement in our
timing of this pulsar. First, there was no longer a degradation by
∼1000 of the χ2 from the first to the second tempo iterations -
all stayed at consistent values close to that of our best solution,
χ2 ∼ 10628. Furthermore, once this alignment was done, we no
longer needed to introduce added errors in quadrature to the dif-
ferent ToA datasets (this is done in TEMPO with EQUAD state-
ments; their numerical values are in Table 1 of Cognard et al.
2017); this has contributed to the decrease in the residual rms
mentioned above. Finally, the FD (frequency-dependent) param-
eters, which describe non-dispersive variations in the ToAs with
radio frequency (see Table 2 of Cognard et al. 2017) also became
unnecessary. The excellent quality of the first iteration implies
that a single iteration without predetermined time offsets is fine
and that, therefore, all our datasets have ∆t < δTasc.

A final improvement in the timing analysis will be described
below, when we analyse the Shapiro delay and the reasons for
the lower mass values derived by Kaplan et al. (2014).

5. Timing results

The timing parameters resulting from the different timing mod-
els listed above are given in Tables 3 and 4. In Table 3, we present
the parameters of the ELL1H+ model, either fitting for position
and proper motion or assuming the VLBI proper motion derived
in Sect. 2. Table 4 shows the orbital parameters derived with the
DDGR and DDK models, and the results of the self-consistent
Bayesian grid obtained with the DDK model, all derived assum-
ing the VLBI proper motion.

Figure 4 shows the residuals obtained with the ELL1H+
model where we fit for position and proper motion. For the
10772 ToAs used in our analysis, we obtain a weighted rms
residual of 2.781 µs and a reduced χ2 of 1.0051. The rms residu-
als for the individual observing systems are presented in Table 2,
where we also listed the multiplication factor (this is done in
TEMPO with EFAC statements) for the ToA uncertainties in
order to achieve a reduced χ2 of 1 for each dataset.

In what follows, we call the reader’s attention to the more
important timing parameters. We also make some compar-
isons between our results and those presented by Cognard et al.
(2017). Since the systematic issues discussed in Sect. 4.4 were
still present in that earlier analysis, some of the differences in the
values reported by both works are significant, particularly on the
ẋ parameter.

5.1. Astrometric parameters

All positions reported in Table 3 are barycentric positions mea-
sured at MJD = 55743, making them directly comparable with
the VLBI positions in Table 1. Below α and δ, we list their off-
sets relative to the VLBI absolute values in Table 1. Unlike the
analysis presented by Cognard et al. (2017), these are consistent
with zero for all cases. The primary reason is the more realis-
tic uncertainty estimates for the absolute position presented in
Sect. 2. Because the timing position is more precise, we fit for it
from now on.

First, as Cognard et al. (2017), we use a simple description
of the variation in the DM, which employs a small number
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Table 3. Parameters for the PSR J2222−0137 binary system.

Fit for PM Fit PM, DMX model VLBI PM, DMX model

General timing parameters
Right Ascension, α (J2000) 22h:22m:05s.969071(4) 22h:22m:05s.969046(12) 22h:22m:05s.969040(11)
Offset in α, ∆α (J2000) 0s.00001(7) −0s.00002(7) −0s.00003(7)
Declination, δ (J2000) −01 deg:37′:15′′.7267(1) −01 deg:37′:15′′.7257(5) −01 deg:37′:15′′.7251(4)
Offset in δ, ∆δ (J2000) −0′′.0015(23) −0′′.0005(24) +0′′.0001(23)
Proper motion in α, µα (mas yr−1) 44.61(3) 44.66(5) 44.70
Proper motion in δ, µδ (mas yr−1) −5.26(5) −5.46(12) −5.69
Parallax, $ (mas) 3.730 3.730 3.730
Spin frequency, ν (Hz) 30.4712137997270(1) 30.4712137997271(1) 30.4712137997271(1)
Spin frequency derivative, ν̇ (10−17 Hz s−1) −53.879(2) −53.895(2) −53.896(2)
Dispersion measure, DM (pc cm−3) 3.2826(2) 3.2805 3.2805
DM derivative, DM1 (pc cm−3 yr−1) −0.00016(5) − −

DM derivative, DM2 (pc cm−3 yr−2) 0.00015(3) − −

DM derivative, DM3 (pc cm−3 yr−3) −0.000005(6) − −

Weighted residual rms (µs) 2.781 2.756 2.759
χ2 10799.74 10609.25 10629.20
Reduced χ2 1.0051 0.9918 0.9935
Binary parameters
Orbital period, Pb (days) 2.445759995469(5) 2.445759995475(6) 2.445759995471(6)
Projected semi-major axis of the pulsar orbit, x (lt-s) 10.8480212(2) 10.8480213(2) 10.8480213(2)
Time of ascending node, Tasc (MJD) 58001.200912600(2) 58001.200912601(2) 58001.200912600(2)
ε1 0.00032837(1) 0.00032836(2) 0.00032836(2)
ε2 −0.000193085(8) −0.000193095(9) −0.000193092(9)
Rate of advance of periastron, ω̇ (deg yr−1) 0.09668(44) 0.09611(48) 0.09607(48)
Orthometric amplitude of Shapiro delay, h3 (µs) 5.052(24) 5.047(27) 5.052(27)
Orthometric ratio of Shapiro delay, ς 0.9210(13) 0.9215(14) 0.9212(14)
Variation in Pb, Ṗb,obs (10−12 s s−1) 0.2586(69) 0.2482(76) 0.2554(74)
Variation in x, ẋ (10−15lt-s s−1) −7.88(45) −8.21(49) −8.00(49)
Derived parameters
Pulsar spin period, P (s) 0.0328178590643790(1) 0.0328178590643789(1) 0.0328178590643789(1)
Spin period derivative, Ṗ (10−21 s s−1) 58.028(2) 58.046(2) 58.047(2)
Intrinsic period derivative, Ṗint (10−21 s s−1) 17.1(3) 17.0(3) 16.9(3)
Surface magnetic field strength, B0 (109 G) 0.76 0.75 0.75
Characteristic age, τc (Gyr) 30.4 30.6 30.8
Spin-down energy, Ė (1030 erg s−1) 19.1 19.0 18.8
Mass function, f (M�) 0.22914303(1) 0.22914304(1) 0.22914303(1)
Pulsar mass, Mp (M�) 1.81(3) 1.81(3) 1.81(3)
Companion mass, Mc (M�) 1.313(9) 1.310(9) 1.312(9)
Total binary mass, M (M�) 3.13(3) 3.12(3) 3.12(3)
Orbital inclination, i (deg) 85.29(8) 85.32(9) 85.30(9)
Intrinsic Ṗb, Ṗb,int (10−12 s s−1) −0.005(7) −0.016(8) −0.010(8)

Notes. Timing parameters derived using tempo when fitting for proper motion and DM derivatives (left column), fitting for proper motion and
using DMX model (middle column), fixing proper motion at VLBI value and using the DMX model (right column). In all columns we use the
VLBI parallax (see text). The α and δ offsets are calculated relative to the VLBI positions (see Table 1). The binary parameters are derived using
the ELL1H+ orbital model. Numbers in parentheses represent 1σ uncertainties in the last digits. The reference epoch is MJD = 58000, and the
position epoch is MJD = 55743 for consistency with Deller et al. (2013) and the analysis in Sect. 2.

of DM time derivatives. If we fit for parallax, proper motion,
and position simultaneously, we obtain a timing parallax of
3.710(79) mas, which is in near perfect agreement with the VLBI
parallax, $ = 3.730+0.015

−0.016 mas. Our timing parallax is ∼4 times
more precise than that of Cognard et al. (2017), but its uncer-
tainty is still ∼6 times larger than the VLBI parallax. For this
reason, we use the VLBI parallax from now on.

In the first column of Table 3 we fit for the proper motion
and DM derivatives. In this case, we get a χ2 of 10799.74.
The proper motion is µα = 44.61(3) mas yr−1 and µδ =
−5.26(5) mas yr−1. Compared to the VLBI proper motion in the
third column, the differences are ∆µα = −0.09(5) mas yr−1 and
∆µδ = 0.43(9) mas yr−1, which are ∼2σ and ∼5σ significant,
respectively.

We have found that there are DM variations on short
timescales which could affect the astrometric parameters. In

order to take these short-term DM variations into account, we
use the DMX model, fitting for a DM offset for ToAs within
gaps of 60 days, the resulting DM offsets are depicted in the top
panel of Fig. 4. This interval was chosen and adhered to before
a detailed consistency analysis of all the PK parameters. The
results are presented in the second column of Table 3, where we
still fit for proper motion. This causes a very significant decrease
in the χ2, to 10609.25, but also causes (predictably) a degrada-
tion in the precision of all other timing parameters, especially
the position and proper motion. The difference of this proper
motion to the VLBI values is ∆µα = −0.04(6) mas yr−1 and
∆µδ = 0.23(14) mas yr−1 (i.e., they are 2σ consistent).

Finally, in the third column, we also use the DMX model
but assume the more precise VLBI proper motion, as in all sub-
sequent discussions. In this case, the χ2 increases to 10629.20.
This causes changes in the remaining parameters within their
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Table 4. Orbital parameters for PSR J2222−0137.

Orbital model DDGR DDK DDK Bayesian grid
Weighted residual rms (µs) 2.759 2.772 –
χ2 10629.32 10627.89 –
Reduced χ2 0.9934 0.9934 –
Orbital period, Pb (days) 2.44576436(2) 2.44576437(2) –
Projected semi-major axis, x (lt-s) 10.84802354(10) 10.8480235(2) –
Epoch of periastron, T0 (MJD) 58002.019280(10) 58002.01928(1) –
Orbital eccentricity, e 0.00038092(1) 0.00038092(1) –
Longitude of periastron, ω (deg) 120.458(1) 120.458(2) –
Total mass, Mtot (M� ) 3.135(19) – 3.150(14)
Companion mass, Mc (M� ) 1.3153(56) 1.315(12) 1.3194(40)
Rate of advance of periastron, ω̇ (deg yr−1) – 0.09605(48) –
Derivative of Pb, Ṗb (10−12 s s−1) 0.2634(74) (a) 0.2509(76) –
Derivative of x, ẋ (10−15 lt-s s−1) −7.76(48) – –
Orbital inclination (deg) – 85.284(87) 85.269(41)
Position angle of line of nodes, Ω (deg) – 191.3(7.0) 187.7(5.7)
Derived parameters
Mass function, f (M� ) 0.229142359(10) 0.229142358(12) –
Pulsar mass, Mp (M� ) 1.820(14) – 1.831(10)

Notes. Binary parameters and 1σ uncertainties derived from tempo, in Barycentric Dynamical Time (TDB). In both models, we used the DMX
dispersion model and the proper motion measured from VLBI. For the DDK model, we used the Einstein delay (γ) calculated by the DDGR model;
this is necessary for unbiased estimates of Ω and i (see Sect. 5.5). (a)Fitted as an extra contribution to the relativistic Ṗb in the DDGR model.

1σ uncertainties, which is expected from the consistency of
the proper motion. Nevertheless, a more precise VLBI proper
motion will be important to help with future timing of this sys-
tem.

5.2. Shapiro delay

The Shapiro delay was first detected by Kaplan et al. (2014),
who used it to obtain Mp = 1.20(14) M� and Mc = 1.05(6) M�.
However, Cognard et al. (2017) found improved and signifi-
cantly larger masses: Mp = 1.76(6) M� and Mc = 1.293(25) M�.

In this work, we obtain an unusually precise measurement of
the Shapiro delay: h3 is 187-σ significant (i.e., an uncertainty of
about 27 ns, which is 0.53% of the measured value); ς is mea-
sured with a relative uncertainty of 0.152%. Without the Shapiro
delay, the residuals would have large trends (see Fig. 5). Assum-
ing GR, we obtain: Mp = 1.81(3) M�,Mc = 1.312(9) M� and
i = 85.30(9) deg or i′ = 94.70(9) deg, respectively. The total
system mass is M = 3.12(3) M�. These results are 1-σ consistent
with the mass measurement in Cognard et al. (2017) but more
than twice as precise.

The addition of the early GBT data allows an investiga-
tion of the reasons for the low masses derived by Kaplan et al.
(2014). As it turns out, this is not caused by the correlation
between Shapiro delay and ω̇ in the GBT data, as suggested by
Cognard et al. (2017), although that correlation, already iden-
tified by Kaplan et al. (2014), is real. Our much longer timing
baseline, with its far better constrained timing parameters, has
helped identify a set of six ToAs in the GBT 820 MHz data
(taken on June 28, 2009) that have extra delays of 30–40 µs (i.e.,
∼1/1000th of a full rotation). The causes for these extra delays
have not been found, but they are highly significant, since they
are systematic and much larger than the uncertainties of those
ToAs. If we exclude those ToAs, then the Shapiro delay and ω̇
obtained with the GBT data alone are in 1-σ agreement with the
values obtained by Cognard et al. (2017). If we do not exclude

them, then the masses we obtain with the GBT dataset are in near
agreement with the values obtained by Kaplan et al. (2014).

The exclusion of these six ToAs has caused a significant
decrease in the reduced χ2 associated with the GBT data:
Kaplan et al. (2014) needed to increase the uncertainty estimates
of their ToAs by a factor of 2.7 in order to achieve a reduced χ2

of 1. With the exclusion of those six ToAs, we can achieve the
same using factors of 1.50 and 1.72 only (see the EFAC factors in
Table 2); and did this with a timing solution that is strongly con-
strained by nine years of subsequent data. These smaller EFAC
factors are much more commonly found in the timing of recycled
pulsars. We are therefore confident that we have found the rea-
son for the much lower mass estimates reported by Kaplan et al.
(2014).

5.3. Advance of periastron

From our timing we derive ω̇obs = 0.09607(48) deg yr−1. This
is ∼6 times more precise than the measurement obtained by
Cognard et al. (2017), ω̇obs = 0.1033(29) deg yr−1; however, the
difference is ∼2.5-σ significant. This is caused by the problem
mentioned in Sect. 4, the use of inconsistent definitions of spin
phase for the different datasets.

For the masses obtained from the Shapiro delay, GR pre-
dicts ω̇GR = 0.09576(67) deg yr−1. Thus, our new measure-
ment agrees with ω̇GR within 1σ. Therefore, the same applies
to the total mass of the system derived from both methods:
assuming GR, we obtain from ω̇obs M = 3.139(16) M�. This
represents a successful and precise (∼1%) test of GR. This is
illustrated in Fig. 6 by the fact that all mass constraints from
the different PK parameters intersect in the same regions of the
diagrams.

This statement relies on the fact that the ω̇obs is relativis-
tic. As discussed by Cognard et al. (2017), the largest additional
contribution to ω̇obs, which is caused by the proper motion of
the system, is of the order of a few times 10−6 deg yr−1 (i.e.,
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Fig. 4. Twelve-year timing data of PSR J2222−0137, for the ELL1H+ timing model where we used the DMX model and fit for position and proper
motion (middle column in Table 3). Top panel: DM offsets relative to the reference DM (3.2805 cm−3 pc) as a function of date. Middle and bottom
panels: timing residuals as a function of date (middle) and orbital phase (bottom, measured from ascending node). The residuals are displayed with
different offsets for each instrument: EFF – Effelsberg; JB – Lovell telescope (Jodrell Bank); NCY-S – Nançay at the S band; NCY-L – Nançay at
the L band; GBT-820 – GBT at 800 MHz; and GBT-1500 – GBT at 1500 MHz.

about 100 times smaller than the current measurement uncer-
tainty). Therefore, the assumption that ω̇obs is relativistic is fully
warranted. This also means that, in the near future, improved
measurements of ω̇ will translate directly in a better constrained
M which, as we can see in the right panel of Fig. 6, will also
yield improved component masses.

We can use the DDGR model to combine ω̇ with the Shapiro
delay and obtain self-consistent and more precise mass mea-
surements; doing this we obtain M = 3.135(19) M�,Mp =
1.820(14) M� and Mc = 1.315(6) M�. These values are 1.5 times
more precise but slightly larger than the value derived from
Shapiro delay only. The χ2 for that fit is nearly identical to that
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Fig. 5. Residuals as a function of the orbital phase for the same ephemeris as Fig. 4. Top panel: we display the residuals predicted by the model
but without taking into account the Shapiro delay. Lower panel: we see the same while fitting for other Keplerian parameters. As we see, some of
the Shapiro delay is absorbed by this fit, but some still remains; this remnant represents the ‘measurable’ part of the Shapiro delay; this is given, in
the limit of perfect orbital sampling, by Eq. (31) of Freire & Wex (2010). In this plot, the Nançay residuals are displayed in black, the Effelsberg
residuals in red, and all others in grey, all without error bars for the sake of clarity.
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Fig. 6. Mass-mass diagram of J2222−0137. In the main panel on the left we display the cos i −Mc plane, and on the right we display the Mp −Mc
plane; the grey region is excluded by the constraint sin i ≤ 1. The black contours indicate the 68.3% and 95.4% confidence region derived from
a 3D χ2 map of the cos i − Ω − M plane using the DDK orbital model combined with GR equations. The constraints (according to GR) from
h3, ς, and ω̇ in the ELL1H+ model are shown in blue, green, and red lines, respectively, where the solid and dotted lines indicate the nominal and
±1σ measurements. The fact that they all meet in the same regions of these planes represents a ∼1% test of GR, which the theory passes. The
side panels display the 1D PDFs for cos i (top left), Mp (top right), and Mc (right), with the median value and the 1σ and 2σ confidence intervals
indicated as vertical lines.

of the best ELL1H+ model, indicating again the self-consistency
of the relativistic effects.

5.4. Variation in the projected semi-major axis of the pulsar’s
orbit

Relative to Cognard et al. (2017), the orbital parameter that has
had the most significant change was the rate of change of the pro-

jected semi-major axis, ẋ: When they assume the VLBI proper
motion, they obtain ẋ = 3.5(30) × 10−15 lt-s s−1, our new value
is −7.76(48)× 10−15 lt-s s−1; the change is 3.8-σ significant. The
uncertainty has decreased by a factor of six.

The observed value of ẋ is dominated by the secular
change of the orbital inclination caused by the proper motion
(Arzoumanian et al. 1996; Kopeikin 1996):

ẋPM = x µ cot i sin(Θµ −Ω). (1)
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Fig. 7. Orbital orientation constraints for PSR J2222−0137. In the main
panel we display the cos i − Ω plane, where randomly aligned orbits
will have a priori constant probability density. The black contours show
the 68.3% and 95.4% confidence region derived from a 3D χ2 map of
cos i−Ω−M space using the DDK model with the additional assumption
that GR is the correct theory of gravity. The solid red lines indicate the
regions that are consistent with the nominal and ±1σ measurements of
ẋ, and the dashed vertical lines indicate the position of ς obtained in the
ELL1H+ model. The dashed horizontal lines show the value of Ω from
VLBI observations. The side panels display the 1D PDFs for cos i (top)
and Ω (right). The solution with positive cos i has 99.66% of the total
probability.

Assuming the values of Ω and Θµ in Table 1 and of x, µ and i
in Table 3, we obtain ẋk = ±6.12 × 10−15 lt-s s−1, where the sign
depends on whether i′ = 94.70(9) deg or i = 85.30(9) deg. The
magnitude of this effect is very close to maximal, since there is
an angle of very nearly 90 deg between Θµ and Ω.

In Fig. 7 we present the constraints on the orbital inclination
and Ω derived from this measurement. The ẋ curves do not inter-
sect the constraint on cos i, but they come close in two regions,
Ω ' 7 deg, i = 94.7 deg, and Ω ' 187 deg, i = 85.3 deg
(Regions 1 and 2 in Table 6). This lack of an intersection reflects
the fact that the difference between the most negative ẋ possible
and the observed value is −1.64(48) × 10−15 lt-s s−1, a difference
that is 3.4σ significant. This is a robust result in all our fits: the
ẋ is not strongly correlated with any other timing parameter.

We now look into possible causes for this discrepancy. In
Lorimer & Kramer (2004), there is an extensive list of effects
that can contribute to the observed ẋ, these are: ẋGW, the vari-
ation in x caused by the orbital decay due to the emission of
gravitational waves, ẋḊ, which is caused by the variation in the
Doppler shift of the system D (analogous to the kinematic effect
on Ṗb discussed in Sect. 7), ẋA, which is caused by a change in
the aberration due to spin precession, which is itself caused by
spin-orbit coupling, and ẋSO, the change of the orbital inclination
also due to the spin-orbit coupling. The spin-orbit coupling has
several classical and relativistic terms caused by the rotations of
the pulsar and of the companion. Finally, the ẋṁ is caused by
mass loss.

We calculated these terms systematically; the results are also
given in Table 5. For the mass loss contribution to ẋ, we assumed

Table 5. Contributions to ẋ of PSR J2222−0137.

ẋobs −7.76(48)

|ẋPM| 6.12
ẋGW −0.00028
ẋḊ +0.0092
|ẋA| .0.001 for θp < 10 deg

.0.005 (from ζ in Sect. 3)
|ẋSOp| .0.2 sin θp
|ẋSOc| .0.03 sin θc (Pc[h])−1

ẋṁ +0.0000000496
ẋγ −0.209

Notes. Theoretical expectations for the different contributions to ẋ. All
in units of 10−15 lt-s s−1. The last term will only contribute to ẋobs in
orbital models that do not account for the Einstein delay, γ.

the spin-down energy of the pulsar. The ẋA term depends on the
misalignment angle between the angular momentum of the pul-
sar and the angular momentum of the orbit, θp (not depicted in
Fig. 1) and on a related precession phase, Φp. Since the pul-
sar was recycled with matter that was necessarily orbiting in the
orbital plane, the two angular momenta should be very nearly
aligned (i.e., θp ' 0). Thus ẋA can be safely neglected. Inde-
pendent of that, one can use the polarisation information from
Sect. 3 to constrain ẋA (see Eqs. (2.5a), (2.25b), (3.24), and
(3.35) in Damour & Taylor 1992). The conclusion is the same.

The change in the orbital inclination due to spin-orbit cou-
pling can be split into contributions from the pulsar and the com-
panion (see e.g., Barker & O’Connell 1975; Damour & Taylor
1992; i.e., ẋSO = ẋSOp + ẋSOc). Due to the compactness of the pul-
sar, ẋSOp is clearly dominated by the Lense-Thirring effect, and
depends on the orientation (Φp, θp) and magnitude of the pulsar
spin. ẋSOc depends on the unknown spin period of the WD com-
panion (Pc), as well as the unknown spin orientation (Φc, θc).
For reasonable values of Pc (∼ hours9), ẋSOc is also dominated
by the Lense-Thirring effect. Both contributions are negligible10.
We want to add that, due to tidal torques during the Roche-lobe
overflow episode, one would expect an alignment of the spin
axis, resulting in θc ' 0, further suppressing any spin-orbit con-
tribution to ẋ by the WD.

There is an extra term listed by Lorimer & Kramer (2005)
that could be caused by a possible third component of the
system. If such a component existed, the motion of the
PSR J2222−0137 binary around the centre of mass of the triple
would cause a non-linear variation in the Doppler shift of the
pulsar, which would be observable (at the very least) as higher
derivatives of the spin frequency of the pulsar. We do not detect
any such effects in the timing, and thus we have no evidence of
any extra component of this system. For this reason, we do not
consider any related contributions to ẋ.

In addition to the terms listed by Lorimer & Kramer (2005),
there is a contribution to ẋ (ẋγ) that results from the correlation
of this term with one of the PK parameters, the Einstein delay
(γ), this is inevitable for systems with small values of ω̇, see

9 Unlike in the J1141−6545 system (Venkatraman Krishnan et al.
2020), there was no substantial mass transfer to the WD that could have
led to a significant spin-up (Cognard et al. 2017). On the contrary, the
tidal torques during the Roche-lobe overflow phase most likely led to a
(near) synchronisation with the orbital period (Tauris, priv. comm.).
10 Relevant numbers for the slowly rotating (ONeMg) WD companion
were taken from Boshkayev et al. (2017).
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Table 6. Details for the grid regions.

Region cos i range Ω range (deg) Best cos(i) Best Ω (deg) Best M (M�) Min χ2

1 −0.086 to −0.078 −28 to 17 −0.0826 −0.1 3.15 10644.12
2 0.078 to 0.086 152 to 197 0.0825 187.7 3.15 10638.46

detailed discussion by Ridolfi et al. (2019). From their Eq. (25),
we obtain:

ẋγ = −
γω̇
√

1 − e2
sinω. (2)

For PSR J2222−0137, GR predicts a small Einstein delay
(γ = 4.545 µs), which is largely the result of the small eccen-
tricity. This and the relatively small ω̇ in turn yield a ẋγ that is
about 1/2 of the measurement uncertainty of ẋobs, see Table 5.
This term will contribute to the ẋobs measured with the ELL1H+
model, but it will not contribute to the ẋobs measured using the
DDGR model since the latter already takes the Einstein delay
into consideration as a relativistic effect. The difference between
the two ẋ measurements is mostly (but not entirely) due to ẋγ.

Thus, it is clear that all terms are much smaller than ẋPM, and
none of them can explain the difference between ẋobs and ẋPM.

5.5. Annual orbital parallax

An alternative explanation for the large ẋ has to do with the fact
that, apart from the secular variation in x, there is a yearly mod-
ulation of x (and ω) caused by the changing viewing angle of the
pulsar’s orbit due to the Earth’s orbital motion (Kopeikin 1995);
this effect is known as the annual orbital parallax. This is not
taken into account by the DDGR and ELL1H+ models; if it is
significant, it could potentially be absorbed into the secular ẋ
estimated by those models.

In order to test this we use the DDK model, which apart
from the secular effects on x and ω, also takes into account
their annual variations. These are not fitted explicitly (via, for
instance, the ẋ parameter); they are calculated internally from
all the geometric parameters of the model, in particular i and Ω,
which are fitted directly.

However, before proceeding, we must urge a note of cau-
tion related to the use of this model. In it, we always use the γ
calculated by the DDGR model. This is important because, as
discussed above, γ is correlated with ẋ. If we fail to include γ in
the DDK model, it will find biased values of i and Ω that will
account for secular variation in x that is different (by ẋγ) from
the ẋ caused by the proper motion of the system.

Generally, when one has a good constraint on the orbital
inclination and a measurement of ẋ, there are four possible
degenerate combinations of Ω and i that can satisfy those con-
straints, these reduce to two if ẋ is at its maximum possible value.
Detecting the annual orbital parallax can eliminate this degener-
acy (see e.g., Stovall et al. 2019). In Table 6 we can see that the
local χ2 minimum at Ω ∼ 190 deg is lower than the minimum at
Ω ∼ 0 deg. This difference is an indication that the annual orbital
parallax is significant (for a precise quantification, see following
section). This is not surprising given the relatively small distance
to the Earth and large size of the pulsar’s orbit.

Furthermore, as we can see in Table 4, a DDK model based
on the best i,Ω combination has a lower χ2 than the ELL1H+ or
DDGR models where we fit for a freely varying ẋ. Thus, by tak-
ing the annual orbital parallax into account, we can find a model

that provides a better fit to the data that assumes no changes in x
other than those expected from the geometry of the system.

It is therefore clear that the DDK model provides a superior
description of the orbital geometry and motion of the system. For
that reason, we base all subsequent discussions on this particular
orbital model.

6. A self-consistent estimate of the component
masses and orbital orientation of the system

In order to better determine the uncertainties and correlations
between the masses and orbital configuration, we made a self-
consistent χ2 map with the DDK model, where we additionally
assume the validity of GR. Since, as discussed in Sect. 5.4, we
expect no significant additional contributions to ẋ, we assume
that any variations in x are caused by variations in i (i.e., caused
by the geometry of the system and its orientation relative to the
Earth), all of which are automatically taken into account by the
DDK model.

The process is described in detail by Stovall et al. (2019);
briefly, for each point in a cos i,Ω and M grid, we hold Ω and
i fixed in its corresponding DDK model; from these two val-
ues, the astrometric parameters and the orbital Keplerian param-
eters all kinematic effects on x and ω are estimated internally
by the model. Other relevant PK parameters (Mc, ω̇, γ, but not
Ṗb, which is kept as a free parameter because of other kinematic
effects) are derived by our script from the known mass function,
i and M using the GR equations, and then used as fixed inputs to
the DDK model for that point of the grid. We then run tempo to
fit this DDK model to the data, allowing all other timing param-
eters to vary, and record the value of χ2, which is assigned to
the respective point in the grid. The two regions of the cos i,Ω,
M space that we sampled are listed in Table 6; for areas out-
side these two regions, the quality of the fit is just too poor to
contribute any significant probability.

The resulting 3D grids of χ2 values are then used to calcu-
late a Bayesian 3D probability density function (PDF) for the
cos i,Ω,M space (Splaver et al. 2002). This 3D PDF is then pro-
jected onto several planes and axes: 2D PDFs are calculated for
the cos i-Ω and the derived cos i-Mc and Mc-Mp planes, and 1D
PDFs are calculated for the Ω, cos i, M, and derived Mc and Mp
axes. These 2D PDFs are represented by the black contours in
the main panels of Figs. 6 and 7, and some of the 1D PDFs
are represented in the side panels of those figures; their medians
and ±1σ uncertainties are presented in Table 4. These numer-
ical values are valid, but do not capture the full complexity of
the underlying 3D function: Some features, such as the positive
correlation between cos i and Mc (left main panel of Fig. 6) and
the very high correlation between Mp and Mc (right main panel
of that same figure), are captured only by the 2D or 3D PDFs.
The latter correlation implies that continued timing, which will
keep improving the precision of ω̇ (and thus of M), will result in
much improved measurements of the individual masses.

The overall values for Mc and Mp derived from this self-
consistent approach are slightly larger and more precise than
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those derived by the DDGR and DDK models, but about 1σ con-
sistent with them. They are also 1-σ consistent with the masses
derived from Shapiro delay alone. With regards to the orbital ori-
entation, we see that a solution in Region 2 is preferred, with a
total probability of 99.66%. The solution in Region 1 has a total
probability of 0.34%, the difference between the two regions
reaches a statistical significance close to 3σ.

Two conclusions can be derived from this. First, the Ω
obtained from our Bayesian analysis of the timing data agrees
well within 1σ with the VLBI estimate in Table 1. Second, the
small amount of probability for the solution in Region 1 means
that our timing yields a ∼3σ detection of the annual orbital
parallax.

The PA of the orbital angular momentum, ψb ≡ Ω+90 deg =
280.4(57) deg, means that the orbital angular momentum points
nearly westwards. This is nearly opposite to the (mostly east-
wards) PA of the proper motion, Θµ (see Table 1).

We now discuss the alignment of the pulsar spin axis with
the orbital angular momentum. If they are aligned, then i = ζ =∼
84 deg (see Sect. 3). Although the timing value we measured for
i is close to ζ, it is not consistent: the difference between them
is 1.24 deg, which is outside the 99% uncertainty range for ζ
(0.8 deg). Taken at face value, this small difference suggests a
minor misalignment between the spin axis of the pulsar and the
orbital angular momentum. However, before jumping into that
conclusion, we reiterate the fact that RVM fit has important sys-
tematic issues, one of them being that there are obviously small-
scale deviations from a perfect large-scale dipolar field (the grey
points in Fig. 3).

Regarding our measurement of ψb, it is near one of the three
possible values for the PA of the pulsar spin, ψ = −60(10) =
300(10) deg (see Sect. 3). The difference between them is
−20(12) deg, where we have added their uncertainties in quadra-
ture. This difference is not statistically significant, and consistent
with a pulsar spin aligned with the orbital angular momentum.

7. Variation in the orbital period

The observed orbital period derivative obtained with the DDK
model in Table 4 is Ṗb,obs = 0.2509(76) × 10−12 s s−1. This is
∼12 times more precise than the estimate made by Cognard et al.
(2017).

We now discuss the implications of this measurement in
more detail. First, we update the estimate of the contribution
from Shklovskii effect. Using the distance and proper motion
from our re-analysis of VLBI data, we obtain:

Ṗb,Shk = µ2 d
c

Pb = 0.2794(12) × 10−12 s s−1. (3)

The contribution of Galactic acceleration can be calculated with
the analytical formulae provided by Damour & Taylor (1991),
Nice & Taylor (1995), and Lazaridis et al. (2009),

Ṗb,Gal

Pb
= −

Kz| sin b|
c

−
Θ2

0

R0 c

(
cos l +

β

β2 + sin2 l

)
cos b, (4)

where β ≡ (d/R0) cos b−cos l. For Galactic height z ≡ |d sin b| ≤
1.5 kpc, the vertical component of Galactic acceleration Kz can
be approximated as (Holmberg & Flynn 2004; Lazaridis et al.
2009)

Kz(10−9 cm s−2) ' 2.27 zkpc + 3.68(1 − e−4.3 zkpc ). (5)

In this calculation, we adopt the Galactic parameters in
Gravity Collaboration (2021), where the distance from the Sun

to the Galactic centre is R0 = 8.275(34) kpc and the Galac-
tic circular velocity at the location of the Sun is Θ0 =
240.5(41) km s−111. Assuming a 10% uncertainty in the vertical
acceleration, we get
Ṗb,Gal = −0.0142(13) × 10−12 s s−1. (6)

Subtracting these two terms from Ṗb,obs we obtain the ‘intrin-
sic’ variation in the orbital period:
Ṗb,int = Ṗb,obs − Ṗb,Shk − Ṗb,Gal = −0.0143(76) × 10−12 s s−1. (7)
An intrinsic Ṗb is expected originate from orbital decay of the
system caused by the emission of gravitational waves, Ṗb,GR.
Using the masses and orbital parameters derived from the DDGR
model and the relation of Peters (1964), which provides the
leading order estimate for the orbital decay caused by the
emission of quadrupolar gravitational waves in GR, we obtain
a slightly higher and more precise value than Cognard et al.
(2017), Ṗb,GR = −0.00809(5)×10−12 s s−1. This is 1-σ consistent
with Ṗb,int and similar to its measurement precision.

Subtracting Ṗb,GR from Ṗb,int, we obtain the excess in the
observed Ṗb:
Ṗb,xs = Ṗb,int − Ṗb,GR = −0.0063(76) × 10−12 s s−1, (8)
which agrees well with zero. This limits any additional effects
beyond GR, such as a variation in Newton’s gravitational con-
stant or the emission of DGWs predicted by some alternative
theories of gravity. For instance, following the calculations for
scalar-tensor theories of Sect. 5 of Cognard et al. (2017), we find
|αp − α0| < 0.005 (95% C.L.), which is a significant improve-
ment compared to their Eq. (6), and comparable to the limits
of Freire et al. (2012) and Antoniadis et al. (2013). It should be
noted that we know α0 < 0.003 (95% C.L.) from Solar system
experiments (Bertotti et al. 2003; Esposito-Farèse 2006).

This tight limit on dipolar radiation, in combination with
the large and well-determined mass of PSR J2222−0137,
makes this system an ideal laboratory for certain non-linear
aspects of strong-field gravity, like spontaneous scalarisation
(Damour & Esposito-Farèse 1993; Shao et al. 2017). This will
be explored in detail in a forthcoming publication (Zhao et al.,
in prep.).

We now discuss how robust this estimate is. First, as we can
see from Table 3, this value depends on the DM model and the
assumptions we make relative to the proper motion and posi-
tion. The difference of ∼0.01 × 10−12 s s−1 is comparable to the
uncertainty of Ṗb,obs. As shown in Table 4, the choice of orbital
model has a smaller influence: the difference between the Ṗb,obs
obtained with the model-independent ELL1H+ and DDK mod-
els is 0.004×10−12 s s−1, which is smaller than the 1σ uncertainty
for Ṗb,obs.

Another possible source of uncertainty is the model used
to estimate Ṗb,Gal. We now compare the predictions of differ-
ent models of the gravitational field of the Galaxy, following the
outline of the analysis of Zhu et al. (2019) for PSR J1713+0747;
these are summarised in Table 7. We find that the differences
between the predictions of Ṗb,Gal for different models are smaller
than the current uncertainty of Ṗb,obs, but are larger than the esti-
mated uncertainties of Ṗb,Gal according to each model.
11 Θ0 has been calculated based on the new R0 from
Gravity Collaboration (2021) and the new proper motion mea-
surements for Sgr A∗ in Reid & Brunthaler (2020). For V� we adopted
the value used by Gravity Collaboration (2019). An analysis of the
Solar motion with respect to nearby stars based on the Gaia Early Data
Release 3 suggests a somewhat lower value for V� (Gaia Collaboration
2021), which however we did not account for, since that 4 km s−1 shift
is irrelevant for our analysis.
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Table 7. Different contributions to Ṗb, in units of 10−12 s s−1.

Ṗb,obs Ṗb,GR Ṗb,Shk Galactic model Ṗb,Gal Ṗb,xs

Horizontal Vertical Total

0.2509(76) −0.00809(5) 0.2794(12) Nice & Taylor (1995) (a) −0.0014 −0.0128 −0.0142(13) −0.0063(76)
McMillan (2017) −0.0016 −0.0145 −0.0161(15) −0.0044(77)
Piffl et al. (2014) −0.0017 −0.0162 −0.0179(16) −0.0026(77)

Binney & Tremaine (2008) −0.0014 −0.0123 −0.0137(12) −0.0068(76)

Notes. Several different models for Galactic potential are used for comparison. The value z0 = 0 was used for these calculations. (a)Analytical
model including updates from Lazaridis et al. (2009) and updated values for R0 and Θ0.
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Fig. 8. Variation in Ṗb,Gal with the Galactic height of the Sun (z0), for
the Galactic potential models listed in Table 7. The dashed vertical line
on the right corresponds to the estimate of Bennett & Bovy (2019).

Finally, we note that the solar height z0 is ignored in the
estimates made in Table 7. In Fig. 8, we show the variation in
Ṗb,Gal as a function of z0 for the different Galactic models in
Table 7. The differences of ∼10−15 s s−1 are also significantly
smaller than the uncertainty of Ṗb,obs, but comparable to the dif-
ferences between models. As an example, if we use z0 = 20.8 pc
(Bennett & Bovy 2019), the Ṗb,Gal predicted by the analytical
model becomes −0.0151(14) × 10−12 s s−1, a difference similar
to the 10% uncertainty in the vertical acceleration of that model.

For now, none of these differences change the fact that the
Ṗb,xs is 1σ consistent with zero. However, as the measurement
of Ṗb,obs improves, these uncertainties in the Galactic model and
z0 will eventually limit the precision of Ṗb,int and Ṗb,xs.

8. Summary and perspectives

In this paper we present the results of a 12-year timing of PSR
J2222−0137, combining data from the Effelsberg, Nançay, and
Lovell radio telescopes with early GBT data. Furthermore, we
have re-analysed the astrometric VLBI data. Finally, we have
also obtained polarimetric data from FAST.

The re-analysis of the VLBI data confirms most of the results
presented by Deller et al. (2013), except for Ω, which changed
by ∼180 deg. This resulted from our use of conventions that are
fully consistent with those used in pulsar timing. We have also
calculated the absolute position, with more realistic uncertainty
estimates. Because of these, there is no longer a significant dis-
agreement with the timing position.

The very high signal-to-noise ratio of the FAST data yields
polarimetry consistent with the (corrected) Nançay data, and it
has allowed a detection of several faint emission regions, which
include, importantly, an interpulse. This has allowed an unam-

biguous determination of the geometry of the pulsar, in particu-
lar a precise determination of its 3D orientation.

Regarding the timing, one of the most important things we
have learned from this system is the great importance of con-
sistent spin phase definitions for all the templates used to derive
ToAs from the different datasets. Without this, we have no con-
sistent measurements of the orbital motion of the pulsar. Fixing
this issue has resulted in a very significant improvement in the
quality of the timing relative to previous analyses.

If we use a few DM derivatives to model the DM variations,
the proper motion shows discrepancies from the VLBI result at
the 3−5σ level. If we use instead the DMX model, which can
describe short-term DM changes, then the proper motion is con-
sistent with the VLBI result, but with much larger uncertainties.
Because of this, in our timing we used the DMX model and fixed
the parallax and proper motion to the VLBI values.

Relative to previous work, our improved timing analysis
results in a much more precise measurement of three PK param-
eters, two for the Shapiro delay (h3 and ς) and one for the rate
of advance of periastron, ω̇. The mutual agreement between the
mass estimates obtained with these parameters within the frame-
work of GR provides a successful ∼1% test of that theory.

The secular variation in the semi-major axis, ẋ, is larger
(in magnitude) than expected; the difference with the expected
value is 3.4σ significant. It is likely that this is caused by the pres-
ence of effects, such as the annual orbital parallax, which are not
taken into account in the models that fit explicitly for ẋ. Indeed, a
DDK model, which takes the annual orbital parallax into account,
provides the best fit (with the lowest χ2) to the data assuming only
the changes in x expected from the geometry of the system.

From a self-consistent analysis that assumes the validity of
GR and takes all kinematic effects into account, we obtain a
large pulsar mass of 1.831(10) M� and a companion WD mass
of 1.319(4) M�, which is the largest confirmed NS birth mass
(Cognard et al. 2017). This is only one of two recycled pulsar
and massive (>0.6 M�) WD binary systems with precisely mea-
sured masses, the other being PSR J2045+3633 (McKee et al.
2020). The total mass of the system is 3.150(14) M�, confirm-
ing this as the most massive double degenerate binary known in
the Galaxy. The resulting orbital orientation, which favours an
inclination angle of 85.27 deg and Ω = 188 deg, is fully con-
sistent with the VLBI astrometry. It is also consistent with the
orientation of the pulsar spin derived from polarimetry, showing
that, within experimental precision, the spin axis of the pulsar is
aligned with the orbital angular momentum.

The relatively long spin period of PSR J2222−0137 means
that not too much angular momentum was transferred in this
case; thus, in principle, there could be a measurable misalign-
ment. However, taking into account the characteristics of its cur-
rent companion, we come to the conclusion that the pulsar was
already ∼50 Myr old when the Roche-lobe overflow started; at
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that time it was likely much slower than it is now. This would
imply that most of the spin seen today did originate from the
recycling process. Thus, the observed alignment between the
pulsar spin and the orbital angular momentum is to be expected.

We have also obtained a very precise measurement of the
variation in the orbital period, Ṗb = 0.2509(76) × 10−12 s s−1.
After subtracting the precise estimates for the kinematic effects,
we find an intrinsic variation in the orbital period (Ṗb,int) that
is consistent with the orbital decay caused by the emission of
quadrupolar gravitational waves predicted by GR (Ṗb,GR). Sub-
tracting Ṗb,GR from Ṗb,int we obtain an excess orbital decay,
Ṗb,xs = −0.0063(76) × 10−12 s s−1, that is consistent with zero.
This represents an important constraint on alternative theories of
gravity, particularly since the mass of PSR J2222−0137 falls into
a range that so far is poorly constrained in terms of phenomena
such as spontaneous scalarisation (Shao & Wex 2016).

This system also has the potential to improve the constraints
on the variation in Newton’s gravitational constant, G. Those
constraints are proportional to the precision of Ṗb,xs/Pb. For
PSR J1713+0747, this number is ∼2.5× 10−20 (Zhu et al. 2019),
and for PSR J2222−0137 the number is ∼3.6 × 10−20; these
two values are comparable with each other despite the much
shorter timing baseline for the latter pulsar. Indeed, the preci-
sion of Ṗb,xs is currently limited by the measurement of Ṗb,obs,
and this decreases rapidly with time (T−

5
2 ). As we have seen,

this might soon be limited by uncertainties in the Galactic grav-
itational potential; however, these are also expected to improve
with the dynamical data provided by the Gaia mission.

The limits on alternative theories of gravity and on the vari-
ation in G that result from these measurements and the future
prospects for improved measurements of the limits to be derived
from this system will be discussed in greater detail in future
publications.
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