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Abstract

Concurrent strategies based on event structures are examined from

the viewpoint of ‘may’ and ‘must’ testing in traditional process calculi. In

their pure form concurrent strategies fail to expose the deadlocks and di-

vergences that can arise in their composition. This motivates an extension

of the bicategory of concurrent strategies to treat the ‘may’ and ‘must’ be-

haviour of strategies under testing. One extension adjoins neutral moves

to strategies but in so doing loses identities w.r.t. composition. This in

turn motivates another extension in which concurrent strategies are ac-

companied by stopping configurations; the ensuing stopping strategies

inherit the structure of a bicategory from that of strategies. The techni-

cal developments converge in providing characterisations of the ‘may’ and

‘must’ equivalences and preorders on strategies.

1 Introduction

This article relates to work on process calculi of the 1980’s but from a mod-
ern perspective of processes as strategies, specifically as distributed/concurrent
strategies based on event structures. It expands on two areas close to Sam-
son Abramsky’s heart, game semantics and concurrency: on a development
of concurrent games based on event structures which extends his early ideas
with Paul-André Melliès of deterministic concurrent strategies as closure oper-
ators [1]; and equivalences on concurrent processes through testing [2].

Robin Milner and Tony Hoare’s work of late seventies and early eighties drew
attention to equivalences on processes; Milner’s on forms of bisimulation [3] and
Hoare’s on failures equivalence [4]. Hoare had described failure equivalence in-
formally as the minimum extension of trace equivalence that takes account of the
possibility of failure due to deadlock. Matthew Hennessy and his PhD student
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Rocco de Nicola provided a rationale through an idea of testing processes [5].
For them a test was a process with distinguished “success” states at which an
action✓ could occur. Putting a test in parallel composition with a process, may
lead to success if some run does or must lead to success if all runs do. Processes
can be regarded as equivalent if they have the same ‘may’ and ‘must’ behaviour
w.r.t. tests. Modulo subtleties to do with the divergence of processes, Hen-
nessy and de Nicola recovered failure equivalence as testing equivalence. What
about Milner’s central equivalence? Samson Abramsky investigated the extent
to which bisimulation could be viewed as a testing equivalence [2]: it could, but
only at the cost of strengthening the power of tests considerably, by allowing
testing to run and copy processes quite liberally.

Here we shall examine the ‘may’ and ‘must’ equivalence of concurrent strate-
gies based on event structures [6, 7]—foreshadowed in the early definitions of
concurrent strategy [1, 8, 9, 10]. Informally, a strategy for Player in a two-
party game against Opponent, expresses a choice of Player moves, most often
in reaction to moves made by Opponent, unpredictable for Player but for the
constraints of the game. We shall implicitly regard a strategy as a strategy for
Player. We regard Opponent as the environment uncontrollable by Player. We
can express both the game—its moves and their constraints—and a strategy—its
choice of Player moves subject to the moves of Opponent—as event structures.
This chimes with our view of strategies and games as highly distributed. Player
and Opponent are more accurately thought of as teams of players and oppo-
nents acting at possibly very different locations. Though we take the rather
abstract view of location advocated by Petri in his concept of local state as a
condition (or place): then locality reveals itself through the causal dependence
and independence of events.

Event structures are the concurrent analogue of trees; just as transition
systems unfold to trees, so Petri nets unfold to event structures. Whereas an
unfolded behaviour of a transition system comprises sequences of actions/events,
the unfolded behaviour of a Petri net, in which events make local changes to
conditions, comprises partial orders of causal dependency between event oc-
currences [11]. Event structures are a central model for concurrent compu-
tation, related to other models by adjunctions [12]. This plants concurrent
strategies based on event structures firmly within theories of concurrency and
interaction—anticipated in Abramsky’s presentation of game semantics, with
its emphasis on composition of strategies as given by their parallel interac-
tion followed by hiding. Perhaps more controversially, the view of processes
as strategies suggests refinements to the assumptions usual in process calculi.
In concurrent strategies, gone is the usual symmetry between a process and
its environment; the conditions on a concurrent strategy take account of the
unpredictability and uncontrollability of Opponent moves. This affects the ap-
propriate equivalences to impose between concurrent strategies.

There is surely a long history behind the idea of composing strategies. Cer-
tainly the idea plays a key role in John Conway’s “On Numbers and Games” [13],
the categorical underpinnings of which were exposed by André Joyal [14]. For
two-party games there is the obvious operation of reversing the roles of the
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two participants, Player and Opponent; this operation, forming the dual G⊥

of a game G, played the role of negation for Conway. A useful convention is
to regard a strategy in a game G as a strategy for Player; then a strategy for
Opponent, or counter-strategy, is a strategy in the dual game G⊥. If the games
are broad enough, they often support a form of parallel composition, G∥H ; for
Conway it was the sum of games. A strategy from a game G to a game H is a
strategy σ in the game G⊥∥H . Given another strategy this time from the game
H to the game K, i.e. a strategy τ in the game H⊥∥K, we can let the strategies
interact as τ ⊛ σ, essentially by playing them against each other over the com-
mon game H ; there the strategies σ and τ adopt complementary roles—where
one makes a move of Player in H the other sees a move of Opponent and vice
versa.

The interaction τ ⊛ σ involves moves in the parallel composition of all three
games, G⊥∥H∥K, though in writing the parallel composition in this way an
imprecision has crept in: whereas the moves over G⊥ and K described by τ ⊛ σ

are choices of moves for Player or moves open to choices of Opponent, those
over H are either instantiations of Opponent moves of σ by Player moves of
τ , or the converse, instantiations of Opponent moves of τ by Player moves of
σ. As such the moves of τ ⊛ σ over H behave like synchronisations between
complementary moves of σ and τ , and as events internal to the interaction.
Though internal, the events over H can affect the behaviour of the interaction
by introducing deadlocks or divergence. In the composition of strategies it is
usual to hide the internal events of interaction to obtain a strategy τ⊙τ in the
game G⊥∥K, where the game H is elided to obtain a strategy from G to K.
However when the original strategies σ or τ are nondeterministic significant
behavioural distinctions can be lost in hiding internal events. In particular, the
hidden events can affect the ‘must’ behaviour of the composition of strategies.

1.1 Contributions of the paper

This brings us to the concerns of this paper. It motivates the definition of bare
concurrent strategies in which internal events are exposed as neutral moves in
the strategy. Through bare strategies we can examine the ‘may’ and ‘must’
testing of strategies. Although bare strategies compose their composition does
not have identities, so they fail to form a bicategory. We have explored two
ways to recover a bicategory while remaining faithful to the ‘must’ behaviour of
strategies. One is through “essential events” in which one strips a bare strategy
down to just those neutral moves critical to its behaviour [15]. The other, that
we follow here, is through extending strategies with the extra structure of stop-
ping configurations [16]. By distinguishing certain configurations as stopping
we keep track of those visible configurations at which the strategy may appear
to get stuck through the occurrence of hidden neutral moves.

Stopping configurations are the event-structure analogue of Russ Harmer and
Guy McCusker’s “divergences” [17], though event structures add the refinement
of locality and independence to the concept. In an interleaving model, in which
behaviour is captured through sequences of actions, divergence anywhere has a
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global effect; generally, in the parallel composition of two processes if one can
perform an infinite sequence of actions, these may block progress of the other
process, unless additional fairness assumptions are enforced. This is not so in a
model such as event structures where the independence/concurrency of actions
is explicit. In a nondeterministic strategy a Player move is not blocked by the
occurrence of moves with which it is independent. Whereas an interleaving
model may require weak fairness assumptions these are generally built into the
behaviour of strategies as event structures [18]. This makes for subtle differences
in the nature of ‘must’ testing in concurrent games w.r.t. traditional games.

Perhaps surprisingly, in many situations a concurrent strategy may be re-
placed by its simpler “rigid image” in the game, despite this often forgetting
nondeterministic branching—rigid-image strategies form a category rather than
just a bicategory [19]—and indeed this remains true for strategies with stopping
configurations; none of the ‘may’ or ‘must’ behaviour is lost.

Our technical contribution concludes with characterisations of the ‘may’ and
‘must’ equivalences and preorders on strategies. The ‘may’ equivalence of strate-
gies is captured through their inducing the same set of finite traces; a trace being
understood as a sequence of moves in the game. This echoes the earlier results
of Ghica and Murawski when showing their non-alternating games model is
fully-abstract for Idealized Parallel Algol with respect to may-convergence [8].
For ‘must’ equivalence, our result is to be compared with that of Harmer and
McCusker for their sequential games model, based on Hyland-Ong games with
explicit divergences [17]. But whereas in a sequential setting only the first di-
vergence matters, for us ‘must’ equivalence of strategies is equivalent to their
sharing the same traces of all (possibly infinite) stopping configurations. See
Example 7.2 and what follows for an in-depth discussion.

Because we restrict attention to linear bicategories of strategies, the tests
here are linear too; they do not permit the tested strategy to be copied and
rerun. From the point of view of distributed computation linearity is natural: it
is often infeasible to copy a distributed system or strategy [20]. Then single-run
‘may’ and ‘must’ tests are appropriate.

On the other hand, most programming languages do allow some form of
copying and nonlinearity. Through the addition of symmetry we can adjoin
pseudo (co)monads—where the traditional laws hold up to symmetry, and model
nonlinear features [21, 22]. Through symmetry and pseudo comonads, we can
realise a variety of nonlinear forms of testing, in which a test could dynamically
copy and retest the strategy of interest. The nature of such broader testing
on strategies, the equivalences and logics induced, are not well understood and
deserve a systematic study, for which this paper forms a foundation. As shown
by Samson Abramsky such broader tests are needed to realise equivalences such
as bisimulation as testing equivalences [2].
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2 Event structures

An event structure comprises (E,≤,Con), consisting of a set E of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E. The relation e′ ≤ e

expresses that event e causally depends on the previous occurrence of event e′.
That a finite subset of events is consistent conveys that its events can occur
together by some stage in the evolution of the process. Together the relations
satisfy several axioms. We insist that the partial order is finitary, i.e.

• [e] =def {e
′ ∣ e′ ≤ e} is finite for all e ∈ E ,

and that consistency satisfies

• {e} ∈ Con for all e ∈ E ,

• Y ⊆X ∈ Con implies Y ∈ Con, and

• X ∈ Con & e ≤ e′ ∈X implies X ∪ {e} ∈ Con .

There is an accompanying notion of state, or history, those events that may
occur up to some stage in the behaviour of the process described. A configuration
is a, possibly infinite, set of events x ⊆ E which is:

• consistent, X ⊆ x and X is finite implies X ∈ Con ; and

• down-closed, e′ ≤ e ∈ x implies e′ ∈ x .

Two events e, e′ are called concurrent if the set {e, e′} is in Con and neither
event is causally dependent on the other; then we write e co e′. In games the
relation of immediate dependency e _ e′, meaning e and e′ are distinct with
e ≤ e′ and no event in between, plays a very important role. We write [X] for
the down-closure of a subset of events X . Write C∞(E) for the configurations
of E and C(E) for its finite configurations. (Sometimes we shall need to distin-
guish the precise event structure to which a relation is associated and write, for
instance, ≤E , _E or coE .)

Example 2.1. In examples it is often convenient to draw event structures.
Often, though not always, consistency is determined in a binary fashion, in that
a set of events is consistent if all of its pairs are. Then, it is economical to draw
the binary relation of conflict, or inconsistency. For example, in the diagram

� �

�

❴
LLR
❴
LLR

�

�
ZZe ❅❅❅❅❅❅

❴
LLR

/o/o �

we illustrate the relations of immediate causal dependency
✤ ,,2 which yields

the Hasse diagram of the partial order of causal dependency between events �,
and conflict by the wiggly line /o/o/o . Neither the two events related by

/o/o/o nor their dependants w.r.t. causal dependency can occur together in a
configuration; there is no need draw all the conflicts that follow. ◻
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Let E and E′ be event structures. A map of event structures f ∶ E → E′ is
a partial function on events f ∶ E ⇀ E′ such that for all x ∈ C∞(E) its direct
image fx ∈ C∞(E′) and

if e1, e2 ∈ x and f(e1) = f(e2) (with both defined), then e1 = e2.

(Those maps defined is unaffected if we replace possibly infinite configurations
C∞(E) by finite configurations C(E) above; this is because any configuration is
the union of finite configurations and direct image preserves such unions.)

Maps of event structures compose as partial functions, with identity maps
given by identity functions. Say a map is total if the function f is total. Notice
that for a total map f the condition on maps now says it is locally injective, in
the sense that w.r.t. any configuration x of the domain the restriction of f to
a function from x is injective; the restriction of f to a function from x to fx

is thus bijective. Say a total map of event structures is rigid when it preserves
causal dependency.

Although a map f ∶ E → E′ of event structures does not generally preserve
causal dependency, it does locally reflect causal dependency: whenever e, e′ ∈ x,
a configuration of E, and f(e) and f(e′) are both defined with f(e′) ≤ f(e),
then e′ ≤ e. Consequently, f preserves the concurrency relation: if e co e′ in E

and f(e) and f(e′) are both defined then f(e) co f(e′).

3 Constructions

We provide the constructions which we use in the paper.

3.1 Partial-total factorisation

We shall realise an operation of hiding events via a factorisation property of
maps of event structures.

Let (E,≤,Con) be an event structure. Let V ⊆ E be a subset of ‘visible’
events. Define E↓V =def (V,≤V ,ConV ), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and
X ∈ ConV iff X ∈ Con & X ⊆ V . The operation projects E to visible events V .

Consider a partial map of event structures f ∶ E → E′. Let

V =def {e ∈ E ∣ f(e) is defined} .

Then f clearly factors into the composition

E
f0 // E↓V

f1 // E′

of f0, a partial map of event structures taking e ∈ E to itself if e ∈ V and
undefined otherwise, and f1, a total map of event structures acting like f on V .
We call f1 the defined part of the partial map f . We say a map f ∶ E → E′ is a
projection if its defined part is an isomorphism.
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The partial-total factorisation is characterised to within isomorphism by the
following universal property: for any factorisation

f ∶ E
g0 // E1

g1 // E′

where g0 is partial and g1 is total there is a (necessarily total) unique map
h ∶ E↓V → E1 such that

E
f0 //

g0 !!❈
❈❈

❈❈
❈❈

❈ E↓V

h

��✤
✤
✤

f1 // E′

E1

g1

==③③③③③③③③

commutes.

3.2 Pullback

Event structures and their maps have pullbacks. For the composition of strate-
gies we shall only need pullbacks of total maps. Consider a pullback

P

π1

��⑦⑦
⑦⑦
⑦⑦
⑦⑦❄⑧ π2

��❅
❅❅

❅❅
❅❅

❅

A

f ��❅
❅❅

❅❅
❅❅

B

g
��⑦⑦
⑦⑦
⑦⑦
⑦⑦

C

where f and g are total. Pullbacks are difficult to construct directly on the
“prime” event structures we are using here, essentially because they associate
each event with a unique minimum causal history. Such constructs are best first
carried out in a broader model. Here we build the pullback of event structures
out of the stable family of secured bijections.

Definition 3.1. A secured bijection comprises a composite bijection

θx,y ∶ x ≅ fx = gy ≅ y

between configurations x ∈ C∞(A) and y ∈ C∞(B) s.t. fx = gy, which is secured
in the sense that the transitive relation generated on θx,y by taking

(a, b) ≤ (a′, b′) if a ≤A a′ or b ≤B b′

is a finitary partial order. Let B be the family of secured bijections. Say a
subset Z ⊆ B is compatible iff ∃θ′ ∈ B∀θ ∈ Z. θ ⊆ θ′.

Proposition 3.2. The family B is a stable family,1

i.e. it is
1Here it is useful to allow stable families to have infinite configurations, as originally [23, 24].
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• Complete: ∀Z ⊆ B. Z is compatible Ô⇒ ⋃Z ∈ B ;

• Stable: ∀Z ⊆ B. Z /= ∅ & Z is compatible Ô⇒ ⋂Z ∈ B;

• Finitary: ∀θ ∈ B, (a, b) ∈ θ∃θ0 ∈ B. θ0 is finite & (a, b) ∈ θ0 ⊆ θ; and

• Coincidence-free: For all θ ∈ B, (a, b), (a′, b′) ∈ θ with (a, b) /= (a′, b′),

∃θ0 ∈ B. θ0 ⊆ θ & ((a, b) ∈ θ0 ⇐⇒ (a
′, b′) ∉ θ0) .

We now apply a general construction Pr(B) for obtaining an event structure
from the stable family B. Suppose (a, b) ∈ θ where θ ∈ B [23, 24]. Because B is
a stable family

[(a, b)]θ =def ⋂{φ ∈ B ∣ φ ⊆ θ & (a, b) ∈ φ} ∈ B

and moreover is a finite set; it represents a minimal way in which (a, b) can
occur. We build the pullback of event structures taking such minimal elements
as events.

Proposition 3.3. Defining Pr(B) = (P,Con,≤) where:

P = {[(a, b)]θ ∣ (a, b) ∈ θ & θ ∈ B} ,

Z ∈ Con iff Z ⊆ P & ⋃Z ∈ B and

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′

yields an event structure. There is an order isomorphism

β ∶ (C(Pr(B)),⊆) ≅ (B,⊆)

where β(y) = ⋃ y for y ∈ C(Pr(B)); its mutual inverse is γ where γ(θ) =
{[(a, b)]θ ∣ (a, b) ∈ θ} for θ ∈ B.

There are obvious maps π1 ∶ Pr(B) → A and π2 ∶ Pr(B) → B given by
π1([(a, b)]θ) = a and π2([(a, b)]θ) = b. These make the required pullback Pr(B),
π1, π2 of event structures. Why? The family B is a pullback in the category
of stable families (its maps are similar to those of event structures). There is a
coreflection from the category of event structures to that of stable families. Its
right adjoint is Pr which consequently preserves pullbacks, yielding the pullback
of event structures when applied to B [23, 25].

Definition 3.4. We shall write x∧y for the configuration γ(θx,y) of Pr(B)which
correponds to a secured bijection θx,y ∶ x ≅ fx = gy ≅ y between x ∈ C∞(A) and
y ∈ C∞(B). Note that any configuration of the pullback is of the form x ∧ y for
unique x ∈ C∞(A) and y ∈ C∞(B). Of course, given x ∈ C∞(A) and y ∈ C∞(B)
we cannot be assured that they form a secured bijection even when fx = gy.
We shall treat ∧ as a partial operation with x∧ y only defined when x ∈ C∞(A)
and y ∈ C∞(B) form a secured bijection.
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4 Rigid image

This section is only used late on in the paper when showing how ‘may’ and
‘must’ behaviour transfer to the rigid image of a strategy—Section 11.

There is an adjunction between Er, the category of event structures with
rigid maps, to Et, the category of event structures with total maps. Its right
adjoint’s action on an event structure B is given as follows. For x ∈ C∞(B), an
augmentation of x is a finitary partial order (x,α) where ∀b, b′ ∈ x. b ≤B b′ Ô⇒
bα b′. We can regard such augmentations as elementary event structures in
which all subsets of events are consistent. Order all augmentations by taking
(x,α) ↪ (x′, α′) iff x ⊆ x′ and the inclusion i ∶ x↪ x′ is a rigid map i ∶ (x,α) →
(x′, α′). Augmentations under ↪ form a prime algebraic domain [11, 26], so are
isomorphic to the configurations of an event structure, aug(B); its events are
the complete primes, which are precisely the augmentations with a top element.

Proposition 4.1. [27] The inclusion functor Er ↪ Et has a right adjoint aug.
The category Et is isomorphic to the Kleisli category of the monad induced on
Er by the adjunction.

Rigid maps f ∶ A → B have a useful image given by restricting the causal
dependency of B to the set of events fA, the direct image of the events of A, and
taking a finite set of events to be consistent if they are the image of a consistent
set in A. More generally, a total map f ∶ A → B has a rigid image given by
the image of its corresponding Kleisli map, the rigid map f̄ ∶ A→ aug(B). Put
more directly, a total map f ∶ A→ B has a rigid image comprising a factorisation
f = f1f0 where f0 is rigid epi and f1 is a total map,

A

f   ❅
❅❅

❅❅
❅❅

❅

f0 // // B0

f1

��
B ,

with the following universal property: for any factorisation of f = f ′1f
′
0 where f ′0

is rigid epi, there is a unique map h such that the diagram

A

f0

$$ $$

f   ❅
❅❅

❅❅
❅❅

❅

f ′
0 // // B′0

f ′
1

��

h //❴❴❴ B0

f1~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

B

commutes; the map h is necessarily also rigid and epi.
From the universal property of rigid image we derive:

Proposition 4.2. Let f ∶ A → B and g ∶ B → C be maps of event structures.
Assume that f is rigid and epi. Then, g and g ○ f have the same rigid image.
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5 Event structures with polarity

Both games and strategies will be represented by event structures with polarity.
An event structure with polarity comprises (A,pol) where A is an event structure
with a polarity function polA ∶ A → {+,−,0} ascribing a polarity + (Player), −
(Opponent) or 0 (neutral) to its events. The events correspond to (occurrences
of) moves. It will be technically useful to allow events of neutral polarity; they
arise, for example, in the interaction between a strategy and a counterstrategy.
We write A0 for the event structure with polarity in which all the polarities
are reassigned 0, so made neutral. A game shall be represented by an event
structure with polarity in which no moves are neutral.

Notation 5.1. In an event structure with polarity (A,pol), with configurations
x and y, write x ⊆− y to mean inclusion in which all the intervening events are
moves of Opponent, i.e. pol(y ∖x) ⊆ {−}. Similarly, x ⊆0 y signifies an inclusion
in which all the intervening moves are neutral. However, we shall write x ⊆+ y for
inclusion in which the intervening events are either neutral or moves of Player.
(The latter choice reflects the fact that neutral moves in a strategy behave as
internal moves of Player.) We say a configuration x ∈ C∞(A) is +-maximal iff
x is maximal in C∞(A) w.r.t. ⊆+, i.e. the only way that x extends to a larger
configuration is through the occurrence of Opponent moves.

5.1 Operations on games

We introduce two fundamental operations on games.

5.1.1 Dual

The dual, A⊥, of a game A, comprises the same underlying event structure as
A but with a reversal of polarities. As mentioned in the introduction, we shall
implicitly adopt the view of Player and understand a strategy in a game A as
strategy for Player. A counterstrategy in a game A is a strategy for Opponent
in the game A, i.e. a strategy (for Player) in the game A⊥.

5.1.2 Simple parallel composition

This operation simply juxtaposes two games, and more generally two event
structures with polarity. Let (A,≤A,ConA,polA) and (B,≤B,ConB,polB) be
event structures with polarity. The events of A∥B are ({1} × A) ∪ ({2} × B),
their polarities unchanged, with the only relations of causal dependency given by
(1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤ (2, b′) iff b ≤B b′; a finite set X of events is
consistent in A∥B iff its components XA in A and and XB in B are individually
consistent. The unit w.r.t. simple composition is the empty event structure with
polarity, written ∅. We shall adopt the same operation for configurations of a
game A∥B, regarding a configuration x of the parallel composition as xA∥xB .

If we are not a little careful we can run into distracting technical issues
through (A∥B)∥C not being strictly the same as A∥(B∥C). For our purposes
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it will suffice to adopt the convention that when we write e.g. A∥B∥C the simple
parallel composition of three event structures with polarity we shall mean the
event structure with events

{1} ×A ∪ {2} ×B ∪ {3} ×C ,

with causal dependency and consistency copied from those of A, B and C. As in
the binary case, we adopt the same notation for configurations and can describe
a typical configuration x of A∥B∥C as xA∥xB∥xC .

5.2 Strategies between games

A strategy from a game A to a game B is a strategy in the compound game
A⊥∥B. Of course we shall have to define what it means to be a strategy in a
game. Given another strategy τ from the game B to a game C, informally we
obtain their composition τ⊙σ from A to C by playing the two strategies off
against each other in the common game B and hiding the resulting interaction.

The composition of strategies can introduce hidden deadlocks, conflicts and
divergences which affect its observable behaviour:

Example 5.2. Let B be the game consisting of two concurrent Player events
b1 and b2, and C the game with a single Player event c. We illustrate the
composition of two strategies σ1 and σ2 from the empty game ∅ to B, with τ

from B to C. The strategy σ1 in the game ∅⊥∥B nondeterministically plays b1
or b2. The strategy σ2 also in the game ∅⊥∥B just plays b2. The strategy τ

in the game B⊥∥C does nothing if just b1 is played and plays the single Player
event c of C if b2 is played. The composition τ⊙σ1 in the game ∅⊥∥C may
play c or not according as σ1 plays b1 or b2. The composition τ⊙σ2 also in
the game ∅⊥∥C must play c. But the two compositions τ⊙σ1 and τ⊙σ2 are
indistinguishable once the interaction over the common game B is hidden. ◻

If we are to distinguish the two compositions of the example, we need to
take some account of their internal moves of interaction.

6 Strategies with neutral moves

Thus motivated, we study bare strategies with neutral moves, in which we can
see the events of interaction not visible in the game. Recall we assume that in
games all events have +ve or −ve polarity.

Definition 6.1. A bare strategy from a game A to a game B comprises a total
map σ ∶ S → A⊥∥N∥B of event structures with polarity (in which S may also
have neutral events) where

(i) N is an event structure consisting solely of neutral events;

(ii) σ is receptive,
∀x ∈ C(S), y ∈ C(A⊥∥N∥B). σx ⊆− y Ô⇒ ∃!x′ ∈ C(S). x ⊆ x′ & σx′ = y ;

11



(iii) σ is innocent in that it is both +-innocent and −-innocent:
+-innocent: if s _ s′ & pol(s) = + then σ(s)_ σ(s′) ;
−-innocent: if s _ s′ & pol(s′) = − then σ(s)_ σ(s′) .

Note that s′ in +-innocence and s in −-innocence may be neutral events.2

A strategy from a game A to a game B comprises a total map σ ∶ S → A⊥∥B of
event structures with polarity for which the composite σ ∶ S → A⊥∥B ≅ A⊥∥∅∥B
is a bare strategy [6].

We shall often identify strategies with bare strategies with no neutral events,
and (bare) strategies in a game with (bare) strategies from the empty game ∅.

Consider two bare strategies σ ∶ S → A⊥∥N∥B and σ′ ∶ S′ → A⊥∥N∥B. A
map between them, a 2-cell f ∶ σ ⇒ σ′, comprises a map f ∶ S → S′ of event
structures with polarity such that

S

σ

��

f // S′

σ
′

zz✈✈
✈✈
✈✈
✈✈
✈

A⊥∥N∥B

commutes. In this way bare strategies in A⊥∥N∥B form a category,

BStrat(A,N,B) .

We obtain the category Strat(A,B) of strategies from A to B from the special
case when N = ∅.

6.1 Strategies from bare strategies

We obtain a strategy as the visible part of a bare strategy when we hide neutral
events via a projection p:

Proposition 6.2. Let σ ∶ S → A⊥∥N∥B be a bare strategy—so satisfying proper-
ties (i), (ii) and (iii) of Definition 6.1. Then, σ satisfies an additional property:

(iv) in the partial-total factorisation of the composition of σ with the projection
A⊥∥N∥B → A⊥∥B,

S

σ

��

p // S↓

σ↓

��
A⊥∥N∥B // A⊥∥B

the defined part σ↓ is a strategy, which we call the visible part of σ.

2This definition of linear innocence, which applies in the presence of neutral events, ap-
pears in the work of Claudia Faggian and Mauro Piccolo [10]. It is not to be confused with
the innocence of Martin Hyland and Luke Ong, to which it only relates indirectly; to disam-
biguate the two notions “courtesy” has been used for that here. An extension of Hyland-Ong
innocence to concurrent games is given in [28]. Bare strategies have also been called “partial”
strategies [16] and “uncovered” strategies [15].
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(Conversely, (iv) together with receptivity and no incidence of a +ve event im-
mediately preceding a neutral event in S, suffice to establish that σ is a bare
strategy.)

With the notation of the lemma above, write

x↓ =def px ∈ C
∞(S↓)

for the visible image of a configuration x ∈ C∞(S). The hiding operation on
strategies extends to a functor

( )↓ ∶ BStrat(A,N,B) → Strat(A,B) ;

a 2-cell f ∶ σ ⇒ σ′ between bare strategies restricts to a 2-cell f↓ ∶ σ↓ ⇒ σ′↓
between their visible parts. It acts so

f↓x↓ = (fx)↓

for all x ∈ C∞(S).

6.2 Composition

We can compose two bare strategies

σ ∶ S → A⊥∥M∥B and τ ∶ T → B⊥∥N∥C

by pullback. Ignoring polarities temporarily, and padding with identity maps,
we obtain τ ⊛ σ via the pullback

T ⊛ S

ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

❄⑧

''PP
PP

PP
PP

PP
PP

S∥N∥C

σ∥N∥C ''❖❖
❖❖

❖❖
❖❖

❖❖
❖

A∥M∥T

A∥M∥τww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦

A∥M∥B∥N∥C

as the ensuing map

τ ⊛ σ ∶ T ⊛ S → A⊥∥(M∥B0∥N)∥C

once we reinstate polarities and make the events of B neutral.
As a pullback the configurations of T ⊛ S are built from configurations of S

and T . Let x ∈C∞(S) and y ∈C∞(T ). Let σx = xA⊥∥x0∥xB and τy = yB⊥∥y0∥yC .
Define

y ⊛ x =def (x∥y0∥yC) ∧ (xA⊥∥x0∥y)

which will be defined and a configuration in C∞(T ⊛ S) if xB = yB⊥ and the
corresponding bijection secured. The following property, useful later, is a con-
sequence of the receptivity of σ and τ .
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Lemma 6.3. A configuration y ⊛ x ∈ C∞(T ⊛ S) is +-maximal in C∞(T ⊛ S)
iff x is +-maximal in C∞(S) and y is +-maximal in C∞(T ).

Given a 2-cell f ∶ σ⇒ σ′ between bare strategies in A⊥∥N∥B and g ∶ τ ⇒ τ ′

between bare strategies in B⊥∥M∥C, from the universality of pullback we obtain
the 2-cell

g ⊛ f ∶ τ ⊛ σ⇒ τ ′ ⊛ σ′

between the two compositions in A⊥∥(N∥B0∥M)∥C. It acts so

(g ⊛ f)(y ⊛ x) = (gy) ⊛ (fx)

on a typical configuration y⊛ x. This extends composition of bare strategies to
a functor

⊛ ∶ BStrat(B,N,C) ×BStrat(A,M,B) → BStrat(A,M∥B0∥N,C) .

Composition of bare strategies restricts to a functor between rigid 2-cells.
We obtain the composition of strategies as the composite functor

⊙ ∶ Strat(B,C) × Strat(A,B) ≅ BStrat(B,∅,C) ×BStrat(A,∅,B)

⊛
Ð→BStrat(A,∅∥B0∥∅,C)

( )
↓

Ð→Strat(A,C) .

Though we generally elide the isomorphisms regarding strategies as bare strate-
gies without neutral events, and write

τ⊙σ =def (τ ⊛ σ)↓

for the composition of strategies σ ∈ Strat(A,B) and τ ∈ Strat(B,C). Describ-
ing the strategies σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C as having composition

τ⊙σ ∶ T⊙S → A⊥∥C ,

we can present a typical configuration of T⊙S as

y⊙x =def (y ⊛ x)↓

for x ∈ C∞(S) and y ∈ C∞(T ).
Composition is preserved in extracting the visible part from bare strategies:

Lemma 6.4. Let σ ∶ S → A⊥∥M∥B and τ ∶ T → B⊥∥N∥C be bare strategies.
Then,

(τ ⊛ σ)↓ = τ↓⊙σ↓ .

For x ∈ C∞(S) and y ∈ C∞(T ),

(y ⊛ x)↓ = y↓⊙x↓ ,

with one side defined if the other is.
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6.3 The copycat strategy

The copycat strategy is the identity for composition of strategies. We present
its construction and key property from [6].

Lemma 6.5. Let A be an event structure with polarity. There is an event
structure with polarity CCA having the same events and polarity as A⊥∥A but
with causal dependency ≤CCA

given as the transitive closure of the relation

≤A⊥∥A ∪ {(c̄, c) ∣ c ∈ A
⊥∥A & polA⊥∥A(c) = +}

and finite subsets of CCA consistent if their down-closure w.r.t. ≤CCA
are consis-

tent in A⊥∥A. (For c ∈ A⊥∥A we use c̄ to mean the corresponding copy of c, of

opposite polarity, in the alternative component, i.e. (1, a) = (2, a) and (2, a) =
(1, a).)
The configurations of CCA have the form x∥y where y ⊑A x, i.e. y ⊇− x∩ y ⊆+ x,
for x, y ∈C∞(A). (The relation ⊑A is a partial order, called the Scott order [29].)
The copycat strategy for A is the map ccA ∶ CCA → A⊥∥A which acts as identity
on events. We have σ ≅ σ⊙ ccA ≅ ccB⊙σ, for any strategy σ ∈ Strat(A,B).

The axioms on strategies are precisely those needed to ensure that copycat
behaves as identity w.r.t. composition ⊙ and thus obtain a bicategory Strat of
games and strategies [6]. Of course copycat is not the identity for the composi-
tion of bare strategies; that composition will generally have extra neutral events
introduced through interactions.

7 ‘May’ and ‘must’ tests

Consider the following three bare strategies in the game A comprising a single
Player move ⊞. Neutral events are drawn as �.

S1

σ1

��

⊞❴

��
�∥A � ⊞

S2

σ2

��

�❴

��

✤ ,,2⊞❴

��
�∥A � ⊞

�

�O
�O
�O

S3

σ3

��

�
✤ ,,2

❴

��

⊞❴

��
�∥A � ⊞

From the point of view of observing the move over the game A the first two bare
strategies, σ1 and σ2, differ from the the third, σ3. In a maximal play both σ1

and σ2 must result in the observation of the single move of A. However, in σ3

one maximal play is that in which the topmost neutral event of S3 has occurred,
in conflict with the only way of observing the single move of A.

We follow Hennessy and de Nicola in making these ideas precise [5].

Definition 7.1. Let σ be a bare strategy in a game A. Let τ ∶ T → A⊥∥N∥⊞
be a ‘test’ bare strategy from A to the game consisting of a single Player move
⊞. Write ✓ =def (3,⊞).
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Say σ may pass τ iff there exists y ⊛ x ∈ C∞(T ⊛ S), where x ∈ C∞(S) and
y ∈ C∞(T ), with the image τy containing ✓. (Note that we may w.l.o.g. assume
that the configuration y ⊛ x is finite.)

Say σ must pass τ iff for all y⊛x ∈C∞(T⊛S), where x ∈C∞(S) and y ∈C∞(T )
are ⊆+-maximal, the image τy contains ✓.

Say two bare strategies are ‘may’ (respectively, ‘must’) equivalent iff the
tests they may (respectively, must) pass are the same.

The definitions extend in the obvious fashion to bare strategies of type
A⊥∥N∥B.

A bare strategy is ‘may’ equivalent, but need not be ‘must’ equivalent, to the
strategy which is its defined part; ‘must’ inequivalence is lost in moving from
bare strategies to strategies.

Example 7.2. As an illustration of the subtle nature of testing for ‘must’
equivalence, consider the following bare strategies in the game A, as drawn:

a b c d e

⊞
✤ ,,2⊟ ✤ ,,2⊞ ✤ ,,2⊟ ✤ ,,2⊞

The game A consists of five events with the polarity and causal dependency
shown. One bare strategy σ1 is

⊞
✤ ,,2⊟ ✤ ,,2⊞

�O
�O

✤ ,,2⊟ ✤ ,,2⊞

� ,

with one neutral event, while the other σ2 is

⊞
✤ ,,2⊟ ✤ ,,2⊞

�O
�O

✤ ,,2⊟ ✤ ,,2⊞

�O
�O

� � ,

with two neutral events. Through the possible occurrence of neutral events the
bare strategy σ1 has a +-maximal configuration with just events {a, b} visible
from the game, while σ2 has in addition a +-maximal configuration comprising
visible moves {a, b, c, d}. The following test strategy distinguishes σ1 and σ2

⊟
✤ ,,2

❴���

⊞
✤ ,,2⊟ ✤ ,,2⊞ ✤ ,,2⊟

❴���
⊞✓

4t4t4t4t4t4t4t4t4t4t4t4t
⊞✓ .

in that σ1 must pass the test while σ2 need not. (The test is a strategy in
A⊥∥⊞✓; thus the change in polarity of moves in A.) Composed with the test,
σ1 may fail to perform the leftmost ⊞✓ but if so must then perform the rightmost
⊞✓; whereas σ2 may fail to perform both. ◻
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This example might be puzzling to readers familiar with Harmer and Mc-
Cusker’s fully abstract model for (sequential) finite non-determinism [17], in
particular regarding their handling of ‘must’ equivalence through the addition
of divergences. Indeed, there, if a trace has already potentially triggered a diver-
gence, then any execution going past that divergence has already lost all hope
for ‘must’ convergence. Accordingly, in [17], only the first divergence matters—
further divergences are not recorded.

In contrast, Example 7.2 indicates how in concurrent strategies, all diver-
gences matter. This is not an artificiality of concurrent strategies, but something
inherent to the observational power of the tests they support: here the distin-
guishing tests manage to observe beyond the first divergence by running two
threads in parallel. The first thread aims to directly register success; by +-
maximality it will be run eventually if the observed strategy triggers the first
divergence. The second thread follows the execution of the program, then im-
mediately cancels the first thread if the program goes past the divergence; and
then proceeds to test for the second divergence.

8 Strategies with stopping configurations

Bare strategies lack identities w.r.t. composition, so they do not form a bi-
category. Fortunately, for ‘may’ and ‘must’ equivalence it is not necessary to
use bare strategies; for ‘may’ equivalence strategies suffice; whereas for ‘must’
equivalence it is sufficient to carry with a strategy the extra structure of stopping
configurations—to be thought of as images of +-maximal configurations in an
underlying bare strategy. As we shall see, composition and copycat extend to
composition and copycat on strategies with stopping configurations, while main-
taining a bicategory. We tackle the simpler case in which games are assumed
to be race-free. (The extension to games which are not race-free is outlined
in [16].) We recall when an event structure with polarity is race-free and the
allied notion of deterministic strategy:

Definition 8.1. SayA, an event structure with polarity, is race-free iff whenever
x ⊆+ y and x ⊆− z for configurations x, y, z of A then y∪z is also a configuration.

Say S, an event structure with polarity, is deterministic iff whenever x ⊆+ y
and x ⊆ z for configurations x, y, z of S then y ∪ z is also a configuration. Say
a bare strategy σ ∶ S → A⊥∥N∥B is deterministic iff S is deterministic; with a
strategy being deterministic iff it is so as a bare strategy.

Lemma 8.2. [6, 30] Let A be a game. The copycat strategy ccA is deterministic
iff the game A is race-free.

Let σ ∶ S → A⊥∥N∥B be a bare strategy between race-free games A and B.
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Recall its associated partial-total factorisation

S

σ

��

p // S↓

σ↓

��
A⊥∥N∥B // A⊥∥B

where p is a projection sending configurations x of S to configurations x↓ of
S↓. The visible part of σ is a strategy σ↓. Define the stopping configurations in
C∞(S↓) to be

Stop(σ) =def {x↓ ∣ x ∈ C
∞(S) is +-maximal} .

So, in other words, the stopping configurations are the visible images of config-
urations which are maximal w.r.t. neutral or Player moves. Note that Stop(σ)
will include all the +-maximal configurations of S↓: any +-maximal configura-
tion y of S↓ is the image under p of its down-closure [y] in S, and by Zorn’s
lemma this extends (necessarily by neutral events) to a maximal configuration
x of S with image y under p; the configuration x is +-maximal by the +-
maximality of y. If σ is deterministic, then Stop(σ) consists of precisely the
+-maximal configurations of S↓. If σ is a strategy, i.e. it has no neutral events,
then Stop(σ) is just the set consisting of all +-maximal configurations of S.

Definition 8.3. A stopping strategy in a game A comprises (σ,MS), a strategy
σ ∶ S → A together with a subset MS ⊆ C∞(S) called stopping configurations. As
usual, a stopping strategy from a game A to game B is a stopping strategy in
the game A⊥∥B. We let St ∶ σ ↦ (σ↓,Stop(σ)) denote the operation motivated
above from bare strategies σ to stopping strategies.

Remark. There is the issue of what axioms to adopt on stopping configu-
rations. We do not insist that stopping configurations include all +-maximal
configurations as this property will not be preserved in taking the rigid image
of a stopping strategy—Example 11.3.

Given two stopping strategies σ ∶ S → A⊥∥B, MS and τ ∶ T → B⊥∥C, MT we
define their interaction,

(τ,MT ) ⊛ (σ,MS) =def (τ ⊛ σ,MT ⊛MS) ,

with the stopping configurations of the interaction T ⊛ S as

MT ⊛MS = {y ⊛ x ∣ x ∈MS & y ∈MT }

—sensible because of Lemma 6.3. Define their composition by

(τ,MT )⊙(σ,MS) =def (τ⊙σ,MT⊙MS) ,

where the stopping configurations of T⊙S form the set

MT⊙MS = {y⊙x ∣ x ∈MS & y ∈MT } .
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To make stopping strategies into a bicategory we must settle on an appro-
priate notion of 2-cell. The following choice of definition is useful for ‘must’
equivalence—see Lemma 9.5.

Definition 8.4. A 2-cell f ∶ (σ,MS)⇒ (σ′,MS′) between stopping strategies is
a 2-cell of strategies f ∶ σ ⇒ σ′ such that fMS ⊆MS′ . We write SStrat(A,B)
for the category of stopping strategies from game A to game B; its maps are
2-cells.

Composition extends to 2-cells between stopping strategies: their composi-
tion as 2-cells between strategies is easily shown to preserve stopping configu-
rations.

Proposition 8.5. For games A, B and C composition of stopping strategies is
a functor ⊙ ∶ SStrat(B,C) × SStrat(A,B) → SStrat(A,C) .

We should also extend copycat ccA ∶ CCA → A⊥∥A to a stopping strategy.
Because we are assuming A is race-free, we do this by taking

MCCA
=def {(x∥x) ∈ C

∞(CCA) ∣ x ∈ C
∞(A)} .

Because A is race-free, MCCA
comprises all the +-maximal configurations of

CCA. Then, ( ccA,MCCA
) is an identity w.r.t. the extended composition.

With the operations and constructions above, stopping strategies inherit the
structure of a bicategory SStrat from strategies; the objects are restricted to
race-free games in order to have the above simple form of stopping configurations
for copycat.

8.1 Bare strategies and stopping strategies

We turn to relations between bare strategies and stopping strategies. Recall
from Definition 8.3 the operation

St ∶ σ ↦ (σ↓,Stop(σ))

which takes a bare strategy σ to a stopping strategy. It preserves composition:

Lemma 8.6. Let σ ∶ S → A⊥∥M∥B and τ ∶ T → B⊥∥N∥C be bare strategies.
Then,

St(τ ⊛ σ) = St(τ)⊙St(σ) .

Proof. By Lemma 6.4, it suffices to show

Stop(τ ⊛ σ) = Stop(τ)⊙Stop(σ) .

Configurations of Stop(τ⊛σ) are of the form (y⊛x)↓ where y⊛x is +-maximal for
x ∈C∞(S) and y ∈C∞(T ). By Lemma 6.3 these coincide with configurations (y⊛
x)↓ for which both x and y are +-maximal. Configurations of Stop(τ)⊙Stop(σ)
take the form y↓⊙x↓ where x ∈ C∞(S) and y ∈ C∞(T ) are +-maximal. But by
Lemma 6.4, (y ⊛ x)↓ = y↓⊙x↓, ensuring the desired equality.
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We have seen that there is a functor ( )↓ ∶ BStrat(A,N,B) → Strat(A,B)
from bare strategies to their visible part. However, it is not the case that
St is a functor from bare strategies BStrat(A,N,B) to stopping strategies
SStrat(A,B). Given an arbitrary 2-cell f ∶ σ ⇒ σ′ between bare strategies f↓
can fail to preserve stopping configurations. However:

Proposition 8.7. Let σ ∶ S → A⊥∥N∥B and σ′ ∶ S′ → A⊥∥N∥B be bare strate-
gies. Say a 2-cell f ∶ σ⇒ σ′ is +-reflecting iff, for x ∈ C(S), y ∈ C(S′),

fx ⊆+ y Ô⇒ ∃x′ ∈ C(S). x ⊆ x′ & fx′ = y .

Let BStrat
+(A,N,B) be the subcategory where 2-cells are +-reflecting. Then

St ∶ BStrat+(A,N,B) → SStrat(A,B)

taking f ∶ σ⇒ σ′ to f↓ ∶ St(σ)⇒ St(σ′) is a functor.

9 ‘May’ and ‘Must’ testing

We can rephrase ‘may’ and ‘must’ testing in terms of stopping strategies.

Definition 9.1. Let (σ,MS) be a stopping strategy in a game A. Let τ ∶ T →
A⊥∥N∥⊞ be a ‘test’ bare strategy from A to a the game consisting of a single
Player move ⊞. Write St(τ) as (τ0,M0) where τ0 ∶ T0 → A∥⊞ is the visible
part of τ and M0 are its stopping configurations, obtained as images of the
+-maximal configurations of T . Write ✓ =def (2,⊞).

Say (σ,MS) may pass τ iff there exists y ⊛ x ∈ C∞(T0 ⊛ S), where x ∈

C∞(S) and y ∈ C∞(T0), with the image τ0y containing ✓. (Note again, we may
w.l.o.g. assume that the configurations x and y are finite.)

Say (σ,MS) must pass τ iff for all y ⊛ x ∈M0 ⊛MS , where x ∈ C∞(S) and
y ∈ C∞(T0), the image τ0y contains ✓.

Say two stopping strategies are ‘may’, respectively ‘must’, equivalent iff the
tests they may, respectively must, pass are the same.

Proposition 9.2. With the notation above,
(σ,MS) may pass τ iff there exists y⊙x ∈ C∞(T0⊙S), where x ∈ C∞(S) and

y ∈ C∞(T0), with the image τ0y containing ✓ —the configurations x, y may be
assumed finite; and
(σ,MS) must pass τ iff for all y⊙x ∈ M0⊙MS, where x ∈ MS and y ∈ M0,

the image τ0 y contains ✓.

Lemma 9.3. Let A be a race-free game. Let σ be a bare strategy in A. Then,
σ may pass a test τ iff St(σ) may pass τ ;
σ must pass a test τ iff St(σ) must pass τ .

Proof. Directly from the definitions, for the ‘if’ of the ‘must’ case, using Lemma 6.3.
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Example 9.4. It is tempting to think of neutral events as behaving like the in-
ternal “tau” events of CCS [3]. However, in the context of concurrent strategies,
because of their asynchronous nature, they behave rather differently. Consider
three bare strategies, over a game comprising of just two concurrent +ve events,
say a and b. The bare strategies have the following event structures in which
we have named events by the moves they correspond to in the game:

S1 a
�O

b

S2 �
�O

✤ ,,2a

�
✤ ,,2b

S3 �
�O

✤ ,,2a

b

No pair would be weakly bisimilar due to the presence of pre-emptive internal
events [3]. However, all three become isomorphic under St so are ‘may’ and
‘must’ equivalent to each other. ◻

2-cells between stopping strategies respect ‘may’ and ‘must’ behaviour in the
sense of the following lemma.

Lemma 9.5. Let f ∶ (σ,MS)⇒ (σ′,MS′) be a 2-cell between stopping strategies.
Then for any test τ ,
(σ,MS) may pass τ implies (σ′,MS′) may pass τ ; and
(σ′,MS′) must pass τ implies (σ,MS) must pass τ .
Moreover, if f is a rigid epi and fMS = MS′, then (σ,MS) and (σ

′,MS′)
are both ‘may’ and ‘must’ equivalent.

Proof. In this proof, we shall identify a test with its image (τ,MT ) under St,
as a strategy τ ∶ T → A⊥∥⊞ with stopping configurations MT .

Let f ∶ (σ,MS)⇒ (σ′,MS′) be a 2-cell. Assume σ ∶ S → A and σ′ ∶ S′ → A.
Suppose (σ,MS) may pass (τ,MT ). Then there is a (finite) configuration

which we write y ⊛ x of T ⊛ S, built as a secured bijection out of y ∈ C(T ) and
x ∈ C(S), whose image in the game contains ✓. The secured bijection built out
of y and x induces a secured bijection built out of y and fx; this is because
fx has no more causal dependency than x with which it is in bijection. This
determines a configuration y ⊛ fx, with image containing ✓.

Suppose (σ′,MS′) must pass (τ,MT ). Any y ⊛ x ∈MT ⊛MS images under
τ ⊛ f to y⊛ fx ∈MT ⊛MS′ . As (σ

′,MS′) must pass τ , the configuration y⊛ fx
has image containing ✓, ensuring that y ⊛ x does too.

Finally suppose that f is rigid epi and fMS = MS′ . We have just shown
that f preserves the passing of ‘may’ tests and reflects the passing of ‘must’
tests. Because f is rigid epi it also reflects the passing of ‘may’ tests. Because
f is rigid and fMS =MS′ it preserves the passing of ‘must’ tests: any secured
bijection y ⊛ fx in MT ⊛MS′ ensures by the rigidity of f a secured bijection
y ⊛ x in MT ⊛MS ; as (σ,MS) must pass τ we have the image in the game of
y ⊛ x contains ✓ ensuring the image of y ⊛ fx does too.

Tests based on bare strategies are more discriminating than tests based on
(pure) strategies:

Example 9.6. Let a game comprise a single Player move. Consider two stop-
ping strategies:
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σ1, the empty strategy with the empty configuration ∅ as its single stopping
configuration;

σ2, the strategy performing the single Player move ⊞ with stopping config-
urations ∅ and {⊞}. (We can easily realise this stopping strategy via St from a
bare strategy with event structure ⊞ /o � .)

By Lemma 9.5, we have (σ2,{∅,{⊞}}) must pass τ implies (σ1,{∅}) must
pass τ , for any test τ . (The above would not hold if we had not included ∅ in
the stopping configurations of σ2.)

Using the fact that we need only consider rigid images of tests—shown later
in Section 11, a little argument by cases establishes the converse implication too,
provided we restrict just to tests which are strategies. The stopping strategies
would be must equivalent w.r.t. tests based just on strategies.

However with tests based on bare strategies we can distinguish them. Con-
sider the test τ comprising three events, one of them neutral, with only nontrivial
causal dependency ⊟ _ � and � in conflict with the ‘tick’ event ⊞. Then, it
is not the case that (σ2,{∅,{⊞}}) must pass τ —the occurrence of the neutral
event blocks success in a maximal execution—while (σ1,{∅}) must pass τ . No-
tice how the presence of the neutral event in the test turns the possibility that
σ2 can perform the Player move into a possibility of its failing the test. ◻

10 ‘May’ and ‘Must’ behaviour characterised

10.1 Preliminaries, traces of a strategy

Let S be an event structure. A possibly infinite sequence

s1, s2,⋯, sn,⋯

in S constitutes a serialisation of a configuration x ∈C∞(S) if x = {s1, s2,⋯, sn,⋯}
and {s1,⋯, si} ∈ C(S) for all i at which the sequence is defined. We will often
identify such a countable enumeration of a set with its associated total order.
Note that in this way we can regard a serialisation as an elementary event struc-
ture in which causal dependency takes the form of a total order; a serialisation of
a configuration is associated with a map to S whose image is the configuration.

Let σ ∶ S → A be a strategy in a game A. A trace in σ is a possibly infinite
sequence

α = (σ(s1), σ(s2),⋯, σ(sn),⋯)

of events in A obtained from a serialisation

s1, s2,⋯, sn,⋯

of a configuration x ∈ C∞(S). Clearly α is a serialisation of σx ∈ C∞(A). From
the local injectivity of σ, the configuration x will be finite/infinite according as
the trace is finite/infinite. We say that α is a trace of the configuration x in σ,
or that x has trace α in σ.
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Proposition 10.1. Let σ ∶ S → A be a strategy.
(i) Any countable configuration of S has a trace.
(ii) Let x ∈ C∞(S) and α be an enumeration

a1, a2,⋯, an,⋯

of σx. Then, α is a trace of x in σ iff for all s, s′ ∈ x if s _ s′ then σ(s) precedes
σ(s′) in the enumeration α.

Proof. (i) Let x be a countable configuration of S w.r.t. the strategy σ ∶ S → A.
This follows because there is a serialisation x = {s1, s2,⋯, sn,⋯}, in which
{s1,⋯, si} is down-closed in S at all i in the enumeration. To see this, from its
countability we may assume a countable enumeration of x, which need not be a
serialisation. Define s1 ∈ x to be the earliest event of the enumeration for which
[s1) = ∅ in S; such an s1 is ensured to exist by the well-foundedness of causal
dependency provided x ≠ ∅. Inductively, define sn to be the earliest event of
the enumeration which is in x∖ {s1,⋯, sn−1} and for which [sn) ⊆ {s1,⋯, sn−1};
again the well-foundedness of causal dependency ensures such an sn exists pro-
vided x∖{s1,⋯, sn−1} ≠ ∅. It is elementary to check this provides a serialisation
of x.

(ii) “Only if”: Directly from the definition of trace of a configuration. “If”:
Via the local bijection between x and σx given by σ we obtain an enumeration

s1, s2,⋯, sn,⋯

of x matching α in that σ(si) = ai. The assumption that s _ s′ implies σ(s)
precedes σ(s′) in the enumeration α, entails {s1,⋯, si} ∈ C(S) for all i. Hence
the enumeration of x is a serialisation making α a trace of x.

Lemma 10.2. Let σ ∶ S → A be a strategy in a game A. Let x ∈ C∞(S).
Let α be a serialisation of σx which is not a trace of x ∈ C∞(S). Then, there
are s, s′ ∈ x with pol(s) = − and pol(s′) = + and s _S s′ with (note the order
reversal) σ(s′) ≤α σ(s) in α (regarded as a total order).

Proof. By assumption, any trace of x differs from α. We deduce there is s _ s′

in x with σ(s) /≤ σ(s′) in the total order of α; otherwise we could serialise x

to obtain the trace α —Proposition 10.1(ii). Now, σ(s) /≤A σ(s′) in A as any
serialisation must respect the order ≤A. Hence, by the innocence of σ, we must
have pol(s) = − and pol(s′) = +. Because α is totally ordered, σ(s′) ≤ σ(s) in
α.

10.2 Characterisation of the ‘may’ preorder

For stopping strategies (with games assumed race-free) we have:

Theorem 10.3. Let (σ1,M1) and (σ2,M2) be stopping strategies in a common
game. Then,
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(σ1,M1) may pass τ implies (σ2,M2) may pass τ , for all tests τ ,
iff
all finite traces of σ1 are traces of σ2.

Proof. Assume strategies σ1 ∶ S1 → A and σ2 ∶ S2 → A. “if”: Assume all finite
traces of σ1 are traces of σ2. Suppose (σ1,M1) may pass test τ with event
structure T . Then there is a successful configuration w⊛ x1 ∈ C(T ⊛S1), where
x1 ∈ C(S1) and w ∈ C(T ); it is successful in the sense that its image contains the
success event ✓. Take a serialisation of w⊛x1; this induces a serialisation of x1

to yield a trace. Then, by assumption, σ2 has a configuration x2 ∈ C(S2) with
the same trace, so a matching serialisation. Consequently the pairing w ⊛ x2 is
defined with w ⊛ x2 ∈ C(T ⊛ S2); sharing the same image as w ⊛ x1 it is also
successful.

“only if”: We show the contraposition: assuming not all traces of σ1 are traces
of σ2, we produce a test τ for which σ1 may pass τ while it is not the case that
σ2 may pass τ .

Assume a trace α1 of x1 ∈ C(S1) is not a trace of any x2 ∈ C(S2). Note
that the trace α1, and correspondingly x1, must have at least one +ve event as
otherwise, by receptivity, σ2 could match the trace α1. Any trace of x2, with
σ2x2 = σ1x1, differs from α1. By Lemma 10.2, we deduce there are s, s′ ∈ x2

such that s _2 s′ with pol(s) = − and pol(s′) = + and σ2(s
′) ≤1 σ2(s) in the

total order α1.
Thus for each x2 ∈ C(S2) with σ2x2 = σ1x1 we can choose θ(x2) = (s, s

′) so
that s _2 s

′ in x2 with pol(s) = − and pol(s′) = + and σ2(s
′) ≤1 σ2(s) in α1.

We now describe a test τ ∶ T → A⊥∥⊞ which will discriminate between σ1 and
σ2. Let T ′1 be the elementary event structure comprising events T1 =def σ1x1

saturated with all accessible Opponent moves (note, in A⊥), i.e. events

T ′1 = {a ∈ A ∣ polA⊥([a] ∖ T1) ⊆ {−}}

with order that of A⊥ augmented with σ2(s
′) ≤1 σ2(s) for every choice θ(x2) =

(s, s′) where x2 ∈ M2 and σ2x2 = σ1x1; the ensuing relation on T1 is included
in the total order α1 so forms a partial order in which every element has only
finitely many elements below it. (By design, T ′1 “disagrees” with the causal
dependency of each x2 ∈ C(S2) for which σ2x2 = σ1x1.) The polarities of events
of T ′1 are those of its events in A⊥. On T ′1 the map τ takes an event to its same
event in A⊥.

Let T be the event structure with polarity obtained from T ′1 by adjoining
a fresh ‘success’ event ⊞ with additional causal dependency so t1 ≤T ⊞ iff t1 is
−ve; as noted above there has to be at least one +ve event in x1 and thus, by
the reversal of polarity, at least one t1 ∈ T1 of −ve polarity. Then the obvious
map τ ∶ T → A⊥∥⊞ is a strategy, and a suitable test for σ1 and σ2.

We have (i) σ1 may pass τ , while (ii) it is not the case that σ2 may pass τ .
To see (i), remark that the relation of causal dependency on T1 is included

in the the total order of the trace α1 of x1. Hence τ ⊛ σ1 has a successful
configuration (T1 ∪ {⊞})⊛ x1.
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To show (ii), consider any finite configuration of τ ⊛ σ2. It has the form
w⊛x2 where w ∈ C(T ) and x2 ∈ C(S2). The configuration w⊛x2 is unsuccessful
because ⊞ ∉ w, as we now show. By design, τ and σ2 enforce opposing causal
dependencies on a pair of synchronisations needed for T1 ⊛ x2 to be defined
whenever x2 ∈ C(S2) with σ2x2 = T1. At least two events of opposing polarity
in T1 are excluded from any pairing w ⊛ x2; one must be a −ve event of T1 on
which ⊞ causally depends; hence ⊞ ∉ w.

That the characterisation of the ‘may’ preorder above only depends on finite
traces is not surprising, and familiar from previous work; the full-abstraction
results of Dan Ghica and Andrzej Murawski w.r.t. ‘may’ behaviour rely only on
finite traces [8].

Clearly the proof above does not rely on stopping configurations or tests
being bare rather than pure strategies; the test used in the proof patently has no
neutral events. The extra discriminating power of tests based on bare strategies,
illustrated in Example 9.6, does play an essential role in the analgous result in
the ‘must’ case, to be considered now.

10.3 Characterisation of the ‘must’ preorder

Recall an event structure E = (E,≤,Con) is consistent-countable iff there is a
function χ ∶ E → ω from the events such that

{e1, e2} ∈ Con & χ(e1) = χ(e2) Ô⇒ e1 = e2 .

Any configuration x ∈ C∞(E) of a consistent-countable event structure E is
countable and so may be serialised as

x = {e1, e2,⋯, en,⋯}

so that {e1,⋯, en} ∈ C(E) for any finite subsequence. For the must case we
assume that games are consistent-countable. It follows that strategies σ ∶ S → A

in consistent-countable games A have S consistent-countable. W.r.t. such a
strategy σ, we have traces of all configurations.

Theorem 10.4. Assume game A is consistent-countable. Let (σ1,M1) and
(σ2,M2) be stopping strategies in A. Then,
(σ2,M2) must pass τ implies (σ1,M1) must pass τ , for all tests τ ,
iff

all traces of stopping configurations M1 are traces of stopping configurations
M2.

Proof. “if”: Assume all traces of stopping configurations M1 are traces of stop-
ping configurations M2. A stopping configuration of τ ⊛σ1 has the form w⊛x1

where w and x1 are stopping configurations of τ and σ1, respectively. A se-
rialisation of w ⊛ x1 into a (possibly infinite) sequence induces a serialisation
of x1 ∈ M1. By assumption, there is x2 ∈ M2 with the same trace in A as x1.
Consequently, w ⊛ x2 is a configuration of τ ⊛ σ2 with the same image in A∥⊞.
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Moreover, w ⊛ x2 is a stopping configuration of τ ⊛ σ2. Supposing (σ2,M2)
must pass a test τ , the image of w ⊛x2 contains ✓ whence the image of w⊛x1

contains ✓ ensuring (σ1,M1) must pass a test τ .

“only if”: We show the contraposition: assuming not all traces of stopping
configurations M1 are traces of stopping configurations M2, we produce a test
τ for which (σ2,M2) must pass τ while it is not the case that (σ1,M1) must
pass τ .

Assume a trace α1 of x1 ∈M1 is not a trace of any x2 ∈M2.
In particular, consider any x2 ∈ M2 with σ2x2 = σ1x1. Then, any trace of

x2 differs from α1. By Lemma 10.2, there are s, s′ ∈ x2 such that s _2 s′ with
pol(s) = − and pol(s′) = + and σ2(s

′) ≤1 σ2(s) in the total order α1.
Thus for each x2 ∈M2 with σ2x2 = σ1x1 we can choose θ(x2) = (s, s

′) so that
s _2 s

′ in x2 with pol(s) = − and pol(s′) = + and σ2(s
′) ≤1 σ2(s) in α1.

We build an event structure with polarity T and a test as bare strategy
τ ∶ T → A⊥∥N∥⊞. We build the events of T as T ′1 ∪N ∪ T2, a union of sets of
events, assumed disjoint, described as follows.

• Let T ′1 be the elementary event structure comprising events T1 =def σ1x1

saturated with all accessible Opponent moves, i.e. events

T ′1 = {a ∈ A ∣ polA⊥([a] ∖ T1) ⊆ {−}}

with order that of A augmented with σ2(s
′) ≤1 σ2(s) for every choice

θ(x2) = (s, s
′) where x2 ∈ M2 and σ2x2 = σ1x1; the ensuing relation on

T1 is included in the total order α1 so forms a partial order in which
every element has only finitely many elements below it. (By design, T ′1
“disagrees” with the causal dependency of each x2 ∈M2 for which σ2x2 =

σ1x1.) The polarities of events of T ′1 are those of its events in A⊥. On T ′1
the map τ takes an event to its same event in A⊥.

• N comprises a copy of the set of events of −ve polarity in T1; all the events
of N have neutral polarity; an event of N is sent by τ to its copy.

• T2 comprises a copy of the set of events T1; all the events of T2 have +ve
polarity; they are all sent by τ to ✓ =def (3,⊞).

• Causal dependency on T is that of T ′1 augmented with dependencies from
events of T1 of −ve polarity to their corresponding copies in N .

• The consistency relation of T is that minimal relation which ensures that:
any two distinct events of T2 are in conflict; a +ve event of T1 conflicts
with its corresponding copy in T2; and a neutral event in N conflicts with
its corresponding copy in T2. Formally,

X ∈ ConT iff X ⊆fin T1 ∪N ∪ T2 & ∣X ∩ T2∣ ≤ 1 &

(∀t1 ∈X ∩ T
+
1 , t2 ∈X ∩ T2. t1, t2 are not copies of a common event) &

(∀n ∈X ∩N, t2 ∈ X ∩ T2. n, t2 are not copies of a common event).
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Note that all the events over ✓, which together comprise the set T2, can
occur initially but can become blocked as moves are made in T1. In particular,
the set T1 ∪N is a +-maximal configuration of T with image in A⊥∥N∥⊞ not
containing any event over ✓. On the other hand any +-maximal configuration
of T not including all the events T1 will contain an event over ✓. Hence St(τ)
has an unsuccessful stopping configuration consisting of precisely all the events
of T1—it does not have an event over ✓—while all stopping configurations of
St(τ) which do not contain all the events of T1 are successful—they contain an
event over ✓.

Consequently, (i) it is not the case that (σ1,M1) must τ , while (ii) (σ2,M2)
must τ . To see (i), remark that the relation of causal dependency on T1 is
included in the the total order of the trace α1 of x1. Hence St(τ) ⊛ σ1 has a
stopping configuration T1⊛x1 which is unsuccessful and thus (σ1,M1) fails the
must test τ . To show (ii), consider any stopping configuration of St(τ) ⊛ σ2.
It comprises w ⊛ x2 where w is a stopping configuration of St(τ) and x2 ∈M2,
a stopping configuration of σ2. Now w /⊇ T1, as by design τ and σ2 enforce
opposing causal dependencies on a pair of synchronisations needed for T1 ⊛ x2

to be defined whenever x2 ∈ M2 with σ2x2 = T1. Thus w is successful in that
it contains an event over ✓. Hence (σ2,M2) must pass τ . This completes the
proof.

Remark. By Example 9.6, the result above would not hold if tests were based
solely on pure strategies.

Example 10.5. Let A be the game

⊞ ⊟

❴���
⊟

❴
LLR

⊞

Let σ1 be the stopping strategy given by the identity map idA ∶ A→ A together
with the +-maximal configurations of A. Let σ2 be the stopping strategy derived
from the event structure

⊞ /o/o ⊞ ⊟✤llr

❴��� ✂ ��%
❇❇

❇❇
❇

⊟

❴
LLR

✤ ,,2

✂
[[e ❇❇❇❇❇

⊞ ⊞o/ o/

in which there are additional occurrences of Player moves awaiting both moves
of Opponent; the map to A is the obvious one and its stopping configurations
the +-maximal ones. It can be checked that the two stopping strategies share
the same traces of stopping configurations so are ‘must’ equivalent. ◻

Infinite stopping configurations play an essential role in the ‘must’ behaviour
of strategies:
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Example 10.6. Let the game A consist of an infinite chain of alternating
Player-Opponent moves:

⊞ ✤ ,,2⊟ ✤ ,,2⊞ ✤ ,,2⊟ ✤ ,,2 ⋯ ✤ ,,2⊞ ✤ ,,2⊟ ✤ ,,2 ⋯

The strategy σ1 has as consistent components a copy of A itself and copies of
all its initial finite sequences of events ending with an Opponent move; events of
different components are inconsistent with each other—we refrain from drawing
the wiggly conflicts. The map σ1 is obvious. (The construction is an instance
of the sum of strategies—see Section ??.)

⊞ ✤ ,,2⊟

⊞ ✤ ,,2⊟ ✤ ,,2⊞ ✤ ,,2⊟

⊞ ✤ ,,2⊟ ✤ ,,2⊞ ✤ ,,2⊟ ✤ ,,2⊞ ✤ ,,2⊟

⋮

⊞ ✤ ,,2⊟ ✤ ,,2⊞ ✤ ,,2⊟ ✤ ,,2 ⋯ ✤ ,,2⊞ ✤ ,,2⊟

⋮

⊞ ✤ ,,2⊟ ✤ ,,2⊞ ✤ ,,2⊟ ✤ ,,2 ⋯ ✤ ,,2⊞ ✤ ,,2⊟ ✤ ,,2⊞ ✤ ,,2 ⋯

The lowest component is a copy of A. The stopping configurations are all its
+-maximal configurations, i.e. those sets consisting of a whole component or an
initial subsequence of a component which ends in a Player move.

The strategy σ2 is like σ1 but without the extra infinite component of shape
A. Its stopping configurations are all its +-maximal configurations, so are nec-
essarily all finite.

The traces of σ1’s and σ2’s finite stopping configurations coincide. However
the trace of the infinite stopping configuration of σ1 cannot be a trace of σ2.
Accordingly, from Theorem 10.4, there is a test strategy which σ2 must pass
while σ1 does not. A distinguishing test τ ∶ T → A⊥∥⊞✓ has T comprising the
infinite event structure shown below.

⊟

❴���

✤ ,,2⊞ ✤ ,,2⊟

❴���

✤ ,,2⊞ ✤ ,,2⊟

❴���

✤ ,,2⊞ ✤ ,,2⊟

❴���

✤ ,,2⊞ ✤ ,,2 ⋯

⊞✓ /o/o/o/o/o/o/o

4t4t4t4t4t4t4t4t4t4t4t4t
⊞✓ /o/o/o/o/o/o/o

4t4t4t4t4t4t4t4t4t4t4t4t
⊞✓ /o/o/o/o/o/o/o

4t4t4t4t4t4t4t4t4t4t4t4t
⊞✓ /o/o/o/o/o/o/o

4t4t4t4t4t4t

4t4t4t4t4t4t

⋯

The strategy σ2 must pass τ ; all +-maximal configurations of τ ⊛ σ2 are finite
and contain a ✓-event. Whereas the strategy σ1 can fail to enable a ✓-event
through its extra infinite stopping configuration. ◻
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11 The rigid image of a stopping strategy

In this section we rely on the material of Section 4, in particular that a strategy
σ ∶ S → A in a game A has a rigid image

S

σ
��❅

❅❅
❅❅

❅❅
❅

f // // S0

σ1

��
A,

where f is rigid epi and the rigid image σ1 is a total map; the map σ1 auto-
matically inherits the properties required of a strategy. (The construction and
key properties of rigid image are unaffected by the extra structure of polarity.)
As has been remarked earlier [25, 19], rigid-image strategies have the advan-
tage of forming a category rather than a bicategory. Extended with stopping
configurations they can support ‘may’ and ‘must’ behaviour.

Definition 11.1. Let (σ,MS) be a stopping strategy. Let σ1 be the rigid image
of σ with accompanying 2-cell f ∶ σ ⇒ σ1 where f is rigid epi. We define the
rigid image of (σ,MS) to be (σ1, fMS). A rigid-image stopping strategy is one
which is its own rigid-image.

As a direct consequence of the last part of Lemma 9.5, we are assured the
rigid image of a stopping strategy does not lose any ‘may’ and ‘must’ behaviour.

Proposition 11.2. A stopping strategy is both ‘may’ and ‘must’ equivalent to
its rigid image.

As far as ‘may’ and ‘must’ behaviour is concerned it is sensible to regard
two stopping strategies as equivalent if they share a common rigid image. Rigid-
image equivalence transfers to an equivalence between bare strategies: two bare
strategies are equivalent if under St we obtain equivalent stopping strategies.
W.r.t. ‘may’ and ‘must’ behaviour we can choose to work in the category of
rigid-image stopping strategies.

What axioms hold of stopping configurations? Such axioms should be pre-
served by the composition of stopping strategies and rigid image. They should
also be complete in the sense that any stopping strategy which satisfied them
is rigid-image equivalent to the stopping strategy of some bare strategy. We do
not presently know a complete set of axioms for stopping configurations. Can-
didate axioms on a stopping strategy σ ∶ S → A with stopping configurations M
are

Axiom (i) ∀x ∈ C(S)∃y ∈M. x ⊆ y , and

Axiom (ii) ∀y ∈M,x ∈ C∞(S). x ⊆ y & x is +-maximal in S Ô⇒ x ∈M .

The example below shows why we do not assume all +-maximal configurations
are stopping. That property is not preserved by taking the rigid image.
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Example 11.3. In forming the rigid image σ1 ∶ S1 → A of a strategy σ ∶
S → A, related by rigid epi 2-cell f ∶ σ ⇒ σ1, it is possible to have an infinite
configuration of S1 which is not in the direct image under f of any configuration
of S; in particular it is possible to have a +-maximal configuration of S1 which
is not a direct image of any +-maximal configuration S. For example, let A

comprise an infinite chain of Player events. Take S to be the sum of all finite
subchains. The rigid image of S is A itself which has +-maximal configuration
comprising all the events in the infinite chain, not the image of any configuration
of S1. Thus, in forming the rigid image of a stopping strategy, we cannot assume
that all the +-maximal configurations of the rigid image are stopping. ◻

12 Strategies as concurrent processes

The paper [16] is a closely related study of concurrent strategies from the per-
spective of concurrent processes, considering how concurrent games and strate-
gies are objects which we can program. Concurrent strategies are shown to sup-
port operations yielding an economic yet rich higher-order concurrent process
language, which shares features both with process calculi and nondeterministic
dataflow. There a slightly weakened definition of bare strategies plays a key role
in providing an operational semantics. It would be satisfying to complete this
story by providing inequational proof systems for ‘may’ and ‘must’ equivalence
based on its syntax for strategies, drawing inspiration from the classic work of
Hennessy and de Nicola [5].

Process calculi often allow unrestricted recursion. Strategies, as presented
here, form a model of linear logic which restricts the copying of parameters
needed in recursive definitions. The treatment of unrestricted recursion re-
quires a move to nonlinear strategies over games with symmetry [21, 22]. The
recursive definition of bare strategies and strategies can follow classical ideas;
2-cells include the rigid embeddings and inclusions of [23]. Less clear is how
to carry out recursive definitions directly on stopping strategies; the 2-cells we
have chosen would seem to be too restrictive; and the nature of stopping con-
figurations, that they can be infinite without finite approximations, would push
the development into non-continuous operations—nonstandard, if not in itself
a bad thing.

A treatment of winning concurrent strategies has been presented [31]. In-
formally a strategy is winning if it must end up in a winning configuration of
the game regardless of the behaviour of Opponent. In idea this is very close to
controllability in [32]. Because the semantics of composition of composition of
strategies in [31] is inattentive to the possibilities of deadlock and divergence, a
strategy which is obtained as a composition may be deemed winning there and
yet possibly deadlock or diverge before reaching a winning configuration [16].
Fortunately the treatment of winning strategies ibid. generalises straightfor-
wardly to stopping strategies which keep track of deadlock and divergence, and
thus repair this defect. The role of +-maximal configurations in [31] is replaced
by that of stopping configurations: a bare or stopping strategy is winning iff all
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its stopping configurations image to winning strategies in the game.
Forearmed with concurrent strategies and games with symmetry it would be

interesting to revisit old ideas extending testing to other equivalences beyond
those of ‘may’ and ‘must’ [2]. Certainly one could wish for a better integration
of games and strategies with the classical work on concurrency, process algebra
and its equivalences included. The medium of concurrent games and strategies
based on event structures also provides an inroad into the formalisation and
analysis of probabilistic and quantum languages and processes [33, 34, 35].
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