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Abstract

Phase change in multiphase flows occurs in many natural and industrial

applications, e. g., rain formation, internal combustion engines, heat exchangers,

multiphase reactors, etc. In dense two-phase flows, quantitative experimental

results are scarce due to the complexity of the configuration and experimental

techniques limitations. Hence, the interest in the direct numerical simulation

of such flows has grown recently to better understand and access quantitative

data in this kind of flows.

When simulating phase change in multiphase flows, advanced numerical

method are needed to consider the jump conditions at the interface, and to

ensure mass, energy, momentum and species conservation. In the literature,

this problem is mainly investigated with an incompressible formalism. How-

ever, this assumption is not longer suitable for simulation of multiphase flows

with phase change in enclosed environment or in atomized/aerated flows.

The purpose of this work is to present a numerical formalism dedicated to

turbulent two phase flows, including acoustics and compressible effects with a

proper treatment of the jump conditions at the interface due to phase change.

To achieve this task, first, the incompressible level-set method for vaporizing

two-phase flows proposed by Tanguy et al. (2007) is revisited and adapted to

a mass conservative interface representation: The Coupled Level-set/Volume

of Fluid method. In this context, evaporating static cylinder with a constant
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vaporization rate and a droplet vaporization (D2 law) have been performed

as validation cases. Both cases illustrate the method accuracy and robustness

in presence of velocity discontinuities at the interface due to the presence of

the Stefan flow. The D2 law configuration is used as validation of the imple-

mentation of the heat and mass transfer transport equations with their jump

conditions and the coupling of the evaporation rate with the flow dynamic.

Then, the numerical method is extended to compressible flows using the

framework dedicated to the pressure based method proposed by Duret et al.

(2018). The main advantage of this framework is the ability to consider acous-

tics effects, variable density and multiple gas inclusions with its own thermody-

namic pressure. A modified Volume of Fluid transport equation is presented,

including phase change and compressiblity effects. Navier-Stokes and heat and

mass transfer transport equation are solved using compressible assumptions.

A validation case of a static evaporating cylinder in an enclosed environment

is studied to illustrate and quantify the mass conservation properties of the

method and the mass transfer between the two phases. Finally, a 3D two-phase

Homogeneous Isotropic Turbulence (HIT) configuration is presented to demon-

strate the potential of this method in presence of breakup, gas encapsulation,

coalescence and evaporation processes.

Keywords: Compressible, DNS, interface, Two-phase flows, phase change,

CLSVOF

1. Introduction

Phase change in a multiphase flows is a crucial part of many environmental

and industrial processes : from the formation of a raindrop to the fuel va-

porization in a internal combustion engine. In addition, multiple types of heat

exchanger rely in the latent energy released or absorbed during the phase change

(e.g. cooling towers, spray coolers, evaporators in cooling systems, etc.). There-

fore, it highlights the importance of understanding its fundamental behavior for

the design and optimization of these types of systems.

2



In general, experiments on the heating, evaporation and combustion of

droplets are mainly focused on stationary droplets supported by fibers (Mikami

et al. (2005), Strizhak et al. (2018), Chauveau et al. (2011)) or droplets in

tandem (Kristyadi et al. (2010), Maqua et al. (2008)). For the first case, one

of the principal difficulties is the estimation of the fiber role on the tempera-

ture distribution of the droplet. This problem has been analyzed by Chauveau

et al. (2019), concluding that most fiber techniques used in the literature, which

uses relatively large fibers, enhances the droplet evaporation rate due to the

increased conduction heat transfer through the fiber. The effects of a turbulent

flow on the evaporation rate of a single suspended droplet have been studied

by Birouk and Gökalp (2006), Verwey and Birouk (2018), Verwey and Birouk

(2017). In the case of droplets in tandem, the main difficulties are associated to

the tracking of a falling droplet as it moves away of the camera focus.

Even though great advancement regarding heat and mass transfer measure-

ment techniques have been made in the literature, e. g., Interferometric Particle

Imaging (Bilsky et al., 2011), Laser-Induced Fluorescence (Akhmetbekov et al.,

2010) and Phase Rainbow Refractometry (Wu et al., 2016), it is still very chal-

lenging to quantify the vaporization rate in a dense spray where many liquid

structures interact between each other. In that aim, a number of numerical

studies has been developed in the past years to go further in the description of

the phase change process in dense spray or turbulent liquid jets.

When simulating multiphase flows using a one-fluid formalism, two main ap-

proaches to describe the evolution of the interface are commonly used: Interface-

tracking and Interface-capturing methods. The last formalism is the most used

in the two-phase community (Mirjalili et al., 2017). The Volume of fluid method

(VoF) (Hirt and Nichols, 1981) and the Level-set method (LS) (Sussman et al.,

1994) belong to this category. Simulation of vaporizing two-phase flows are

commonly under one of the following two assumptions: 1) the vaporization rate

is computed with the local gradients of the vapor mass fraction (evaporation).

Here, the phase change occurs below the boiling temperature (Palmore Jr and

Desjardins (2019), Scapin et al. (2020),Wang and Yang (2019), Malan et al.
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(2020), Schlottke and Weigand (2008); 2) the vaporization rate is computed

with the heat flow passing through the interface after the saturation temper-

ature has been reached (boiling) (Guion et al. (2018), (Khalloufi et al., 2020),

(Urbano et al., 2019), (Popescu et al., 2019), (Tomar et al., 2005) ).

When simulating these types of flows, one of the most challenging problems

is the numerical treatment of the different jump conditions at the interface. In

particular, the velocity jump condition should satisfy the mass conservation.

For example, in the case of a large density ratio and large evaporation rate, the

discontinuity in the velocity field close to the interface creates numerical insta-

bilities without proper treatment of the convective terms in the Navier-Stokes

solver and in scalars transport equations. In the literature, several numerical

techniques have been proposed to solve this issue. Tanguy et al. (2007) pro-

posed a numerical method based on the Ghost Fluid Method (GFM) for the

extension of the liquid and gas velocity field. By modifying the method of

Nguyen et al. (2001), Tanguy et al. (2007) were able to obtain a continuous and

divergence-free liquid velocity field for the advection of the level-set function.

Also, Gibou et al. (2007) proposed a similar GFM for treating the velocity jump

condition for the simulation of film boiling in 2D. On the other hand, Schlot-

tke and Weigand (2008) proposed a method for the simulation of evaporating

droplets using a VoF method. In this work, the liquid and gas velocity fields

are computed considering the volume source induced by the evaporation rate to

account for the Stefan flow. An iterative algorithm is implemented to compute

and distribute the divergence error of the continuity equation to the neighboring

cells, this error is due to the difference between the volume and mass averaged

velocities at the interface. Later, Reutzsch et al. (2020) improved the method

of Schlottke and Weigand (2008) by adding a correction term for the volume

source term in the continuity equation which takes into account the variation of

the volume and mass averaged velocities. Consequently, the iterative algorithm

or the distribution of the error is not longer needed. In the framework of the Vof

method, Malan et al. (2020) proposed a method for creating a divergence-free

liquid velocity field for the transport of the liquid volume fraction for boiling
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flows. The velocity jump at the interface is subtracted from the one-fluid velocity

field. A similar idea has been proposed by Scapin et al. (2020). Palmore Jr and

Desjardins (2019) has proposed an alternative way to obtain a divergence-free

liquid velocity field: the liquid velocity is extrapolated in the gas phase using

the Aslam’s extension method (Aslam (2004)) and then the new velocity field

is projected onto its divergence-free part using an Helmholtz decomposition.

Until now, the aforementioned studies used an incompressible numerical for-

malism for the resolution of the Navier-Stokes equations. This assumption is no

longer suitable for simulation of multiphase flows with phase change in enclosed

environment or with encapsulated gas structures such as atomization config-

urations. In most of these studies, an outflow boundary condition is used to

evacuate the divergence created at every iteration in the gas. As a consequence,

the gas density and the thermodynamic pressure remains constant in this kind

of approaches. To take into account the increase of gas density and pressure

due to vaporization and/or thermal dilatation, a weakly compressible approach

should be used. In a previous work of Duret et al. (2018), a pressure based

method was developed for the simulation of vaporizing compressible two-phase

flows. This formalism was able to describe atomization processes (high Weber

and Reynolds numbers), allowing an accurate representation of encapsulated gas

structures with their own thermodynamic pressure. However, coupling between

the energy and the vaporization rate was not yet implemented. In the literature,

studies able to describe this type of problems are very scarce. Wang et al. (2019)

proposed a method for modeling the evaporation of two-phase flows while solv-

ing the Navier-Stokes equations under a low Mach number limit. More recently,

Dodd et al. (2021) study the evaporation of a isolated droplet in a homogeneous

isotropic turbulence configuration. They used a low Mach number formulation

to solve the Navier-Stokes equations in the gas phase while maintaining the

incompressible assumption in the liquid phase. Scapin et al. (2021) proposed

a low Mach number formulation for studying the evaporation of droplets in a

homogeneous shear turbulence. Nevertheless, they only considered one unique

gas structure with a constant thermodynamic pressure.
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This work present numerical strategies for simulating turbulent two-phase

flows which take into account the surface tension, acoustic/compressible effects,

heating, phase change and large density ratio. We propose to achieve this task

by extending the projection method proposed by Tanguy et al. (2007) into a

compressible formalism using the weakly-compressible framework proposed by

Duret et al. (2018). Note that this formalism is not based on a LowMach number

approximation, but on an All Mach formalism, similar to the one presented by

Kwatra et al. (2009), Huber et al. (2015) and Duret et al. (2018). Moreover,

this formalism is combined with an accurate and conservative interface capturing

method (CLSVOF method), allowing to simulate atomization processes (high

Weber and Reynolds numbers). Our approach uses directly the total pressure

that depend of the local thermodynamic pressure affected by the vaporization

process and the hydrodynamic pressure.

First, the governing equations for a compressible two-phase flow, the inter-

face jump conditions and the numerical strategies are described. Next, valida-

tions cases for the incompressible formalism are presented for cylinder (mass

conservation) and droplet configuration (D2 law), showing the accuracy and

robustness of the method. Then, a simple validation case of an evaporating

cylinder in an enclosed environment is presented for the compressible formal-

ism. Finally, a 3D Homogeneous Isotropic Turbulence (HIT) configuration is

studied to illustrate the ability of the method to handle compressible turbulent

two-phase flows with phase change.

2. Governing Equations

In this work, a system of two immiscible fluids is studied; composed by a

mono-component liquid and an ideal mixture of gases (e.g. air and vaporized

liquid). Thermodynamic equilibrium is assumed at the interface; where mass,

energy and momentum are exchanged between both phases. At first, governing

equations for the compressible formalism are presented. Then, the additional

assumptions leading to incompressible Navier-Stokes equations are exposed. Fi-
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nally, a discussion about the jump conditions for the discontinuous variables and

the boundary condition used for the species conservation equation at the inter-

face is presented.

2.1. Compressible flow

The Navier-Stokes and pressure equations for a fully compressible flow in

one fluid formalism, can be written as:

∂ρ

∂t
+ ∇ · (ρu) = 0

∂ρu

∂t
+ ∇ · (ρu⊗ u) = ∇ · ¯̄Ω + ρfvol

∂P

∂t
+ u ·∇P = −ρc2∇ · u +

αT c
2

cp

(
∇ · (λ∇T ) + ¯̄τ : ∇u + Q̇

)
(1a)

(1b)

(1c)

where ρ, u and P are the density, velocity and pressure, respectively. fvol

is the volume forces, ¯̄Ω = −P ¯̄I + ¯̄τ is the total stress tensor and ¯̄I the identity

matrix. The viscous stress tensor is defined as:

¯̄τ = 2µ¯̄ε− 2

3
µ (∇ · u) ¯̄I (2)

where ¯̄ε = 1
2

(
∇u + ∇uT

)
. c is the sound speed, µ the dynamic viscosity,

cp is the heat capacity, αT is the coefficient of thermal expansion, T is the

temperature, λ is the thermal conductivity and Q̇ is an energy source term.

This set of equation does not include directly phase change terms, but they will

be considered in the jump conditions at the interface, described in the following

sections.

Here, both fluids are considered to be compressible. Which implies that the

system of equations 1 must be closed by two equations of state. For the liquid,

a modified version of the Tait’s equation is chosen:

ρl = ρ0

(
P − P0

B
+ 1

) 1
γl

(3)

where ρ0 is a density at a reference state, P0 is a reference pressure, B is a

constant and function of the isothermal compressibility of the fluid and γl is a

pressure-independent parameter also inherent to the fluid.
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Concerning the gas phase, for isentropic case, such as the configuration pre-

sented in Section 5.1, a Laplace’s law is chosen:

ρg =

(
P

Cγ

) 1
γg

(4)

where γg is the heat capacity ratio and Cγ is a constant dependent of the initial

condition of the ideal gas.

In compressible configurations with heat and mass transfer, such as the HIT

configuration in Section 5.2, a perfect gas Equation of state is used :

ρg =
P

rT
(5)

where r is the specific ideal gas constant and P the total pressure.

The energy conservation equation can be expressed in term of the tempera-

ture:

ρcp

(
∂T

∂t
+ u ·∇T

)
= ∇ · (λ∇T ) + αTT

(
∂P

∂t
+ u ·∇P

)
+ ¯̄τ : ∇u + Q̇ (6)

A similar set of equations for compressible two-phase flows is presented in

Caltagirone et al. (2011).

Since the liquid phase is considered as mono-component, the species conser-

vation equation is only described for the gas phase:

∂ρgYv
∂t

+ ∇ · (ρguYv) = ∇ · (ρgDm∇Yv) (7)

where Yv is the vapor mass fraction and Dm is the mass diffusivity.

2.2. Incompressible flow

In the incompressible part of this work, the fluid velocity field is computed

using equations 1, with a divergence-free condition in both phases:

∇ · u = 0

∂u

∂t
+ (u ·∇)u = −∇P

ρ
+

2µ¯̄ε

ρ
+ fvol

ρcp

(
∂T

∂t
+ u ·∇T

)
= ∇ · (λ∇T )

∂Yv
∂t

+ ∇ · (uYv) = ∇ · (Dm∇Yv)

(8a)

(8b)

(8c)

(8d)
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Here, the density of each phase is considered constant in time and space.

In this case, the pressure is a numerical parameter which allow the system to

satisfy the divergence-free condition. Hence, there is no need of an additional

equation dedicated to the pressure.

Note that it is possible to consider the gas incompressible in configurations

with phase change: it has been done in previous work in the literature (Tanguy

et al., 2007; Schlottke and Weigand, 2008; Gibou et al., 2007). Under this

assumption, the gas density remains constant. However, the velocity divergence

produced by the Stefan flow at the interface must be evacuated of the domain,

e. g., with an outflow boundary condition.

2.3. Interface jump conditions

Considering that we are working with a one-fluid formalism, appropriate

jump conditions must be defined for the discontinuous variables at the interface.

Commonly for the inert interface, we have:

[ρ]Γ = ρl − ρg (9)

[µ]Γ = µl − µg (10)

and the surface tension is taken into account by the pressure jump at the inter-

face: [
n ·
(

¯̄Ω · n
)]

Γ
= σκ (11)

with σ as the the surface tension, κ is the total curvature and n is the vector

normal to the interface.

When heat and mass transfer are considered across the interface, additional

jump conditions are required to fully describe our system. The mass conser-

vation condition across the interface can be expressed as ((Calimez, 1998) and

Ishii and Hibiki (2010)) :

ρl
(
uΓ
l − uΓ

)
· n = ρg

(
uΓ
g − uΓ

)
· n = ω̇ (12)
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where ω̇ represent the mass flow across the interface due to evaporation. uΓ is

the velocity of the interface; which can be described, from the liquid side, as

the sum of the liquid velocity at the interface (uΓ
l ) and the interface regression

speed (sd):

uΓ = uΓ
l − ‖sd‖n (13)

sd is colinear to the interface normal and defined as the difference of the normal

components of uΓ and uΓ
l :

sd =
((
uΓ − uΓ

l

)
· n
)
· n (14)

from eq. 12, we have:

sd = − ω̇
ρl
n (15)

uΓ can be also be defined from the gas phase as:

uΓ = uΓ
g −

ρl
ρg
‖sd‖n (16)

The magnitude of difference the between equations 13 and 16 is the velocity

jump across the interface:

∆u =
ρl − ρg
ρg

‖sd‖ (17)

Also, the thermal conductivity is discontinuous at the interface: [λ]Γ =

λl − λg. Additionally, in the presence of phase change, an extra energy jump

condition must be considered to respect the energy conservation equation:

λl∇TΓ
l · n− λg∇TΓ

g · n = −hlvω̇ (18)

where hlv is the latent heat.

Finally, to respect the species conservation, for a monocomponent liquid, the

jump condition at the interface for Yv is:

ρgDm∇Yv · n|Γg = ω̇(1− Yvs) (19)
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Where Yvs is the vapor mass fraction at the interface in the gaseous phase.

To estimate Yvs, the thermodynamic equilibrium is assumed at the interface,

allowing a direct relation between the energy and Yv. The Clausius-Clapeyron

relation is used:

X = exp

[
−hlvMvap

R

(
1

TΓ
− 1

TB

)]
(20)

where X is the vapor mole fraction at the interface, Mvap is the molar mass of

the vapor, R is the ideal gas constant, TΓ is the temperature of the interface and

TB is the boiling temperature. From the mass definition, Yvs can be calculated

as:

Yvs =
XMvap

XMvap + (1−X)Mg
(21)

whereMg is the molar mass of the inert gas. The denominator of the right hand

side of eq. 21 represents the mean molar mass of the gas mixture.

The interface jump conditions of the different variables reveal the strong cou-

pling between heat/mass transfer and the velocity jump. Handling this coupling

is challenging and require robust and accurate numerical methods dedicated to

DNS of two-phase flow with phase change.

3. Numerical Methods

This section is devoted to discuss about numerical strategies used to perform

direct numerical simulation of multiphase flows with phase change. When deal-

ing with this kind of flows, numerous difficulties appears due to the diversity of

physical processes that takes place simultaneously. In addition, special care is

required when implementing the jump conditions at the interface described in

the previous section.

In the literature, the numerical representation of an inert interface is well

known. To include the phase change phenomenon, these strategies are adapted

to consider the interface regression velocity induced by the vaporization of the

liquid. Usually, when an interface capturing method is used (e. g., Volume

of Fluid (VoF) method or a Level-set (LS) method) this adaptation is done

explicitly by adding a sink term in the VoF transport equation or implicitly by
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adding the interface regression speed, defined by eq. 15, to the velocity field

used for the convective transport of the scalar.

Furthermore, a discontinuity in the velocity field occurs across the inter-

face (eq. 17). Note that most numerical methods dedicated to the convective

transport of the scalars in DNS of two-phases flows are originally developed to

handle continuous and divergence-free velocity fields. Hence, they cannot used

this velocity field directly. Otherwise, unphysical deformation of the interface

will occurs due to an oscillatory behavior of the numerical scheme, which will

lead to errors in the mass conservation. Several strategies has been proposed

to overcome this issue. Most numerical strategies share the same idea: cre-

ate a divergence-free velocity field, dedicated to the convective transport of the

interface capturing methods.

To extend the applicability of our in-house code ARCHER to reactive inter-

faces in compressible multiphase flows, we investigated various methods found

in the literature. First, the method proposed by Malan et al. (2020) and then

modified by Scapin et al. (2020). This formalism is developed for incompress-

ible configurations. The idea of this method is to compute a divergence-free

liquid-velocity extension (ul) for advecting of the liquid volume fraction. This

extension is computed by subtracting the velocity jump at the interface from

the original velocity field:

ul = u− ũ

An intermediate velocity field (ũ) is computed, which contain a velocity jump at

the interface with the same magnitude that the real velocity field (u) but with

opposite sign. An advantage of this method is its simplicity of implementation

in a VoF solver. But with this method, when the Stefan flow is large, spurious

velocities are created due to small errors in the construction of ul, which deform

the interface in a unphysical way in the long term in our implementation. Then,

the method proposed by Palmore Jr and Desjardins (2019) was investigated.

Similar to the previous method, it is conceived for a incompressible formalism

and its purpose is to construct a divergence-free velocity field to advect the
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liquid volume fraction. In this case, Palmore Jr and Desjardins (2019) takes the

original velocity field and extend linearly the velocity of the liquid phase into

the gas phase using the Aslam’s extension method (Aslam, 2004). As mentioned

by the authors, the extended velocity field (u∗l ) is not divergence-free leading

to erroneous variations in the liquid volume. To overcome this problem, u∗l is

projected onto its divergence-free part using:

ul = u∗l + ∇ ·W (22)

where W is a potential derived from the Helmholtz-type equation,

aW + ∇ ·W = ∇ · u∗l (23)

where a is zero for all liquid-containing cells and cells that are within three

grid cells of the interface. The application of this method imply an important

increase in the computational cost due to the addition of the Aslam’s extension

method and the extra Poisson solver. Similar to the previous method, the

spurious currents in ul deformed the interface when the vaporization rate is

large. A probable reason why the results obtained with aforementioned methods

are not satisfactory may that the resulting real velocity field, with the velocity

jumps at the interface, is not suitable for the numerical methods used in our

DNS code (ARCHER) for the convective and diffusive terms of the Navier-Stokes

equation.

Finally, the third method that we are going to analyze and use in the follow-

ing sections is the one proposed by (Tanguy et al., 2007). With this approach,

the Ghost Fluid Method is used for the treatment of the jump condition at

the interface given by eq. 17. In this case, the convective terms in transport

equations use either the liquid or the gas velocity fields, depending of the sign

of the Level Set function. Using the Ghost Fluid Method to populate the ghost

cells on each side of the interface, we obtain:

ughostl = ug + sd

(
ρl − ρg
ρg

)
(24)

ughostg = ul − sd

(
ρl − ρg
ρg

)
(25)
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This way we can obtain a liquid velocity field (ul) without the velocity jump at

the interface. In the method of (Tanguy et al., 2007), additional steps have been

proposed for ensuring the divergence-free condition in ul for a precise evolution

of the interface. In our formalism, this projection method is then improved to

include acoustics and compressible effects and combined with a mass conserva-

tive interface capturing method (CLSVOF method). These improvements are

presented and discussed in the following sections.

3.1. Interface capturing method

The Coupled Level-set/Volume of Fluid (CLSVOF) method implemented

in the ARCHER code (Ménard et al., 2007) is extended to handle multiphase

flows with phase change. In this section, the VoF equation for the compress-

ible formalism with phase change is presented. With this approach, density

variations due to temperature, pressure gradients and evaporation in enclosed

environments can be captured.

To demonstrate the VoF equation, the first step is to define the density as a

weighted mean between the density of each phase:

ρ = αlρl + αgρg

where αl and αg are the local liquid and gas volume fraction, respectively. Then,

the new definition of ρ is introduced into the continuity equation (eq. 1a). Using

the conventional notation D[·]
Dt = ∂[·]

∂t + u · ∇[·] for the material derivative and

subtracting a sink term to satisfy mass conservation in the presence of phase

change, we can find that:

∂αl
∂t

+ ∇ · (αlul) = −αl
ρl

Dρl
Dt
− ṁ

ρl
(26)

where ṁ represent the quantity of liquid volume evaporated in each cell con-

taining an interface. ṁ is estimated by:

ṁ = ρlΣ‖sd‖ (27)
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where Σ = S
Vcell

is the surface density in a mixed cell, S is the surface, obtained in

the PLIC reconstruction. The material derivative of the density can be obtained

by writing eq. 1a on a non-conservative form and using eq. 1c for the velocity

divergence:
Dρl
Dt

=
1

c2l

DP

Dt
− αTl

cpl
∇ · (λ∇T ) (28)

The pressure and temperature term of eq. 28 are solved after the compu-

tation of the Poisson equation for the pressure and during the evolution of the

temperature, respectively. Both of them will be detailed in the next sections.

Since the liquid evaporation is taken into account explicitly by adding a sink

term in the RHS of eq. 26; local undershoots of the liquid volume fraction

(αl < 0) can occur. To respect mass conservation and ensure an accurate

interface regression due to the evaporation, the extra fraction of evaporated

liquid is distributed to the neighboring grid cell located in the opposite direction

of the interface normal.

In a VoF/LS coupling, it is necessary to solve both of their transport equa-

tions simultaneously, the Level Set transport equation is defined as:

∂φ

∂t
+ ∇ · (φul) = 0 (29)

where φ is the signed distance function between a grid point and the interface.

It takes positive values for the points in the liquid phase and negative for those

in the gas. The discretization of both equations is made following the "coupled"

second-order conservative operator split advection scheme defined in Sussman

and Puckett (2000). The evaporation term in the rhs of eq. 26 is applied in the

last step of the temporal integration of the liquid volume fraction.

The signed distance function is used to obtain the geometrical information

of the interface, e.g., the vector normal to the interface (n) and the curvature

(κ):

n =
∇φ

|∇φ|
κ = −∇ · n (30)

A redistancing algorithm is applied every iteration step following the same

principle of previous work (Ménard et al. (2007), Tanguy et al. (2007), Duret
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et al. (2012)).

3.2. Flow solver

A projection method is used for the temporal resolution of the momentum

equation. An Eulerian staggered grid is considered: the scalars variables (P , T ,

αl, etc) are defined on the cell center and velocities are located on the faces of

the cell.

In this work, we are going to used the method proposed by (Tanguy et al.,

2007) for a discontinuous velocity field at the interface. The Ghost Fluid Method

(GFM) is used to populate the ghost cells on each side of the interface. The

velocity extensions allow to have continuous liquid/gas velocity fields at the

interface. As such, the numerical methods for the convective and diffusive terms

of the Navier-Stokes equation, already implemented in the ARCHER code, can

be used.

For the compressible part of this work, the projection method of (Tanguy

et al., 2007) has been modified to take into account the compressible effects, i.

e., density gradients due to an increase of pressure in an enclosed environment

containing an evaporating liquid and spatial variation of the temperature field.

First, an intermediate velocity u∗ is calculated for both liquid and gas field(
u∗l ,u

∗
g

)
by solving the momentum equation (eq.1b) without the pressure:
u∗l = unl −∆t

(
(unl ·∇)unl −∇ ·

(
2µ¯̄εl −

2

3
µ∇ · unl ¯̄I

))
u∗g = ung −∆t

((
ung ·∇

)
ung −∇ ·

(
2µ¯̄εg −

2

3
µ∇ · ung ¯̄I

)) (31a)

(31b)

the term 2
3µ∇ ·u

n ¯̄I had been added to adapt the projection method to a com-

pressible formalism. This new term is computed with a second order centered

difference scheme. For equations 31, the convective terms are computed with

a 5th order WENO scheme and the viscous terms are solved with the method

proposed by Sussman et al. (2007). Then, similar to the incompressible solver,

the following strategy to update the velocity is applied:

un+1 = u∗ −∆t
∇Pn+1

ρn+1
(32)
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Then the divergence operator is applied:

∇ · un+1 = f −∇ ·
(

∆t
∇Pn+1

ρn+1

)
(33)

where

f =

∇ · u∗l if φ > 0,

∇ · u∗g if φ < 0,

The next step is to inject eq. 33 in the pressure equation (eq. 1c), yielding

the following system for the pressure:

−∇ ·
(
∇Pn+1

ρn+1

)
+

(
1

ρc2∆t2

)
Pn+1 =

(
1

ρc2∆t2

)
(Pn + ∆tu ·∇Pn)

− f

∆t
+

αT
ρcp∆t

∇ · (λ∇T )

(34)

The convective term of the pressure (u ·∇P ) is discretized with a 5th or-

der WENO scheme. The Poisson solver used for this Helmholtz type equation

consists of an MGCG (MultiGrid preconditioned Conjugate Gradient) method

coupled with the Gauss-Seidel "Red-Black" iterative scheme. The energy term

of eq. 34 is computed during the evolution of the temperature; which is ex-

plained in the next section. Then, the real part of the velocity field of each

phase is obtained with:un+1
l = u∗l −∆t∇Pn+1

ρn+1 if φ > 0,

un+1
g = u∗g −∆t∇Pn+1

ρn+1 if φ < 0,
(35)

Now, in order to use the GFM, a liquid and gas velocity extensions must be

estimated. For the liquid, a ghost pressure (P ghost) is computed:

−∇ ·
(
∇P ghost

ρn+1

)
+

(
1

ρc2∆t2

)
P ghost︸ ︷︷ ︸

I

= −∇ · u∗l
∆t

+
αT

ρcp∆t
∇ · (λ∇T )︸ ︷︷ ︸
II

(36)

Eq. 36 is solved following the same methods used for eq. 34. The new

term I is related to the flow acoustics and the new term II is the contribution
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of the thermal dilatation. These two terms have been added compared to the

original projection method proposed by Tanguy et al. (2007). The liquid velocity

extension (ughostl ) is computed from P ghost:

ughostl = u∗l −∆t
∇P ghost

ρn+1
(37)

The above method is similar to (Tanguy et al., 2007). Here, both phases are

considered to be compressible; for this reason, the steps dedicated to enforce

the divergence-free condition in the liquid velocity field and its extension are

skipped. It is worth mention that the liquid velocity extension
(
ughostl

)
is

continuous but non divergence-free. And the final liquid velocity is obtained

with:

un+1
l =

un+1
l if φ > 0,

ughostl if φ < 0,
(38)

The velocity extension for the gas is computed by adding the interface ve-

locity jump to the liquid velocity:

ughostg = un+1
l − sd

(
ρl − ρg
ρg

)
(39)

Finally, the gas velocity field is obtained:

un+1
g =

ughostg if φ > 0,

un+1
g if φ < 0,

(40)

With this formalism , two continuous velocity fields have been obtained in

the whole domain, including at the interface location. Then, standard numerical

methods for the convective transport for the momentum and scalars can be used

directly.

3.3. Energy transport

For the evolution of the temperature field, in the energy equation (eq. 6),

the term responsible for the energy generation by friction (¯̄τ : ∇u) and the term
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of volumetric energy generation
(
Q̇
)
are neglected because the production or

consumption of energy by a chemical reaction in the system it is not considered,

yielding:

ρcp

(
∂T

∂t
+ u ·∇T

)
= ∇ · (λ∇T ) + αTT

(
∂P

∂t
+ u ·∇P

)
(41)

Eq. 41 is solved in two step. First, an intermediary temperature (T ∗) is

computed containing the convective and diffusive terms. Then, the pressure

term is added after the resolution of the Poisson equation.

The convective term of eq. 41 is discretized using a 5th order WENO scheme.

Strong temperature gradients can occur at the interface, which are a source of

error and can lead to numerical heating. To avoid this, the temperature field of

each phase is extrapolated using the Aslam’s extension method (Aslam, 2004).

The idea is to extend linearly the scalar of one phase, following the normal

direction of the interface, into the other; populating the ghost grid points. Then

a 5th order WENO scheme is used for convection of the liquid temperature and

its ghost values (ul ·∇Tl) and the same procedure is applied for the gas side

(ug ·∇Tg). Finally, these terms are introduced into eq. 41 depending on the

sign of the Level Set function.

A 2nd order central difference scheme is used for the discretization of the

diffusion term. When mass transfer is considered, the energy jump at the in-

terface (eq. 18) must be taken into account in eq. 41. For this reason, the

discretization scheme for the diffusion term is modified in the grid points close

to the interface using a GFM.

3.4. Vapor mass fraction transport

For the transport of the vapor mass fraction (Yv), eq. 7 is solved only in the

gas phase. Yv is also extended in the liquid phase with the Aslam’s extension

method. Eq. 7 reduces to:

∂Yv
∂t

+ (u ·∇)Yv =
∇ · (ρgDm∇Yv)

ρg
(42)
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As for eq. 41, the diffusion term is discretized using a 2nd order central

difference scheme and the convective term is computed with a 5th order WENO

scheme. To apply the Dirichlet boundary condition at the interface (Yvs), a 1st

order Aslam-Chiu extension method is implemented. More details about this

method are available in Bouali et al. (2016). The main idea of this method is to

introduce a mirror point in gaseous phase, which is the image of the ghost point

of Yv in the liquid, initially estimated with Aslam’s extension method. Then, the

mirror point is used for the correction of the estimation of the Aslam extension,

following the value of the boundary condition given by eq. 21. The estimation

of the ghost point of the vapor fraction (Y Ghv ) in the liquid is computed as:

Y Ghv = 2Yvs −
(
Y extv − 2φ

dYv
dn

)
(43)

where Y extv is the first estimation of the ghost point, dYv
dn is extracted from

the linear Aslam’s extension done before the convection step of Yv and Yvs is

obtained with eq. 21.

The interface temperature (TΓ) needed for eq. 20 is estimated with (in 1D):

TΓ =
Tl,i|φi+1|+ T ghostl,i+1 |φi|

|φi+1|+ |φi|
(44)

where T ghostl is the extended liquid temperature on the gas phase. Eq. 44

can be generalized into two and three dimensions. If the liquid and the gas

temperatures are used instead of the liquid temperature and its extension to

interpolate the interface temperature; unrealistic values can be obtained. Which

will results in a erroneous determination of the Dirichlet boundary condition for

Yv and the evaporation rate.

For both scalar fields (T and Yv), when a grid node pass from being in one

phase to the other due to the evolution of the interface, a correction step is im-

plemented. During this step, Yv and T of a ’switching’ point i are replaced with

its ghost values given by the Aslam’s extension method during the previous time

step. The purpose of the correction is to avoid the artificial heating/cooling in

regions close to the interface after the time integration of the interface capturing

method.
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Fig. 1 show the algorithm used in a Euler time step for the compressible

flow solver. The incompressible algorithm is not presented since it is similar to

the one of Tanguy et al. (2007), but with a different interface capturing method

(VOF). The VOF transport equation presented in Eq. 26 has been used to take

into account evaporation processes in both formalism.

4. Results (incompressible formalism)

4.1. Validation

In this section two academic cases are presented to validate our incompress-

ible formalism. First, a 2D static cylinder with an imposed evaporation rate

is studied to demonstrate the accuracy of our sink term in the VoF equation,

combined with the CLSVOF method for capturing reacting interfaces. Then, a

D2 law configuration is investigated to validate the implementation of the ther-

modynamics of the formalism as well as the coupling between the temperature,

the vapor mass fraction and the evaporation rate. The physical properties for

the air, water and n-decane are listed in table 1. The mass diffusion coefficient

for the vapour in air is Dm = 2.1 × 10−5 m2.s−1 and Dm = 1 × 10−5 m2.s−1

for the n-decane vapour in air. The surface tension for water/air interface is

σ = 0.07 N.m−1 and σ = 0.0135 N.m−1 for the n-decane/air interface.

Fluid ρ
(

kg
m3

)
µ
(

kg
ms

)
λ
(

W
mK

)
Cp

(
J

kgK

)
M

(
kg
mol

)
hlv

(
J
kg

)
TB (K)

Air 1.226 1.78× 10−5 0.046 1000 0.029

Water 1000 1.137× 10−3 0.6 4180 0.018 2.3× 106 373

N-decane 750 5.65× 10−4 0.14 2207 0.142 3.25× 105 447

Table 1: Physical properties for the air, water and n-decane

4.1.1. Interface regression

A 2D static water cylinder with a constant evaporation rate is used to val-

idate the estimation of the sink term in the VoF equation (eq. 26) responsible
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Figure 1: Summary of a euler time step for the compressible flow solver.
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for the regression of the interface due to phase change and the efficiency of the

aforementioned liquid velocity extension method. Since the evaporation rate is

imposed, the energy and species conservation equations are not considered in

this configuration. However, the Navier-Stokes equations are solved.

The initial cylinder radius is RD = 150µm and the domain is a square with a

side length of lx = ly = 8RD. Initially, the velocity of both phase is equal to zero

and outflow boundary conditions are employed in all directions. Theoretically,

the evolution of the cylinder mass (mth) is given by:

mth(t) = ρlπ (RD − ‖sd‖t)2 (45)

The interface regression speed ‖sd‖ is set to 10−3m.s−1. Simulations are made

for four mesh sizes: 322, 482, 642 and 1282.

One of the difficulties with this configuration is the magnitude of the spu-

rious currents in the liquid velocity field. Spurious currents are created during

computation of ul and depend of the numerical method used for the treatment

of the interface velocity jump. If the magnitude of the spurious velocities is

important, unrealistic deformation of the interface will occur; leading to issues

in the mass conservation. For the static configuration the liquid velocity and its

extension are supposed to be zero (ul = ughostl = 0), the regression velocity (sd)

is the only one influencing the interface evolution. On the other hand, the real

part of the gas velocity (ug) should contain the Stefan flow around the interface.

The different velocities are shown in fig 2 : a) the liquid velocity field with its

extension in the gas phase; b) the gas velocity field and its extension in the

liquid phase; c) the real velocity field. Here, we can see that the magnitude of

the spurious currents in the liquid velocity field are several order of magnitude

smaller than the velocity of the gas. Consequently, good agreement with the

theoretical evolution of the cylinder mass and the simulation results is obtained.

The simulations are stopped after 36% of the initial cylinder mass have been

evaporated. In Fig. 3 the normalized cylinder mass evolution
(
m∗ = ml

m0
l

)
for a

constant evaporation rate is shown. In Fig. 3a we can see that there is a good

agreement between the simulations and the theoretical results and in Fig. 3b
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(a)

(b)

(c)

Figure 2: Velocity fields and its extensions (t = 0.001 s). a): Liquid, b): gas, c) real.
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the simulations converge to the theoretical results as the grid mesh is refined.

To go further in the grid convergence analysis, the Lp norms are plotted in Fig.

4. The Lp norms are computed as:

L∞ = max |mth(t)−m(t)| (46)

L1 =

∑
|mth(t)−m(t)|

N
(47)

L2 =

√∑
|mth(t)−m(t)|2

N
(48)

A order of convergence close to 2 has been obtained. These results show an

improvement in both the magnitude of the relative errors and in the order of

convergence compared with the results obtained by Tanguy et al. (2007). This

difference can be explained by the use of a conservative method for the interface

capturing (CLSVOF method).

4.1.2. D2 law

In order to validate the implementation of the thermodynamics in the in-

compressible formalism, a static droplet configuration is compared with the

well-known D2 law. According to this law, the square of the droplet diameter

decreases linearly with time because of heat and mass diffusion in the surround-

ing gas film (Sirignano and Edwards, 2000). To obtain the normalized square

radius equation, the continuity equation in spherical coordinates must be solved

assuming incompressibility and a constant liquid mass flux from the interface

to the surrounding air
(
ṁ′ = 4πr2ρu

)
.

Among the assumptions necessary for the D2 law to be applicable, the iso-

lated droplet must be in an infinite continuous medium. Using this condition

into a numerical domain is too computationally expensive. Because, it would

imply that the interface of the droplet is sufficiently far from the the domain

boundary, in order to not disturb the spatial profile of the velocity, vapor mass

fraction or temperature. To be representative of the finite domain simulation,

we integrate the species and energy conservation equations using the values of
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Figure 3: Liquid mass evolution for a constant evaporation rate. Solid: Theoretical solution,

Dashdotdotted: 322, Dashed: 482, Dashdot: 642 , Dotted: 1282.
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Figure 4: L∞, L1 and L2 norm of the liquid mass temporal evolution for a constant evapora-

tion rate. Solid line: 2nd order, 4: L∞, ◦: L1, D: L2.

each variable at the limit of the numerical domain, yielding:

Yv(r) = 1 + (YvBC − 1) exp

[
− ṁ′

4πρDm

(
1

r
− 1

rBC

)]
(49)

ln

(
T (r)− hlv

cp
− ϕ

ṁ′

TBC − hlv
cp
− ϕ

ṁ′

)
= − ṁ′

4πρDt
g

(
1

r
− 1

rBC

)
(50)

where YvBC , TBC are the vapor mass fraction and temperature at the boundary

of the domain, respectively. rBC is the distance from the center of the droplet to

the limit of the domain. Dm is the mass diffusivity. Dt
g = λ

ρgcpg
is the thermal

diffusivity. ṁ′ is computed by evaluating eq. 49 at the interface (Yv(RD) = Yvs):

ṁ′ = −4πρ
rrBC
rBC − r

ln

(
Yvs − 1

Yv∞ − 1

)
(51)

And ϕ can be interpreted as the heat flow entering the liquid. ϕ is obtained

by evaluating eq. 50 at the interface (T (RD) = TΓ):

ϕ = −
ṁ
(
hlv + exp

[
− ṁ

4πρDtg

(
1
r −

1
rBC

)]
(TBCcp − hlv)− TΓ

)
cp

(
1− exp

[
− ṁ

4πρDtg

(
1
r −

1
rBC

)]) (52)
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This equation considers the length of the numerical domain in our theoretical

calculation, making the results more comparable.

This configuration is particularly difficult because we are trying to reproduce

the theoretical results given by solving the conservation equations in spherical

coordinates using a Cartesian mesh. To compare the vapor mass fraction and

temperature profiles computed by eq. 49 and 50 with the simulation results,

it is necessary to wait enough time for the configuration to go from the ini-

tial conditions to a stationary state. In other words, the vapor mass fraction

and temperature temporal derivative must be small enough to be considered as

negligible. To lower the computational cost and prevent the movement of the

droplet from the center of the domain, ul = 0. sd is the only velocity responsible

for the interface evolution.

A water droplet with initial radius of RD = 150µm is considered. The

initial droplet temperature is Tl = 353K and the initial gas temperatures is

Tg = 573K. The domain is a cube with a side length of 8RD. Simulations

are carried out with three mesh sizes: 323, 483 and 643. Outflow boundary

conditions are employed in all directions.

On Fig. 5, the temperature (a) and the vapor mass fraction (b) are presented

at t = 0.08 s for the finest grid (643). As expected, a spherical symmetric

property around the droplet is observed for both fields. The temporal evolution

of the normalized diameter of the droplet is showed in Fig. 8. In the first

moments of the simulation, a strong regression speed is observed. This is because

the liquid is not initialized at the equilibrium temperature. Then the curve

start to stabilize, resulting in a linear trend as the temperature at the interface

approach an equilibrium temperature; as established in the D2 law. This results

show the ability of our method to handle strong temperature gradients at the

interface and the strong coupling between the vaporization rate and the fluid

dynamics efficiently. Fig. 7 and Fig. 6 shows the temperature and vapor mass

fraction profile in the gas phase obtained by solving eq. 50 and 49 and the

profiles obtain with three simulations (323, 483 and 643) as a function of the
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(a) (b)

Figure 5: (a) Temperature field and (b) vapor mass fraction field (t = 0.08 s).

normalized radius
(
r∗ = r

RD

)
. A good agreement with the theory is found for

all the simulations.
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Figure 6: Radial vapor mass fraction profile in the gaseous phase (t = 0.08 s). Solid line:

theoretical solution of D2 law, ◦ : 323, � : 483 4 : 643.
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Figure 7: Radial temperature profile in the gaseous phase (t = 0.08 s). Solid line: theoretical

solution of D2 law, ◦ : 323, � : 483 4 : 643.
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483, Dotted: 323.
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4.2. Convected evaporating cylinder

In this section, a simulation of an evaporating falling water cylinder is pre-

sented. This configuration illustrates the formalism ability to handle the con-

vection term in the Navier-Stokes solver in the presence of discontinuities in

the velocity field combined with the CLSVOF interface capturing method. The

initial cylinder radius is RD = 300µm and the initial liquid velocity, gas veloc-

ity, liquid and gas temperature are ul = 1 m.s−1, ug = 0 m.s−1, Tl = 323 K

and Tg = 873K, respectively. Outflow boundary conditions are used in all

directions. For the temperature and vapor mass fraction, Dirichlet boundary

conditions are imposed: T = 873K and Y v = 0. A 2D rectangular domain

is considered with a length in the x-direction lx = 8RD and in the y-direction

ly = 4lx. Simulations are carried out with a 128× 512 grid size.

Fig. 9 shows the temperature and the vapor mass fraction field at t =

6ms. The numerical methods implemented in this work for the treatment of

the different jump conditions and strong temperature gradients at the interface,

allow us to capture several phenomena. For example, we can identify the thermal

and species boundary layers formed around the cylinder. In the front, the

presence of stronger temperature and vapor mass fraction gradients than in the

back of the cylinder shows the formation of a recirculation zone due to the

moderate cylinder Reynolds number investigated (ReD =
ρgDuinit
µgas

= 40). This

recirculation zone causes a homogenization of the temperature and vapor mass

fraction behind the cylinder, forming a plume in both fields. The variation

of the vapor mass fraction around the cylinder and the temperature at the

interface induces a non-homogeneous evaporation rate (See Fig. 10). This

result highlights the importance of considering the local interface temperature

and the local surface density for computing of the evaporation rate.

Fig. 11 shows the streamlines, colored with the temperature, of the gas flow

behind the cylinder and the iso-contour of ug = 0 for two simulations: on the

right, the evaporating falling cylinder; on the left, we have the same configura-

tion, but this time, without evaporation (heating only). An axisymmetric vortex

and a slight detachment and enlargement of the recirculation zone is observed
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(a) (b)

Figure 9: (a) Temperature field and (b) vapor mass fraction field (t = 6ms) for a initial

velocity of ul = 1m
s
.
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Figure 10: Normal evaporation rate (ω̇n) and its extension around the drop (t = 6ms).

→: 0.025 kg
m2s

.

in the back of the evaporating cylinder. This is explained by the presence of the

Stefan flow; which creates an envelope around the interface and separates the

airflow from the cylinder.

To validate the fluid dynamics behavior, the normalized length of the recircu-

lation zones (L∗ = L
Dcyl

) for both evaporating and non-evaporating simulations

has been compared with those found in Dennis and Chang (1970) for a solid

cylinder. A good agreement is found for the non-evaporating water cylinder

with 1.4% of difference with the reference, while the evaporating configuration

have a difference of 4.7%.

To go further in the demonstration of the influence of the Stefan flow in the

characteristic of the recirculation zone, two additional simulations are performed

for a n-decane cylinder, while keeping the same Reynolds number. Fig. 12

shows the streamlines of the flow behind of the n-decane cylinder: on the right,

the evaporating configuration and on the left, the non-evaporating one. Here,

we can see that the detachment of the recirculation zone is more pronounced.

Due to its thermophysical properties, the Stefan flow is stronger for the n-

decane for the same temperature difference between the initial temperature of
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Figure 11: Velocity streamlines behind the water cylinder and visualisation of the u = 0

iso-contour. Right: evaporating drop, left: non-evaporating drop.

the liquid and its boiling temperature (∆T = TB−Tliq). This time, a difference

with the reference value of almost 32% is found for the evaporating n-decane

cylinder. Results are summarized in table 2. It is worth mention that the

same phenomenon of detachment of the recirculation zone from the back of the

interface and its enlargement was also observed by Jayawickrama et al. (2019)

and Jayawickrama et al. (2021). They studied the effect of the Stefan flow on

the drag coefficient and the Nusselt number of a spherical particle in a constant

airflow.

34



Figure 12: Velocity streamlines behind the n-decane cylinder and visualisation of the u = 0

iso-contour. Right: evaporating drop, left: non-evaporating drop.

Liquid Evaporation Re L∗ Ref. %Diff.

Water off 40 4.62 4.69 1.4

Water on 40 4.91 4.69 4.7

N-decane off 40 4.65 4.69 0.85

N-decane on 40 6.20 4.69 32

Table 2: Comparison of the length of the recirculation zone for two different liquid.
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5. Results (compressible formalism)

The following results use the compressible formalism presented in Section 3.

5.1. Mass conservation in enclosed environment

In this section, the same configuration of section 4.2 is used (static water

cylinder configuration), but this time the objective is to validate the compres-

sion and dilatation effects due to evaporation in two-phase flows. To simulate a

enclosed environment, periodic boundary conditions are employed in all direc-

tions. This configuration cannot be performed with an incompressible solver:

in this kind of formalism, the Stefan flow generated at the interface (dilatation)

should be evacuated by at least one outflow boundary condition in one direction.

In a Low Mach or a weakly-compressible framework, the divergence created will

increase the pressure and the gas density.

The initial cylinder radius is RD = 200µm. A 2D rectangular domain is

considered with a side length of lx = 24RD. Simulations are performed with

a 5122 grid resolution. In this configuration, the vaporization is imposed at

ω̇ = 1 kg
m2s . The temperature and the species transport equation are not resolved

in this subsection.

With a prescribed vaporization rate, the temporal derivative of the total gas

mass is ∂mg
∂t = ω̇S. Consequently, an estimation of the total mass gas at a given

instant n + 1 (mn+1
g ), including the dilatation induced by the Stefan flow, can

be written as :

mn+1
g = mn

g + ω̇Sn∆t (53)

where mn
g is the total gas mass at the previous timestep of the simulation. Note

that the result given by eq. 53 are not theoretical because the local interface area

SPLIC from the PLIC reconstruction is extracted in each cell and then summed

to obtain the total surface S. Fig. 13 shows the evolution of the normalized

gas mass (m∗g =
mg(t)
m0
g

) obtained in the simulation where m0
g is the initial total

gas mass, and compared with the reference results given by eq. 53. A good

agreement is found between the simulation results and the reference; which
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validate the coupling between the velocity jump term in the Poisson pressure

equation and the phase change sink term in the Vof equation. For completeness,

Fig. 14 shows the simulation results for the evolution of the liquid mass and

the reference results computed in a similar way with:

0.000 0.002 0.004 0.006 0.008 0.010
 t(s)

1.0

1.1

1.2

1.3

1.4

1.5

m
* g

Figure 13: Gas mass temporal evolution. Solid line: Reference solution, ◦: simulation results.

mn+1
l = mn

l − ω̇Sn∆t (54)

Furthermore, the total mass in a enclosed environment should remain constant

during all the simulation to respect continuity. In this configuration, the total

mass shows a reduction of less than 0.02% at the end of the simulation for the

finest mesh resolution (See Table 3). This result demonstrates the excellent

mass conservation properties of our CLSVOF interface capturing method.

Mesh 962 1922 3842 5122

E (%) 0.058 0.024 0.035 0.017

Table 3: Errors for the non-dimensional total mass for three mesh sizes in t = 0.01s
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Figure 14: Liquid mass temporal evolution. Solid line: Reference solution, ◦: simulation

results.

5.2. Compressible HIT configuration with phase change

Similar to previous works, the idea is to study the influence of the evapora-

tion phenomenon inside a forced two-phase flows HIT. In Duret et al. (2012), a

passive scalar was used to represent the evaporation and mixing process. Among

the limitations of this procedure, the influence of the Stefan flow in the velocity

field and the increase of the pressure due to the evaporation process were not

considered. A major improvement has been proposed by Duret et al. (2018)

where a phase change source term was directly introduced in the continuity

and pressure equations. The results obtained illustrated good mass conserva-

tion properties. However, the influence of the temperature in the vapor mass

fraction at the interface was not implemented yet to the general formalism: the

vaporization rate was directly imposed. Contrary to Duret et al. (2018), here,

the velocity jump is introduced implicitly to the Poisson equation for the pres-

sure in the ghost points of the gas velocity field. The coupling between the

energy, the continuity and momentum equations is added by assuming thermo-

dynamic equilibrium at the interface.

The thermodynamic properties are those of n-decane (table 1). The initial
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gas density is ρg = 25 kg.m−3. The pressure is P = 4.11 × 106 Pa and for the

Tait equation, the parameters used for the equation of state are B = 109 Pa,

P0 = 105 Pa, ρ0 = 750 kg.m−3 and γl = 1.215. The initial liquid volume fraction

is Φ = 10% and the targeted mean kinetic energy is k̄ = 3.6 m2

s2 . The initial

liquid temperature is Tl = 340K and the initial gas temperatures is Tg = 573K.

The domain is a cube with a side length of 1.5 × 10−4m and a 2563 mesh has

been retained for this simulation.

Fig. 15 shows a instantaneous temperature field and the iso-contour of

the level-set function which represent the liquid/gas interface. As well as in

other compressible and incompressible HIT configurations presented in previ-

ous works, many breakup and coalescence events are observed. Also, small gas

structures are observed inside the liquid; these structures are characterized by a

increase in pressure due to the creation of vapor and a decrease in temperature

because of the energy consumption induced by the phase change. Additionally,

the influence of the convection due to the turbulent velocity field in the temper-

ature field is observed. Similar phenomena are found in the vapor mass fraction

field (Fig. 16).

To observe the compressibility and dilatation effects on the velocity field,

the velocity divergence is shown on Fig. 17 (top) in the gas phase. By com-

paring Fig. 17 (top) and Fig. 15, an increase of the velocity divergence has

been observed in the presence of temperature gradients in the gas phase. This

phenomenon can be explained by rewriting Eq. 1c to obtain the equation of the

velocity divergence:

∇ · u = − 1

ρc2
DP

Dt
+
αT
ρcp

(∇ · (λ∇T )) (55)

where the second term is the thermal dilatation. This term is dominant in

the velocity divergence budget in the largest gas structure, meaning that the

acoustic/compressible effects (first term) have a lower order of magnitude in this

structure. However, the divergence inside encapsulated gas structure is gener-

ated differently: compressible effects have a major role in this scenario. The

Stefan flow compresses the gas in a very small volume, leading to an increase
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of the divergence and of the gas density. This effect is illustrated in Fig. 17

(bottom): the divergence inside the encapsulated gas structure is almost one

order of magnitude larger than the maximum divergence in the main gas struc-

ture. The temperature inside this structure is quasi uniform. Peaks of velocity

divergence are also observed close to the interface, due to the presence of the

Stefan flow (velocity jump).

Figure 15: Instantaneous temperature field with interface location (Level Set 0 isocontour).
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Figure 16: Instantaneous vapor mass fraction field with interface location (Level Set 0 isocon-

tour).
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Figure 17: Top: instantaneous divergence of the real velocity field with interface location

(Level Set 0 isocontour). Bottom: Visualization of the velocity divergence inside the encap-

sulated gas structure highlighted in red in the top figure.
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6. Conclusion

The development of a pressure based method for compressible multiphase

flows with phase change is presented. First, an incompressible formalism for

simulating of two-phase vaporizing flows is coupled with a mass conservative

interface capturing method. A volume sink term in the VOF equation, based

on the surface density, is used to represent the evaporation process. The use of

accurate extensions for the discontinuous variables and the ghost fluid method

allows the description of the additional jump conditions at the interface due to

heat and mass transfer. These techniques are able to handle strong temper-

ature gradients while avoiding numerical diffusion and artificial heating inside

the liquid. Several validations cases are shown to illustrate the mass conser-

vation properties of our method and the quality of the coupling between the

vaporization rate and the flow dynamic. A discussion on numerical methods

dedicated to two-phase flows with phase change is also presented to emphasize

the main difficulties related to the implementation of phase change in a one fluid

formalism and to address solutions to overcome it.

Then, the aforementioned numerical methods are extended to a weakly com-

pressible formalism. Compressible Navier-Stokes equations and additional terms

related to the compressiblity of the flow, such as thermal dilatation or the pres-

ence of a velocity divergence, are implemented. Additionally, the VOF equation

is modified to consider the liquid compressibility, the variable density and the

evaporation process. A validation case in an evaporating static cylinder con-

figuration is investigated. A comparison between the results obtained with the

compressible framework and with a reference equation representing the mass

balance in an enclosed environment is performed, showing the accuracy of the

formalism.

Finally, the latter formalism is used to simulate a 3D compressible HIT

configuration and present the ability of our method to handle strong interface

curvature, variable density, thermal dilatation, encapsulation of gas structure

with their own thermodynamic pressure, collisions and breakups. Future work
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will be dedicated to the study of the interaction of the Stefan flow with the

turbulence characteristics.
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