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Abstract—Excessive Daytime Sleepiness (EDS), a symptom
linked to chronic sleepiness, impacts everyday life and increases
risks of work or road accidents of subjects affected by it. The
detection of accident-prone EDS through voice benefits from its
ease to be implemented in ecological conditions and to be sober
in terms of data processing and costs.

Contrary to previous works, this study focuses on long-term
sleepiness detection through voice. Using the Multiple Sleep La-
tency Test corpus, we propose a feature selection pipeline inspired
by clinical validation practices to classify accident-prone EDS —
as measured by a threshold of 15 on the Epworth Sleepiness Scale
— based on vocal clues. We propose three different approaches
based on the acoustic quality of voice, reading mistakes, and a
whole new approach, relying on Automatic Speech Recognition
systems errors. The classification system achieves performances
on the same scale as the state-of-the-art systems on short-term
sleepiness detection through voice (74.2% of Unweighted Average
Recall).

Moreover, we give insights into the decision process implied
during classification and the system’s specificity regarding the
threshold delimiting the two classes Higher-risk driver and
Lower-risk driver.

Index Terms—Sleepiness, Accidental risk, Excessive Daytime
Sleepiness, Automatic Speech Recognition, Voice.

I. INTRODUCTION
A. Excessive Daytime Sleepiness and risks of accident

Excessive Daytime Sleepiness — EDS — is one of the most
frequent complaints reported to clinicians, with a prevalence
estimated between 10% and 25% in the general population [1].
This chronic sleepiness impacts everyday life quality [2]
and increases work and road accidental risks: if they have
antecedents of sleepiness at the wheel, subjects affected by
EDS are two to three times more likely to have a road
accident [3]. EDS is usually measured either objectively, by
electrophysiological recordings (EEG), or subjectively, using
psychometric scales.
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The gold-standard measure to evaluate objective EDS is the
Multiple Sleep Latency Test [4], evaluating the propensity to
sleep of the subject. However, this medical procedure is ex-
pensive, both on human factors (it requires trained technicians
to interpret the EEG signals) and monetary aspects (two nights
and an entire day of full hospitalization).

Subjective EDS is measured by psychometric questionnaires
such as the Epworth Sleepiness Scale — ESS [5]. It is an
8-items questionnaire on which the subject rates his or her
chance to fall asleep in 8 situations encountered in daily life,
the total score ranging from O to 24. A threshold of 10 is usu-
ally used to assess EDS [6] but other studies have determined
that a threshold of 15 can predict accident-prone EDS. For
example, in a study based on highway drivers [7], very-sleepy
subjects (ESS > 15) did significantly more inappropriate line
crossings than the non-sleepy group (ESS < 10) or the sleepy
group (11 < ESS < 15), resulting in higher accident risks.

This study proposes a third method: detection of EDS
through voice. This approach benefits from numerous advan-
tages: it is implementable in various environments — including
open environments outside laboratory conditions, it is not
invasive, it requires neither specific sensors nor complex cal-
ibration processes and it is economical in data, requiring nei-
ther important calculus processors nor high-performance data
networks. It is thus a choice technology for regular and non-
restrictive monitoring of patients. Moreover, this sleepiness
detection technique could be easily integrated into cutting-
edge technologies such as virtual medical interviews [8].

B. State of the art on EDS detection through voice

While the detection of short-term sleepiness through voice
has already been the subject of two international chal-
lenges [9], [10], long-term sleepiness detection is a new task
that has emerged during the last months. Using the Multiple
Sleep Latency Test corpus (MSLTc) presented in [11], two
approaches have been proposed to detect the objective EDS
level of speakers. On one side, [12] proposed a system based



on simple acoustic features, that are explainable to physicians.
On the other side, [13] introduced a new set of features based
on reading mistakes the patients make during the reading of
texts. This article differs from the previous works on this
corpus by the studied EDS dimension: the specific case of
accident-prone subjective EDS is exclusive of this article.

C. Aim of the study

The objective of the present study is threefold. First, we
propose a new feature selection pipeline inspired by clinical
validation practices, allowing to select features discriminating
EDS independently from other speakers’ traits. Second, we
seek to validate the previously defined reading mistakes [13]
as features for subjective EDS discrimination. Finally, we
propose a new set of features based on the errors made by
Automatic Speech Recognition systems, misled by the reduced
articulation and prosody quality of the sleepy subjects.

This article is organized as follows. In Section II, we
introduce the corpus and the ground truth label used in this
study. In Section III, we present both the previous acoustic
and reading mistakes features, and the new ASR features. The
feature selection and classification pipelines are presented in
Section IV and the results of this system are presented in
Section V. Finally, we discuss these results in Section VI and
we draw conclusions and propose future works in Section VIIL.

II. CorPUS AND EDS LABEL
A. MSLT corpus

This study is based on the MSLT corpus (MSLTc), relying
on the recordings of 106 patients of the Sleep Clinic of the
Bordeaux University Hospital. They undertake an MSLT, con-
sisting of taking a 35 minutes maximum nap every two hours,
from 9 am to 5 pm. Before each of the 5 naps, the patients
are recorded reading out loud texts that are approximately 200-
words long extracted from Le Petit Prince by Saint-Exupéry.
As a consequence, each speaker of the corpus is recorded 5
times during the same day, with different texts and different
emotional, fatigue, and circadian states. To ensure consistency
between the speakers, we only keep the 93 patients of the
corpus affected by different forms of Hypersomnia.

B. Subjective EDS measure

In parallel with the MSLT test, the patients are asked to
fill numerous fatigue and sleepiness-related questionnaires,
including the Epworth Sleep Scale (ESS). This questionnaire
evaluates the subjective propensity to sleep of the subjects.
Usually used to discriminate subjective EDS using a threshold
of 10, a threshold of 15 has been shown to predict accidental
risk [7]. As almost all the patients of the corpus are affected
by EDS, we will focus on the accident-prone dimension
and classify speakers among Higher-Risk Drivers — HRD
(ESS>15) and Lower-Risk Drivers — LRD (ESS<15). The
sub-corpus of the MSLTc used in this study is described in
Table 1. For more information about the MSLTc, we redirect
the reader to [11].

TABLE I
DISTRIBUTION OF THE SPEAKERS ACROSS SEX AND SLEEPINESS CLASSES
Sex HRD (ESS > 15) LRD (ESS <15) TOTAL
Women 26 32 58
Men 13 22 35
TOTAL 39 54 93

III. FEATURES

This Section introduces the three sets of features used in
this study.

A. Acoustic features

The acoustic features used in this study are designed to
be explainable to physicians. They are arranged into two
categories. On one hand, statistics (total length and ratio) about
voiced and vocalic segments are computed directly on each
recording. On the other hand, features are computed on each
voiced segment to characterize the regularity of the production
of harmonic sounds. These features are averaged for each
recording. They are divided into three classes: measurements
(mean, var, max, min, extend) on the fundamental frequency
and intensity; descriptive values (frequency, power, bandwidth)
of harmonics and formants; cepstral peak prominence and
HNR. This set of 47 acoustic markers has already been proven
efficient for the detection of short-term sleepiness [14] and
long-term objective EDS [12]. A complete description of these
custom features can be found in [15].

B. Reading mistakes

Introduced in [13], these features rely on the manual an-
notations of the patients’ errors during the reading of the
texts. Elaborated with speech therapists, four errors have been
designed for sleepiness detection: stumbling errors (defined as
“hesitations and breaks in the speech rhythm” [16]), paralexia
(i.e. 7identification error of written words consisting in the
production of a word instead of another” [16]), deletions of
words and addition of words.

C. ASR features

Attempting at automatizing the labeling of reading errors,
we measured the errors made by ASR systems. Indeed, when
a subject feels sleepy, his or her articulation and prosody are
impaired [17] while the number of hesitations and repeats
increases. This alteration of speech due to sleepiness may
induce errors in ASR systems that could be used as biomarkers
of sleepiness. Thanks to recent advances in end-to-end ASR
systems allowing intermediate transcription units such as char-
acters or tokens, it is possible to transcribe not only words but
also portions of words (Byte Pair Encoding — BPE).

In this study, we use an end-to-end system based on
RNN transducers with attention, using either words, BPE, or
characters, to transcribe words or BPE. The language model
is trained on a word, BPE, or character version of the ESTER
corpus [18]. A complete review of such systems and their
performances is proposed in [19]. The end-to-end system
achieving the best performances is the character-based one



with a word-based RNN language model achieving 17.6% of
Word Error Rate on the ESTER corpus.

Three types of errors are considered in this study: deletions,
insertions, and substitutions, to which we add the number of
correctly recognized units. Each type of error is computed on
tokens and words, and we consider both the raw number of
errors and their ratio over the total number of transcription
units, leading to 16 features for each of the 5 ASR systems
considered in this study.

IV. CLASSIFICATION PIPELINE
A. Feature selection

Each previously presented set of features is computed on
each of the 5 naps of the MSLT, aggregated with the mean
and the standard deviation across the naps, resulting in 7
measurements for each feature.

The feature selection pipeline is described in Figure 1. It is
based on statistical methods and divided into two steps:

1) A discriminating test (Mann-Whitney’s U) to eliminate
features not having a sufficient discrimination power to
be statistically different across the two classes
(p > 0.095);

2) Statistical tests to certify that the selected features dis-
criminate only sleepiness and that they are not correlated
to speaker traits that could interfere with voice produc-
tion. As a consequence, features correlating (Spearman’s
p, p < 0.05) with Age, Body Mass Index (BMI), Neck
size, Anxiety or Depression score (measured by the
Hospital Anxiety and Depression scale [20]), or discrim-
inating Sexes (Mann-Whitney’s U, p < 0.05) or sub-
types of hypersomnia (univariate ANOVA, p < 0.05)
are eliminated.

The selected features are then aggregated before the classifi-
cation pipeline (early fusion).

This procedure, usually employed when validating psycho-
metric questionnaires, ensures that the selected features are
specific to EDS independently from all the other factors.
This pipeline has two major benefits compared with other
traditional features selection pipelines: 1) it is compatible with
small datasets, as statistical tests do not require a large amount
of data; and 2) it is independent of the performances metrics:
the selected features do not vary depending on the chosen
metric compared with performance-driven pipelines.

B. Classification

To avoid overlearning and to allow generalization, the
classification process is carried out under Leave One Speaker
Out Cross Validation (LOSOCYV): each speaker is turn-by-turn
isolated as a test sample, while the classification system is
trained on the others. The predicted and ground-truth classes
of the test speakers are aggregated and the performance metrics
are computed on this aggregation, allowing to validate the
reliability of the whole pipeline.

Regarding the classification process, this study aims not to
optimize classification performances, but to validate new fea-
tures for sleepiness detection through voice. As a consequence,

ASR
N =400
I

Acoustic R. errors
N = 329 N =28
| |
DISCRIMINATION POWER

Discrimination between HRD and LRD
(Mann-Whitney's U)

(re2) (1) [(v=)

EXTERNAL VALIDATION

No correlation with Age, BMI, Neck Size,
Anxiety, Depression
(Spearman's p)

No discrimination between Sexes
(Mann-Whitney's U)

No discrimination between pathologies
(Univariate ANOVA)

v v v

[N=18][N=1][N=9]

Fig. 1. Features selection pipeline and the number of selected features
after each step. Acoustic: Acoustic features. R. errors: Reading errors. ASR:
Automatic Speech Recognition features. HRD: Higher-Risk Driver, LRD:
Lower-Risk Driver

a Principal Components Analysis (PCA) followed by logistic
regression was sufficient to achieve convincing performances.
Features are scaled independently at each iteration of the
LOSOCYV and the PCA is re-computed each turn, with a num-
ber of components that are chosen to reproduce at least 80%
of the initial variance. The logistic regression was processed
using the Python module sci-kit learn [21] with a newton-cg
solver and a balanced class-weighting.

V. RESULTS
TABLE II

C LASSIFICATION PERFORMANCES OF THE PROPOSED PIPELINE
Features UAR F1 AUC

(a) ASR 63.5%  59.5%  65.8%
(b)  Acoustic 642% 61.3% 69.2%
(¢) R.errors 61.2% 492%  35.4%
(d)  ASR + Acoustic 69.2%  659%  73.3%
(e) ASR+ R. errors 64.5% 60.2% 66.2%
(f)  Acoustic + R. errors 66.1% 62.8% 70.8%
(g) ASR + Acoustic + R. errors  742%  70.7%  78.6%

The obtained Unweighted Average Recall (UAR), F1-score,
and Area Under the ROC Curve (AUC) for different sets of
features are presented in Table II. The corresponding ROC
curves, measuring the discrimination power of the classifier,
are presented in Figure 2a.

When taken separately, acoustic and ASR features perform
identically (systems (a) and (b), ~ 64% of UAR). However,
their combination outperforms all the combinations of two sets
of features (69.2% of UAR for system (d)). On the contrary,
reading errors perform poorly when they are taken alone
(61.2% of UAR for system (c)) or combined with any other set
of features (64.5% of UAR for system (e), 66.1% of UAR for
system (f)). However, the reading mistakes are not sufficient
for correct classification but they seem to be necessary: the



1.0 1
True Neg
0.8 1 w© 40
2 2 43.01%
o o]
o 0.6 1 S
= ]
g =
< 0.4 2
g =3
2 5 . FalsiaONeg
0.2 1 (a) 65.8% i 10.75%
(d) 73.3% ’
004 — (g) 78.6%
00 02 04 06 08 1.0 0

False Positive Rate

(a)

Predicted class

False Pos
14
15.05%

Performances

True Pos
29 0.44 — AUC N

31.18% F1 AN
031 — UAR Mo
—=~ ratio of HRD A
0.2 T T T T
1 8 10 12 14 16

Threshold between HRD and LRD

(©)

Fig. 2. (a) ROC of the systems (a), (d), and (g) and their respective AUC. (b) Confusion matrix of the system (g). (¢) Performances of the system (g)
depending on the threshold between Higher Risk Drivers and Lower Risk Drivers classes

best results are obtained by combining the three set of features
and achieves 74.2% of UAR (system (g), 70.7% of Fl-score,
78.6% of AUC). The corresponding classification matrix is
presented in Figure 2b.

Even if it is not rigorously comparable with other existing
systems, the system (g) achieves performances that are in the
same vein as the state-of-the-art performances on short-term
sleepiness detection (71.7% in [22], 76.4% in [14]). As a
consequence, the proposed pipeline selects relevant features
that allow the detection of accident-prone EDS independently
from other speaker traits (age, sex, BMI, ...).

VI. DISCUSSION

A. Specificity of the measure

In the same vein as presented in [14], we represented in
Figure 2c the variations of the performances depending on the
limit to distinguish the two classes during the classification.
This measure reflects the specificity of the selected features
and the pipeline: the best performances (UAR and AUC) are
observed for the classification limit of 15 that we have selected
for our classification. Another peak is observed around a limit
of 9, but the imbalance between classes (less than 15% of
LRD) makes any conclusion perilous. As a consequence, our
system seems specific to the threshold of 15 on the ESS,
corresponding to an accident-prone dimension of EDS.

B. Need for PCA

At a first glance, the low number of selected features (28)
should allow classification without the need for dimension
reduction techniques such as PCA. Thus, we applied the
same pipeline as in system (g) without the PCA. This led
to classification performances noticeably lower than the same
pipeline with PCA (UAR: 68.2%, F1: 63.3%, AUC: 69.7%).
Indeed, not only PCA can be used as a dimension reduction
technique, but it is also an orthogonalizing process, optimizing
the following logistic regression.

Dim. 7 Dim. 5 Dim. 3 Dim. 1
7.4% 5.2% 6.7% 3.4%
deletions ||per/durvowel|| deletions HL del 3

std 1,5 5

-sub. 2 -sub 2 i
deletions std
del'std )| F amplitude 1B4
Dim. 8 3,4,5,mean
im : HL del 3 RO
Dim. 6 Dim. 4 Dim. 2

Fig. 3. PCA components and the associated weight in the logistic regression.
From top to bottom: mean ratio of explained variance in the PCA, feature
(in bold), condition (in italic). Green background: Acoustic features; blue
background: Reading errors; red background: ASR features.
- : negative PCA weight; F: Formant; Sub: ASR substitutions; Del: ASR
deletions; HL del: Hand-Labeled deletions; Dim: Dimension

C. PCA dimensions analysis

Along the cross-validation process, the parameters of the
PCA and the weights of the logistic regression are averaged.
Figure 3 represents the eight different PCA dimensions and
their corresponding weights in the logistic regression.

1) Reading errors: The most important feature is the PCA
dimension partly directed by the hand-labeled deletions of the
third nap (mean coefficient across the LOSOCV, oy = 0.69).
In the first or fourth component, hand-labeled reading errors
share PCA dimensions only with acoustic features: even if the
selected ASR errors comprise deletions, they are not to replace
hand-labeled errors but a whole complementary measure of
sleepiness expression through voice.

2) Acoustic features: The relevant acoustic features are
linked to the bandwidth of the formants: the third formant (B3)
during the fifth naps (Dim. 1); the fourth formant (B4) during
the first, second, and third naps and its average value across



the nap (g = 0.55); the first, second and third formants resp.
during the second, third, and fifth naps (ay = 0.31). Their
amplitude during third, fourth, and fifth naps and their mean
value are also relevant (o = 0.24). Finally, the percentage
and duration of vowel parts extracted from audio during the
first and fifth naps take part in the decision of the classifier
(a5 = 0.24).

3) ASR features: Regarding ASR, the most relevant features
are the standard deviation of the deletions (Dim. 2, 7, and
8) and its value during the fifth nap (Dim. 3). Substitutions
during the second nap are also important when contributing to
the sixth and eighth dimensions. These errors both come from
a character-based ASR system with a language model trained
on characters or words, that are among the systems achieving
the best recognition performances [19].

D. Condition of the features

During feature selection, the selected acoustic features were
all statistics on the formants and were computed on different
naps (or averaged across the naps), whereas only one of the
reading error features on only one nap has been selected. Two
phenomena could explain these observations.

First, the text influences the features. Indeed, we hypoth-
esize that if deletions are computed only on the third nap
(Dim. 1 and 4.), it is because the corresponding text favors
the differences between HRD and LRD. This also could be
the case for ASR-based features, for which the ASR quality
could depend on the content of the texts, or acoustic features
for which the phoneme distributions across the texts are
unbalanced.

Second, the state of the speakers impacts their voice when
they are recorded. Indeed, numerous studies have shown that
short-term sleepiness impacts voice [9], [10], but it also
the case of emotion or the circadian state of the speaker.
For example, when recording the MSLTc, numerous subjects
complained about fatigue or boredom: the state of the speaker
at this moment could favor vocal traits linked to sleepiness.
This could explain why ASR deletions are computed on the
standard deviation of naps (Dim. 7) but also on the fifth nap
(Dim. 5).

VII. CONCLUSION AND FUTURE WORK

This article has proposed a novel feature selection pipeline
based on clinical validation to achieve accident-prone EDS
classification through voice. It has been tested with acoustic,
reading errors, and new ASR systems errors, and achieves
74.2% of performances.

In the future, we plan to extend the scope of the proposed
pipeline to further sleepiness-related phenomena, such as
subjective sleepiness or objective EDS.
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